]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/metaslab.c
Correctly handle errors from kern_path
[mirror_zfs.git] / module / zfs / metaslab.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
492f64e9 23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
2e528b49 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
34dc7c2f
BB
25 */
26
34dc7c2f 27#include <sys/zfs_context.h>
34dc7c2f
BB
28#include <sys/dmu.h>
29#include <sys/dmu_tx.h>
30#include <sys/space_map.h>
31#include <sys/metaslab_impl.h>
32#include <sys/vdev_impl.h>
33#include <sys/zio.h>
93cf2076 34#include <sys/spa_impl.h>
f3a7f661 35#include <sys/zfeature.h>
a1d477c2 36#include <sys/vdev_indirect_mapping.h>
d2734cce 37#include <sys/zap.h>
34dc7c2f 38
d1d7e268 39#define WITH_DF_BLOCK_ALLOCATOR
6d974228 40
3dfb57a3
DB
41#define GANG_ALLOCATION(flags) \
42 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
22c81dd8 43
e8fe6684
ED
44/*
45 * Metaslab granularity, in bytes. This is roughly similar to what would be
46 * referred to as the "stripe size" in traditional RAID arrays. In normal
47 * operation, we will try to write this amount of data to a top-level vdev
48 * before moving on to the next one.
49 */
99b14de4 50unsigned long metaslab_aliquot = 512 << 10;
e8fe6684 51
d830d479
MA
52/*
53 * For testing, make some blocks above a certain size be gang blocks.
54 */
55unsigned long metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
34dc7c2f 56
d2734cce
SD
57/*
58 * Since we can touch multiple metaslabs (and their respective space maps)
59 * with each transaction group, we benefit from having a smaller space map
60 * block size since it allows us to issue more I/O operations scattered
61 * around the disk.
62 */
63int zfs_metaslab_sm_blksz = (1 << 12);
64
e51be066
GW
65/*
66 * The in-core space map representation is more compact than its on-disk form.
67 * The zfs_condense_pct determines how much more compact the in-core
4e21fd06 68 * space map representation must be before we compact it on-disk.
e51be066
GW
69 * Values should be greater than or equal to 100.
70 */
71int zfs_condense_pct = 200;
72
b02fe35d
AR
73/*
74 * Condensing a metaslab is not guaranteed to actually reduce the amount of
75 * space used on disk. In particular, a space map uses data in increments of
96358617 76 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
b02fe35d
AR
77 * same number of blocks after condensing. Since the goal of condensing is to
78 * reduce the number of IOPs required to read the space map, we only want to
79 * condense when we can be sure we will reduce the number of blocks used by the
80 * space map. Unfortunately, we cannot precisely compute whether or not this is
81 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
82 * we apply the following heuristic: do not condense a spacemap unless the
83 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
84 * blocks.
85 */
86int zfs_metaslab_condense_block_threshold = 4;
87
ac72fac3
GW
88/*
89 * The zfs_mg_noalloc_threshold defines which metaslab groups should
90 * be eligible for allocation. The value is defined as a percentage of
f3a7f661 91 * free space. Metaslab groups that have more free space than
ac72fac3
GW
92 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
93 * a metaslab group's free space is less than or equal to the
94 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
95 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
96 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
97 * groups are allowed to accept allocations. Gang blocks are always
98 * eligible to allocate on any metaslab group. The default value of 0 means
99 * no metaslab group will be excluded based on this criterion.
100 */
101int zfs_mg_noalloc_threshold = 0;
6d974228 102
f3a7f661
GW
103/*
104 * Metaslab groups are considered eligible for allocations if their
105 * fragmenation metric (measured as a percentage) is less than or equal to
106 * zfs_mg_fragmentation_threshold. If a metaslab group exceeds this threshold
107 * then it will be skipped unless all metaslab groups within the metaslab
108 * class have also crossed this threshold.
109 */
110int zfs_mg_fragmentation_threshold = 85;
111
112/*
113 * Allow metaslabs to keep their active state as long as their fragmentation
114 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
115 * active metaslab that exceeds this threshold will no longer keep its active
116 * status allowing better metaslabs to be selected.
117 */
118int zfs_metaslab_fragmentation_threshold = 70;
119
428870ff 120/*
aa7d06a9 121 * When set will load all metaslabs when pool is first opened.
428870ff 122 */
aa7d06a9
GW
123int metaslab_debug_load = 0;
124
125/*
126 * When set will prevent metaslabs from being unloaded.
127 */
128int metaslab_debug_unload = 0;
428870ff 129
9babb374
BB
130/*
131 * Minimum size which forces the dynamic allocator to change
428870ff 132 * it's allocation strategy. Once the space map cannot satisfy
9babb374
BB
133 * an allocation of this size then it switches to using more
134 * aggressive strategy (i.e search by size rather than offset).
135 */
4e21fd06 136uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
9babb374
BB
137
138/*
139 * The minimum free space, in percent, which must be available
140 * in a space map to continue allocations in a first-fit fashion.
4e21fd06 141 * Once the space map's free space drops below this level we dynamically
9babb374
BB
142 * switch to using best-fit allocations.
143 */
428870ff
BB
144int metaslab_df_free_pct = 4;
145
428870ff 146/*
93cf2076 147 * Percentage of all cpus that can be used by the metaslab taskq.
428870ff 148 */
93cf2076 149int metaslab_load_pct = 50;
428870ff
BB
150
151/*
93cf2076
GW
152 * Determines how many txgs a metaslab may remain loaded without having any
153 * allocations from it. As long as a metaslab continues to be used we will
154 * keep it loaded.
428870ff 155 */
93cf2076 156int metaslab_unload_delay = TXG_SIZE * 2;
9babb374 157
93cf2076
GW
158/*
159 * Max number of metaslabs per group to preload.
160 */
161int metaslab_preload_limit = SPA_DVAS_PER_BP;
162
163/*
164 * Enable/disable preloading of metaslab.
165 */
f3a7f661 166int metaslab_preload_enabled = B_TRUE;
93cf2076
GW
167
168/*
f3a7f661 169 * Enable/disable fragmentation weighting on metaslabs.
93cf2076 170 */
f3a7f661 171int metaslab_fragmentation_factor_enabled = B_TRUE;
93cf2076 172
f3a7f661
GW
173/*
174 * Enable/disable lba weighting (i.e. outer tracks are given preference).
175 */
176int metaslab_lba_weighting_enabled = B_TRUE;
177
178/*
179 * Enable/disable metaslab group biasing.
180 */
181int metaslab_bias_enabled = B_TRUE;
182
4e21fd06 183
a1d477c2
MA
184/*
185 * Enable/disable remapping of indirect DVAs to their concrete vdevs.
186 */
187boolean_t zfs_remap_blkptr_enable = B_TRUE;
188
4e21fd06
DB
189/*
190 * Enable/disable segment-based metaslab selection.
191 */
192int zfs_metaslab_segment_weight_enabled = B_TRUE;
193
194/*
195 * When using segment-based metaslab selection, we will continue
196 * allocating from the active metaslab until we have exhausted
197 * zfs_metaslab_switch_threshold of its buckets.
198 */
199int zfs_metaslab_switch_threshold = 2;
200
201/*
202 * Internal switch to enable/disable the metaslab allocation tracing
203 * facility.
204 */
205#ifdef _METASLAB_TRACING
206boolean_t metaslab_trace_enabled = B_TRUE;
207#endif
208
209/*
210 * Maximum entries that the metaslab allocation tracing facility will keep
211 * in a given list when running in non-debug mode. We limit the number
212 * of entries in non-debug mode to prevent us from using up too much memory.
213 * The limit should be sufficiently large that we don't expect any allocation
214 * to every exceed this value. In debug mode, the system will panic if this
215 * limit is ever reached allowing for further investigation.
216 */
217#ifdef _METASLAB_TRACING
218uint64_t metaslab_trace_max_entries = 5000;
219#endif
220
221static uint64_t metaslab_weight(metaslab_t *);
222static void metaslab_set_fragmentation(metaslab_t *);
d2734cce 223static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
a1d477c2 224static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
4e21fd06 225
492f64e9
PD
226static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
227static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
4e21fd06
DB
228#ifdef _METASLAB_TRACING
229kmem_cache_t *metaslab_alloc_trace_cache;
230#endif
93cf2076 231
34dc7c2f
BB
232/*
233 * ==========================================================================
234 * Metaslab classes
235 * ==========================================================================
236 */
237metaslab_class_t *
93cf2076 238metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
34dc7c2f
BB
239{
240 metaslab_class_t *mc;
241
79c76d5b 242 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
34dc7c2f 243
428870ff 244 mc->mc_spa = spa;
34dc7c2f 245 mc->mc_rotor = NULL;
9babb374 246 mc->mc_ops = ops;
3dfb57a3 247 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
492f64e9
PD
248 mc->mc_alloc_slots = kmem_zalloc(spa->spa_alloc_count *
249 sizeof (refcount_t), KM_SLEEP);
250 mc->mc_alloc_max_slots = kmem_zalloc(spa->spa_alloc_count *
251 sizeof (uint64_t), KM_SLEEP);
252 for (int i = 0; i < spa->spa_alloc_count; i++)
253 refcount_create_tracked(&mc->mc_alloc_slots[i]);
34dc7c2f
BB
254
255 return (mc);
256}
257
258void
259metaslab_class_destroy(metaslab_class_t *mc)
260{
428870ff
BB
261 ASSERT(mc->mc_rotor == NULL);
262 ASSERT(mc->mc_alloc == 0);
263 ASSERT(mc->mc_deferred == 0);
264 ASSERT(mc->mc_space == 0);
265 ASSERT(mc->mc_dspace == 0);
34dc7c2f 266
492f64e9
PD
267 for (int i = 0; i < mc->mc_spa->spa_alloc_count; i++)
268 refcount_destroy(&mc->mc_alloc_slots[i]);
269 kmem_free(mc->mc_alloc_slots, mc->mc_spa->spa_alloc_count *
270 sizeof (refcount_t));
271 kmem_free(mc->mc_alloc_max_slots, mc->mc_spa->spa_alloc_count *
272 sizeof (uint64_t));
3dfb57a3 273 mutex_destroy(&mc->mc_lock);
34dc7c2f
BB
274 kmem_free(mc, sizeof (metaslab_class_t));
275}
276
428870ff
BB
277int
278metaslab_class_validate(metaslab_class_t *mc)
34dc7c2f 279{
428870ff
BB
280 metaslab_group_t *mg;
281 vdev_t *vd;
34dc7c2f 282
428870ff
BB
283 /*
284 * Must hold one of the spa_config locks.
285 */
286 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
287 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
34dc7c2f 288
428870ff
BB
289 if ((mg = mc->mc_rotor) == NULL)
290 return (0);
291
292 do {
293 vd = mg->mg_vd;
294 ASSERT(vd->vdev_mg != NULL);
295 ASSERT3P(vd->vdev_top, ==, vd);
296 ASSERT3P(mg->mg_class, ==, mc);
297 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
298 } while ((mg = mg->mg_next) != mc->mc_rotor);
299
300 return (0);
34dc7c2f
BB
301}
302
303void
428870ff
BB
304metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
305 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
34dc7c2f 306{
428870ff
BB
307 atomic_add_64(&mc->mc_alloc, alloc_delta);
308 atomic_add_64(&mc->mc_deferred, defer_delta);
309 atomic_add_64(&mc->mc_space, space_delta);
310 atomic_add_64(&mc->mc_dspace, dspace_delta);
311}
34dc7c2f 312
428870ff
BB
313uint64_t
314metaslab_class_get_alloc(metaslab_class_t *mc)
315{
316 return (mc->mc_alloc);
317}
34dc7c2f 318
428870ff
BB
319uint64_t
320metaslab_class_get_deferred(metaslab_class_t *mc)
321{
322 return (mc->mc_deferred);
323}
34dc7c2f 324
428870ff
BB
325uint64_t
326metaslab_class_get_space(metaslab_class_t *mc)
327{
328 return (mc->mc_space);
329}
34dc7c2f 330
428870ff
BB
331uint64_t
332metaslab_class_get_dspace(metaslab_class_t *mc)
333{
334 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
34dc7c2f
BB
335}
336
f3a7f661
GW
337void
338metaslab_class_histogram_verify(metaslab_class_t *mc)
339{
340 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
341 uint64_t *mc_hist;
1c27024e 342 int i;
f3a7f661
GW
343
344 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
345 return;
346
347 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
79c76d5b 348 KM_SLEEP);
f3a7f661 349
1c27024e 350 for (int c = 0; c < rvd->vdev_children; c++) {
f3a7f661
GW
351 vdev_t *tvd = rvd->vdev_child[c];
352 metaslab_group_t *mg = tvd->vdev_mg;
353
354 /*
355 * Skip any holes, uninitialized top-levels, or
356 * vdevs that are not in this metalab class.
357 */
a1d477c2 358 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
f3a7f661
GW
359 mg->mg_class != mc) {
360 continue;
361 }
362
363 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
364 mc_hist[i] += mg->mg_histogram[i];
365 }
366
367 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
368 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
369
370 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
371}
372
373/*
374 * Calculate the metaslab class's fragmentation metric. The metric
375 * is weighted based on the space contribution of each metaslab group.
376 * The return value will be a number between 0 and 100 (inclusive), or
377 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
378 * zfs_frag_table for more information about the metric.
379 */
380uint64_t
381metaslab_class_fragmentation(metaslab_class_t *mc)
382{
383 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
384 uint64_t fragmentation = 0;
f3a7f661
GW
385
386 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
387
1c27024e 388 for (int c = 0; c < rvd->vdev_children; c++) {
f3a7f661
GW
389 vdev_t *tvd = rvd->vdev_child[c];
390 metaslab_group_t *mg = tvd->vdev_mg;
391
392 /*
a1d477c2
MA
393 * Skip any holes, uninitialized top-levels,
394 * or vdevs that are not in this metalab class.
f3a7f661 395 */
a1d477c2 396 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
f3a7f661
GW
397 mg->mg_class != mc) {
398 continue;
399 }
400
401 /*
402 * If a metaslab group does not contain a fragmentation
403 * metric then just bail out.
404 */
405 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
406 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
407 return (ZFS_FRAG_INVALID);
408 }
409
410 /*
411 * Determine how much this metaslab_group is contributing
412 * to the overall pool fragmentation metric.
413 */
414 fragmentation += mg->mg_fragmentation *
415 metaslab_group_get_space(mg);
416 }
417 fragmentation /= metaslab_class_get_space(mc);
418
419 ASSERT3U(fragmentation, <=, 100);
420 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
421 return (fragmentation);
422}
423
424/*
425 * Calculate the amount of expandable space that is available in
426 * this metaslab class. If a device is expanded then its expandable
427 * space will be the amount of allocatable space that is currently not
428 * part of this metaslab class.
429 */
430uint64_t
431metaslab_class_expandable_space(metaslab_class_t *mc)
432{
433 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
434 uint64_t space = 0;
f3a7f661
GW
435
436 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
1c27024e 437 for (int c = 0; c < rvd->vdev_children; c++) {
f3a7f661
GW
438 vdev_t *tvd = rvd->vdev_child[c];
439 metaslab_group_t *mg = tvd->vdev_mg;
440
a1d477c2 441 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
f3a7f661
GW
442 mg->mg_class != mc) {
443 continue;
444 }
445
0f676dc2
GM
446 /*
447 * Calculate if we have enough space to add additional
448 * metaslabs. We report the expandable space in terms
449 * of the metaslab size since that's the unit of expansion.
450 */
451 space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize,
452 1ULL << tvd->vdev_ms_shift);
f3a7f661
GW
453 }
454 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
455 return (space);
456}
457
34dc7c2f
BB
458static int
459metaslab_compare(const void *x1, const void *x2)
460{
ee36c709
GN
461 const metaslab_t *m1 = (const metaslab_t *)x1;
462 const metaslab_t *m2 = (const metaslab_t *)x2;
34dc7c2f 463
492f64e9
PD
464 int sort1 = 0;
465 int sort2 = 0;
466 if (m1->ms_allocator != -1 && m1->ms_primary)
467 sort1 = 1;
468 else if (m1->ms_allocator != -1 && !m1->ms_primary)
469 sort1 = 2;
470 if (m2->ms_allocator != -1 && m2->ms_primary)
471 sort2 = 1;
472 else if (m2->ms_allocator != -1 && !m2->ms_primary)
473 sort2 = 2;
474
475 /*
476 * Sort inactive metaslabs first, then primaries, then secondaries. When
477 * selecting a metaslab to allocate from, an allocator first tries its
478 * primary, then secondary active metaslab. If it doesn't have active
479 * metaslabs, or can't allocate from them, it searches for an inactive
480 * metaslab to activate. If it can't find a suitable one, it will steal
481 * a primary or secondary metaslab from another allocator.
482 */
483 if (sort1 < sort2)
484 return (-1);
485 if (sort1 > sort2)
486 return (1);
487
ee36c709
GN
488 int cmp = AVL_CMP(m2->ms_weight, m1->ms_weight);
489 if (likely(cmp))
490 return (cmp);
34dc7c2f 491
ee36c709 492 IMPLY(AVL_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
34dc7c2f 493
ee36c709 494 return (AVL_CMP(m1->ms_start, m2->ms_start));
34dc7c2f
BB
495}
496
4e21fd06
DB
497/*
498 * Verify that the space accounting on disk matches the in-core range_trees.
499 */
500void
501metaslab_verify_space(metaslab_t *msp, uint64_t txg)
502{
503 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
504 uint64_t allocated = 0;
4e21fd06 505 uint64_t sm_free_space, msp_free_space;
4e21fd06
DB
506
507 ASSERT(MUTEX_HELD(&msp->ms_lock));
508
509 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
510 return;
511
512 /*
513 * We can only verify the metaslab space when we're called
514 * from syncing context with a loaded metaslab that has an allocated
515 * space map. Calling this in non-syncing context does not
516 * provide a consistent view of the metaslab since we're performing
517 * allocations in the future.
518 */
519 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
520 !msp->ms_loaded)
521 return;
522
523 sm_free_space = msp->ms_size - space_map_allocated(msp->ms_sm) -
524 space_map_alloc_delta(msp->ms_sm);
525
526 /*
527 * Account for future allocations since we would have already
528 * deducted that space from the ms_freetree.
529 */
1c27024e 530 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
4e21fd06 531 allocated +=
d2734cce 532 range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
4e21fd06 533 }
4e21fd06 534
d2734cce
SD
535 msp_free_space = range_tree_space(msp->ms_allocatable) + allocated +
536 msp->ms_deferspace + range_tree_space(msp->ms_freed);
4e21fd06
DB
537
538 VERIFY3U(sm_free_space, ==, msp_free_space);
539}
540
541/*
542 * ==========================================================================
543 * Metaslab groups
544 * ==========================================================================
545 */
ac72fac3
GW
546/*
547 * Update the allocatable flag and the metaslab group's capacity.
548 * The allocatable flag is set to true if the capacity is below
3dfb57a3
DB
549 * the zfs_mg_noalloc_threshold or has a fragmentation value that is
550 * greater than zfs_mg_fragmentation_threshold. If a metaslab group
551 * transitions from allocatable to non-allocatable or vice versa then the
552 * metaslab group's class is updated to reflect the transition.
ac72fac3
GW
553 */
554static void
555metaslab_group_alloc_update(metaslab_group_t *mg)
556{
557 vdev_t *vd = mg->mg_vd;
558 metaslab_class_t *mc = mg->mg_class;
559 vdev_stat_t *vs = &vd->vdev_stat;
560 boolean_t was_allocatable;
3dfb57a3 561 boolean_t was_initialized;
ac72fac3
GW
562
563 ASSERT(vd == vd->vdev_top);
a1d477c2
MA
564 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
565 SCL_ALLOC);
ac72fac3
GW
566
567 mutex_enter(&mg->mg_lock);
568 was_allocatable = mg->mg_allocatable;
3dfb57a3 569 was_initialized = mg->mg_initialized;
ac72fac3
GW
570
571 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
572 (vs->vs_space + 1);
573
3dfb57a3
DB
574 mutex_enter(&mc->mc_lock);
575
576 /*
577 * If the metaslab group was just added then it won't
578 * have any space until we finish syncing out this txg.
579 * At that point we will consider it initialized and available
580 * for allocations. We also don't consider non-activated
581 * metaslab groups (e.g. vdevs that are in the middle of being removed)
582 * to be initialized, because they can't be used for allocation.
583 */
584 mg->mg_initialized = metaslab_group_initialized(mg);
585 if (!was_initialized && mg->mg_initialized) {
586 mc->mc_groups++;
587 } else if (was_initialized && !mg->mg_initialized) {
588 ASSERT3U(mc->mc_groups, >, 0);
589 mc->mc_groups--;
590 }
591 if (mg->mg_initialized)
592 mg->mg_no_free_space = B_FALSE;
593
f3a7f661
GW
594 /*
595 * A metaslab group is considered allocatable if it has plenty
596 * of free space or is not heavily fragmented. We only take
597 * fragmentation into account if the metaslab group has a valid
598 * fragmentation metric (i.e. a value between 0 and 100).
599 */
3dfb57a3
DB
600 mg->mg_allocatable = (mg->mg_activation_count > 0 &&
601 mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
f3a7f661
GW
602 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
603 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
ac72fac3
GW
604
605 /*
606 * The mc_alloc_groups maintains a count of the number of
607 * groups in this metaslab class that are still above the
608 * zfs_mg_noalloc_threshold. This is used by the allocating
609 * threads to determine if they should avoid allocations to
610 * a given group. The allocator will avoid allocations to a group
611 * if that group has reached or is below the zfs_mg_noalloc_threshold
612 * and there are still other groups that are above the threshold.
613 * When a group transitions from allocatable to non-allocatable or
614 * vice versa we update the metaslab class to reflect that change.
615 * When the mc_alloc_groups value drops to 0 that means that all
616 * groups have reached the zfs_mg_noalloc_threshold making all groups
617 * eligible for allocations. This effectively means that all devices
618 * are balanced again.
619 */
620 if (was_allocatable && !mg->mg_allocatable)
621 mc->mc_alloc_groups--;
622 else if (!was_allocatable && mg->mg_allocatable)
623 mc->mc_alloc_groups++;
3dfb57a3 624 mutex_exit(&mc->mc_lock);
f3a7f661 625
ac72fac3
GW
626 mutex_exit(&mg->mg_lock);
627}
628
34dc7c2f 629metaslab_group_t *
492f64e9 630metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
34dc7c2f
BB
631{
632 metaslab_group_t *mg;
633
79c76d5b 634 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
34dc7c2f 635 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
492f64e9
PD
636 mg->mg_primaries = kmem_zalloc(allocators * sizeof (metaslab_t *),
637 KM_SLEEP);
638 mg->mg_secondaries = kmem_zalloc(allocators * sizeof (metaslab_t *),
639 KM_SLEEP);
34dc7c2f
BB
640 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
641 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
34dc7c2f 642 mg->mg_vd = vd;
428870ff
BB
643 mg->mg_class = mc;
644 mg->mg_activation_count = 0;
3dfb57a3
DB
645 mg->mg_initialized = B_FALSE;
646 mg->mg_no_free_space = B_TRUE;
492f64e9
PD
647 mg->mg_allocators = allocators;
648
649 mg->mg_alloc_queue_depth = kmem_zalloc(allocators * sizeof (refcount_t),
650 KM_SLEEP);
651 mg->mg_cur_max_alloc_queue_depth = kmem_zalloc(allocators *
652 sizeof (uint64_t), KM_SLEEP);
653 for (int i = 0; i < allocators; i++) {
654 refcount_create_tracked(&mg->mg_alloc_queue_depth[i]);
655 mg->mg_cur_max_alloc_queue_depth[i] = 0;
656 }
34dc7c2f 657
3c51c5cb 658 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
1229323d 659 maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC);
93cf2076 660
34dc7c2f
BB
661 return (mg);
662}
663
664void
665metaslab_group_destroy(metaslab_group_t *mg)
666{
428870ff
BB
667 ASSERT(mg->mg_prev == NULL);
668 ASSERT(mg->mg_next == NULL);
669 /*
670 * We may have gone below zero with the activation count
671 * either because we never activated in the first place or
672 * because we're done, and possibly removing the vdev.
673 */
674 ASSERT(mg->mg_activation_count <= 0);
675
3c51c5cb 676 taskq_destroy(mg->mg_taskq);
34dc7c2f 677 avl_destroy(&mg->mg_metaslab_tree);
492f64e9
PD
678 kmem_free(mg->mg_primaries, mg->mg_allocators * sizeof (metaslab_t *));
679 kmem_free(mg->mg_secondaries, mg->mg_allocators *
680 sizeof (metaslab_t *));
34dc7c2f 681 mutex_destroy(&mg->mg_lock);
492f64e9
PD
682
683 for (int i = 0; i < mg->mg_allocators; i++) {
684 refcount_destroy(&mg->mg_alloc_queue_depth[i]);
685 mg->mg_cur_max_alloc_queue_depth[i] = 0;
686 }
687 kmem_free(mg->mg_alloc_queue_depth, mg->mg_allocators *
688 sizeof (refcount_t));
689 kmem_free(mg->mg_cur_max_alloc_queue_depth, mg->mg_allocators *
690 sizeof (uint64_t));
691
34dc7c2f
BB
692 kmem_free(mg, sizeof (metaslab_group_t));
693}
694
428870ff
BB
695void
696metaslab_group_activate(metaslab_group_t *mg)
697{
698 metaslab_class_t *mc = mg->mg_class;
699 metaslab_group_t *mgprev, *mgnext;
700
a1d477c2 701 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER), !=, 0);
428870ff
BB
702
703 ASSERT(mc->mc_rotor != mg);
704 ASSERT(mg->mg_prev == NULL);
705 ASSERT(mg->mg_next == NULL);
706 ASSERT(mg->mg_activation_count <= 0);
707
708 if (++mg->mg_activation_count <= 0)
709 return;
710
711 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
ac72fac3 712 metaslab_group_alloc_update(mg);
428870ff
BB
713
714 if ((mgprev = mc->mc_rotor) == NULL) {
715 mg->mg_prev = mg;
716 mg->mg_next = mg;
717 } else {
718 mgnext = mgprev->mg_next;
719 mg->mg_prev = mgprev;
720 mg->mg_next = mgnext;
721 mgprev->mg_next = mg;
722 mgnext->mg_prev = mg;
723 }
724 mc->mc_rotor = mg;
725}
726
a1d477c2
MA
727/*
728 * Passivate a metaslab group and remove it from the allocation rotor.
729 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
730 * a metaslab group. This function will momentarily drop spa_config_locks
731 * that are lower than the SCL_ALLOC lock (see comment below).
732 */
428870ff
BB
733void
734metaslab_group_passivate(metaslab_group_t *mg)
735{
736 metaslab_class_t *mc = mg->mg_class;
a1d477c2 737 spa_t *spa = mc->mc_spa;
428870ff 738 metaslab_group_t *mgprev, *mgnext;
a1d477c2 739 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
428870ff 740
a1d477c2
MA
741 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
742 (SCL_ALLOC | SCL_ZIO));
428870ff
BB
743
744 if (--mg->mg_activation_count != 0) {
745 ASSERT(mc->mc_rotor != mg);
746 ASSERT(mg->mg_prev == NULL);
747 ASSERT(mg->mg_next == NULL);
748 ASSERT(mg->mg_activation_count < 0);
749 return;
750 }
751
a1d477c2
MA
752 /*
753 * The spa_config_lock is an array of rwlocks, ordered as
754 * follows (from highest to lowest):
755 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
756 * SCL_ZIO > SCL_FREE > SCL_VDEV
757 * (For more information about the spa_config_lock see spa_misc.c)
758 * The higher the lock, the broader its coverage. When we passivate
759 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
760 * config locks. However, the metaslab group's taskq might be trying
761 * to preload metaslabs so we must drop the SCL_ZIO lock and any
762 * lower locks to allow the I/O to complete. At a minimum,
763 * we continue to hold the SCL_ALLOC lock, which prevents any future
764 * allocations from taking place and any changes to the vdev tree.
765 */
766 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
c5528b9b 767 taskq_wait_outstanding(mg->mg_taskq, 0);
a1d477c2 768 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
f3a7f661 769 metaslab_group_alloc_update(mg);
492f64e9
PD
770 for (int i = 0; i < mg->mg_allocators; i++) {
771 metaslab_t *msp = mg->mg_primaries[i];
772 if (msp != NULL) {
773 mutex_enter(&msp->ms_lock);
774 metaslab_passivate(msp,
775 metaslab_weight_from_range_tree(msp));
776 mutex_exit(&msp->ms_lock);
777 }
778 msp = mg->mg_secondaries[i];
779 if (msp != NULL) {
780 mutex_enter(&msp->ms_lock);
781 metaslab_passivate(msp,
782 metaslab_weight_from_range_tree(msp));
783 mutex_exit(&msp->ms_lock);
784 }
785 }
93cf2076 786
428870ff
BB
787 mgprev = mg->mg_prev;
788 mgnext = mg->mg_next;
789
790 if (mg == mgnext) {
791 mc->mc_rotor = NULL;
792 } else {
793 mc->mc_rotor = mgnext;
794 mgprev->mg_next = mgnext;
795 mgnext->mg_prev = mgprev;
796 }
797
798 mg->mg_prev = NULL;
799 mg->mg_next = NULL;
800}
801
3dfb57a3
DB
802boolean_t
803metaslab_group_initialized(metaslab_group_t *mg)
804{
805 vdev_t *vd = mg->mg_vd;
806 vdev_stat_t *vs = &vd->vdev_stat;
807
808 return (vs->vs_space != 0 && mg->mg_activation_count > 0);
809}
810
f3a7f661
GW
811uint64_t
812metaslab_group_get_space(metaslab_group_t *mg)
813{
814 return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
815}
816
817void
818metaslab_group_histogram_verify(metaslab_group_t *mg)
819{
820 uint64_t *mg_hist;
821 vdev_t *vd = mg->mg_vd;
822 uint64_t ashift = vd->vdev_ashift;
1c27024e 823 int i;
f3a7f661
GW
824
825 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
826 return;
827
828 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
79c76d5b 829 KM_SLEEP);
f3a7f661
GW
830
831 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
832 SPACE_MAP_HISTOGRAM_SIZE + ashift);
833
1c27024e 834 for (int m = 0; m < vd->vdev_ms_count; m++) {
f3a7f661
GW
835 metaslab_t *msp = vd->vdev_ms[m];
836
837 if (msp->ms_sm == NULL)
838 continue;
839
840 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
841 mg_hist[i + ashift] +=
842 msp->ms_sm->sm_phys->smp_histogram[i];
843 }
844
845 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
846 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
847
848 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
849}
850
34dc7c2f 851static void
f3a7f661 852metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
34dc7c2f 853{
f3a7f661
GW
854 metaslab_class_t *mc = mg->mg_class;
855 uint64_t ashift = mg->mg_vd->vdev_ashift;
f3a7f661
GW
856
857 ASSERT(MUTEX_HELD(&msp->ms_lock));
858 if (msp->ms_sm == NULL)
859 return;
860
34dc7c2f 861 mutex_enter(&mg->mg_lock);
1c27024e 862 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
f3a7f661
GW
863 mg->mg_histogram[i + ashift] +=
864 msp->ms_sm->sm_phys->smp_histogram[i];
865 mc->mc_histogram[i + ashift] +=
866 msp->ms_sm->sm_phys->smp_histogram[i];
867 }
868 mutex_exit(&mg->mg_lock);
869}
870
871void
872metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
873{
874 metaslab_class_t *mc = mg->mg_class;
875 uint64_t ashift = mg->mg_vd->vdev_ashift;
f3a7f661
GW
876
877 ASSERT(MUTEX_HELD(&msp->ms_lock));
878 if (msp->ms_sm == NULL)
879 return;
880
881 mutex_enter(&mg->mg_lock);
1c27024e 882 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
f3a7f661
GW
883 ASSERT3U(mg->mg_histogram[i + ashift], >=,
884 msp->ms_sm->sm_phys->smp_histogram[i]);
885 ASSERT3U(mc->mc_histogram[i + ashift], >=,
886 msp->ms_sm->sm_phys->smp_histogram[i]);
887
888 mg->mg_histogram[i + ashift] -=
889 msp->ms_sm->sm_phys->smp_histogram[i];
890 mc->mc_histogram[i + ashift] -=
891 msp->ms_sm->sm_phys->smp_histogram[i];
892 }
893 mutex_exit(&mg->mg_lock);
894}
895
896static void
897metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
898{
34dc7c2f 899 ASSERT(msp->ms_group == NULL);
f3a7f661 900 mutex_enter(&mg->mg_lock);
34dc7c2f
BB
901 msp->ms_group = mg;
902 msp->ms_weight = 0;
903 avl_add(&mg->mg_metaslab_tree, msp);
904 mutex_exit(&mg->mg_lock);
f3a7f661
GW
905
906 mutex_enter(&msp->ms_lock);
907 metaslab_group_histogram_add(mg, msp);
908 mutex_exit(&msp->ms_lock);
34dc7c2f
BB
909}
910
911static void
912metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
913{
f3a7f661
GW
914 mutex_enter(&msp->ms_lock);
915 metaslab_group_histogram_remove(mg, msp);
916 mutex_exit(&msp->ms_lock);
917
34dc7c2f
BB
918 mutex_enter(&mg->mg_lock);
919 ASSERT(msp->ms_group == mg);
920 avl_remove(&mg->mg_metaslab_tree, msp);
921 msp->ms_group = NULL;
922 mutex_exit(&mg->mg_lock);
923}
924
492f64e9
PD
925static void
926metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
927{
928 ASSERT(MUTEX_HELD(&mg->mg_lock));
929 ASSERT(msp->ms_group == mg);
930 avl_remove(&mg->mg_metaslab_tree, msp);
931 msp->ms_weight = weight;
932 avl_add(&mg->mg_metaslab_tree, msp);
933
934}
935
34dc7c2f
BB
936static void
937metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
938{
939 /*
940 * Although in principle the weight can be any value, in
f3a7f661 941 * practice we do not use values in the range [1, 511].
34dc7c2f 942 */
f3a7f661 943 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
34dc7c2f
BB
944 ASSERT(MUTEX_HELD(&msp->ms_lock));
945
946 mutex_enter(&mg->mg_lock);
492f64e9 947 metaslab_group_sort_impl(mg, msp, weight);
34dc7c2f
BB
948 mutex_exit(&mg->mg_lock);
949}
950
f3a7f661
GW
951/*
952 * Calculate the fragmentation for a given metaslab group. We can use
953 * a simple average here since all metaslabs within the group must have
954 * the same size. The return value will be a value between 0 and 100
955 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
956 * group have a fragmentation metric.
957 */
958uint64_t
959metaslab_group_fragmentation(metaslab_group_t *mg)
960{
961 vdev_t *vd = mg->mg_vd;
962 uint64_t fragmentation = 0;
963 uint64_t valid_ms = 0;
f3a7f661 964
1c27024e 965 for (int m = 0; m < vd->vdev_ms_count; m++) {
f3a7f661
GW
966 metaslab_t *msp = vd->vdev_ms[m];
967
968 if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
969 continue;
970
971 valid_ms++;
972 fragmentation += msp->ms_fragmentation;
973 }
974
975 if (valid_ms <= vd->vdev_ms_count / 2)
976 return (ZFS_FRAG_INVALID);
977
978 fragmentation /= valid_ms;
979 ASSERT3U(fragmentation, <=, 100);
980 return (fragmentation);
981}
982
ac72fac3
GW
983/*
984 * Determine if a given metaslab group should skip allocations. A metaslab
f3a7f661
GW
985 * group should avoid allocations if its free capacity is less than the
986 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
987 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
3dfb57a3
DB
988 * that can still handle allocations. If the allocation throttle is enabled
989 * then we skip allocations to devices that have reached their maximum
990 * allocation queue depth unless the selected metaslab group is the only
991 * eligible group remaining.
ac72fac3
GW
992 */
993static boolean_t
3dfb57a3 994metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
c197a77c 995 uint64_t psize, int allocator, int d)
ac72fac3 996{
3dfb57a3 997 spa_t *spa = mg->mg_vd->vdev_spa;
ac72fac3
GW
998 metaslab_class_t *mc = mg->mg_class;
999
1000 /*
3dfb57a3
DB
1001 * We can only consider skipping this metaslab group if it's
1002 * in the normal metaslab class and there are other metaslab
1003 * groups to select from. Otherwise, we always consider it eligible
f3a7f661 1004 * for allocations.
ac72fac3 1005 */
3dfb57a3
DB
1006 if (mc != spa_normal_class(spa) || mc->mc_groups <= 1)
1007 return (B_TRUE);
1008
1009 /*
1010 * If the metaslab group's mg_allocatable flag is set (see comments
1011 * in metaslab_group_alloc_update() for more information) and
1012 * the allocation throttle is disabled then allow allocations to this
1013 * device. However, if the allocation throttle is enabled then
1014 * check if we have reached our allocation limit (mg_alloc_queue_depth)
1015 * to determine if we should allow allocations to this metaslab group.
1016 * If all metaslab groups are no longer considered allocatable
1017 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
1018 * gang block size then we allow allocations on this metaslab group
1019 * regardless of the mg_allocatable or throttle settings.
1020 */
1021 if (mg->mg_allocatable) {
1022 metaslab_group_t *mgp;
1023 int64_t qdepth;
492f64e9 1024 uint64_t qmax = mg->mg_cur_max_alloc_queue_depth[allocator];
3dfb57a3
DB
1025
1026 if (!mc->mc_alloc_throttle_enabled)
1027 return (B_TRUE);
1028
1029 /*
1030 * If this metaslab group does not have any free space, then
1031 * there is no point in looking further.
1032 */
1033 if (mg->mg_no_free_space)
1034 return (B_FALSE);
1035
c197a77c 1036 /*
1037 * Relax allocation throttling for ditto blocks. Due to
1038 * random imbalances in allocation it tends to push copies
1039 * to one vdev, that looks a bit better at the moment.
1040 */
1041 qmax = qmax * (4 + d) / 4;
1042
492f64e9 1043 qdepth = refcount_count(&mg->mg_alloc_queue_depth[allocator]);
3dfb57a3
DB
1044
1045 /*
1046 * If this metaslab group is below its qmax or it's
1047 * the only allocatable metasable group, then attempt
1048 * to allocate from it.
1049 */
1050 if (qdepth < qmax || mc->mc_alloc_groups == 1)
1051 return (B_TRUE);
1052 ASSERT3U(mc->mc_alloc_groups, >, 1);
1053
1054 /*
1055 * Since this metaslab group is at or over its qmax, we
1056 * need to determine if there are metaslab groups after this
1057 * one that might be able to handle this allocation. This is
1058 * racy since we can't hold the locks for all metaslab
1059 * groups at the same time when we make this check.
1060 */
1061 for (mgp = mg->mg_next; mgp != rotor; mgp = mgp->mg_next) {
492f64e9 1062 qmax = mgp->mg_cur_max_alloc_queue_depth[allocator];
c197a77c 1063 qmax = qmax * (4 + d) / 4;
492f64e9
PD
1064 qdepth = refcount_count(
1065 &mgp->mg_alloc_queue_depth[allocator]);
3dfb57a3
DB
1066
1067 /*
1068 * If there is another metaslab group that
1069 * might be able to handle the allocation, then
1070 * we return false so that we skip this group.
1071 */
1072 if (qdepth < qmax && !mgp->mg_no_free_space)
1073 return (B_FALSE);
1074 }
1075
1076 /*
1077 * We didn't find another group to handle the allocation
1078 * so we can't skip this metaslab group even though
1079 * we are at or over our qmax.
1080 */
1081 return (B_TRUE);
1082
1083 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
1084 return (B_TRUE);
1085 }
1086 return (B_FALSE);
ac72fac3
GW
1087}
1088
428870ff
BB
1089/*
1090 * ==========================================================================
93cf2076 1091 * Range tree callbacks
428870ff
BB
1092 * ==========================================================================
1093 */
93cf2076
GW
1094
1095/*
1096 * Comparison function for the private size-ordered tree. Tree is sorted
1097 * by size, larger sizes at the end of the tree.
1098 */
428870ff 1099static int
93cf2076 1100metaslab_rangesize_compare(const void *x1, const void *x2)
428870ff 1101{
93cf2076
GW
1102 const range_seg_t *r1 = x1;
1103 const range_seg_t *r2 = x2;
1104 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1105 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
428870ff 1106
ee36c709
GN
1107 int cmp = AVL_CMP(rs_size1, rs_size2);
1108 if (likely(cmp))
1109 return (cmp);
428870ff 1110
ee36c709 1111 return (AVL_CMP(r1->rs_start, r2->rs_start));
428870ff
BB
1112}
1113
93cf2076
GW
1114/*
1115 * ==========================================================================
4e21fd06 1116 * Common allocator routines
93cf2076
GW
1117 * ==========================================================================
1118 */
1119
9babb374 1120/*
428870ff 1121 * Return the maximum contiguous segment within the metaslab.
9babb374 1122 */
9babb374 1123uint64_t
93cf2076 1124metaslab_block_maxsize(metaslab_t *msp)
9babb374 1125{
d2734cce 1126 avl_tree_t *t = &msp->ms_allocatable_by_size;
93cf2076 1127 range_seg_t *rs;
9babb374 1128
93cf2076 1129 if (t == NULL || (rs = avl_last(t)) == NULL)
9babb374
BB
1130 return (0ULL);
1131
93cf2076
GW
1132 return (rs->rs_end - rs->rs_start);
1133}
1134
4e21fd06
DB
1135static range_seg_t *
1136metaslab_block_find(avl_tree_t *t, uint64_t start, uint64_t size)
93cf2076 1137{
4e21fd06
DB
1138 range_seg_t *rs, rsearch;
1139 avl_index_t where;
93cf2076 1140
4e21fd06
DB
1141 rsearch.rs_start = start;
1142 rsearch.rs_end = start + size;
93cf2076 1143
4e21fd06
DB
1144 rs = avl_find(t, &rsearch, &where);
1145 if (rs == NULL) {
1146 rs = avl_nearest(t, where, AVL_AFTER);
93cf2076 1147 }
93cf2076 1148
4e21fd06
DB
1149 return (rs);
1150}
93cf2076
GW
1151
1152#if defined(WITH_FF_BLOCK_ALLOCATOR) || \
1153 defined(WITH_DF_BLOCK_ALLOCATOR) || \
1154 defined(WITH_CF_BLOCK_ALLOCATOR)
1155/*
1156 * This is a helper function that can be used by the allocator to find
1157 * a suitable block to allocate. This will search the specified AVL
1158 * tree looking for a block that matches the specified criteria.
1159 */
1160static uint64_t
1161metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
1162 uint64_t align)
1163{
4e21fd06 1164 range_seg_t *rs = metaslab_block_find(t, *cursor, size);
93cf2076
GW
1165
1166 while (rs != NULL) {
1167 uint64_t offset = P2ROUNDUP(rs->rs_start, align);
1168
1169 if (offset + size <= rs->rs_end) {
1170 *cursor = offset + size;
1171 return (offset);
1172 }
1173 rs = AVL_NEXT(t, rs);
1174 }
1175
1176 /*
1177 * If we know we've searched the whole map (*cursor == 0), give up.
1178 * Otherwise, reset the cursor to the beginning and try again.
1179 */
1180 if (*cursor == 0)
1181 return (-1ULL);
1182
1183 *cursor = 0;
1184 return (metaslab_block_picker(t, cursor, size, align));
9babb374 1185}
93cf2076 1186#endif /* WITH_FF/DF/CF_BLOCK_ALLOCATOR */
9babb374 1187
22c81dd8 1188#if defined(WITH_FF_BLOCK_ALLOCATOR)
428870ff
BB
1189/*
1190 * ==========================================================================
1191 * The first-fit block allocator
1192 * ==========================================================================
1193 */
1194static uint64_t
93cf2076 1195metaslab_ff_alloc(metaslab_t *msp, uint64_t size)
9babb374 1196{
93cf2076
GW
1197 /*
1198 * Find the largest power of 2 block size that evenly divides the
1199 * requested size. This is used to try to allocate blocks with similar
1200 * alignment from the same area of the metaslab (i.e. same cursor
1201 * bucket) but it does not guarantee that other allocations sizes
1202 * may exist in the same region.
1203 */
428870ff 1204 uint64_t align = size & -size;
9bd274dd 1205 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
d2734cce 1206 avl_tree_t *t = &msp->ms_allocatable->rt_root;
9babb374 1207
428870ff 1208 return (metaslab_block_picker(t, cursor, size, align));
9babb374
BB
1209}
1210
93cf2076 1211static metaslab_ops_t metaslab_ff_ops = {
f3a7f661 1212 metaslab_ff_alloc
428870ff 1213};
9babb374 1214
93cf2076 1215metaslab_ops_t *zfs_metaslab_ops = &metaslab_ff_ops;
22c81dd8
BB
1216#endif /* WITH_FF_BLOCK_ALLOCATOR */
1217
1218#if defined(WITH_DF_BLOCK_ALLOCATOR)
428870ff
BB
1219/*
1220 * ==========================================================================
1221 * Dynamic block allocator -
1222 * Uses the first fit allocation scheme until space get low and then
1223 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
1224 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
1225 * ==========================================================================
1226 */
9babb374 1227static uint64_t
93cf2076 1228metaslab_df_alloc(metaslab_t *msp, uint64_t size)
9babb374 1229{
93cf2076
GW
1230 /*
1231 * Find the largest power of 2 block size that evenly divides the
1232 * requested size. This is used to try to allocate blocks with similar
1233 * alignment from the same area of the metaslab (i.e. same cursor
1234 * bucket) but it does not guarantee that other allocations sizes
1235 * may exist in the same region.
1236 */
9babb374 1237 uint64_t align = size & -size;
9bd274dd 1238 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
d2734cce 1239 range_tree_t *rt = msp->ms_allocatable;
93cf2076
GW
1240 avl_tree_t *t = &rt->rt_root;
1241 uint64_t max_size = metaslab_block_maxsize(msp);
1242 int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
9babb374 1243
93cf2076 1244 ASSERT(MUTEX_HELD(&msp->ms_lock));
d2734cce
SD
1245 ASSERT3U(avl_numnodes(t), ==,
1246 avl_numnodes(&msp->ms_allocatable_by_size));
9babb374
BB
1247
1248 if (max_size < size)
1249 return (-1ULL);
1250
1251 /*
1252 * If we're running low on space switch to using the size
1253 * sorted AVL tree (best-fit).
1254 */
1255 if (max_size < metaslab_df_alloc_threshold ||
1256 free_pct < metaslab_df_free_pct) {
d2734cce 1257 t = &msp->ms_allocatable_by_size;
9babb374
BB
1258 *cursor = 0;
1259 }
1260
1261 return (metaslab_block_picker(t, cursor, size, 1ULL));
1262}
1263
93cf2076 1264static metaslab_ops_t metaslab_df_ops = {
f3a7f661 1265 metaslab_df_alloc
34dc7c2f
BB
1266};
1267
93cf2076 1268metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
22c81dd8
BB
1269#endif /* WITH_DF_BLOCK_ALLOCATOR */
1270
93cf2076 1271#if defined(WITH_CF_BLOCK_ALLOCATOR)
428870ff
BB
1272/*
1273 * ==========================================================================
93cf2076
GW
1274 * Cursor fit block allocator -
1275 * Select the largest region in the metaslab, set the cursor to the beginning
1276 * of the range and the cursor_end to the end of the range. As allocations
1277 * are made advance the cursor. Continue allocating from the cursor until
1278 * the range is exhausted and then find a new range.
428870ff
BB
1279 * ==========================================================================
1280 */
1281static uint64_t
93cf2076 1282metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
428870ff 1283{
d2734cce
SD
1284 range_tree_t *rt = msp->ms_allocatable;
1285 avl_tree_t *t = &msp->ms_allocatable_by_size;
93cf2076
GW
1286 uint64_t *cursor = &msp->ms_lbas[0];
1287 uint64_t *cursor_end = &msp->ms_lbas[1];
428870ff
BB
1288 uint64_t offset = 0;
1289
93cf2076
GW
1290 ASSERT(MUTEX_HELD(&msp->ms_lock));
1291 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
428870ff 1292
93cf2076 1293 ASSERT3U(*cursor_end, >=, *cursor);
428870ff 1294
93cf2076
GW
1295 if ((*cursor + size) > *cursor_end) {
1296 range_seg_t *rs;
428870ff 1297
d2734cce 1298 rs = avl_last(&msp->ms_allocatable_by_size);
93cf2076
GW
1299 if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
1300 return (-1ULL);
428870ff 1301
93cf2076
GW
1302 *cursor = rs->rs_start;
1303 *cursor_end = rs->rs_end;
428870ff 1304 }
93cf2076
GW
1305
1306 offset = *cursor;
1307 *cursor += size;
1308
428870ff
BB
1309 return (offset);
1310}
1311
93cf2076 1312static metaslab_ops_t metaslab_cf_ops = {
f3a7f661 1313 metaslab_cf_alloc
428870ff
BB
1314};
1315
93cf2076
GW
1316metaslab_ops_t *zfs_metaslab_ops = &metaslab_cf_ops;
1317#endif /* WITH_CF_BLOCK_ALLOCATOR */
22c81dd8
BB
1318
1319#if defined(WITH_NDF_BLOCK_ALLOCATOR)
93cf2076
GW
1320/*
1321 * ==========================================================================
1322 * New dynamic fit allocator -
1323 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1324 * contiguous blocks. If no region is found then just use the largest segment
1325 * that remains.
1326 * ==========================================================================
1327 */
1328
1329/*
1330 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1331 * to request from the allocator.
1332 */
428870ff
BB
1333uint64_t metaslab_ndf_clump_shift = 4;
1334
1335static uint64_t
93cf2076 1336metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
428870ff 1337{
d2734cce 1338 avl_tree_t *t = &msp->ms_allocatable->rt_root;
428870ff 1339 avl_index_t where;
93cf2076 1340 range_seg_t *rs, rsearch;
9bd274dd 1341 uint64_t hbit = highbit64(size);
93cf2076
GW
1342 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1343 uint64_t max_size = metaslab_block_maxsize(msp);
428870ff 1344
93cf2076 1345 ASSERT(MUTEX_HELD(&msp->ms_lock));
d2734cce
SD
1346 ASSERT3U(avl_numnodes(t), ==,
1347 avl_numnodes(&msp->ms_allocatable_by_size));
428870ff
BB
1348
1349 if (max_size < size)
1350 return (-1ULL);
1351
93cf2076
GW
1352 rsearch.rs_start = *cursor;
1353 rsearch.rs_end = *cursor + size;
428870ff 1354
93cf2076
GW
1355 rs = avl_find(t, &rsearch, &where);
1356 if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
d2734cce 1357 t = &msp->ms_allocatable_by_size;
428870ff 1358
93cf2076
GW
1359 rsearch.rs_start = 0;
1360 rsearch.rs_end = MIN(max_size,
428870ff 1361 1ULL << (hbit + metaslab_ndf_clump_shift));
93cf2076
GW
1362 rs = avl_find(t, &rsearch, &where);
1363 if (rs == NULL)
1364 rs = avl_nearest(t, where, AVL_AFTER);
1365 ASSERT(rs != NULL);
428870ff
BB
1366 }
1367
93cf2076
GW
1368 if ((rs->rs_end - rs->rs_start) >= size) {
1369 *cursor = rs->rs_start + size;
1370 return (rs->rs_start);
428870ff
BB
1371 }
1372 return (-1ULL);
1373}
1374
93cf2076 1375static metaslab_ops_t metaslab_ndf_ops = {
f3a7f661 1376 metaslab_ndf_alloc
428870ff
BB
1377};
1378
93cf2076 1379metaslab_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops;
22c81dd8 1380#endif /* WITH_NDF_BLOCK_ALLOCATOR */
9babb374 1381
93cf2076 1382
34dc7c2f
BB
1383/*
1384 * ==========================================================================
1385 * Metaslabs
1386 * ==========================================================================
1387 */
93cf2076
GW
1388
1389/*
1390 * Wait for any in-progress metaslab loads to complete.
1391 */
1392void
1393metaslab_load_wait(metaslab_t *msp)
1394{
1395 ASSERT(MUTEX_HELD(&msp->ms_lock));
1396
1397 while (msp->ms_loading) {
1398 ASSERT(!msp->ms_loaded);
1399 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1400 }
1401}
1402
1403int
1404metaslab_load(metaslab_t *msp)
1405{
1406 int error = 0;
4e21fd06 1407 boolean_t success = B_FALSE;
93cf2076
GW
1408
1409 ASSERT(MUTEX_HELD(&msp->ms_lock));
1410 ASSERT(!msp->ms_loaded);
1411 ASSERT(!msp->ms_loading);
1412
1413 msp->ms_loading = B_TRUE;
a1d477c2
MA
1414 /*
1415 * Nobody else can manipulate a loading metaslab, so it's now safe
1416 * to drop the lock. This way we don't have to hold the lock while
1417 * reading the spacemap from disk.
1418 */
1419 mutex_exit(&msp->ms_lock);
93cf2076
GW
1420
1421 /*
1422 * If the space map has not been allocated yet, then treat
d2734cce 1423 * all the space in the metaslab as free and add it to ms_allocatable.
93cf2076 1424 */
d2734cce
SD
1425 if (msp->ms_sm != NULL) {
1426 error = space_map_load(msp->ms_sm, msp->ms_allocatable,
1427 SM_FREE);
1428 } else {
1429 range_tree_add(msp->ms_allocatable,
1430 msp->ms_start, msp->ms_size);
1431 }
93cf2076 1432
4e21fd06 1433 success = (error == 0);
a1d477c2
MA
1434
1435 mutex_enter(&msp->ms_lock);
93cf2076
GW
1436 msp->ms_loading = B_FALSE;
1437
4e21fd06
DB
1438 if (success) {
1439 ASSERT3P(msp->ms_group, !=, NULL);
1440 msp->ms_loaded = B_TRUE;
1441
d2734cce
SD
1442 /*
1443 * If the metaslab already has a spacemap, then we need to
1444 * remove all segments from the defer tree; otherwise, the
1445 * metaslab is completely empty and we can skip this.
1446 */
1447 if (msp->ms_sm != NULL) {
1448 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1449 range_tree_walk(msp->ms_defer[t],
1450 range_tree_remove, msp->ms_allocatable);
1451 }
93cf2076 1452 }
4e21fd06 1453 msp->ms_max_size = metaslab_block_maxsize(msp);
93cf2076
GW
1454 }
1455 cv_broadcast(&msp->ms_load_cv);
1456 return (error);
1457}
1458
1459void
1460metaslab_unload(metaslab_t *msp)
1461{
1462 ASSERT(MUTEX_HELD(&msp->ms_lock));
d2734cce 1463 range_tree_vacate(msp->ms_allocatable, NULL, NULL);
93cf2076
GW
1464 msp->ms_loaded = B_FALSE;
1465 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
4e21fd06 1466 msp->ms_max_size = 0;
93cf2076
GW
1467}
1468
fb42a493
PS
1469int
1470metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg,
1471 metaslab_t **msp)
34dc7c2f
BB
1472{
1473 vdev_t *vd = mg->mg_vd;
93cf2076 1474 objset_t *mos = vd->vdev_spa->spa_meta_objset;
fb42a493
PS
1475 metaslab_t *ms;
1476 int error;
34dc7c2f 1477
79c76d5b 1478 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
fb42a493 1479 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
a1d477c2 1480 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
fb42a493
PS
1481 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
1482 ms->ms_id = id;
1483 ms->ms_start = id << vd->vdev_ms_shift;
1484 ms->ms_size = 1ULL << vd->vdev_ms_shift;
492f64e9
PD
1485 ms->ms_allocator = -1;
1486 ms->ms_new = B_TRUE;
34dc7c2f 1487
93cf2076
GW
1488 /*
1489 * We only open space map objects that already exist. All others
afe37326 1490 * will be opened when we finally allocate an object for it.
93cf2076 1491 */
afe37326 1492 if (object != 0) {
fb42a493 1493 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
a1d477c2 1494 ms->ms_size, vd->vdev_ashift);
fb42a493
PS
1495
1496 if (error != 0) {
1497 kmem_free(ms, sizeof (metaslab_t));
1498 return (error);
1499 }
1500
1501 ASSERT(ms->ms_sm != NULL);
93cf2076 1502 }
34dc7c2f
BB
1503
1504 /*
93cf2076 1505 * We create the main range tree here, but we don't create the
258553d3 1506 * other range trees until metaslab_sync_done(). This serves
34dc7c2f
BB
1507 * two purposes: it allows metaslab_sync_done() to detect the
1508 * addition of new space; and for debugging, it ensures that we'd
1509 * data fault on any attempt to use this metaslab before it's ready.
1510 */
d2734cce
SD
1511 ms->ms_allocatable = range_tree_create_impl(&rt_avl_ops,
1512 &ms->ms_allocatable_by_size, metaslab_rangesize_compare, 0);
fb42a493 1513 metaslab_group_add(mg, ms);
34dc7c2f 1514
4e21fd06 1515 metaslab_set_fragmentation(ms);
428870ff 1516
34dc7c2f
BB
1517 /*
1518 * If we're opening an existing pool (txg == 0) or creating
1519 * a new one (txg == TXG_INITIAL), all space is available now.
1520 * If we're adding space to an existing pool, the new space
1521 * does not become available until after this txg has synced.
4e21fd06
DB
1522 * The metaslab's weight will also be initialized when we sync
1523 * out this txg. This ensures that we don't attempt to allocate
1524 * from it before we have initialized it completely.
34dc7c2f
BB
1525 */
1526 if (txg <= TXG_INITIAL)
fb42a493 1527 metaslab_sync_done(ms, 0);
34dc7c2f 1528
93cf2076
GW
1529 /*
1530 * If metaslab_debug_load is set and we're initializing a metaslab
4e21fd06 1531 * that has an allocated space map object then load the its space
93cf2076
GW
1532 * map so that can verify frees.
1533 */
fb42a493
PS
1534 if (metaslab_debug_load && ms->ms_sm != NULL) {
1535 mutex_enter(&ms->ms_lock);
1536 VERIFY0(metaslab_load(ms));
1537 mutex_exit(&ms->ms_lock);
93cf2076
GW
1538 }
1539
34dc7c2f 1540 if (txg != 0) {
34dc7c2f 1541 vdev_dirty(vd, 0, NULL, txg);
fb42a493 1542 vdev_dirty(vd, VDD_METASLAB, ms, txg);
34dc7c2f
BB
1543 }
1544
fb42a493
PS
1545 *msp = ms;
1546
1547 return (0);
34dc7c2f
BB
1548}
1549
1550void
1551metaslab_fini(metaslab_t *msp)
1552{
93cf2076 1553 metaslab_group_t *mg = msp->ms_group;
34dc7c2f
BB
1554
1555 metaslab_group_remove(mg, msp);
1556
1557 mutex_enter(&msp->ms_lock);
93cf2076
GW
1558 VERIFY(msp->ms_group == NULL);
1559 vdev_space_update(mg->mg_vd, -space_map_allocated(msp->ms_sm),
1560 0, -msp->ms_size);
1561 space_map_close(msp->ms_sm);
1562
1563 metaslab_unload(msp);
d2734cce
SD
1564 range_tree_destroy(msp->ms_allocatable);
1565 range_tree_destroy(msp->ms_freeing);
1566 range_tree_destroy(msp->ms_freed);
34dc7c2f 1567
1c27024e 1568 for (int t = 0; t < TXG_SIZE; t++) {
d2734cce 1569 range_tree_destroy(msp->ms_allocating[t]);
34dc7c2f
BB
1570 }
1571
1c27024e 1572 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
d2734cce 1573 range_tree_destroy(msp->ms_defer[t]);
e51be066 1574 }
c99c9001 1575 ASSERT0(msp->ms_deferspace);
428870ff 1576
d2734cce
SD
1577 range_tree_destroy(msp->ms_checkpointing);
1578
34dc7c2f 1579 mutex_exit(&msp->ms_lock);
93cf2076 1580 cv_destroy(&msp->ms_load_cv);
34dc7c2f 1581 mutex_destroy(&msp->ms_lock);
a1d477c2 1582 mutex_destroy(&msp->ms_sync_lock);
492f64e9 1583 ASSERT3U(msp->ms_allocator, ==, -1);
34dc7c2f
BB
1584
1585 kmem_free(msp, sizeof (metaslab_t));
1586}
1587
f3a7f661
GW
1588#define FRAGMENTATION_TABLE_SIZE 17
1589
93cf2076 1590/*
f3a7f661
GW
1591 * This table defines a segment size based fragmentation metric that will
1592 * allow each metaslab to derive its own fragmentation value. This is done
1593 * by calculating the space in each bucket of the spacemap histogram and
1594 * multiplying that by the fragmetation metric in this table. Doing
1595 * this for all buckets and dividing it by the total amount of free
1596 * space in this metaslab (i.e. the total free space in all buckets) gives
1597 * us the fragmentation metric. This means that a high fragmentation metric
1598 * equates to most of the free space being comprised of small segments.
1599 * Conversely, if the metric is low, then most of the free space is in
1600 * large segments. A 10% change in fragmentation equates to approximately
1601 * double the number of segments.
93cf2076 1602 *
f3a7f661
GW
1603 * This table defines 0% fragmented space using 16MB segments. Testing has
1604 * shown that segments that are greater than or equal to 16MB do not suffer
1605 * from drastic performance problems. Using this value, we derive the rest
1606 * of the table. Since the fragmentation value is never stored on disk, it
1607 * is possible to change these calculations in the future.
1608 */
1609int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
1610 100, /* 512B */
1611 100, /* 1K */
1612 98, /* 2K */
1613 95, /* 4K */
1614 90, /* 8K */
1615 80, /* 16K */
1616 70, /* 32K */
1617 60, /* 64K */
1618 50, /* 128K */
1619 40, /* 256K */
1620 30, /* 512K */
1621 20, /* 1M */
1622 15, /* 2M */
1623 10, /* 4M */
1624 5, /* 8M */
1625 0 /* 16M */
1626};
1627
1628/*
1629 * Calclate the metaslab's fragmentation metric. A return value
1630 * of ZFS_FRAG_INVALID means that the metaslab has not been upgraded and does
1631 * not support this metric. Otherwise, the return value should be in the
1632 * range [0, 100].
93cf2076 1633 */
4e21fd06
DB
1634static void
1635metaslab_set_fragmentation(metaslab_t *msp)
93cf2076 1636{
f3a7f661
GW
1637 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1638 uint64_t fragmentation = 0;
1639 uint64_t total = 0;
1640 boolean_t feature_enabled = spa_feature_is_enabled(spa,
1641 SPA_FEATURE_SPACEMAP_HISTOGRAM);
93cf2076 1642
4e21fd06
DB
1643 if (!feature_enabled) {
1644 msp->ms_fragmentation = ZFS_FRAG_INVALID;
1645 return;
1646 }
f3a7f661 1647
93cf2076 1648 /*
f3a7f661
GW
1649 * A null space map means that the entire metaslab is free
1650 * and thus is not fragmented.
93cf2076 1651 */
4e21fd06
DB
1652 if (msp->ms_sm == NULL) {
1653 msp->ms_fragmentation = 0;
1654 return;
1655 }
f3a7f661
GW
1656
1657 /*
4e21fd06 1658 * If this metaslab's space map has not been upgraded, flag it
f3a7f661
GW
1659 * so that we upgrade next time we encounter it.
1660 */
1661 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
3b7f360c 1662 uint64_t txg = spa_syncing_txg(spa);
93cf2076
GW
1663 vdev_t *vd = msp->ms_group->mg_vd;
1664
3b7f360c
GW
1665 /*
1666 * If we've reached the final dirty txg, then we must
1667 * be shutting down the pool. We don't want to dirty
1668 * any data past this point so skip setting the condense
1669 * flag. We can retry this action the next time the pool
1670 * is imported.
1671 */
1672 if (spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
8b0a0840
TC
1673 msp->ms_condense_wanted = B_TRUE;
1674 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
964c2d69 1675 zfs_dbgmsg("txg %llu, requesting force condense: "
3b7f360c
GW
1676 "ms_id %llu, vdev_id %llu", txg, msp->ms_id,
1677 vd->vdev_id);
8b0a0840 1678 }
4e21fd06
DB
1679 msp->ms_fragmentation = ZFS_FRAG_INVALID;
1680 return;
93cf2076
GW
1681 }
1682
1c27024e 1683 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
f3a7f661
GW
1684 uint64_t space = 0;
1685 uint8_t shift = msp->ms_sm->sm_shift;
4e21fd06 1686
f3a7f661
GW
1687 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
1688 FRAGMENTATION_TABLE_SIZE - 1);
93cf2076 1689
93cf2076
GW
1690 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
1691 continue;
1692
f3a7f661
GW
1693 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
1694 total += space;
1695
1696 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
1697 fragmentation += space * zfs_frag_table[idx];
93cf2076 1698 }
f3a7f661
GW
1699
1700 if (total > 0)
1701 fragmentation /= total;
1702 ASSERT3U(fragmentation, <=, 100);
4e21fd06
DB
1703
1704 msp->ms_fragmentation = fragmentation;
93cf2076 1705}
34dc7c2f 1706
f3a7f661
GW
1707/*
1708 * Compute a weight -- a selection preference value -- for the given metaslab.
1709 * This is based on the amount of free space, the level of fragmentation,
1710 * the LBA range, and whether the metaslab is loaded.
1711 */
34dc7c2f 1712static uint64_t
4e21fd06 1713metaslab_space_weight(metaslab_t *msp)
34dc7c2f
BB
1714{
1715 metaslab_group_t *mg = msp->ms_group;
34dc7c2f
BB
1716 vdev_t *vd = mg->mg_vd;
1717 uint64_t weight, space;
1718
1719 ASSERT(MUTEX_HELD(&msp->ms_lock));
4e21fd06 1720 ASSERT(!vd->vdev_removing);
c2e42f9d 1721
34dc7c2f
BB
1722 /*
1723 * The baseline weight is the metaslab's free space.
1724 */
93cf2076 1725 space = msp->ms_size - space_map_allocated(msp->ms_sm);
f3a7f661 1726
f3a7f661
GW
1727 if (metaslab_fragmentation_factor_enabled &&
1728 msp->ms_fragmentation != ZFS_FRAG_INVALID) {
1729 /*
1730 * Use the fragmentation information to inversely scale
1731 * down the baseline weight. We need to ensure that we
1732 * don't exclude this metaslab completely when it's 100%
1733 * fragmented. To avoid this we reduce the fragmented value
1734 * by 1.
1735 */
1736 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
1737
1738 /*
1739 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
1740 * this metaslab again. The fragmentation metric may have
1741 * decreased the space to something smaller than
1742 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
1743 * so that we can consume any remaining space.
1744 */
1745 if (space > 0 && space < SPA_MINBLOCKSIZE)
1746 space = SPA_MINBLOCKSIZE;
1747 }
34dc7c2f
BB
1748 weight = space;
1749
1750 /*
1751 * Modern disks have uniform bit density and constant angular velocity.
1752 * Therefore, the outer recording zones are faster (higher bandwidth)
1753 * than the inner zones by the ratio of outer to inner track diameter,
1754 * which is typically around 2:1. We account for this by assigning
1755 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
1756 * In effect, this means that we'll select the metaslab with the most
1757 * free bandwidth rather than simply the one with the most free space.
1758 */
fb40095f 1759 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
f3a7f661
GW
1760 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
1761 ASSERT(weight >= space && weight <= 2 * space);
1762 }
428870ff 1763
f3a7f661
GW
1764 /*
1765 * If this metaslab is one we're actively using, adjust its
1766 * weight to make it preferable to any inactive metaslab so
1767 * we'll polish it off. If the fragmentation on this metaslab
1768 * has exceed our threshold, then don't mark it active.
1769 */
1770 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
1771 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
428870ff
BB
1772 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
1773 }
34dc7c2f 1774
4e21fd06
DB
1775 WEIGHT_SET_SPACEBASED(weight);
1776 return (weight);
1777}
1778
1779/*
1780 * Return the weight of the specified metaslab, according to the segment-based
1781 * weighting algorithm. The metaslab must be loaded. This function can
1782 * be called within a sync pass since it relies only on the metaslab's
1783 * range tree which is always accurate when the metaslab is loaded.
1784 */
1785static uint64_t
1786metaslab_weight_from_range_tree(metaslab_t *msp)
1787{
1788 uint64_t weight = 0;
1789 uint32_t segments = 0;
4e21fd06
DB
1790
1791 ASSERT(msp->ms_loaded);
1792
1c27024e
DB
1793 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
1794 i--) {
4e21fd06
DB
1795 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
1796 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
1797
1798 segments <<= 1;
d2734cce 1799 segments += msp->ms_allocatable->rt_histogram[i];
4e21fd06
DB
1800
1801 /*
1802 * The range tree provides more precision than the space map
1803 * and must be downgraded so that all values fit within the
1804 * space map's histogram. This allows us to compare loaded
1805 * vs. unloaded metaslabs to determine which metaslab is
1806 * considered "best".
1807 */
1808 if (i > max_idx)
1809 continue;
1810
1811 if (segments != 0) {
1812 WEIGHT_SET_COUNT(weight, segments);
1813 WEIGHT_SET_INDEX(weight, i);
1814 WEIGHT_SET_ACTIVE(weight, 0);
1815 break;
1816 }
1817 }
1818 return (weight);
1819}
1820
1821/*
1822 * Calculate the weight based on the on-disk histogram. This should only
1823 * be called after a sync pass has completely finished since the on-disk
1824 * information is updated in metaslab_sync().
1825 */
1826static uint64_t
1827metaslab_weight_from_spacemap(metaslab_t *msp)
1828{
1829 uint64_t weight = 0;
4e21fd06 1830
1c27024e 1831 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
4e21fd06
DB
1832 if (msp->ms_sm->sm_phys->smp_histogram[i] != 0) {
1833 WEIGHT_SET_COUNT(weight,
1834 msp->ms_sm->sm_phys->smp_histogram[i]);
1835 WEIGHT_SET_INDEX(weight, i +
1836 msp->ms_sm->sm_shift);
1837 WEIGHT_SET_ACTIVE(weight, 0);
1838 break;
1839 }
1840 }
1841 return (weight);
1842}
1843
1844/*
1845 * Compute a segment-based weight for the specified metaslab. The weight
1846 * is determined by highest bucket in the histogram. The information
1847 * for the highest bucket is encoded into the weight value.
1848 */
1849static uint64_t
1850metaslab_segment_weight(metaslab_t *msp)
1851{
1852 metaslab_group_t *mg = msp->ms_group;
1853 uint64_t weight = 0;
1854 uint8_t shift = mg->mg_vd->vdev_ashift;
1855
1856 ASSERT(MUTEX_HELD(&msp->ms_lock));
1857
1858 /*
1859 * The metaslab is completely free.
1860 */
1861 if (space_map_allocated(msp->ms_sm) == 0) {
1862 int idx = highbit64(msp->ms_size) - 1;
1863 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
1864
1865 if (idx < max_idx) {
1866 WEIGHT_SET_COUNT(weight, 1ULL);
1867 WEIGHT_SET_INDEX(weight, idx);
1868 } else {
1869 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
1870 WEIGHT_SET_INDEX(weight, max_idx);
1871 }
1872 WEIGHT_SET_ACTIVE(weight, 0);
1873 ASSERT(!WEIGHT_IS_SPACEBASED(weight));
1874
1875 return (weight);
1876 }
1877
1878 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
1879
1880 /*
1881 * If the metaslab is fully allocated then just make the weight 0.
1882 */
1883 if (space_map_allocated(msp->ms_sm) == msp->ms_size)
1884 return (0);
1885 /*
1886 * If the metaslab is already loaded, then use the range tree to
1887 * determine the weight. Otherwise, we rely on the space map information
1888 * to generate the weight.
1889 */
1890 if (msp->ms_loaded) {
1891 weight = metaslab_weight_from_range_tree(msp);
1892 } else {
1893 weight = metaslab_weight_from_spacemap(msp);
1894 }
1895
1896 /*
1897 * If the metaslab was active the last time we calculated its weight
1898 * then keep it active. We want to consume the entire region that
1899 * is associated with this weight.
1900 */
1901 if (msp->ms_activation_weight != 0 && weight != 0)
1902 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
1903 return (weight);
1904}
1905
1906/*
1907 * Determine if we should attempt to allocate from this metaslab. If the
1908 * metaslab has a maximum size then we can quickly determine if the desired
1909 * allocation size can be satisfied. Otherwise, if we're using segment-based
1910 * weighting then we can determine the maximum allocation that this metaslab
1911 * can accommodate based on the index encoded in the weight. If we're using
1912 * space-based weights then rely on the entire weight (excluding the weight
1913 * type bit).
1914 */
1915boolean_t
1916metaslab_should_allocate(metaslab_t *msp, uint64_t asize)
1917{
1918 boolean_t should_allocate;
1919
1920 if (msp->ms_max_size != 0)
1921 return (msp->ms_max_size >= asize);
1922
1923 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
1924 /*
1925 * The metaslab segment weight indicates segments in the
1926 * range [2^i, 2^(i+1)), where i is the index in the weight.
1927 * Since the asize might be in the middle of the range, we
1928 * should attempt the allocation if asize < 2^(i+1).
1929 */
1930 should_allocate = (asize <
1931 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
1932 } else {
1933 should_allocate = (asize <=
1934 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
1935 }
1936 return (should_allocate);
1937}
1938static uint64_t
1939metaslab_weight(metaslab_t *msp)
1940{
1941 vdev_t *vd = msp->ms_group->mg_vd;
1942 spa_t *spa = vd->vdev_spa;
1943 uint64_t weight;
1944
1945 ASSERT(MUTEX_HELD(&msp->ms_lock));
1946
1947 /*
a1d477c2 1948 * If this vdev is in the process of being removed, there is nothing
4e21fd06
DB
1949 * for us to do here.
1950 */
a1d477c2 1951 if (vd->vdev_removing)
4e21fd06 1952 return (0);
4e21fd06
DB
1953
1954 metaslab_set_fragmentation(msp);
1955
1956 /*
1957 * Update the maximum size if the metaslab is loaded. This will
1958 * ensure that we get an accurate maximum size if newly freed space
1959 * has been added back into the free tree.
1960 */
1961 if (msp->ms_loaded)
1962 msp->ms_max_size = metaslab_block_maxsize(msp);
1963
1964 /*
1965 * Segment-based weighting requires space map histogram support.
1966 */
1967 if (zfs_metaslab_segment_weight_enabled &&
1968 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
1969 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
1970 sizeof (space_map_phys_t))) {
1971 weight = metaslab_segment_weight(msp);
1972 } else {
1973 weight = metaslab_space_weight(msp);
1974 }
93cf2076 1975 return (weight);
34dc7c2f
BB
1976}
1977
1978static int
492f64e9
PD
1979metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
1980 int allocator, uint64_t activation_weight)
1981{
1982 /*
1983 * If we're activating for the claim code, we don't want to actually
1984 * set the metaslab up for a specific allocator.
1985 */
1986 if (activation_weight == METASLAB_WEIGHT_CLAIM)
1987 return (0);
1988 metaslab_t **arr = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
1989 mg->mg_primaries : mg->mg_secondaries);
1990
1991 ASSERT(MUTEX_HELD(&msp->ms_lock));
1992 mutex_enter(&mg->mg_lock);
1993 if (arr[allocator] != NULL) {
1994 mutex_exit(&mg->mg_lock);
1995 return (EEXIST);
1996 }
1997
1998 arr[allocator] = msp;
1999 ASSERT3S(msp->ms_allocator, ==, -1);
2000 msp->ms_allocator = allocator;
2001 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
2002 mutex_exit(&mg->mg_lock);
2003
2004 return (0);
2005}
2006
2007static int
2008metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
34dc7c2f 2009{
34dc7c2f
BB
2010 ASSERT(MUTEX_HELD(&msp->ms_lock));
2011
2012 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
492f64e9 2013 int error = 0;
93cf2076
GW
2014 metaslab_load_wait(msp);
2015 if (!msp->ms_loaded) {
492f64e9 2016 if ((error = metaslab_load(msp)) != 0) {
428870ff
BB
2017 metaslab_group_sort(msp->ms_group, msp, 0);
2018 return (error);
2019 }
34dc7c2f 2020 }
492f64e9
PD
2021 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
2022 /*
2023 * The metaslab was activated for another allocator
2024 * while we were waiting, we should reselect.
2025 */
2026 return (EBUSY);
2027 }
2028 if ((error = metaslab_activate_allocator(msp->ms_group, msp,
2029 allocator, activation_weight)) != 0) {
2030 return (error);
2031 }
9babb374 2032
4e21fd06 2033 msp->ms_activation_weight = msp->ms_weight;
34dc7c2f
BB
2034 metaslab_group_sort(msp->ms_group, msp,
2035 msp->ms_weight | activation_weight);
2036 }
93cf2076 2037 ASSERT(msp->ms_loaded);
34dc7c2f
BB
2038 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
2039
2040 return (0);
2041}
2042
492f64e9
PD
2043static void
2044metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
2045 uint64_t weight)
2046{
2047 ASSERT(MUTEX_HELD(&msp->ms_lock));
2048 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
2049 metaslab_group_sort(mg, msp, weight);
2050 return;
2051 }
2052
2053 mutex_enter(&mg->mg_lock);
2054 ASSERT3P(msp->ms_group, ==, mg);
2055 if (msp->ms_primary) {
2056 ASSERT3U(0, <=, msp->ms_allocator);
2057 ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
2058 ASSERT3P(mg->mg_primaries[msp->ms_allocator], ==, msp);
2059 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
2060 mg->mg_primaries[msp->ms_allocator] = NULL;
2061 } else {
2062 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
2063 ASSERT3P(mg->mg_secondaries[msp->ms_allocator], ==, msp);
2064 mg->mg_secondaries[msp->ms_allocator] = NULL;
2065 }
2066 msp->ms_allocator = -1;
2067 metaslab_group_sort_impl(mg, msp, weight);
2068 mutex_exit(&mg->mg_lock);
2069}
2070
34dc7c2f 2071static void
4e21fd06 2072metaslab_passivate(metaslab_t *msp, uint64_t weight)
34dc7c2f 2073{
4e21fd06
DB
2074 ASSERTV(uint64_t size = weight & ~METASLAB_WEIGHT_TYPE);
2075
34dc7c2f
BB
2076 /*
2077 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
2078 * this metaslab again. In that case, it had better be empty,
2079 * or we would be leaving space on the table.
2080 */
94d49e8f
TC
2081 ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
2082 size >= SPA_MINBLOCKSIZE ||
d2734cce 2083 range_tree_space(msp->ms_allocatable) == 0);
4e21fd06
DB
2084 ASSERT0(weight & METASLAB_ACTIVE_MASK);
2085
2086 msp->ms_activation_weight = 0;
492f64e9 2087 metaslab_passivate_allocator(msp->ms_group, msp, weight);
34dc7c2f
BB
2088 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
2089}
2090
4e21fd06
DB
2091/*
2092 * Segment-based metaslabs are activated once and remain active until
2093 * we either fail an allocation attempt (similar to space-based metaslabs)
2094 * or have exhausted the free space in zfs_metaslab_switch_threshold
2095 * buckets since the metaslab was activated. This function checks to see
2096 * if we've exhaused the zfs_metaslab_switch_threshold buckets in the
2097 * metaslab and passivates it proactively. This will allow us to select a
2098 * metaslab with a larger contiguous region, if any, remaining within this
2099 * metaslab group. If we're in sync pass > 1, then we continue using this
2100 * metaslab so that we don't dirty more block and cause more sync passes.
2101 */
2102void
2103metaslab_segment_may_passivate(metaslab_t *msp)
2104{
2105 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
4e21fd06
DB
2106
2107 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
2108 return;
2109
2110 /*
2111 * Since we are in the middle of a sync pass, the most accurate
2112 * information that is accessible to us is the in-core range tree
2113 * histogram; calculate the new weight based on that information.
2114 */
1c27024e
DB
2115 uint64_t weight = metaslab_weight_from_range_tree(msp);
2116 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
2117 int current_idx = WEIGHT_GET_INDEX(weight);
4e21fd06
DB
2118
2119 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
2120 metaslab_passivate(msp, weight);
2121}
2122
93cf2076
GW
2123static void
2124metaslab_preload(void *arg)
2125{
2126 metaslab_t *msp = arg;
2127 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1cd77734 2128 fstrans_cookie_t cookie = spl_fstrans_mark();
93cf2076 2129
080b3100
GW
2130 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
2131
93cf2076
GW
2132 mutex_enter(&msp->ms_lock);
2133 metaslab_load_wait(msp);
2134 if (!msp->ms_loaded)
2135 (void) metaslab_load(msp);
4e21fd06 2136 msp->ms_selected_txg = spa_syncing_txg(spa);
93cf2076 2137 mutex_exit(&msp->ms_lock);
1cd77734 2138 spl_fstrans_unmark(cookie);
93cf2076
GW
2139}
2140
2141static void
2142metaslab_group_preload(metaslab_group_t *mg)
2143{
2144 spa_t *spa = mg->mg_vd->vdev_spa;
2145 metaslab_t *msp;
2146 avl_tree_t *t = &mg->mg_metaslab_tree;
2147 int m = 0;
2148
2149 if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
c5528b9b 2150 taskq_wait_outstanding(mg->mg_taskq, 0);
93cf2076
GW
2151 return;
2152 }
93cf2076 2153
080b3100 2154 mutex_enter(&mg->mg_lock);
a1d477c2 2155
93cf2076 2156 /*
080b3100 2157 * Load the next potential metaslabs
93cf2076 2158 */
4e21fd06 2159 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
a1d477c2
MA
2160 ASSERT3P(msp->ms_group, ==, mg);
2161
f3a7f661
GW
2162 /*
2163 * We preload only the maximum number of metaslabs specified
2164 * by metaslab_preload_limit. If a metaslab is being forced
2165 * to condense then we preload it too. This will ensure
2166 * that force condensing happens in the next txg.
2167 */
2168 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
f3a7f661
GW
2169 continue;
2170 }
93cf2076
GW
2171
2172 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
48d3eb40 2173 msp, TQ_SLEEP) != TASKQID_INVALID);
93cf2076
GW
2174 }
2175 mutex_exit(&mg->mg_lock);
2176}
2177
e51be066 2178/*
93cf2076
GW
2179 * Determine if the space map's on-disk footprint is past our tolerance
2180 * for inefficiency. We would like to use the following criteria to make
2181 * our decision:
e51be066
GW
2182 *
2183 * 1. The size of the space map object should not dramatically increase as a
93cf2076 2184 * result of writing out the free space range tree.
e51be066
GW
2185 *
2186 * 2. The minimal on-disk space map representation is zfs_condense_pct/100
93cf2076 2187 * times the size than the free space range tree representation
a1d477c2 2188 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1MB).
e51be066 2189 *
b02fe35d
AR
2190 * 3. The on-disk size of the space map should actually decrease.
2191 *
b02fe35d
AR
2192 * Unfortunately, we cannot compute the on-disk size of the space map in this
2193 * context because we cannot accurately compute the effects of compression, etc.
2194 * Instead, we apply the heuristic described in the block comment for
2195 * zfs_metaslab_condense_block_threshold - we only condense if the space used
2196 * is greater than a threshold number of blocks.
e51be066
GW
2197 */
2198static boolean_t
2199metaslab_should_condense(metaslab_t *msp)
2200{
93cf2076 2201 space_map_t *sm = msp->ms_sm;
d2734cce
SD
2202 vdev_t *vd = msp->ms_group->mg_vd;
2203 uint64_t vdev_blocksize = 1 << vd->vdev_ashift;
2204 uint64_t current_txg = spa_syncing_txg(vd->vdev_spa);
e51be066
GW
2205
2206 ASSERT(MUTEX_HELD(&msp->ms_lock));
93cf2076 2207 ASSERT(msp->ms_loaded);
e51be066
GW
2208
2209 /*
d2734cce
SD
2210 * Allocations and frees in early passes are generally more space
2211 * efficient (in terms of blocks described in space map entries)
2212 * than the ones in later passes (e.g. we don't compress after
2213 * sync pass 5) and condensing a metaslab multiple times in a txg
2214 * could degrade performance.
2215 *
2216 * Thus we prefer condensing each metaslab at most once every txg at
2217 * the earliest sync pass possible. If a metaslab is eligible for
2218 * condensing again after being considered for condensing within the
2219 * same txg, it will hopefully be dirty in the next txg where it will
2220 * be condensed at an earlier pass.
2221 */
2222 if (msp->ms_condense_checked_txg == current_txg)
2223 return (B_FALSE);
2224 msp->ms_condense_checked_txg = current_txg;
2225
2226 /*
4d044c4c
SD
2227 * We always condense metaslabs that are empty and metaslabs for
2228 * which a condense request has been made.
e51be066 2229 */
4d044c4c
SD
2230 if (avl_is_empty(&msp->ms_allocatable_by_size) ||
2231 msp->ms_condense_wanted)
e51be066
GW
2232 return (B_TRUE);
2233
4d044c4c
SD
2234 uint64_t object_size = space_map_length(msp->ms_sm);
2235 uint64_t optimal_size = space_map_estimate_optimal_size(sm,
2236 msp->ms_allocatable, SM_NO_VDEVID);
b02fe35d 2237
4d044c4c 2238 dmu_object_info_t doi;
b02fe35d 2239 dmu_object_info_from_db(sm->sm_dbuf, &doi);
4d044c4c 2240 uint64_t record_size = MAX(doi.doi_data_block_size, vdev_blocksize);
b02fe35d 2241
4d044c4c 2242 return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
b02fe35d 2243 object_size > zfs_metaslab_condense_block_threshold * record_size);
e51be066
GW
2244}
2245
2246/*
2247 * Condense the on-disk space map representation to its minimized form.
2248 * The minimized form consists of a small number of allocations followed by
93cf2076 2249 * the entries of the free range tree.
e51be066
GW
2250 */
2251static void
2252metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
2253{
93cf2076
GW
2254 range_tree_t *condense_tree;
2255 space_map_t *sm = msp->ms_sm;
e51be066
GW
2256
2257 ASSERT(MUTEX_HELD(&msp->ms_lock));
93cf2076 2258 ASSERT(msp->ms_loaded);
e51be066 2259
f3a7f661 2260
964c2d69 2261 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %p, vdev id %llu, "
5f3d9c69
JS
2262 "spa %s, smp size %llu, segments %lu, forcing condense=%s", txg,
2263 msp->ms_id, msp, msp->ms_group->mg_vd->vdev_id,
2264 msp->ms_group->mg_vd->vdev_spa->spa_name,
d2734cce
SD
2265 space_map_length(msp->ms_sm),
2266 avl_numnodes(&msp->ms_allocatable->rt_root),
f3a7f661
GW
2267 msp->ms_condense_wanted ? "TRUE" : "FALSE");
2268
2269 msp->ms_condense_wanted = B_FALSE;
e51be066
GW
2270
2271 /*
93cf2076 2272 * Create an range tree that is 100% allocated. We remove segments
e51be066
GW
2273 * that have been freed in this txg, any deferred frees that exist,
2274 * and any allocation in the future. Removing segments should be
93cf2076
GW
2275 * a relatively inexpensive operation since we expect these trees to
2276 * have a small number of nodes.
e51be066 2277 */
a1d477c2 2278 condense_tree = range_tree_create(NULL, NULL);
93cf2076 2279 range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
e51be066 2280
d2734cce
SD
2281 range_tree_walk(msp->ms_freeing, range_tree_remove, condense_tree);
2282 range_tree_walk(msp->ms_freed, range_tree_remove, condense_tree);
e51be066 2283
1c27024e 2284 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
d2734cce 2285 range_tree_walk(msp->ms_defer[t],
93cf2076
GW
2286 range_tree_remove, condense_tree);
2287 }
e51be066 2288
1c27024e 2289 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
d2734cce 2290 range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
93cf2076
GW
2291 range_tree_remove, condense_tree);
2292 }
e51be066
GW
2293
2294 /*
2295 * We're about to drop the metaslab's lock thus allowing
2296 * other consumers to change it's content. Set the
93cf2076 2297 * metaslab's ms_condensing flag to ensure that
e51be066
GW
2298 * allocations on this metaslab do not occur while we're
2299 * in the middle of committing it to disk. This is only critical
d2734cce 2300 * for ms_allocatable as all other range trees use per txg
e51be066
GW
2301 * views of their content.
2302 */
93cf2076 2303 msp->ms_condensing = B_TRUE;
e51be066
GW
2304
2305 mutex_exit(&msp->ms_lock);
d2734cce 2306 space_map_truncate(sm, zfs_metaslab_sm_blksz, tx);
e51be066
GW
2307
2308 /*
4e21fd06 2309 * While we would ideally like to create a space map representation
e51be066 2310 * that consists only of allocation records, doing so can be
93cf2076 2311 * prohibitively expensive because the in-core free tree can be
e51be066 2312 * large, and therefore computationally expensive to subtract
93cf2076
GW
2313 * from the condense_tree. Instead we sync out two trees, a cheap
2314 * allocation only tree followed by the in-core free tree. While not
e51be066
GW
2315 * optimal, this is typically close to optimal, and much cheaper to
2316 * compute.
2317 */
4d044c4c 2318 space_map_write(sm, condense_tree, SM_ALLOC, SM_NO_VDEVID, tx);
93cf2076
GW
2319 range_tree_vacate(condense_tree, NULL, NULL);
2320 range_tree_destroy(condense_tree);
e51be066 2321
4d044c4c 2322 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
a1d477c2 2323 mutex_enter(&msp->ms_lock);
93cf2076 2324 msp->ms_condensing = B_FALSE;
e51be066
GW
2325}
2326
34dc7c2f
BB
2327/*
2328 * Write a metaslab to disk in the context of the specified transaction group.
2329 */
2330void
2331metaslab_sync(metaslab_t *msp, uint64_t txg)
2332{
93cf2076
GW
2333 metaslab_group_t *mg = msp->ms_group;
2334 vdev_t *vd = mg->mg_vd;
34dc7c2f 2335 spa_t *spa = vd->vdev_spa;
428870ff 2336 objset_t *mos = spa_meta_objset(spa);
d2734cce 2337 range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
34dc7c2f 2338 dmu_tx_t *tx;
93cf2076 2339 uint64_t object = space_map_object(msp->ms_sm);
34dc7c2f 2340
428870ff
BB
2341 ASSERT(!vd->vdev_ishole);
2342
e51be066
GW
2343 /*
2344 * This metaslab has just been added so there's no work to do now.
2345 */
d2734cce 2346 if (msp->ms_freeing == NULL) {
93cf2076 2347 ASSERT3P(alloctree, ==, NULL);
e51be066
GW
2348 return;
2349 }
2350
93cf2076 2351 ASSERT3P(alloctree, !=, NULL);
d2734cce
SD
2352 ASSERT3P(msp->ms_freeing, !=, NULL);
2353 ASSERT3P(msp->ms_freed, !=, NULL);
2354 ASSERT3P(msp->ms_checkpointing, !=, NULL);
e51be066 2355
f3a7f661 2356 /*
d2734cce
SD
2357 * Normally, we don't want to process a metaslab if there are no
2358 * allocations or frees to perform. However, if the metaslab is being
2359 * forced to condense and it's loaded, we need to let it through.
f3a7f661 2360 */
d2734cce
SD
2361 if (range_tree_is_empty(alloctree) &&
2362 range_tree_is_empty(msp->ms_freeing) &&
2363 range_tree_is_empty(msp->ms_checkpointing) &&
3b7f360c 2364 !(msp->ms_loaded && msp->ms_condense_wanted))
428870ff 2365 return;
34dc7c2f 2366
3b7f360c
GW
2367
2368 VERIFY(txg <= spa_final_dirty_txg(spa));
2369
34dc7c2f
BB
2370 /*
2371 * The only state that can actually be changing concurrently with
d2734cce
SD
2372 * metaslab_sync() is the metaslab's ms_allocatable. No other
2373 * thread can be modifying this txg's alloc, freeing,
2374 * freed, or space_map_phys_t. We drop ms_lock whenever we
2375 * could call into the DMU, because the DMU can call down to us
a1d477c2
MA
2376 * (e.g. via zio_free()) at any time.
2377 *
2378 * The spa_vdev_remove_thread() can be reading metaslab state
2379 * concurrently, and it is locked out by the ms_sync_lock. Note
2380 * that the ms_lock is insufficient for this, because it is dropped
2381 * by space_map_write().
34dc7c2f 2382 */
428870ff 2383 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
34dc7c2f 2384
93cf2076
GW
2385 if (msp->ms_sm == NULL) {
2386 uint64_t new_object;
2387
d2734cce 2388 new_object = space_map_alloc(mos, zfs_metaslab_sm_blksz, tx);
93cf2076
GW
2389 VERIFY3U(new_object, !=, 0);
2390
2391 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
a1d477c2 2392 msp->ms_start, msp->ms_size, vd->vdev_ashift));
93cf2076 2393 ASSERT(msp->ms_sm != NULL);
34dc7c2f
BB
2394 }
2395
d2734cce
SD
2396 if (!range_tree_is_empty(msp->ms_checkpointing) &&
2397 vd->vdev_checkpoint_sm == NULL) {
2398 ASSERT(spa_has_checkpoint(spa));
2399
2400 uint64_t new_object = space_map_alloc(mos,
2401 vdev_standard_sm_blksz, tx);
2402 VERIFY3U(new_object, !=, 0);
2403
2404 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
2405 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
2406 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2407
2408 /*
2409 * We save the space map object as an entry in vdev_top_zap
2410 * so it can be retrieved when the pool is reopened after an
2411 * export or through zdb.
2412 */
2413 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
2414 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
2415 sizeof (new_object), 1, &new_object, tx));
2416 }
2417
a1d477c2 2418 mutex_enter(&msp->ms_sync_lock);
428870ff
BB
2419 mutex_enter(&msp->ms_lock);
2420
96358617 2421 /*
4e21fd06
DB
2422 * Note: metaslab_condense() clears the space map's histogram.
2423 * Therefore we must verify and remove this histogram before
96358617
MA
2424 * condensing.
2425 */
2426 metaslab_group_histogram_verify(mg);
2427 metaslab_class_histogram_verify(mg->mg_class);
2428 metaslab_group_histogram_remove(mg, msp);
2429
d2734cce 2430 if (msp->ms_loaded && metaslab_should_condense(msp)) {
e51be066
GW
2431 metaslab_condense(msp, txg, tx);
2432 } else {
a1d477c2 2433 mutex_exit(&msp->ms_lock);
4d044c4c
SD
2434 space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
2435 SM_NO_VDEVID, tx);
2436 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
2437 SM_NO_VDEVID, tx);
a1d477c2 2438 mutex_enter(&msp->ms_lock);
e51be066 2439 }
428870ff 2440
d2734cce
SD
2441 if (!range_tree_is_empty(msp->ms_checkpointing)) {
2442 ASSERT(spa_has_checkpoint(spa));
2443 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2444
2445 /*
2446 * Since we are doing writes to disk and the ms_checkpointing
2447 * tree won't be changing during that time, we drop the
2448 * ms_lock while writing to the checkpoint space map.
2449 */
2450 mutex_exit(&msp->ms_lock);
2451 space_map_write(vd->vdev_checkpoint_sm,
4d044c4c 2452 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
d2734cce
SD
2453 mutex_enter(&msp->ms_lock);
2454 space_map_update(vd->vdev_checkpoint_sm);
2455
2456 spa->spa_checkpoint_info.sci_dspace +=
2457 range_tree_space(msp->ms_checkpointing);
2458 vd->vdev_stat.vs_checkpoint_space +=
2459 range_tree_space(msp->ms_checkpointing);
2460 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
2461 -vd->vdev_checkpoint_sm->sm_alloc);
2462
2463 range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
2464 }
2465
93cf2076
GW
2466 if (msp->ms_loaded) {
2467 /*
a1d477c2 2468 * When the space map is loaded, we have an accurate
93cf2076
GW
2469 * histogram in the range tree. This gives us an opportunity
2470 * to bring the space map's histogram up-to-date so we clear
2471 * it first before updating it.
2472 */
2473 space_map_histogram_clear(msp->ms_sm);
d2734cce 2474 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
4e21fd06
DB
2475
2476 /*
2477 * Since we've cleared the histogram we need to add back
2478 * any free space that has already been processed, plus
2479 * any deferred space. This allows the on-disk histogram
2480 * to accurately reflect all free space even if some space
2481 * is not yet available for allocation (i.e. deferred).
2482 */
d2734cce 2483 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
4e21fd06 2484
93cf2076 2485 /*
4e21fd06
DB
2486 * Add back any deferred free space that has not been
2487 * added back into the in-core free tree yet. This will
2488 * ensure that we don't end up with a space map histogram
2489 * that is completely empty unless the metaslab is fully
2490 * allocated.
93cf2076 2491 */
1c27024e 2492 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
4e21fd06 2493 space_map_histogram_add(msp->ms_sm,
d2734cce 2494 msp->ms_defer[t], tx);
4e21fd06 2495 }
93cf2076 2496 }
4e21fd06
DB
2497
2498 /*
2499 * Always add the free space from this sync pass to the space
2500 * map histogram. We want to make sure that the on-disk histogram
2501 * accounts for all free space. If the space map is not loaded,
2502 * then we will lose some accuracy but will correct it the next
2503 * time we load the space map.
2504 */
d2734cce 2505 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
4e21fd06 2506
f3a7f661
GW
2507 metaslab_group_histogram_add(mg, msp);
2508 metaslab_group_histogram_verify(mg);
2509 metaslab_class_histogram_verify(mg->mg_class);
34dc7c2f 2510
e51be066 2511 /*
93cf2076 2512 * For sync pass 1, we avoid traversing this txg's free range tree
d2734cce
SD
2513 * and instead will just swap the pointers for freeing and
2514 * freed. We can safely do this since the freed_tree is
e51be066
GW
2515 * guaranteed to be empty on the initial pass.
2516 */
2517 if (spa_sync_pass(spa) == 1) {
d2734cce 2518 range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
e51be066 2519 } else {
d2734cce
SD
2520 range_tree_vacate(msp->ms_freeing,
2521 range_tree_add, msp->ms_freed);
34dc7c2f 2522 }
f3a7f661 2523 range_tree_vacate(alloctree, NULL, NULL);
34dc7c2f 2524
d2734cce
SD
2525 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
2526 ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
2527 & TXG_MASK]));
2528 ASSERT0(range_tree_space(msp->ms_freeing));
2529 ASSERT0(range_tree_space(msp->ms_checkpointing));
34dc7c2f
BB
2530
2531 mutex_exit(&msp->ms_lock);
2532
93cf2076
GW
2533 if (object != space_map_object(msp->ms_sm)) {
2534 object = space_map_object(msp->ms_sm);
2535 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
2536 msp->ms_id, sizeof (uint64_t), &object, tx);
2537 }
a1d477c2 2538 mutex_exit(&msp->ms_sync_lock);
34dc7c2f
BB
2539 dmu_tx_commit(tx);
2540}
2541
2542/*
2543 * Called after a transaction group has completely synced to mark
2544 * all of the metaslab's free space as usable.
2545 */
2546void
2547metaslab_sync_done(metaslab_t *msp, uint64_t txg)
2548{
34dc7c2f
BB
2549 metaslab_group_t *mg = msp->ms_group;
2550 vdev_t *vd = mg->mg_vd;
4e21fd06 2551 spa_t *spa = vd->vdev_spa;
93cf2076 2552 range_tree_t **defer_tree;
428870ff 2553 int64_t alloc_delta, defer_delta;
4e21fd06 2554 boolean_t defer_allowed = B_TRUE;
428870ff
BB
2555
2556 ASSERT(!vd->vdev_ishole);
34dc7c2f
BB
2557
2558 mutex_enter(&msp->ms_lock);
2559
2560 /*
2561 * If this metaslab is just becoming available, initialize its
258553d3 2562 * range trees and add its capacity to the vdev.
34dc7c2f 2563 */
d2734cce 2564 if (msp->ms_freed == NULL) {
1c27024e 2565 for (int t = 0; t < TXG_SIZE; t++) {
d2734cce 2566 ASSERT(msp->ms_allocating[t] == NULL);
93cf2076 2567
d2734cce 2568 msp->ms_allocating[t] = range_tree_create(NULL, NULL);
34dc7c2f 2569 }
428870ff 2570
d2734cce
SD
2571 ASSERT3P(msp->ms_freeing, ==, NULL);
2572 msp->ms_freeing = range_tree_create(NULL, NULL);
258553d3 2573
d2734cce
SD
2574 ASSERT3P(msp->ms_freed, ==, NULL);
2575 msp->ms_freed = range_tree_create(NULL, NULL);
258553d3 2576
1c27024e 2577 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
d2734cce 2578 ASSERT(msp->ms_defer[t] == NULL);
e51be066 2579
d2734cce 2580 msp->ms_defer[t] = range_tree_create(NULL, NULL);
93cf2076 2581 }
428870ff 2582
d2734cce
SD
2583 ASSERT3P(msp->ms_checkpointing, ==, NULL);
2584 msp->ms_checkpointing = range_tree_create(NULL, NULL);
2585
93cf2076 2586 vdev_space_update(vd, 0, 0, msp->ms_size);
34dc7c2f 2587 }
d2734cce
SD
2588 ASSERT0(range_tree_space(msp->ms_freeing));
2589 ASSERT0(range_tree_space(msp->ms_checkpointing));
34dc7c2f 2590
d2734cce 2591 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
93cf2076 2592
1c27024e 2593 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
4e21fd06 2594 metaslab_class_get_alloc(spa_normal_class(spa));
a1d477c2 2595 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) {
4e21fd06
DB
2596 defer_allowed = B_FALSE;
2597 }
2598
2599 defer_delta = 0;
93cf2076 2600 alloc_delta = space_map_alloc_delta(msp->ms_sm);
4e21fd06 2601 if (defer_allowed) {
d2734cce 2602 defer_delta = range_tree_space(msp->ms_freed) -
4e21fd06
DB
2603 range_tree_space(*defer_tree);
2604 } else {
2605 defer_delta -= range_tree_space(*defer_tree);
2606 }
428870ff
BB
2607
2608 vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
34dc7c2f 2609
34dc7c2f 2610 /*
93cf2076 2611 * If there's a metaslab_load() in progress, wait for it to complete
34dc7c2f 2612 * so that we have a consistent view of the in-core space map.
34dc7c2f 2613 */
93cf2076 2614 metaslab_load_wait(msp);
c2e42f9d
GW
2615
2616 /*
93cf2076 2617 * Move the frees from the defer_tree back to the free
d2734cce
SD
2618 * range tree (if it's loaded). Swap the freed_tree and
2619 * the defer_tree -- this is safe to do because we've
2620 * just emptied out the defer_tree.
c2e42f9d 2621 */
93cf2076 2622 range_tree_vacate(*defer_tree,
d2734cce 2623 msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
4e21fd06 2624 if (defer_allowed) {
d2734cce 2625 range_tree_swap(&msp->ms_freed, defer_tree);
4e21fd06 2626 } else {
d2734cce
SD
2627 range_tree_vacate(msp->ms_freed,
2628 msp->ms_loaded ? range_tree_add : NULL,
2629 msp->ms_allocatable);
4e21fd06 2630 }
93cf2076 2631 space_map_update(msp->ms_sm);
34dc7c2f 2632
428870ff
BB
2633 msp->ms_deferspace += defer_delta;
2634 ASSERT3S(msp->ms_deferspace, >=, 0);
93cf2076 2635 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
428870ff
BB
2636 if (msp->ms_deferspace != 0) {
2637 /*
2638 * Keep syncing this metaslab until all deferred frees
2639 * are back in circulation.
2640 */
2641 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2642 }
2643
492f64e9
PD
2644 if (msp->ms_new) {
2645 msp->ms_new = B_FALSE;
2646 mutex_enter(&mg->mg_lock);
2647 mg->mg_ms_ready++;
2648 mutex_exit(&mg->mg_lock);
2649 }
4e21fd06
DB
2650 /*
2651 * Calculate the new weights before unloading any metaslabs.
2652 * This will give us the most accurate weighting.
2653 */
492f64e9
PD
2654 metaslab_group_sort(mg, msp, metaslab_weight(msp) |
2655 (msp->ms_weight & METASLAB_ACTIVE_MASK));
4e21fd06
DB
2656
2657 /*
2658 * If the metaslab is loaded and we've not tried to load or allocate
2659 * from it in 'metaslab_unload_delay' txgs, then unload it.
2660 */
2661 if (msp->ms_loaded &&
2662 msp->ms_selected_txg + metaslab_unload_delay < txg) {
2663
1c27024e 2664 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
93cf2076 2665 VERIFY0(range_tree_space(
d2734cce 2666 msp->ms_allocating[(txg + t) & TXG_MASK]));
93cf2076 2667 }
492f64e9
PD
2668 if (msp->ms_allocator != -1) {
2669 metaslab_passivate(msp, msp->ms_weight &
2670 ~METASLAB_ACTIVE_MASK);
2671 }
34dc7c2f 2672
93cf2076
GW
2673 if (!metaslab_debug_unload)
2674 metaslab_unload(msp);
34dc7c2f
BB
2675 }
2676
d2734cce
SD
2677 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
2678 ASSERT0(range_tree_space(msp->ms_freeing));
2679 ASSERT0(range_tree_space(msp->ms_freed));
2680 ASSERT0(range_tree_space(msp->ms_checkpointing));
a1d477c2 2681
34dc7c2f
BB
2682 mutex_exit(&msp->ms_lock);
2683}
2684
428870ff
BB
2685void
2686metaslab_sync_reassess(metaslab_group_t *mg)
2687{
a1d477c2
MA
2688 spa_t *spa = mg->mg_class->mc_spa;
2689
2690 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
1be627f5 2691 metaslab_group_alloc_update(mg);
f3a7f661 2692 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
6d974228 2693
428870ff 2694 /*
a1d477c2
MA
2695 * Preload the next potential metaslabs but only on active
2696 * metaslab groups. We can get into a state where the metaslab
2697 * is no longer active since we dirty metaslabs as we remove a
2698 * a device, thus potentially making the metaslab group eligible
2699 * for preloading.
428870ff 2700 */
a1d477c2
MA
2701 if (mg->mg_activation_count > 0) {
2702 metaslab_group_preload(mg);
2703 }
2704 spa_config_exit(spa, SCL_ALLOC, FTAG);
428870ff
BB
2705}
2706
34dc7c2f
BB
2707static uint64_t
2708metaslab_distance(metaslab_t *msp, dva_t *dva)
2709{
2710 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
2711 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
93cf2076 2712 uint64_t start = msp->ms_id;
34dc7c2f
BB
2713
2714 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
2715 return (1ULL << 63);
2716
2717 if (offset < start)
2718 return ((start - offset) << ms_shift);
2719 if (offset > start)
2720 return ((offset - start) << ms_shift);
2721 return (0);
2722}
2723
4e21fd06
DB
2724/*
2725 * ==========================================================================
2726 * Metaslab allocation tracing facility
2727 * ==========================================================================
2728 */
2729#ifdef _METASLAB_TRACING
2730kstat_t *metaslab_trace_ksp;
2731kstat_named_t metaslab_trace_over_limit;
2732
2733void
2734metaslab_alloc_trace_init(void)
2735{
2736 ASSERT(metaslab_alloc_trace_cache == NULL);
2737 metaslab_alloc_trace_cache = kmem_cache_create(
2738 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
2739 0, NULL, NULL, NULL, NULL, NULL, 0);
2740 metaslab_trace_ksp = kstat_create("zfs", 0, "metaslab_trace_stats",
2741 "misc", KSTAT_TYPE_NAMED, 1, KSTAT_FLAG_VIRTUAL);
2742 if (metaslab_trace_ksp != NULL) {
2743 metaslab_trace_ksp->ks_data = &metaslab_trace_over_limit;
2744 kstat_named_init(&metaslab_trace_over_limit,
2745 "metaslab_trace_over_limit", KSTAT_DATA_UINT64);
2746 kstat_install(metaslab_trace_ksp);
2747 }
2748}
2749
2750void
2751metaslab_alloc_trace_fini(void)
2752{
2753 if (metaslab_trace_ksp != NULL) {
2754 kstat_delete(metaslab_trace_ksp);
2755 metaslab_trace_ksp = NULL;
2756 }
2757 kmem_cache_destroy(metaslab_alloc_trace_cache);
2758 metaslab_alloc_trace_cache = NULL;
2759}
2760
2761/*
2762 * Add an allocation trace element to the allocation tracing list.
2763 */
2764static void
2765metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
492f64e9
PD
2766 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
2767 int allocator)
4e21fd06
DB
2768{
2769 metaslab_alloc_trace_t *mat;
2770
2771 if (!metaslab_trace_enabled)
2772 return;
2773
2774 /*
2775 * When the tracing list reaches its maximum we remove
2776 * the second element in the list before adding a new one.
2777 * By removing the second element we preserve the original
2778 * entry as a clue to what allocations steps have already been
2779 * performed.
2780 */
2781 if (zal->zal_size == metaslab_trace_max_entries) {
2782 metaslab_alloc_trace_t *mat_next;
2783#ifdef DEBUG
2784 panic("too many entries in allocation list");
2785#endif
2786 atomic_inc_64(&metaslab_trace_over_limit.value.ui64);
2787 zal->zal_size--;
2788 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
2789 list_remove(&zal->zal_list, mat_next);
2790 kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
2791 }
2792
2793 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
2794 list_link_init(&mat->mat_list_node);
2795 mat->mat_mg = mg;
2796 mat->mat_msp = msp;
2797 mat->mat_size = psize;
2798 mat->mat_dva_id = dva_id;
2799 mat->mat_offset = offset;
2800 mat->mat_weight = 0;
492f64e9 2801 mat->mat_allocator = allocator;
4e21fd06
DB
2802
2803 if (msp != NULL)
2804 mat->mat_weight = msp->ms_weight;
2805
2806 /*
2807 * The list is part of the zio so locking is not required. Only
2808 * a single thread will perform allocations for a given zio.
2809 */
2810 list_insert_tail(&zal->zal_list, mat);
2811 zal->zal_size++;
2812
2813 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
2814}
2815
2816void
2817metaslab_trace_init(zio_alloc_list_t *zal)
2818{
2819 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
2820 offsetof(metaslab_alloc_trace_t, mat_list_node));
2821 zal->zal_size = 0;
2822}
2823
2824void
2825metaslab_trace_fini(zio_alloc_list_t *zal)
2826{
2827 metaslab_alloc_trace_t *mat;
2828
2829 while ((mat = list_remove_head(&zal->zal_list)) != NULL)
2830 kmem_cache_free(metaslab_alloc_trace_cache, mat);
2831 list_destroy(&zal->zal_list);
2832 zal->zal_size = 0;
2833}
2834#else
2835
492f64e9 2836#define metaslab_trace_add(zal, mg, msp, psize, id, off, alloc)
4e21fd06
DB
2837
2838void
2839metaslab_alloc_trace_init(void)
2840{
2841}
2842
2843void
2844metaslab_alloc_trace_fini(void)
2845{
2846}
2847
2848void
2849metaslab_trace_init(zio_alloc_list_t *zal)
2850{
2851}
2852
2853void
2854metaslab_trace_fini(zio_alloc_list_t *zal)
2855{
2856}
2857
2858#endif /* _METASLAB_TRACING */
2859
3dfb57a3
DB
2860/*
2861 * ==========================================================================
2862 * Metaslab block operations
2863 * ==========================================================================
2864 */
2865
2866static void
492f64e9
PD
2867metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags,
2868 int allocator)
3dfb57a3 2869{
3dfb57a3 2870 if (!(flags & METASLAB_ASYNC_ALLOC) ||
492f64e9 2871 (flags & METASLAB_DONT_THROTTLE))
3dfb57a3
DB
2872 return;
2873
1c27024e 2874 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
3dfb57a3
DB
2875 if (!mg->mg_class->mc_alloc_throttle_enabled)
2876 return;
2877
492f64e9
PD
2878 (void) refcount_add(&mg->mg_alloc_queue_depth[allocator], tag);
2879}
2880
2881static void
2882metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
2883{
2884 uint64_t max = mg->mg_max_alloc_queue_depth;
2885 uint64_t cur = mg->mg_cur_max_alloc_queue_depth[allocator];
2886 while (cur < max) {
2887 if (atomic_cas_64(&mg->mg_cur_max_alloc_queue_depth[allocator],
2888 cur, cur + 1) == cur) {
2889 atomic_inc_64(
2890 &mg->mg_class->mc_alloc_max_slots[allocator]);
2891 return;
2892 }
2893 cur = mg->mg_cur_max_alloc_queue_depth[allocator];
2894 }
3dfb57a3
DB
2895}
2896
2897void
492f64e9
PD
2898metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags,
2899 int allocator, boolean_t io_complete)
3dfb57a3 2900{
3dfb57a3 2901 if (!(flags & METASLAB_ASYNC_ALLOC) ||
492f64e9 2902 (flags & METASLAB_DONT_THROTTLE))
3dfb57a3
DB
2903 return;
2904
1c27024e 2905 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
3dfb57a3
DB
2906 if (!mg->mg_class->mc_alloc_throttle_enabled)
2907 return;
2908
492f64e9
PD
2909 (void) refcount_remove(&mg->mg_alloc_queue_depth[allocator], tag);
2910 if (io_complete)
2911 metaslab_group_increment_qdepth(mg, allocator);
3dfb57a3
DB
2912}
2913
2914void
492f64e9
PD
2915metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag,
2916 int allocator)
3dfb57a3
DB
2917{
2918#ifdef ZFS_DEBUG
2919 const dva_t *dva = bp->blk_dva;
2920 int ndvas = BP_GET_NDVAS(bp);
3dfb57a3 2921
1c27024e 2922 for (int d = 0; d < ndvas; d++) {
3dfb57a3
DB
2923 uint64_t vdev = DVA_GET_VDEV(&dva[d]);
2924 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
492f64e9
PD
2925 VERIFY(refcount_not_held(&mg->mg_alloc_queue_depth[allocator],
2926 tag));
3dfb57a3
DB
2927 }
2928#endif
2929}
2930
34dc7c2f 2931static uint64_t
4e21fd06
DB
2932metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
2933{
2934 uint64_t start;
d2734cce 2935 range_tree_t *rt = msp->ms_allocatable;
4e21fd06
DB
2936 metaslab_class_t *mc = msp->ms_group->mg_class;
2937
2938 VERIFY(!msp->ms_condensing);
2939
2940 start = mc->mc_ops->msop_alloc(msp, size);
2941 if (start != -1ULL) {
2942 metaslab_group_t *mg = msp->ms_group;
2943 vdev_t *vd = mg->mg_vd;
2944
2945 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
2946 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2947 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
2948 range_tree_remove(rt, start, size);
2949
d2734cce 2950 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
4e21fd06
DB
2951 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
2952
d2734cce 2953 range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
4e21fd06
DB
2954
2955 /* Track the last successful allocation */
2956 msp->ms_alloc_txg = txg;
2957 metaslab_verify_space(msp, txg);
2958 }
2959
2960 /*
2961 * Now that we've attempted the allocation we need to update the
2962 * metaslab's maximum block size since it may have changed.
2963 */
2964 msp->ms_max_size = metaslab_block_maxsize(msp);
2965 return (start);
2966}
2967
492f64e9
PD
2968/*
2969 * Find the metaslab with the highest weight that is less than what we've
2970 * already tried. In the common case, this means that we will examine each
2971 * metaslab at most once. Note that concurrent callers could reorder metaslabs
2972 * by activation/passivation once we have dropped the mg_lock. If a metaslab is
2973 * activated by another thread, and we fail to allocate from the metaslab we
2974 * have selected, we may not try the newly-activated metaslab, and instead
2975 * activate another metaslab. This is not optimal, but generally does not cause
2976 * any problems (a possible exception being if every metaslab is completely full
2977 * except for the the newly-activated metaslab which we fail to examine).
2978 */
2979static metaslab_t *
2980find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
2981 dva_t *dva, int d, uint64_t min_distance, uint64_t asize, int allocator,
2982 zio_alloc_list_t *zal, metaslab_t *search, boolean_t *was_active)
2983{
2984 avl_index_t idx;
2985 avl_tree_t *t = &mg->mg_metaslab_tree;
2986 metaslab_t *msp = avl_find(t, search, &idx);
2987 if (msp == NULL)
2988 msp = avl_nearest(t, idx, AVL_AFTER);
2989
2990 for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
2991 int i;
2992 if (!metaslab_should_allocate(msp, asize)) {
2993 metaslab_trace_add(zal, mg, msp, asize, d,
2994 TRACE_TOO_SMALL, allocator);
2995 continue;
2996 }
2997
2998 /*
2999 * If the selected metaslab is condensing, skip it.
3000 */
3001 if (msp->ms_condensing)
3002 continue;
3003
3004 *was_active = msp->ms_allocator != -1;
3005 /*
3006 * If we're activating as primary, this is our first allocation
3007 * from this disk, so we don't need to check how close we are.
3008 * If the metaslab under consideration was already active,
3009 * we're getting desperate enough to steal another allocator's
3010 * metaslab, so we still don't care about distances.
3011 */
3012 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
3013 break;
3014
3015 uint64_t target_distance = min_distance
3016 + (space_map_allocated(msp->ms_sm) != 0 ? 0 :
3017 min_distance >> 1);
3018
3019 for (i = 0; i < d; i++) {
3020 if (metaslab_distance(msp, &dva[i]) < target_distance)
3021 break;
3022 }
3023 if (i == d)
3024 break;
3025 }
3026
3027 if (msp != NULL) {
3028 search->ms_weight = msp->ms_weight;
3029 search->ms_start = msp->ms_start + 1;
3030 search->ms_allocator = msp->ms_allocator;
3031 search->ms_primary = msp->ms_primary;
3032 }
3033 return (msp);
3034}
3035
3036/* ARGSUSED */
4e21fd06
DB
3037static uint64_t
3038metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
492f64e9
PD
3039 uint64_t asize, uint64_t txg, uint64_t min_distance, dva_t *dva, int d,
3040 int allocator)
34dc7c2f
BB
3041{
3042 metaslab_t *msp = NULL;
3043 uint64_t offset = -1ULL;
34dc7c2f 3044 uint64_t activation_weight;
34dc7c2f
BB
3045
3046 activation_weight = METASLAB_WEIGHT_PRIMARY;
492f64e9
PD
3047 for (int i = 0; i < d; i++) {
3048 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
3049 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
34dc7c2f 3050 activation_weight = METASLAB_WEIGHT_SECONDARY;
492f64e9
PD
3051 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
3052 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
e38afd34 3053 activation_weight = METASLAB_WEIGHT_CLAIM;
9babb374
BB
3054 break;
3055 }
3056 }
34dc7c2f 3057
492f64e9
PD
3058 /*
3059 * If we don't have enough metaslabs active to fill the entire array, we
3060 * just use the 0th slot.
3061 */
e38afd34 3062 if (mg->mg_ms_ready < mg->mg_allocators * 3)
492f64e9 3063 allocator = 0;
492f64e9
PD
3064
3065 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
3066
1c27024e 3067 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
4e21fd06
DB
3068 search->ms_weight = UINT64_MAX;
3069 search->ms_start = 0;
492f64e9
PD
3070 /*
3071 * At the end of the metaslab tree are the already-active metaslabs,
3072 * first the primaries, then the secondaries. When we resume searching
3073 * through the tree, we need to consider ms_allocator and ms_primary so
3074 * we start in the location right after where we left off, and don't
3075 * accidentally loop forever considering the same metaslabs.
3076 */
3077 search->ms_allocator = -1;
3078 search->ms_primary = B_TRUE;
34dc7c2f 3079 for (;;) {
492f64e9 3080 boolean_t was_active = B_FALSE;
9babb374 3081
34dc7c2f 3082 mutex_enter(&mg->mg_lock);
4e21fd06 3083
492f64e9
PD
3084 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
3085 mg->mg_primaries[allocator] != NULL) {
3086 msp = mg->mg_primaries[allocator];
3087 was_active = B_TRUE;
3088 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
e38afd34 3089 mg->mg_secondaries[allocator] != NULL) {
492f64e9
PD
3090 msp = mg->mg_secondaries[allocator];
3091 was_active = B_TRUE;
3092 } else {
3093 msp = find_valid_metaslab(mg, activation_weight, dva, d,
3094 min_distance, asize, allocator, zal, search,
3095 &was_active);
34dc7c2f 3096 }
492f64e9 3097
34dc7c2f 3098 mutex_exit(&mg->mg_lock);
4e21fd06
DB
3099 if (msp == NULL) {
3100 kmem_free(search, sizeof (*search));
34dc7c2f 3101 return (-1ULL);
4e21fd06 3102 }
34dc7c2f 3103
ac72fac3 3104 mutex_enter(&msp->ms_lock);
34dc7c2f
BB
3105 /*
3106 * Ensure that the metaslab we have selected is still
3107 * capable of handling our request. It's possible that
3108 * another thread may have changed the weight while we
4e21fd06
DB
3109 * were blocked on the metaslab lock. We check the
3110 * active status first to see if we need to reselect
3111 * a new metaslab.
34dc7c2f 3112 */
4e21fd06 3113 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
34dc7c2f
BB
3114 mutex_exit(&msp->ms_lock);
3115 continue;
3116 }
3117
492f64e9
PD
3118 /*
3119 * If the metaslab is freshly activated for an allocator that
3120 * isn't the one we're allocating from, or if it's a primary and
3121 * we're seeking a secondary (or vice versa), we go back and
3122 * select a new metaslab.
3123 */
3124 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
3125 (msp->ms_allocator != -1) &&
3126 (msp->ms_allocator != allocator || ((activation_weight ==
3127 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
3128 mutex_exit(&msp->ms_lock);
3129 continue;
3130 }
3131
e38afd34 3132 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
3133 activation_weight != METASLAB_WEIGHT_CLAIM) {
492f64e9
PD
3134 metaslab_passivate(msp, msp->ms_weight &
3135 ~METASLAB_WEIGHT_CLAIM);
34dc7c2f
BB
3136 mutex_exit(&msp->ms_lock);
3137 continue;
3138 }
3139
492f64e9 3140 if (metaslab_activate(msp, allocator, activation_weight) != 0) {
34dc7c2f
BB
3141 mutex_exit(&msp->ms_lock);
3142 continue;
3143 }
492f64e9 3144
4e21fd06
DB
3145 msp->ms_selected_txg = txg;
3146
3147 /*
3148 * Now that we have the lock, recheck to see if we should
3149 * continue to use this metaslab for this allocation. The
3150 * the metaslab is now loaded so metaslab_should_allocate() can
3151 * accurately determine if the allocation attempt should
3152 * proceed.
3153 */
3154 if (!metaslab_should_allocate(msp, asize)) {
3155 /* Passivate this metaslab and select a new one. */
3156 metaslab_trace_add(zal, mg, msp, asize, d,
492f64e9 3157 TRACE_TOO_SMALL, allocator);
4e21fd06
DB
3158 goto next;
3159 }
3160
34dc7c2f 3161
7a614407
GW
3162 /*
3163 * If this metaslab is currently condensing then pick again as
3164 * we can't manipulate this metaslab until it's committed
3165 * to disk.
3166 */
93cf2076 3167 if (msp->ms_condensing) {
4e21fd06 3168 metaslab_trace_add(zal, mg, msp, asize, d,
492f64e9
PD
3169 TRACE_CONDENSING, allocator);
3170 metaslab_passivate(msp, msp->ms_weight &
3171 ~METASLAB_ACTIVE_MASK);
7a614407
GW
3172 mutex_exit(&msp->ms_lock);
3173 continue;
3174 }
3175
4e21fd06 3176 offset = metaslab_block_alloc(msp, asize, txg);
492f64e9 3177 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
4e21fd06
DB
3178
3179 if (offset != -1ULL) {
3180 /* Proactively passivate the metaslab, if needed */
3181 metaslab_segment_may_passivate(msp);
34dc7c2f 3182 break;
4e21fd06
DB
3183 }
3184next:
3185 ASSERT(msp->ms_loaded);
3186
3187 /*
3188 * We were unable to allocate from this metaslab so determine
3189 * a new weight for this metaslab. Now that we have loaded
3190 * the metaslab we can provide a better hint to the metaslab
3191 * selector.
3192 *
3193 * For space-based metaslabs, we use the maximum block size.
3194 * This information is only available when the metaslab
3195 * is loaded and is more accurate than the generic free
3196 * space weight that was calculated by metaslab_weight().
3197 * This information allows us to quickly compare the maximum
3198 * available allocation in the metaslab to the allocation
3199 * size being requested.
3200 *
3201 * For segment-based metaslabs, determine the new weight
3202 * based on the highest bucket in the range tree. We
3203 * explicitly use the loaded segment weight (i.e. the range
3204 * tree histogram) since it contains the space that is
3205 * currently available for allocation and is accurate
3206 * even within a sync pass.
3207 */
3208 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
3209 uint64_t weight = metaslab_block_maxsize(msp);
3210 WEIGHT_SET_SPACEBASED(weight);
3211 metaslab_passivate(msp, weight);
3212 } else {
3213 metaslab_passivate(msp,
3214 metaslab_weight_from_range_tree(msp));
3215 }
34dc7c2f 3216
4e21fd06
DB
3217 /*
3218 * We have just failed an allocation attempt, check
3219 * that metaslab_should_allocate() agrees. Otherwise,
3220 * we may end up in an infinite loop retrying the same
3221 * metaslab.
3222 */
3223 ASSERT(!metaslab_should_allocate(msp, asize));
34dc7c2f
BB
3224 mutex_exit(&msp->ms_lock);
3225 }
4e21fd06
DB
3226 mutex_exit(&msp->ms_lock);
3227 kmem_free(search, sizeof (*search));
3228 return (offset);
3229}
34dc7c2f 3230
4e21fd06
DB
3231static uint64_t
3232metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
492f64e9
PD
3233 uint64_t asize, uint64_t txg, uint64_t min_distance, dva_t *dva, int d,
3234 int allocator)
4e21fd06
DB
3235{
3236 uint64_t offset;
3237 ASSERT(mg->mg_initialized);
34dc7c2f 3238
4e21fd06 3239 offset = metaslab_group_alloc_normal(mg, zal, asize, txg,
492f64e9 3240 min_distance, dva, d, allocator);
34dc7c2f 3241
4e21fd06
DB
3242 mutex_enter(&mg->mg_lock);
3243 if (offset == -1ULL) {
3244 mg->mg_failed_allocations++;
3245 metaslab_trace_add(zal, mg, NULL, asize, d,
492f64e9 3246 TRACE_GROUP_FAILURE, allocator);
4e21fd06
DB
3247 if (asize == SPA_GANGBLOCKSIZE) {
3248 /*
3249 * This metaslab group was unable to allocate
3250 * the minimum gang block size so it must be out of
3251 * space. We must notify the allocation throttle
3252 * to start skipping allocation attempts to this
3253 * metaslab group until more space becomes available.
3254 * Note: this failure cannot be caused by the
3255 * allocation throttle since the allocation throttle
3256 * is only responsible for skipping devices and
3257 * not failing block allocations.
3258 */
3259 mg->mg_no_free_space = B_TRUE;
3260 }
3261 }
3262 mg->mg_allocations++;
3263 mutex_exit(&mg->mg_lock);
34dc7c2f
BB
3264 return (offset);
3265}
3266
4e21fd06
DB
3267/*
3268 * If we have to write a ditto block (i.e. more than one DVA for a given BP)
3269 * on the same vdev as an existing DVA of this BP, then try to allocate it
3270 * at least (vdev_asize / (2 ^ ditto_same_vdev_distance_shift)) away from the
3271 * existing DVAs.
3272 */
3273int ditto_same_vdev_distance_shift = 3;
3274
34dc7c2f
BB
3275/*
3276 * Allocate a block for the specified i/o.
3277 */
a1d477c2 3278int
34dc7c2f 3279metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
4e21fd06 3280 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
492f64e9 3281 zio_alloc_list_t *zal, int allocator)
34dc7c2f 3282{
920dd524 3283 metaslab_group_t *mg, *fast_mg, *rotor;
34dc7c2f 3284 vdev_t *vd;
4e21fd06 3285 boolean_t try_hard = B_FALSE;
34dc7c2f
BB
3286
3287 ASSERT(!DVA_IS_VALID(&dva[d]));
3288
3289 /*
3290 * For testing, make some blocks above a certain size be gang blocks.
3291 */
d830d479 3292 if (psize >= metaslab_force_ganging && (ddi_get_lbolt() & 3) == 0) {
492f64e9
PD
3293 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
3294 allocator);
2e528b49 3295 return (SET_ERROR(ENOSPC));
4e21fd06 3296 }
34dc7c2f
BB
3297
3298 /*
3299 * Start at the rotor and loop through all mgs until we find something.
428870ff 3300 * Note that there's no locking on mc_rotor or mc_aliquot because
34dc7c2f
BB
3301 * nothing actually breaks if we miss a few updates -- we just won't
3302 * allocate quite as evenly. It all balances out over time.
3303 *
3304 * If we are doing ditto or log blocks, try to spread them across
3305 * consecutive vdevs. If we're forced to reuse a vdev before we've
3306 * allocated all of our ditto blocks, then try and spread them out on
3307 * that vdev as much as possible. If it turns out to not be possible,
3308 * gradually lower our standards until anything becomes acceptable.
3309 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
3310 * gives us hope of containing our fault domains to something we're
3311 * able to reason about. Otherwise, any two top-level vdev failures
3312 * will guarantee the loss of data. With consecutive allocation,
3313 * only two adjacent top-level vdev failures will result in data loss.
3314 *
3315 * If we are doing gang blocks (hintdva is non-NULL), try to keep
3316 * ourselves on the same vdev as our gang block header. That
3317 * way, we can hope for locality in vdev_cache, plus it makes our
3318 * fault domains something tractable.
3319 */
3320 if (hintdva) {
3321 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
428870ff
BB
3322
3323 /*
3324 * It's possible the vdev we're using as the hint no
a1d477c2
MA
3325 * longer exists or its mg has been closed (e.g. by
3326 * device removal). Consult the rotor when
428870ff
BB
3327 * all else fails.
3328 */
a1d477c2 3329 if (vd != NULL && vd->vdev_mg != NULL) {
34dc7c2f 3330 mg = vd->vdev_mg;
428870ff
BB
3331
3332 if (flags & METASLAB_HINTBP_AVOID &&
3333 mg->mg_next != NULL)
3334 mg = mg->mg_next;
3335 } else {
3336 mg = mc->mc_rotor;
3337 }
34dc7c2f
BB
3338 } else if (d != 0) {
3339 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
3340 mg = vd->vdev_mg->mg_next;
920dd524
ED
3341 } else if (flags & METASLAB_FASTWRITE) {
3342 mg = fast_mg = mc->mc_rotor;
3343
3344 do {
3345 if (fast_mg->mg_vd->vdev_pending_fastwrite <
3346 mg->mg_vd->vdev_pending_fastwrite)
3347 mg = fast_mg;
3348 } while ((fast_mg = fast_mg->mg_next) != mc->mc_rotor);
3349
34dc7c2f
BB
3350 } else {
3351 mg = mc->mc_rotor;
3352 }
3353
3354 /*
428870ff
BB
3355 * If the hint put us into the wrong metaslab class, or into a
3356 * metaslab group that has been passivated, just follow the rotor.
34dc7c2f 3357 */
428870ff 3358 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
34dc7c2f
BB
3359 mg = mc->mc_rotor;
3360
3361 rotor = mg;
3362top:
34dc7c2f 3363 do {
4e21fd06 3364 boolean_t allocatable;
428870ff 3365
3dfb57a3 3366 ASSERT(mg->mg_activation_count == 1);
34dc7c2f 3367 vd = mg->mg_vd;
fb5f0bc8 3368
34dc7c2f 3369 /*
b128c09f 3370 * Don't allocate from faulted devices.
34dc7c2f 3371 */
4e21fd06 3372 if (try_hard) {
fb5f0bc8
BB
3373 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
3374 allocatable = vdev_allocatable(vd);
3375 spa_config_exit(spa, SCL_ZIO, FTAG);
3376 } else {
3377 allocatable = vdev_allocatable(vd);
3378 }
ac72fac3
GW
3379
3380 /*
3381 * Determine if the selected metaslab group is eligible
3dfb57a3
DB
3382 * for allocations. If we're ganging then don't allow
3383 * this metaslab group to skip allocations since that would
3384 * inadvertently return ENOSPC and suspend the pool
ac72fac3
GW
3385 * even though space is still available.
3386 */
4e21fd06 3387 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
3dfb57a3 3388 allocatable = metaslab_group_allocatable(mg, rotor,
c197a77c 3389 psize, allocator, d);
3dfb57a3 3390 }
ac72fac3 3391
4e21fd06
DB
3392 if (!allocatable) {
3393 metaslab_trace_add(zal, mg, NULL, psize, d,
492f64e9 3394 TRACE_NOT_ALLOCATABLE, allocator);
34dc7c2f 3395 goto next;
4e21fd06 3396 }
fb5f0bc8 3397
3dfb57a3
DB
3398 ASSERT(mg->mg_initialized);
3399
34dc7c2f 3400 /*
4e21fd06
DB
3401 * Avoid writing single-copy data to a failing,
3402 * non-redundant vdev, unless we've already tried all
3403 * other vdevs.
34dc7c2f
BB
3404 */
3405 if ((vd->vdev_stat.vs_write_errors > 0 ||
3406 vd->vdev_state < VDEV_STATE_HEALTHY) &&
4e21fd06
DB
3407 d == 0 && !try_hard && vd->vdev_children == 0) {
3408 metaslab_trace_add(zal, mg, NULL, psize, d,
492f64e9 3409 TRACE_VDEV_ERROR, allocator);
34dc7c2f
BB
3410 goto next;
3411 }
3412
3413 ASSERT(mg->mg_class == mc);
3414
4e21fd06
DB
3415 /*
3416 * If we don't need to try hard, then require that the
3417 * block be 1/8th of the device away from any other DVAs
3418 * in this BP. If we are trying hard, allow any offset
3419 * to be used (distance=0).
3420 */
1c27024e 3421 uint64_t distance = 0;
4e21fd06
DB
3422 if (!try_hard) {
3423 distance = vd->vdev_asize >>
3424 ditto_same_vdev_distance_shift;
3425 if (distance <= (1ULL << vd->vdev_ms_shift))
3426 distance = 0;
3427 }
34dc7c2f 3428
1c27024e 3429 uint64_t asize = vdev_psize_to_asize(vd, psize);
34dc7c2f
BB
3430 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
3431
1c27024e 3432 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
492f64e9 3433 distance, dva, d, allocator);
3dfb57a3 3434
34dc7c2f
BB
3435 if (offset != -1ULL) {
3436 /*
3437 * If we've just selected this metaslab group,
3438 * figure out whether the corresponding vdev is
3439 * over- or under-used relative to the pool,
3440 * and set an allocation bias to even it out.
bb3250d0
ED
3441 *
3442 * Bias is also used to compensate for unequally
3443 * sized vdevs so that space is allocated fairly.
34dc7c2f 3444 */
f3a7f661 3445 if (mc->mc_aliquot == 0 && metaslab_bias_enabled) {
34dc7c2f 3446 vdev_stat_t *vs = &vd->vdev_stat;
bb3250d0
ED
3447 int64_t vs_free = vs->vs_space - vs->vs_alloc;
3448 int64_t mc_free = mc->mc_space - mc->mc_alloc;
3449 int64_t ratio;
34dc7c2f
BB
3450
3451 /*
6d974228
GW
3452 * Calculate how much more or less we should
3453 * try to allocate from this device during
3454 * this iteration around the rotor.
6d974228 3455 *
bb3250d0
ED
3456 * This basically introduces a zero-centered
3457 * bias towards the devices with the most
3458 * free space, while compensating for vdev
3459 * size differences.
3460 *
3461 * Examples:
3462 * vdev V1 = 16M/128M
3463 * vdev V2 = 16M/128M
3464 * ratio(V1) = 100% ratio(V2) = 100%
3465 *
3466 * vdev V1 = 16M/128M
3467 * vdev V2 = 64M/128M
3468 * ratio(V1) = 127% ratio(V2) = 72%
6d974228 3469 *
bb3250d0
ED
3470 * vdev V1 = 16M/128M
3471 * vdev V2 = 64M/512M
3472 * ratio(V1) = 40% ratio(V2) = 160%
34dc7c2f 3473 */
bb3250d0
ED
3474 ratio = (vs_free * mc->mc_alloc_groups * 100) /
3475 (mc_free + 1);
3476 mg->mg_bias = ((ratio - 100) *
6d974228 3477 (int64_t)mg->mg_aliquot) / 100;
f3a7f661
GW
3478 } else if (!metaslab_bias_enabled) {
3479 mg->mg_bias = 0;
34dc7c2f
BB
3480 }
3481
920dd524
ED
3482 if ((flags & METASLAB_FASTWRITE) ||
3483 atomic_add_64_nv(&mc->mc_aliquot, asize) >=
34dc7c2f
BB
3484 mg->mg_aliquot + mg->mg_bias) {
3485 mc->mc_rotor = mg->mg_next;
428870ff 3486 mc->mc_aliquot = 0;
34dc7c2f
BB
3487 }
3488
3489 DVA_SET_VDEV(&dva[d], vd->vdev_id);
3490 DVA_SET_OFFSET(&dva[d], offset);
e3e7cf60
D
3491 DVA_SET_GANG(&dva[d],
3492 ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
34dc7c2f
BB
3493 DVA_SET_ASIZE(&dva[d], asize);
3494
920dd524
ED
3495 if (flags & METASLAB_FASTWRITE) {
3496 atomic_add_64(&vd->vdev_pending_fastwrite,
3497 psize);
920dd524
ED
3498 }
3499
34dc7c2f
BB
3500 return (0);
3501 }
3502next:
3503 mc->mc_rotor = mg->mg_next;
428870ff 3504 mc->mc_aliquot = 0;
34dc7c2f
BB
3505 } while ((mg = mg->mg_next) != rotor);
3506
4e21fd06
DB
3507 /*
3508 * If we haven't tried hard, do so now.
3509 */
3510 if (!try_hard) {
3511 try_hard = B_TRUE;
fb5f0bc8
BB
3512 goto top;
3513 }
3514
34dc7c2f
BB
3515 bzero(&dva[d], sizeof (dva_t));
3516
492f64e9 3517 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
2e528b49 3518 return (SET_ERROR(ENOSPC));
34dc7c2f
BB
3519}
3520
a1d477c2
MA
3521void
3522metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
d2734cce 3523 boolean_t checkpoint)
a1d477c2
MA
3524{
3525 metaslab_t *msp;
d2734cce 3526 spa_t *spa = vd->vdev_spa;
a1d477c2 3527
a1d477c2
MA
3528 ASSERT(vdev_is_concrete(vd));
3529 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
3530 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
3531
3532 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3533
3534 VERIFY(!msp->ms_condensing);
3535 VERIFY3U(offset, >=, msp->ms_start);
3536 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
3537 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
3538 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
3539
3540 metaslab_check_free_impl(vd, offset, asize);
d2734cce 3541
a1d477c2 3542 mutex_enter(&msp->ms_lock);
d2734cce
SD
3543 if (range_tree_is_empty(msp->ms_freeing) &&
3544 range_tree_is_empty(msp->ms_checkpointing)) {
3545 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
3546 }
3547
3548 if (checkpoint) {
3549 ASSERT(spa_has_checkpoint(spa));
3550 range_tree_add(msp->ms_checkpointing, offset, asize);
3551 } else {
3552 range_tree_add(msp->ms_freeing, offset, asize);
a1d477c2 3553 }
a1d477c2
MA
3554 mutex_exit(&msp->ms_lock);
3555}
3556
3557/* ARGSUSED */
3558void
3559metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
3560 uint64_t size, void *arg)
3561{
d2734cce
SD
3562 boolean_t *checkpoint = arg;
3563
3564 ASSERT3P(checkpoint, !=, NULL);
a1d477c2
MA
3565
3566 if (vd->vdev_ops->vdev_op_remap != NULL)
d2734cce 3567 vdev_indirect_mark_obsolete(vd, offset, size);
a1d477c2 3568 else
d2734cce 3569 metaslab_free_impl(vd, offset, size, *checkpoint);
a1d477c2
MA
3570}
3571
3572static void
3573metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
d2734cce 3574 boolean_t checkpoint)
a1d477c2
MA
3575{
3576 spa_t *spa = vd->vdev_spa;
3577
3578 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
3579
d2734cce 3580 if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
a1d477c2
MA
3581 return;
3582
3583 if (spa->spa_vdev_removal != NULL &&
9e052db4 3584 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
a1d477c2
MA
3585 vdev_is_concrete(vd)) {
3586 /*
3587 * Note: we check if the vdev is concrete because when
3588 * we complete the removal, we first change the vdev to be
3589 * an indirect vdev (in open context), and then (in syncing
3590 * context) clear spa_vdev_removal.
3591 */
d2734cce 3592 free_from_removing_vdev(vd, offset, size);
a1d477c2 3593 } else if (vd->vdev_ops->vdev_op_remap != NULL) {
d2734cce 3594 vdev_indirect_mark_obsolete(vd, offset, size);
a1d477c2 3595 vd->vdev_ops->vdev_op_remap(vd, offset, size,
d2734cce 3596 metaslab_free_impl_cb, &checkpoint);
a1d477c2 3597 } else {
d2734cce 3598 metaslab_free_concrete(vd, offset, size, checkpoint);
a1d477c2
MA
3599 }
3600}
3601
3602typedef struct remap_blkptr_cb_arg {
3603 blkptr_t *rbca_bp;
3604 spa_remap_cb_t rbca_cb;
3605 vdev_t *rbca_remap_vd;
3606 uint64_t rbca_remap_offset;
3607 void *rbca_cb_arg;
3608} remap_blkptr_cb_arg_t;
3609
3610void
3611remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
3612 uint64_t size, void *arg)
3613{
3614 remap_blkptr_cb_arg_t *rbca = arg;
3615 blkptr_t *bp = rbca->rbca_bp;
3616
3617 /* We can not remap split blocks. */
3618 if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
3619 return;
3620 ASSERT0(inner_offset);
3621
3622 if (rbca->rbca_cb != NULL) {
3623 /*
3624 * At this point we know that we are not handling split
3625 * blocks and we invoke the callback on the previous
3626 * vdev which must be indirect.
3627 */
3628 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
3629
3630 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
3631 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
3632
3633 /* set up remap_blkptr_cb_arg for the next call */
3634 rbca->rbca_remap_vd = vd;
3635 rbca->rbca_remap_offset = offset;
3636 }
3637
3638 /*
3639 * The phys birth time is that of dva[0]. This ensures that we know
3640 * when each dva was written, so that resilver can determine which
3641 * blocks need to be scrubbed (i.e. those written during the time
3642 * the vdev was offline). It also ensures that the key used in
3643 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If
3644 * we didn't change the phys_birth, a lookup in the ARC for a
3645 * remapped BP could find the data that was previously stored at
3646 * this vdev + offset.
3647 */
3648 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
3649 DVA_GET_VDEV(&bp->blk_dva[0]));
3650 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
3651 bp->blk_phys_birth = vdev_indirect_births_physbirth(vib,
3652 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
3653
3654 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
3655 DVA_SET_OFFSET(&bp->blk_dva[0], offset);
3656}
3657
34dc7c2f 3658/*
a1d477c2
MA
3659 * If the block pointer contains any indirect DVAs, modify them to refer to
3660 * concrete DVAs. Note that this will sometimes not be possible, leaving
3661 * the indirect DVA in place. This happens if the indirect DVA spans multiple
3662 * segments in the mapping (i.e. it is a "split block").
3663 *
3664 * If the BP was remapped, calls the callback on the original dva (note the
3665 * callback can be called multiple times if the original indirect DVA refers
3666 * to another indirect DVA, etc).
3667 *
3668 * Returns TRUE if the BP was remapped.
34dc7c2f 3669 */
a1d477c2
MA
3670boolean_t
3671spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
34dc7c2f 3672{
a1d477c2
MA
3673 remap_blkptr_cb_arg_t rbca;
3674
3675 if (!zfs_remap_blkptr_enable)
3676 return (B_FALSE);
3677
3678 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
3679 return (B_FALSE);
3680
3681 /*
3682 * Dedup BP's can not be remapped, because ddt_phys_select() depends
3683 * on DVA[0] being the same in the BP as in the DDT (dedup table).
3684 */
3685 if (BP_GET_DEDUP(bp))
3686 return (B_FALSE);
3687
3688 /*
3689 * Gang blocks can not be remapped, because
3690 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
3691 * the BP used to read the gang block header (GBH) being the same
3692 * as the DVA[0] that we allocated for the GBH.
3693 */
3694 if (BP_IS_GANG(bp))
3695 return (B_FALSE);
3696
3697 /*
3698 * Embedded BP's have no DVA to remap.
3699 */
3700 if (BP_GET_NDVAS(bp) < 1)
3701 return (B_FALSE);
3702
3703 /*
3704 * Note: we only remap dva[0]. If we remapped other dvas, we
3705 * would no longer know what their phys birth txg is.
3706 */
3707 dva_t *dva = &bp->blk_dva[0];
3708
34dc7c2f
BB
3709 uint64_t offset = DVA_GET_OFFSET(dva);
3710 uint64_t size = DVA_GET_ASIZE(dva);
a1d477c2
MA
3711 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3712
3713 if (vd->vdev_ops->vdev_op_remap == NULL)
3714 return (B_FALSE);
3715
3716 rbca.rbca_bp = bp;
3717 rbca.rbca_cb = callback;
3718 rbca.rbca_remap_vd = vd;
3719 rbca.rbca_remap_offset = offset;
3720 rbca.rbca_cb_arg = arg;
3721
3722 /*
3723 * remap_blkptr_cb() will be called in order for each level of
3724 * indirection, until a concrete vdev is reached or a split block is
3725 * encountered. old_vd and old_offset are updated within the callback
3726 * as we go from the one indirect vdev to the next one (either concrete
3727 * or indirect again) in that order.
3728 */
3729 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
3730
3731 /* Check if the DVA wasn't remapped because it is a split block */
3732 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
3733 return (B_FALSE);
3734
3735 return (B_TRUE);
3736}
3737
3738/*
3739 * Undo the allocation of a DVA which happened in the given transaction group.
3740 */
3741void
3742metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
3743{
34dc7c2f 3744 metaslab_t *msp;
a1d477c2
MA
3745 vdev_t *vd;
3746 uint64_t vdev = DVA_GET_VDEV(dva);
3747 uint64_t offset = DVA_GET_OFFSET(dva);
3748 uint64_t size = DVA_GET_ASIZE(dva);
3749
3750 ASSERT(DVA_IS_VALID(dva));
3751 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
34dc7c2f 3752
34dc7c2f
BB
3753 if (txg > spa_freeze_txg(spa))
3754 return;
3755
7d2868d5 3756 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
34dc7c2f 3757 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
7d2868d5
BB
3758 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
3759 (u_longlong_t)vdev, (u_longlong_t)offset,
3760 (u_longlong_t)size);
34dc7c2f
BB
3761 return;
3762 }
3763
a1d477c2
MA
3764 ASSERT(!vd->vdev_removing);
3765 ASSERT(vdev_is_concrete(vd));
3766 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3767 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
34dc7c2f
BB
3768
3769 if (DVA_GET_GANG(dva))
3770 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
3771
a1d477c2 3772 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
93cf2076 3773
a1d477c2 3774 mutex_enter(&msp->ms_lock);
d2734cce 3775 range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
a1d477c2 3776 offset, size);
34dc7c2f 3777
a1d477c2
MA
3778 VERIFY(!msp->ms_condensing);
3779 VERIFY3U(offset, >=, msp->ms_start);
3780 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
d2734cce 3781 VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
a1d477c2
MA
3782 msp->ms_size);
3783 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
3784 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
d2734cce 3785 range_tree_add(msp->ms_allocatable, offset, size);
34dc7c2f
BB
3786 mutex_exit(&msp->ms_lock);
3787}
3788
3789/*
d2734cce 3790 * Free the block represented by the given DVA.
34dc7c2f 3791 */
a1d477c2 3792void
d2734cce 3793metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
34dc7c2f
BB
3794{
3795 uint64_t vdev = DVA_GET_VDEV(dva);
3796 uint64_t offset = DVA_GET_OFFSET(dva);
3797 uint64_t size = DVA_GET_ASIZE(dva);
a1d477c2 3798 vdev_t *vd = vdev_lookup_top(spa, vdev);
34dc7c2f
BB
3799
3800 ASSERT(DVA_IS_VALID(dva));
a1d477c2 3801 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
34dc7c2f 3802
a1d477c2 3803 if (DVA_GET_GANG(dva)) {
34dc7c2f 3804 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
34dc7c2f
BB
3805 }
3806
d2734cce 3807 metaslab_free_impl(vd, offset, size, checkpoint);
34dc7c2f
BB
3808}
3809
3dfb57a3
DB
3810/*
3811 * Reserve some allocation slots. The reservation system must be called
3812 * before we call into the allocator. If there aren't any available slots
3813 * then the I/O will be throttled until an I/O completes and its slots are
3814 * freed up. The function returns true if it was successful in placing
3815 * the reservation.
3816 */
3817boolean_t
492f64e9
PD
3818metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
3819 zio_t *zio, int flags)
3dfb57a3
DB
3820{
3821 uint64_t available_slots = 0;
3dfb57a3 3822 boolean_t slot_reserved = B_FALSE;
492f64e9 3823 uint64_t max = mc->mc_alloc_max_slots[allocator];
3dfb57a3
DB
3824
3825 ASSERT(mc->mc_alloc_throttle_enabled);
3826 mutex_enter(&mc->mc_lock);
3827
492f64e9
PD
3828 uint64_t reserved_slots =
3829 refcount_count(&mc->mc_alloc_slots[allocator]);
3830 if (reserved_slots < max)
3831 available_slots = max - reserved_slots;
3dfb57a3
DB
3832
3833 if (slots <= available_slots || GANG_ALLOCATION(flags)) {
3dfb57a3
DB
3834 /*
3835 * We reserve the slots individually so that we can unreserve
3836 * them individually when an I/O completes.
3837 */
1c27024e 3838 for (int d = 0; d < slots; d++) {
492f64e9
PD
3839 reserved_slots =
3840 refcount_add(&mc->mc_alloc_slots[allocator],
3841 zio);
3dfb57a3
DB
3842 }
3843 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
3844 slot_reserved = B_TRUE;
3845 }
3846
3847 mutex_exit(&mc->mc_lock);
3848 return (slot_reserved);
3849}
3850
3851void
492f64e9
PD
3852metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
3853 int allocator, zio_t *zio)
3dfb57a3 3854{
3dfb57a3
DB
3855 ASSERT(mc->mc_alloc_throttle_enabled);
3856 mutex_enter(&mc->mc_lock);
1c27024e 3857 for (int d = 0; d < slots; d++) {
492f64e9
PD
3858 (void) refcount_remove(&mc->mc_alloc_slots[allocator],
3859 zio);
3dfb57a3
DB
3860 }
3861 mutex_exit(&mc->mc_lock);
3862}
3863
a1d477c2
MA
3864static int
3865metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
3866 uint64_t txg)
3867{
3868 metaslab_t *msp;
3869 spa_t *spa = vd->vdev_spa;
3870 int error = 0;
3871
3872 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
3873 return (ENXIO);
3874
3875 ASSERT3P(vd->vdev_ms, !=, NULL);
3876 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3877
3878 mutex_enter(&msp->ms_lock);
3879
3880 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded)
492f64e9 3881 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
a1d477c2 3882
d2734cce
SD
3883 if (error == 0 &&
3884 !range_tree_contains(msp->ms_allocatable, offset, size))
a1d477c2
MA
3885 error = SET_ERROR(ENOENT);
3886
3887 if (error || txg == 0) { /* txg == 0 indicates dry run */
3888 mutex_exit(&msp->ms_lock);
3889 return (error);
3890 }
3891
3892 VERIFY(!msp->ms_condensing);
3893 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
3894 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
d2734cce
SD
3895 VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
3896 msp->ms_size);
3897 range_tree_remove(msp->ms_allocatable, offset, size);
a1d477c2
MA
3898
3899 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
d2734cce 3900 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
a1d477c2 3901 vdev_dirty(vd, VDD_METASLAB, msp, txg);
d2734cce
SD
3902 range_tree_add(msp->ms_allocating[txg & TXG_MASK],
3903 offset, size);
a1d477c2
MA
3904 }
3905
3906 mutex_exit(&msp->ms_lock);
3907
3908 return (0);
3909}
3910
3911typedef struct metaslab_claim_cb_arg_t {
3912 uint64_t mcca_txg;
3913 int mcca_error;
3914} metaslab_claim_cb_arg_t;
3915
3916/* ARGSUSED */
3917static void
3918metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
3919 uint64_t size, void *arg)
3920{
3921 metaslab_claim_cb_arg_t *mcca_arg = arg;
3922
3923 if (mcca_arg->mcca_error == 0) {
3924 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
3925 size, mcca_arg->mcca_txg);
3926 }
3927}
3928
3929int
3930metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
3931{
3932 if (vd->vdev_ops->vdev_op_remap != NULL) {
3933 metaslab_claim_cb_arg_t arg;
3934
3935 /*
3936 * Only zdb(1M) can claim on indirect vdevs. This is used
3937 * to detect leaks of mapped space (that are not accounted
3938 * for in the obsolete counts, spacemap, or bpobj).
3939 */
3940 ASSERT(!spa_writeable(vd->vdev_spa));
3941 arg.mcca_error = 0;
3942 arg.mcca_txg = txg;
3943
3944 vd->vdev_ops->vdev_op_remap(vd, offset, size,
3945 metaslab_claim_impl_cb, &arg);
3946
3947 if (arg.mcca_error == 0) {
3948 arg.mcca_error = metaslab_claim_concrete(vd,
3949 offset, size, txg);
3950 }
3951 return (arg.mcca_error);
3952 } else {
3953 return (metaslab_claim_concrete(vd, offset, size, txg));
3954 }
3955}
3956
3957/*
3958 * Intent log support: upon opening the pool after a crash, notify the SPA
3959 * of blocks that the intent log has allocated for immediate write, but
3960 * which are still considered free by the SPA because the last transaction
3961 * group didn't commit yet.
3962 */
3963static int
3964metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
3965{
3966 uint64_t vdev = DVA_GET_VDEV(dva);
3967 uint64_t offset = DVA_GET_OFFSET(dva);
3968 uint64_t size = DVA_GET_ASIZE(dva);
3969 vdev_t *vd;
3970
3971 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
3972 return (SET_ERROR(ENXIO));
3973 }
3974
3975 ASSERT(DVA_IS_VALID(dva));
3976
3977 if (DVA_GET_GANG(dva))
3978 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
3979
3980 return (metaslab_claim_impl(vd, offset, size, txg));
3981}
3982
34dc7c2f
BB
3983int
3984metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
4e21fd06 3985 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
492f64e9 3986 zio_alloc_list_t *zal, zio_t *zio, int allocator)
34dc7c2f
BB
3987{
3988 dva_t *dva = bp->blk_dva;
3989 dva_t *hintdva = hintbp->blk_dva;
1c27024e 3990 int error = 0;
34dc7c2f 3991
b128c09f 3992 ASSERT(bp->blk_birth == 0);
428870ff 3993 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
b128c09f
BB
3994
3995 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
3996
3997 if (mc->mc_rotor == NULL) { /* no vdevs in this class */
3998 spa_config_exit(spa, SCL_ALLOC, FTAG);
2e528b49 3999 return (SET_ERROR(ENOSPC));
b128c09f 4000 }
34dc7c2f
BB
4001
4002 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
4003 ASSERT(BP_GET_NDVAS(bp) == 0);
4004 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
4e21fd06 4005 ASSERT3P(zal, !=, NULL);
34dc7c2f 4006
1c27024e 4007 for (int d = 0; d < ndvas; d++) {
34dc7c2f 4008 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
492f64e9 4009 txg, flags, zal, allocator);
93cf2076 4010 if (error != 0) {
34dc7c2f 4011 for (d--; d >= 0; d--) {
a1d477c2 4012 metaslab_unalloc_dva(spa, &dva[d], txg);
3dfb57a3 4013 metaslab_group_alloc_decrement(spa,
492f64e9
PD
4014 DVA_GET_VDEV(&dva[d]), zio, flags,
4015 allocator, B_FALSE);
34dc7c2f
BB
4016 bzero(&dva[d], sizeof (dva_t));
4017 }
b128c09f 4018 spa_config_exit(spa, SCL_ALLOC, FTAG);
34dc7c2f 4019 return (error);
3dfb57a3
DB
4020 } else {
4021 /*
4022 * Update the metaslab group's queue depth
4023 * based on the newly allocated dva.
4024 */
4025 metaslab_group_alloc_increment(spa,
492f64e9 4026 DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
34dc7c2f 4027 }
3dfb57a3 4028
34dc7c2f
BB
4029 }
4030 ASSERT(error == 0);
4031 ASSERT(BP_GET_NDVAS(bp) == ndvas);
4032
b128c09f
BB
4033 spa_config_exit(spa, SCL_ALLOC, FTAG);
4034
efe7978d 4035 BP_SET_BIRTH(bp, txg, 0);
b128c09f 4036
34dc7c2f
BB
4037 return (0);
4038}
4039
4040void
4041metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
4042{
4043 const dva_t *dva = bp->blk_dva;
1c27024e 4044 int ndvas = BP_GET_NDVAS(bp);
34dc7c2f
BB
4045
4046 ASSERT(!BP_IS_HOLE(bp));
428870ff 4047 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
b128c09f 4048
d2734cce
SD
4049 /*
4050 * If we have a checkpoint for the pool we need to make sure that
4051 * the blocks that we free that are part of the checkpoint won't be
4052 * reused until the checkpoint is discarded or we revert to it.
4053 *
4054 * The checkpoint flag is passed down the metaslab_free code path
4055 * and is set whenever we want to add a block to the checkpoint's
4056 * accounting. That is, we "checkpoint" blocks that existed at the
4057 * time the checkpoint was created and are therefore referenced by
4058 * the checkpointed uberblock.
4059 *
4060 * Note that, we don't checkpoint any blocks if the current
4061 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
4062 * normally as they will be referenced by the checkpointed uberblock.
4063 */
4064 boolean_t checkpoint = B_FALSE;
4065 if (bp->blk_birth <= spa->spa_checkpoint_txg &&
4066 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
4067 /*
4068 * At this point, if the block is part of the checkpoint
4069 * there is no way it was created in the current txg.
4070 */
4071 ASSERT(!now);
4072 ASSERT3U(spa_syncing_txg(spa), ==, txg);
4073 checkpoint = B_TRUE;
4074 }
4075
b128c09f 4076 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
34dc7c2f 4077
a1d477c2
MA
4078 for (int d = 0; d < ndvas; d++) {
4079 if (now) {
4080 metaslab_unalloc_dva(spa, &dva[d], txg);
4081 } else {
d2734cce
SD
4082 ASSERT3U(txg, ==, spa_syncing_txg(spa));
4083 metaslab_free_dva(spa, &dva[d], checkpoint);
a1d477c2
MA
4084 }
4085 }
b128c09f
BB
4086
4087 spa_config_exit(spa, SCL_FREE, FTAG);
34dc7c2f
BB
4088}
4089
4090int
4091metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
4092{
4093 const dva_t *dva = bp->blk_dva;
4094 int ndvas = BP_GET_NDVAS(bp);
1c27024e 4095 int error = 0;
34dc7c2f
BB
4096
4097 ASSERT(!BP_IS_HOLE(bp));
4098
b128c09f
BB
4099 if (txg != 0) {
4100 /*
4101 * First do a dry run to make sure all DVAs are claimable,
4102 * so we don't have to unwind from partial failures below.
4103 */
4104 if ((error = metaslab_claim(spa, bp, 0)) != 0)
4105 return (error);
4106 }
4107
4108 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4109
1c27024e 4110 for (int d = 0; d < ndvas; d++)
34dc7c2f 4111 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
b128c09f
BB
4112 break;
4113
4114 spa_config_exit(spa, SCL_ALLOC, FTAG);
4115
4116 ASSERT(error == 0 || txg == 0);
34dc7c2f 4117
b128c09f 4118 return (error);
34dc7c2f 4119}
920dd524 4120
d1d7e268
MK
4121void
4122metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
920dd524
ED
4123{
4124 const dva_t *dva = bp->blk_dva;
4125 int ndvas = BP_GET_NDVAS(bp);
4126 uint64_t psize = BP_GET_PSIZE(bp);
4127 int d;
4128 vdev_t *vd;
4129
4130 ASSERT(!BP_IS_HOLE(bp));
9b67f605 4131 ASSERT(!BP_IS_EMBEDDED(bp));
920dd524
ED
4132 ASSERT(psize > 0);
4133
4134 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4135
4136 for (d = 0; d < ndvas; d++) {
4137 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
4138 continue;
4139 atomic_add_64(&vd->vdev_pending_fastwrite, psize);
4140 }
4141
4142 spa_config_exit(spa, SCL_VDEV, FTAG);
4143}
4144
d1d7e268
MK
4145void
4146metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
920dd524
ED
4147{
4148 const dva_t *dva = bp->blk_dva;
4149 int ndvas = BP_GET_NDVAS(bp);
4150 uint64_t psize = BP_GET_PSIZE(bp);
4151 int d;
4152 vdev_t *vd;
4153
4154 ASSERT(!BP_IS_HOLE(bp));
9b67f605 4155 ASSERT(!BP_IS_EMBEDDED(bp));
920dd524
ED
4156 ASSERT(psize > 0);
4157
4158 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4159
4160 for (d = 0; d < ndvas; d++) {
4161 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
4162 continue;
4163 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
4164 atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
4165 }
4166
4167 spa_config_exit(spa, SCL_VDEV, FTAG);
4168}
30b92c1d 4169
a1d477c2
MA
4170/* ARGSUSED */
4171static void
4172metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
4173 uint64_t size, void *arg)
4174{
4175 if (vd->vdev_ops == &vdev_indirect_ops)
4176 return;
4177
4178 metaslab_check_free_impl(vd, offset, size);
4179}
4180
4181static void
4182metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
4183{
4184 metaslab_t *msp;
4185 ASSERTV(spa_t *spa = vd->vdev_spa);
4186
4187 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
4188 return;
4189
4190 if (vd->vdev_ops->vdev_op_remap != NULL) {
4191 vd->vdev_ops->vdev_op_remap(vd, offset, size,
4192 metaslab_check_free_impl_cb, NULL);
4193 return;
4194 }
4195
4196 ASSERT(vdev_is_concrete(vd));
4197 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
4198 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
4199
4200 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
4201
4202 mutex_enter(&msp->ms_lock);
4203 if (msp->ms_loaded)
d2734cce 4204 range_tree_verify(msp->ms_allocatable, offset, size);
a1d477c2 4205
d2734cce
SD
4206 range_tree_verify(msp->ms_freeing, offset, size);
4207 range_tree_verify(msp->ms_checkpointing, offset, size);
4208 range_tree_verify(msp->ms_freed, offset, size);
a1d477c2 4209 for (int j = 0; j < TXG_DEFER_SIZE; j++)
d2734cce 4210 range_tree_verify(msp->ms_defer[j], offset, size);
a1d477c2
MA
4211 mutex_exit(&msp->ms_lock);
4212}
4213
13fe0198
MA
4214void
4215metaslab_check_free(spa_t *spa, const blkptr_t *bp)
4216{
13fe0198
MA
4217 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
4218 return;
4219
4220 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1c27024e 4221 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
93cf2076
GW
4222 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
4223 vdev_t *vd = vdev_lookup_top(spa, vdev);
4224 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
13fe0198 4225 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
13fe0198 4226
a1d477c2
MA
4227 if (DVA_GET_GANG(&bp->blk_dva[i]))
4228 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
4229
4230 ASSERT3P(vd, !=, NULL);
13fe0198 4231
a1d477c2 4232 metaslab_check_free_impl(vd, offset, size);
13fe0198
MA
4233 }
4234 spa_config_exit(spa, SCL_VDEV, FTAG);
4235}
4236
93ce2b4c 4237#if defined(_KERNEL)
02730c33 4238/* CSTYLED */
99b14de4 4239module_param(metaslab_aliquot, ulong, 0644);
99b14de4
ED
4240MODULE_PARM_DESC(metaslab_aliquot,
4241 "allocation granularity (a.k.a. stripe size)");
02730c33
BB
4242
4243module_param(metaslab_debug_load, int, 0644);
93cf2076
GW
4244MODULE_PARM_DESC(metaslab_debug_load,
4245 "load all metaslabs when pool is first opened");
02730c33
BB
4246
4247module_param(metaslab_debug_unload, int, 0644);
1ce04573
BB
4248MODULE_PARM_DESC(metaslab_debug_unload,
4249 "prevent metaslabs from being unloaded");
02730c33
BB
4250
4251module_param(metaslab_preload_enabled, int, 0644);
f3a7f661
GW
4252MODULE_PARM_DESC(metaslab_preload_enabled,
4253 "preload potential metaslabs during reassessment");
f4a4046b 4254
02730c33 4255module_param(zfs_mg_noalloc_threshold, int, 0644);
f4a4046b
TC
4256MODULE_PARM_DESC(zfs_mg_noalloc_threshold,
4257 "percentage of free space for metaslab group to allow allocation");
02730c33
BB
4258
4259module_param(zfs_mg_fragmentation_threshold, int, 0644);
f3a7f661
GW
4260MODULE_PARM_DESC(zfs_mg_fragmentation_threshold,
4261 "fragmentation for metaslab group to allow allocation");
4262
02730c33 4263module_param(zfs_metaslab_fragmentation_threshold, int, 0644);
f3a7f661
GW
4264MODULE_PARM_DESC(zfs_metaslab_fragmentation_threshold,
4265 "fragmentation for metaslab to allow allocation");
02730c33
BB
4266
4267module_param(metaslab_fragmentation_factor_enabled, int, 0644);
f3a7f661
GW
4268MODULE_PARM_DESC(metaslab_fragmentation_factor_enabled,
4269 "use the fragmentation metric to prefer less fragmented metaslabs");
02730c33
BB
4270
4271module_param(metaslab_lba_weighting_enabled, int, 0644);
f3a7f661
GW
4272MODULE_PARM_DESC(metaslab_lba_weighting_enabled,
4273 "prefer metaslabs with lower LBAs");
02730c33
BB
4274
4275module_param(metaslab_bias_enabled, int, 0644);
f3a7f661
GW
4276MODULE_PARM_DESC(metaslab_bias_enabled,
4277 "enable metaslab group biasing");
4e21fd06
DB
4278
4279module_param(zfs_metaslab_segment_weight_enabled, int, 0644);
4280MODULE_PARM_DESC(zfs_metaslab_segment_weight_enabled,
4281 "enable segment-based metaslab selection");
4282
4283module_param(zfs_metaslab_switch_threshold, int, 0644);
4284MODULE_PARM_DESC(zfs_metaslab_switch_threshold,
4285 "segment-based metaslab selection maximum buckets before switching");
a1d477c2
MA
4286
4287/* CSTYLED */
d830d479
MA
4288module_param(metaslab_force_ganging, ulong, 0644);
4289MODULE_PARM_DESC(metaslab_force_ganging,
a1d477c2 4290 "blocks larger than this size are forced to be gang blocks");
93ce2b4c 4291#endif