]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/metaslab.c
Produce a full snapshot list for zfs send -p
[mirror_zfs.git] / module / zfs / metaslab.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
9bd274dd 23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
2e528b49 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
34dc7c2f
BB
25 */
26
34dc7c2f 27#include <sys/zfs_context.h>
34dc7c2f
BB
28#include <sys/dmu.h>
29#include <sys/dmu_tx.h>
30#include <sys/space_map.h>
31#include <sys/metaslab_impl.h>
32#include <sys/vdev_impl.h>
33#include <sys/zio.h>
93cf2076 34#include <sys/spa_impl.h>
f3a7f661 35#include <sys/zfeature.h>
34dc7c2f 36
d1d7e268 37#define WITH_DF_BLOCK_ALLOCATOR
6d974228
GW
38
39/*
40 * Allow allocations to switch to gang blocks quickly. We do this to
41 * avoid having to load lots of space_maps in a given txg. There are,
42 * however, some cases where we want to avoid "fast" ganging and instead
43 * we want to do an exhaustive search of all metaslabs on this device.
672692c7 44 * Currently we don't allow any gang, slog, or dump device related allocations
6d974228
GW
45 * to "fast" gang.
46 */
47#define CAN_FASTGANG(flags) \
48 (!((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER | \
49 METASLAB_GANG_AVOID)))
22c81dd8 50
93cf2076
GW
51#define METASLAB_WEIGHT_PRIMARY (1ULL << 63)
52#define METASLAB_WEIGHT_SECONDARY (1ULL << 62)
53#define METASLAB_ACTIVE_MASK \
54 (METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY)
55
34dc7c2f
BB
56uint64_t metaslab_aliquot = 512ULL << 10;
57uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */
58
e51be066
GW
59/*
60 * The in-core space map representation is more compact than its on-disk form.
61 * The zfs_condense_pct determines how much more compact the in-core
62 * space_map representation must be before we compact it on-disk.
63 * Values should be greater than or equal to 100.
64 */
65int zfs_condense_pct = 200;
66
b02fe35d
AR
67/*
68 * Condensing a metaslab is not guaranteed to actually reduce the amount of
69 * space used on disk. In particular, a space map uses data in increments of
96358617 70 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
b02fe35d
AR
71 * same number of blocks after condensing. Since the goal of condensing is to
72 * reduce the number of IOPs required to read the space map, we only want to
73 * condense when we can be sure we will reduce the number of blocks used by the
74 * space map. Unfortunately, we cannot precisely compute whether or not this is
75 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
76 * we apply the following heuristic: do not condense a spacemap unless the
77 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
78 * blocks.
79 */
80int zfs_metaslab_condense_block_threshold = 4;
81
ac72fac3
GW
82/*
83 * The zfs_mg_noalloc_threshold defines which metaslab groups should
84 * be eligible for allocation. The value is defined as a percentage of
f3a7f661 85 * free space. Metaslab groups that have more free space than
ac72fac3
GW
86 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
87 * a metaslab group's free space is less than or equal to the
88 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
89 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
90 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
91 * groups are allowed to accept allocations. Gang blocks are always
92 * eligible to allocate on any metaslab group. The default value of 0 means
93 * no metaslab group will be excluded based on this criterion.
94 */
95int zfs_mg_noalloc_threshold = 0;
6d974228 96
f3a7f661
GW
97/*
98 * Metaslab groups are considered eligible for allocations if their
99 * fragmenation metric (measured as a percentage) is less than or equal to
100 * zfs_mg_fragmentation_threshold. If a metaslab group exceeds this threshold
101 * then it will be skipped unless all metaslab groups within the metaslab
102 * class have also crossed this threshold.
103 */
104int zfs_mg_fragmentation_threshold = 85;
105
106/*
107 * Allow metaslabs to keep their active state as long as their fragmentation
108 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
109 * active metaslab that exceeds this threshold will no longer keep its active
110 * status allowing better metaslabs to be selected.
111 */
112int zfs_metaslab_fragmentation_threshold = 70;
113
428870ff 114/*
aa7d06a9 115 * When set will load all metaslabs when pool is first opened.
428870ff 116 */
aa7d06a9
GW
117int metaslab_debug_load = 0;
118
119/*
120 * When set will prevent metaslabs from being unloaded.
121 */
122int metaslab_debug_unload = 0;
428870ff 123
9babb374
BB
124/*
125 * Minimum size which forces the dynamic allocator to change
428870ff 126 * it's allocation strategy. Once the space map cannot satisfy
9babb374
BB
127 * an allocation of this size then it switches to using more
128 * aggressive strategy (i.e search by size rather than offset).
129 */
130uint64_t metaslab_df_alloc_threshold = SPA_MAXBLOCKSIZE;
131
132/*
133 * The minimum free space, in percent, which must be available
134 * in a space map to continue allocations in a first-fit fashion.
135 * Once the space_map's free space drops below this level we dynamically
136 * switch to using best-fit allocations.
137 */
428870ff
BB
138int metaslab_df_free_pct = 4;
139
140/*
141 * A metaslab is considered "free" if it contains a contiguous
142 * segment which is greater than metaslab_min_alloc_size.
143 */
144uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS;
145
146/*
93cf2076 147 * Percentage of all cpus that can be used by the metaslab taskq.
428870ff 148 */
93cf2076 149int metaslab_load_pct = 50;
428870ff
BB
150
151/*
93cf2076
GW
152 * Determines how many txgs a metaslab may remain loaded without having any
153 * allocations from it. As long as a metaslab continues to be used we will
154 * keep it loaded.
428870ff 155 */
93cf2076 156int metaslab_unload_delay = TXG_SIZE * 2;
9babb374 157
93cf2076
GW
158/*
159 * Max number of metaslabs per group to preload.
160 */
161int metaslab_preload_limit = SPA_DVAS_PER_BP;
162
163/*
164 * Enable/disable preloading of metaslab.
165 */
f3a7f661 166int metaslab_preload_enabled = B_TRUE;
93cf2076
GW
167
168/*
f3a7f661 169 * Enable/disable fragmentation weighting on metaslabs.
93cf2076 170 */
f3a7f661 171int metaslab_fragmentation_factor_enabled = B_TRUE;
93cf2076 172
f3a7f661
GW
173/*
174 * Enable/disable lba weighting (i.e. outer tracks are given preference).
175 */
176int metaslab_lba_weighting_enabled = B_TRUE;
177
178/*
179 * Enable/disable metaslab group biasing.
180 */
181int metaslab_bias_enabled = B_TRUE;
182
183static uint64_t metaslab_fragmentation(metaslab_t *);
93cf2076 184
34dc7c2f
BB
185/*
186 * ==========================================================================
187 * Metaslab classes
188 * ==========================================================================
189 */
190metaslab_class_t *
93cf2076 191metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
34dc7c2f
BB
192{
193 metaslab_class_t *mc;
194
79c76d5b 195 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
34dc7c2f 196
428870ff 197 mc->mc_spa = spa;
34dc7c2f 198 mc->mc_rotor = NULL;
9babb374 199 mc->mc_ops = ops;
920dd524 200 mutex_init(&mc->mc_fastwrite_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
201
202 return (mc);
203}
204
205void
206metaslab_class_destroy(metaslab_class_t *mc)
207{
428870ff
BB
208 ASSERT(mc->mc_rotor == NULL);
209 ASSERT(mc->mc_alloc == 0);
210 ASSERT(mc->mc_deferred == 0);
211 ASSERT(mc->mc_space == 0);
212 ASSERT(mc->mc_dspace == 0);
34dc7c2f 213
920dd524 214 mutex_destroy(&mc->mc_fastwrite_lock);
34dc7c2f
BB
215 kmem_free(mc, sizeof (metaslab_class_t));
216}
217
428870ff
BB
218int
219metaslab_class_validate(metaslab_class_t *mc)
34dc7c2f 220{
428870ff
BB
221 metaslab_group_t *mg;
222 vdev_t *vd;
34dc7c2f 223
428870ff
BB
224 /*
225 * Must hold one of the spa_config locks.
226 */
227 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
228 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
34dc7c2f 229
428870ff
BB
230 if ((mg = mc->mc_rotor) == NULL)
231 return (0);
232
233 do {
234 vd = mg->mg_vd;
235 ASSERT(vd->vdev_mg != NULL);
236 ASSERT3P(vd->vdev_top, ==, vd);
237 ASSERT3P(mg->mg_class, ==, mc);
238 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
239 } while ((mg = mg->mg_next) != mc->mc_rotor);
240
241 return (0);
34dc7c2f
BB
242}
243
244void
428870ff
BB
245metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
246 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
34dc7c2f 247{
428870ff
BB
248 atomic_add_64(&mc->mc_alloc, alloc_delta);
249 atomic_add_64(&mc->mc_deferred, defer_delta);
250 atomic_add_64(&mc->mc_space, space_delta);
251 atomic_add_64(&mc->mc_dspace, dspace_delta);
252}
34dc7c2f 253
428870ff
BB
254uint64_t
255metaslab_class_get_alloc(metaslab_class_t *mc)
256{
257 return (mc->mc_alloc);
258}
34dc7c2f 259
428870ff
BB
260uint64_t
261metaslab_class_get_deferred(metaslab_class_t *mc)
262{
263 return (mc->mc_deferred);
264}
34dc7c2f 265
428870ff
BB
266uint64_t
267metaslab_class_get_space(metaslab_class_t *mc)
268{
269 return (mc->mc_space);
270}
34dc7c2f 271
428870ff
BB
272uint64_t
273metaslab_class_get_dspace(metaslab_class_t *mc)
274{
275 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
34dc7c2f
BB
276}
277
f3a7f661
GW
278void
279metaslab_class_histogram_verify(metaslab_class_t *mc)
280{
281 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
282 uint64_t *mc_hist;
283 int i, c;
284
285 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
286 return;
287
288 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
79c76d5b 289 KM_SLEEP);
f3a7f661
GW
290
291 for (c = 0; c < rvd->vdev_children; c++) {
292 vdev_t *tvd = rvd->vdev_child[c];
293 metaslab_group_t *mg = tvd->vdev_mg;
294
295 /*
296 * Skip any holes, uninitialized top-levels, or
297 * vdevs that are not in this metalab class.
298 */
299 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
300 mg->mg_class != mc) {
301 continue;
302 }
303
304 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
305 mc_hist[i] += mg->mg_histogram[i];
306 }
307
308 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
309 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
310
311 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
312}
313
314/*
315 * Calculate the metaslab class's fragmentation metric. The metric
316 * is weighted based on the space contribution of each metaslab group.
317 * The return value will be a number between 0 and 100 (inclusive), or
318 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
319 * zfs_frag_table for more information about the metric.
320 */
321uint64_t
322metaslab_class_fragmentation(metaslab_class_t *mc)
323{
324 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
325 uint64_t fragmentation = 0;
326 int c;
327
328 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
329
330 for (c = 0; c < rvd->vdev_children; c++) {
331 vdev_t *tvd = rvd->vdev_child[c];
332 metaslab_group_t *mg = tvd->vdev_mg;
333
334 /*
335 * Skip any holes, uninitialized top-levels, or
336 * vdevs that are not in this metalab class.
337 */
338 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
339 mg->mg_class != mc) {
340 continue;
341 }
342
343 /*
344 * If a metaslab group does not contain a fragmentation
345 * metric then just bail out.
346 */
347 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
348 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
349 return (ZFS_FRAG_INVALID);
350 }
351
352 /*
353 * Determine how much this metaslab_group is contributing
354 * to the overall pool fragmentation metric.
355 */
356 fragmentation += mg->mg_fragmentation *
357 metaslab_group_get_space(mg);
358 }
359 fragmentation /= metaslab_class_get_space(mc);
360
361 ASSERT3U(fragmentation, <=, 100);
362 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
363 return (fragmentation);
364}
365
366/*
367 * Calculate the amount of expandable space that is available in
368 * this metaslab class. If a device is expanded then its expandable
369 * space will be the amount of allocatable space that is currently not
370 * part of this metaslab class.
371 */
372uint64_t
373metaslab_class_expandable_space(metaslab_class_t *mc)
374{
375 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
376 uint64_t space = 0;
377 int c;
378
379 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
380 for (c = 0; c < rvd->vdev_children; c++) {
381 vdev_t *tvd = rvd->vdev_child[c];
382 metaslab_group_t *mg = tvd->vdev_mg;
383
384 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
385 mg->mg_class != mc) {
386 continue;
387 }
388
389 space += tvd->vdev_max_asize - tvd->vdev_asize;
390 }
391 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
392 return (space);
393}
394
34dc7c2f
BB
395/*
396 * ==========================================================================
397 * Metaslab groups
398 * ==========================================================================
399 */
400static int
401metaslab_compare(const void *x1, const void *x2)
402{
403 const metaslab_t *m1 = x1;
404 const metaslab_t *m2 = x2;
405
406 if (m1->ms_weight < m2->ms_weight)
407 return (1);
408 if (m1->ms_weight > m2->ms_weight)
409 return (-1);
410
411 /*
412 * If the weights are identical, use the offset to force uniqueness.
413 */
93cf2076 414 if (m1->ms_start < m2->ms_start)
34dc7c2f 415 return (-1);
93cf2076 416 if (m1->ms_start > m2->ms_start)
34dc7c2f
BB
417 return (1);
418
419 ASSERT3P(m1, ==, m2);
420
421 return (0);
422}
423
ac72fac3
GW
424/*
425 * Update the allocatable flag and the metaslab group's capacity.
426 * The allocatable flag is set to true if the capacity is below
427 * the zfs_mg_noalloc_threshold. If a metaslab group transitions
428 * from allocatable to non-allocatable or vice versa then the metaslab
429 * group's class is updated to reflect the transition.
430 */
431static void
432metaslab_group_alloc_update(metaslab_group_t *mg)
433{
434 vdev_t *vd = mg->mg_vd;
435 metaslab_class_t *mc = mg->mg_class;
436 vdev_stat_t *vs = &vd->vdev_stat;
437 boolean_t was_allocatable;
438
439 ASSERT(vd == vd->vdev_top);
440
441 mutex_enter(&mg->mg_lock);
442 was_allocatable = mg->mg_allocatable;
443
444 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
445 (vs->vs_space + 1);
446
f3a7f661
GW
447 /*
448 * A metaslab group is considered allocatable if it has plenty
449 * of free space or is not heavily fragmented. We only take
450 * fragmentation into account if the metaslab group has a valid
451 * fragmentation metric (i.e. a value between 0 and 100).
452 */
453 mg->mg_allocatable = (mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
454 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
455 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
ac72fac3
GW
456
457 /*
458 * The mc_alloc_groups maintains a count of the number of
459 * groups in this metaslab class that are still above the
460 * zfs_mg_noalloc_threshold. This is used by the allocating
461 * threads to determine if they should avoid allocations to
462 * a given group. The allocator will avoid allocations to a group
463 * if that group has reached or is below the zfs_mg_noalloc_threshold
464 * and there are still other groups that are above the threshold.
465 * When a group transitions from allocatable to non-allocatable or
466 * vice versa we update the metaslab class to reflect that change.
467 * When the mc_alloc_groups value drops to 0 that means that all
468 * groups have reached the zfs_mg_noalloc_threshold making all groups
469 * eligible for allocations. This effectively means that all devices
470 * are balanced again.
471 */
472 if (was_allocatable && !mg->mg_allocatable)
473 mc->mc_alloc_groups--;
474 else if (!was_allocatable && mg->mg_allocatable)
475 mc->mc_alloc_groups++;
f3a7f661 476
ac72fac3
GW
477 mutex_exit(&mg->mg_lock);
478}
479
34dc7c2f
BB
480metaslab_group_t *
481metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
482{
483 metaslab_group_t *mg;
484
79c76d5b 485 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
34dc7c2f
BB
486 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
487 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
488 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
34dc7c2f 489 mg->mg_vd = vd;
428870ff
BB
490 mg->mg_class = mc;
491 mg->mg_activation_count = 0;
34dc7c2f 492
3c51c5cb 493 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
93cf2076
GW
494 minclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT);
495
34dc7c2f
BB
496 return (mg);
497}
498
499void
500metaslab_group_destroy(metaslab_group_t *mg)
501{
428870ff
BB
502 ASSERT(mg->mg_prev == NULL);
503 ASSERT(mg->mg_next == NULL);
504 /*
505 * We may have gone below zero with the activation count
506 * either because we never activated in the first place or
507 * because we're done, and possibly removing the vdev.
508 */
509 ASSERT(mg->mg_activation_count <= 0);
510
3c51c5cb 511 taskq_destroy(mg->mg_taskq);
34dc7c2f
BB
512 avl_destroy(&mg->mg_metaslab_tree);
513 mutex_destroy(&mg->mg_lock);
514 kmem_free(mg, sizeof (metaslab_group_t));
515}
516
428870ff
BB
517void
518metaslab_group_activate(metaslab_group_t *mg)
519{
520 metaslab_class_t *mc = mg->mg_class;
521 metaslab_group_t *mgprev, *mgnext;
522
523 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
524
525 ASSERT(mc->mc_rotor != mg);
526 ASSERT(mg->mg_prev == NULL);
527 ASSERT(mg->mg_next == NULL);
528 ASSERT(mg->mg_activation_count <= 0);
529
530 if (++mg->mg_activation_count <= 0)
531 return;
532
533 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
ac72fac3 534 metaslab_group_alloc_update(mg);
428870ff
BB
535
536 if ((mgprev = mc->mc_rotor) == NULL) {
537 mg->mg_prev = mg;
538 mg->mg_next = mg;
539 } else {
540 mgnext = mgprev->mg_next;
541 mg->mg_prev = mgprev;
542 mg->mg_next = mgnext;
543 mgprev->mg_next = mg;
544 mgnext->mg_prev = mg;
545 }
546 mc->mc_rotor = mg;
547}
548
549void
550metaslab_group_passivate(metaslab_group_t *mg)
551{
552 metaslab_class_t *mc = mg->mg_class;
553 metaslab_group_t *mgprev, *mgnext;
554
555 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
556
557 if (--mg->mg_activation_count != 0) {
558 ASSERT(mc->mc_rotor != mg);
559 ASSERT(mg->mg_prev == NULL);
560 ASSERT(mg->mg_next == NULL);
561 ASSERT(mg->mg_activation_count < 0);
562 return;
563 }
564
93cf2076 565 taskq_wait(mg->mg_taskq);
f3a7f661 566 metaslab_group_alloc_update(mg);
93cf2076 567
428870ff
BB
568 mgprev = mg->mg_prev;
569 mgnext = mg->mg_next;
570
571 if (mg == mgnext) {
572 mc->mc_rotor = NULL;
573 } else {
574 mc->mc_rotor = mgnext;
575 mgprev->mg_next = mgnext;
576 mgnext->mg_prev = mgprev;
577 }
578
579 mg->mg_prev = NULL;
580 mg->mg_next = NULL;
581}
582
f3a7f661
GW
583uint64_t
584metaslab_group_get_space(metaslab_group_t *mg)
585{
586 return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
587}
588
589void
590metaslab_group_histogram_verify(metaslab_group_t *mg)
591{
592 uint64_t *mg_hist;
593 vdev_t *vd = mg->mg_vd;
594 uint64_t ashift = vd->vdev_ashift;
595 int i, m;
596
597 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
598 return;
599
600 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
79c76d5b 601 KM_SLEEP);
f3a7f661
GW
602
603 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
604 SPACE_MAP_HISTOGRAM_SIZE + ashift);
605
606 for (m = 0; m < vd->vdev_ms_count; m++) {
607 metaslab_t *msp = vd->vdev_ms[m];
608
609 if (msp->ms_sm == NULL)
610 continue;
611
612 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
613 mg_hist[i + ashift] +=
614 msp->ms_sm->sm_phys->smp_histogram[i];
615 }
616
617 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
618 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
619
620 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
621}
622
34dc7c2f 623static void
f3a7f661 624metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
34dc7c2f 625{
f3a7f661
GW
626 metaslab_class_t *mc = mg->mg_class;
627 uint64_t ashift = mg->mg_vd->vdev_ashift;
628 int i;
629
630 ASSERT(MUTEX_HELD(&msp->ms_lock));
631 if (msp->ms_sm == NULL)
632 return;
633
34dc7c2f 634 mutex_enter(&mg->mg_lock);
f3a7f661
GW
635 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
636 mg->mg_histogram[i + ashift] +=
637 msp->ms_sm->sm_phys->smp_histogram[i];
638 mc->mc_histogram[i + ashift] +=
639 msp->ms_sm->sm_phys->smp_histogram[i];
640 }
641 mutex_exit(&mg->mg_lock);
642}
643
644void
645metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
646{
647 metaslab_class_t *mc = mg->mg_class;
648 uint64_t ashift = mg->mg_vd->vdev_ashift;
649 int i;
650
651 ASSERT(MUTEX_HELD(&msp->ms_lock));
652 if (msp->ms_sm == NULL)
653 return;
654
655 mutex_enter(&mg->mg_lock);
656 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
657 ASSERT3U(mg->mg_histogram[i + ashift], >=,
658 msp->ms_sm->sm_phys->smp_histogram[i]);
659 ASSERT3U(mc->mc_histogram[i + ashift], >=,
660 msp->ms_sm->sm_phys->smp_histogram[i]);
661
662 mg->mg_histogram[i + ashift] -=
663 msp->ms_sm->sm_phys->smp_histogram[i];
664 mc->mc_histogram[i + ashift] -=
665 msp->ms_sm->sm_phys->smp_histogram[i];
666 }
667 mutex_exit(&mg->mg_lock);
668}
669
670static void
671metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
672{
34dc7c2f 673 ASSERT(msp->ms_group == NULL);
f3a7f661 674 mutex_enter(&mg->mg_lock);
34dc7c2f
BB
675 msp->ms_group = mg;
676 msp->ms_weight = 0;
677 avl_add(&mg->mg_metaslab_tree, msp);
678 mutex_exit(&mg->mg_lock);
f3a7f661
GW
679
680 mutex_enter(&msp->ms_lock);
681 metaslab_group_histogram_add(mg, msp);
682 mutex_exit(&msp->ms_lock);
34dc7c2f
BB
683}
684
685static void
686metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
687{
f3a7f661
GW
688 mutex_enter(&msp->ms_lock);
689 metaslab_group_histogram_remove(mg, msp);
690 mutex_exit(&msp->ms_lock);
691
34dc7c2f
BB
692 mutex_enter(&mg->mg_lock);
693 ASSERT(msp->ms_group == mg);
694 avl_remove(&mg->mg_metaslab_tree, msp);
695 msp->ms_group = NULL;
696 mutex_exit(&mg->mg_lock);
697}
698
699static void
700metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
701{
702 /*
703 * Although in principle the weight can be any value, in
f3a7f661 704 * practice we do not use values in the range [1, 511].
34dc7c2f 705 */
f3a7f661 706 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
34dc7c2f
BB
707 ASSERT(MUTEX_HELD(&msp->ms_lock));
708
709 mutex_enter(&mg->mg_lock);
710 ASSERT(msp->ms_group == mg);
711 avl_remove(&mg->mg_metaslab_tree, msp);
712 msp->ms_weight = weight;
713 avl_add(&mg->mg_metaslab_tree, msp);
714 mutex_exit(&mg->mg_lock);
715}
716
f3a7f661
GW
717/*
718 * Calculate the fragmentation for a given metaslab group. We can use
719 * a simple average here since all metaslabs within the group must have
720 * the same size. The return value will be a value between 0 and 100
721 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
722 * group have a fragmentation metric.
723 */
724uint64_t
725metaslab_group_fragmentation(metaslab_group_t *mg)
726{
727 vdev_t *vd = mg->mg_vd;
728 uint64_t fragmentation = 0;
729 uint64_t valid_ms = 0;
730 int m;
731
732 for (m = 0; m < vd->vdev_ms_count; m++) {
733 metaslab_t *msp = vd->vdev_ms[m];
734
735 if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
736 continue;
737
738 valid_ms++;
739 fragmentation += msp->ms_fragmentation;
740 }
741
742 if (valid_ms <= vd->vdev_ms_count / 2)
743 return (ZFS_FRAG_INVALID);
744
745 fragmentation /= valid_ms;
746 ASSERT3U(fragmentation, <=, 100);
747 return (fragmentation);
748}
749
ac72fac3
GW
750/*
751 * Determine if a given metaslab group should skip allocations. A metaslab
f3a7f661
GW
752 * group should avoid allocations if its free capacity is less than the
753 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
754 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
ac72fac3
GW
755 * that can still handle allocations.
756 */
757static boolean_t
758metaslab_group_allocatable(metaslab_group_t *mg)
759{
760 vdev_t *vd = mg->mg_vd;
761 spa_t *spa = vd->vdev_spa;
762 metaslab_class_t *mc = mg->mg_class;
763
764 /*
f3a7f661
GW
765 * We use two key metrics to determine if a metaslab group is
766 * considered allocatable -- free space and fragmentation. If
767 * the free space is greater than the free space threshold and
768 * the fragmentation is less than the fragmentation threshold then
769 * consider the group allocatable. There are two case when we will
770 * not consider these key metrics. The first is if the group is
771 * associated with a slog device and the second is if all groups
772 * in this metaslab class have already been consider ineligible
773 * for allocations.
ac72fac3 774 */
f3a7f661
GW
775 return ((mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
776 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
777 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold)) ||
ac72fac3
GW
778 mc != spa_normal_class(spa) || mc->mc_alloc_groups == 0);
779}
780
428870ff
BB
781/*
782 * ==========================================================================
93cf2076 783 * Range tree callbacks
428870ff
BB
784 * ==========================================================================
785 */
93cf2076
GW
786
787/*
788 * Comparison function for the private size-ordered tree. Tree is sorted
789 * by size, larger sizes at the end of the tree.
790 */
428870ff 791static int
93cf2076 792metaslab_rangesize_compare(const void *x1, const void *x2)
428870ff 793{
93cf2076
GW
794 const range_seg_t *r1 = x1;
795 const range_seg_t *r2 = x2;
796 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
797 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
428870ff 798
93cf2076 799 if (rs_size1 < rs_size2)
428870ff 800 return (-1);
93cf2076 801 if (rs_size1 > rs_size2)
428870ff
BB
802 return (1);
803
93cf2076 804 if (r1->rs_start < r2->rs_start)
428870ff 805 return (-1);
93cf2076
GW
806
807 if (r1->rs_start > r2->rs_start)
428870ff
BB
808 return (1);
809
810 return (0);
811}
812
34dc7c2f 813/*
93cf2076
GW
814 * Create any block allocator specific components. The current allocators
815 * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
34dc7c2f 816 */
93cf2076
GW
817static void
818metaslab_rt_create(range_tree_t *rt, void *arg)
34dc7c2f 819{
93cf2076 820 metaslab_t *msp = arg;
34dc7c2f 821
93cf2076
GW
822 ASSERT3P(rt->rt_arg, ==, msp);
823 ASSERT(msp->ms_tree == NULL);
34dc7c2f 824
93cf2076
GW
825 avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
826 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
9babb374
BB
827}
828
93cf2076
GW
829/*
830 * Destroy the block allocator specific components.
831 */
9babb374 832static void
93cf2076 833metaslab_rt_destroy(range_tree_t *rt, void *arg)
9babb374 834{
93cf2076 835 metaslab_t *msp = arg;
428870ff 836
93cf2076
GW
837 ASSERT3P(rt->rt_arg, ==, msp);
838 ASSERT3P(msp->ms_tree, ==, rt);
839 ASSERT0(avl_numnodes(&msp->ms_size_tree));
428870ff 840
93cf2076 841 avl_destroy(&msp->ms_size_tree);
9babb374
BB
842}
843
844static void
93cf2076 845metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
9babb374 846{
93cf2076 847 metaslab_t *msp = arg;
9babb374 848
93cf2076
GW
849 ASSERT3P(rt->rt_arg, ==, msp);
850 ASSERT3P(msp->ms_tree, ==, rt);
851 VERIFY(!msp->ms_condensing);
852 avl_add(&msp->ms_size_tree, rs);
34dc7c2f
BB
853}
854
34dc7c2f 855static void
93cf2076 856metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
34dc7c2f 857{
93cf2076
GW
858 metaslab_t *msp = arg;
859
860 ASSERT3P(rt->rt_arg, ==, msp);
861 ASSERT3P(msp->ms_tree, ==, rt);
862 VERIFY(!msp->ms_condensing);
863 avl_remove(&msp->ms_size_tree, rs);
34dc7c2f
BB
864}
865
34dc7c2f 866static void
93cf2076 867metaslab_rt_vacate(range_tree_t *rt, void *arg)
34dc7c2f 868{
93cf2076
GW
869 metaslab_t *msp = arg;
870
871 ASSERT3P(rt->rt_arg, ==, msp);
872 ASSERT3P(msp->ms_tree, ==, rt);
873
874 /*
875 * Normally one would walk the tree freeing nodes along the way.
876 * Since the nodes are shared with the range trees we can avoid
877 * walking all nodes and just reinitialize the avl tree. The nodes
878 * will be freed by the range tree, so we don't want to free them here.
879 */
880 avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
881 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
34dc7c2f
BB
882}
883
93cf2076
GW
884static range_tree_ops_t metaslab_rt_ops = {
885 metaslab_rt_create,
886 metaslab_rt_destroy,
887 metaslab_rt_add,
888 metaslab_rt_remove,
889 metaslab_rt_vacate
890};
891
892/*
893 * ==========================================================================
894 * Metaslab block operations
895 * ==========================================================================
896 */
897
9babb374 898/*
428870ff 899 * Return the maximum contiguous segment within the metaslab.
9babb374 900 */
9babb374 901uint64_t
93cf2076 902metaslab_block_maxsize(metaslab_t *msp)
9babb374 903{
93cf2076
GW
904 avl_tree_t *t = &msp->ms_size_tree;
905 range_seg_t *rs;
9babb374 906
93cf2076 907 if (t == NULL || (rs = avl_last(t)) == NULL)
9babb374
BB
908 return (0ULL);
909
93cf2076
GW
910 return (rs->rs_end - rs->rs_start);
911}
912
913uint64_t
914metaslab_block_alloc(metaslab_t *msp, uint64_t size)
915{
916 uint64_t start;
917 range_tree_t *rt = msp->ms_tree;
918
919 VERIFY(!msp->ms_condensing);
920
921 start = msp->ms_ops->msop_alloc(msp, size);
922 if (start != -1ULL) {
923 vdev_t *vd = msp->ms_group->mg_vd;
924
925 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
926 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
927 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
928 range_tree_remove(rt, start, size);
929 }
930 return (start);
931}
932
933/*
934 * ==========================================================================
935 * Common allocator routines
936 * ==========================================================================
937 */
938
939#if defined(WITH_FF_BLOCK_ALLOCATOR) || \
940 defined(WITH_DF_BLOCK_ALLOCATOR) || \
941 defined(WITH_CF_BLOCK_ALLOCATOR)
942/*
943 * This is a helper function that can be used by the allocator to find
944 * a suitable block to allocate. This will search the specified AVL
945 * tree looking for a block that matches the specified criteria.
946 */
947static uint64_t
948metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
949 uint64_t align)
950{
951 range_seg_t *rs, rsearch;
952 avl_index_t where;
953
954 rsearch.rs_start = *cursor;
955 rsearch.rs_end = *cursor + size;
956
957 rs = avl_find(t, &rsearch, &where);
958 if (rs == NULL)
959 rs = avl_nearest(t, where, AVL_AFTER);
960
961 while (rs != NULL) {
962 uint64_t offset = P2ROUNDUP(rs->rs_start, align);
963
964 if (offset + size <= rs->rs_end) {
965 *cursor = offset + size;
966 return (offset);
967 }
968 rs = AVL_NEXT(t, rs);
969 }
970
971 /*
972 * If we know we've searched the whole map (*cursor == 0), give up.
973 * Otherwise, reset the cursor to the beginning and try again.
974 */
975 if (*cursor == 0)
976 return (-1ULL);
977
978 *cursor = 0;
979 return (metaslab_block_picker(t, cursor, size, align));
9babb374 980}
93cf2076 981#endif /* WITH_FF/DF/CF_BLOCK_ALLOCATOR */
9babb374 982
22c81dd8 983#if defined(WITH_FF_BLOCK_ALLOCATOR)
428870ff
BB
984/*
985 * ==========================================================================
986 * The first-fit block allocator
987 * ==========================================================================
988 */
989static uint64_t
93cf2076 990metaslab_ff_alloc(metaslab_t *msp, uint64_t size)
9babb374 991{
93cf2076
GW
992 /*
993 * Find the largest power of 2 block size that evenly divides the
994 * requested size. This is used to try to allocate blocks with similar
995 * alignment from the same area of the metaslab (i.e. same cursor
996 * bucket) but it does not guarantee that other allocations sizes
997 * may exist in the same region.
998 */
428870ff 999 uint64_t align = size & -size;
9bd274dd 1000 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
93cf2076 1001 avl_tree_t *t = &msp->ms_tree->rt_root;
9babb374 1002
428870ff 1003 return (metaslab_block_picker(t, cursor, size, align));
9babb374
BB
1004}
1005
93cf2076 1006static metaslab_ops_t metaslab_ff_ops = {
f3a7f661 1007 metaslab_ff_alloc
428870ff 1008};
9babb374 1009
93cf2076 1010metaslab_ops_t *zfs_metaslab_ops = &metaslab_ff_ops;
22c81dd8
BB
1011#endif /* WITH_FF_BLOCK_ALLOCATOR */
1012
1013#if defined(WITH_DF_BLOCK_ALLOCATOR)
428870ff
BB
1014/*
1015 * ==========================================================================
1016 * Dynamic block allocator -
1017 * Uses the first fit allocation scheme until space get low and then
1018 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
1019 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
1020 * ==========================================================================
1021 */
9babb374 1022static uint64_t
93cf2076 1023metaslab_df_alloc(metaslab_t *msp, uint64_t size)
9babb374 1024{
93cf2076
GW
1025 /*
1026 * Find the largest power of 2 block size that evenly divides the
1027 * requested size. This is used to try to allocate blocks with similar
1028 * alignment from the same area of the metaslab (i.e. same cursor
1029 * bucket) but it does not guarantee that other allocations sizes
1030 * may exist in the same region.
1031 */
9babb374 1032 uint64_t align = size & -size;
9bd274dd 1033 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
93cf2076
GW
1034 range_tree_t *rt = msp->ms_tree;
1035 avl_tree_t *t = &rt->rt_root;
1036 uint64_t max_size = metaslab_block_maxsize(msp);
1037 int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
9babb374 1038
93cf2076
GW
1039 ASSERT(MUTEX_HELD(&msp->ms_lock));
1040 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
9babb374
BB
1041
1042 if (max_size < size)
1043 return (-1ULL);
1044
1045 /*
1046 * If we're running low on space switch to using the size
1047 * sorted AVL tree (best-fit).
1048 */
1049 if (max_size < metaslab_df_alloc_threshold ||
1050 free_pct < metaslab_df_free_pct) {
93cf2076 1051 t = &msp->ms_size_tree;
9babb374
BB
1052 *cursor = 0;
1053 }
1054
1055 return (metaslab_block_picker(t, cursor, size, 1ULL));
1056}
1057
93cf2076 1058static metaslab_ops_t metaslab_df_ops = {
f3a7f661 1059 metaslab_df_alloc
34dc7c2f
BB
1060};
1061
93cf2076 1062metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
22c81dd8
BB
1063#endif /* WITH_DF_BLOCK_ALLOCATOR */
1064
93cf2076 1065#if defined(WITH_CF_BLOCK_ALLOCATOR)
428870ff
BB
1066/*
1067 * ==========================================================================
93cf2076
GW
1068 * Cursor fit block allocator -
1069 * Select the largest region in the metaslab, set the cursor to the beginning
1070 * of the range and the cursor_end to the end of the range. As allocations
1071 * are made advance the cursor. Continue allocating from the cursor until
1072 * the range is exhausted and then find a new range.
428870ff
BB
1073 * ==========================================================================
1074 */
1075static uint64_t
93cf2076 1076metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
428870ff 1077{
93cf2076
GW
1078 range_tree_t *rt = msp->ms_tree;
1079 avl_tree_t *t = &msp->ms_size_tree;
1080 uint64_t *cursor = &msp->ms_lbas[0];
1081 uint64_t *cursor_end = &msp->ms_lbas[1];
428870ff
BB
1082 uint64_t offset = 0;
1083
93cf2076
GW
1084 ASSERT(MUTEX_HELD(&msp->ms_lock));
1085 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
428870ff 1086
93cf2076 1087 ASSERT3U(*cursor_end, >=, *cursor);
428870ff 1088
93cf2076
GW
1089 if ((*cursor + size) > *cursor_end) {
1090 range_seg_t *rs;
428870ff 1091
93cf2076
GW
1092 rs = avl_last(&msp->ms_size_tree);
1093 if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
1094 return (-1ULL);
428870ff 1095
93cf2076
GW
1096 *cursor = rs->rs_start;
1097 *cursor_end = rs->rs_end;
428870ff 1098 }
93cf2076
GW
1099
1100 offset = *cursor;
1101 *cursor += size;
1102
428870ff
BB
1103 return (offset);
1104}
1105
93cf2076 1106static metaslab_ops_t metaslab_cf_ops = {
f3a7f661 1107 metaslab_cf_alloc
428870ff
BB
1108};
1109
93cf2076
GW
1110metaslab_ops_t *zfs_metaslab_ops = &metaslab_cf_ops;
1111#endif /* WITH_CF_BLOCK_ALLOCATOR */
22c81dd8
BB
1112
1113#if defined(WITH_NDF_BLOCK_ALLOCATOR)
93cf2076
GW
1114/*
1115 * ==========================================================================
1116 * New dynamic fit allocator -
1117 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1118 * contiguous blocks. If no region is found then just use the largest segment
1119 * that remains.
1120 * ==========================================================================
1121 */
1122
1123/*
1124 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1125 * to request from the allocator.
1126 */
428870ff
BB
1127uint64_t metaslab_ndf_clump_shift = 4;
1128
1129static uint64_t
93cf2076 1130metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
428870ff 1131{
93cf2076 1132 avl_tree_t *t = &msp->ms_tree->rt_root;
428870ff 1133 avl_index_t where;
93cf2076 1134 range_seg_t *rs, rsearch;
9bd274dd 1135 uint64_t hbit = highbit64(size);
93cf2076
GW
1136 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1137 uint64_t max_size = metaslab_block_maxsize(msp);
428870ff 1138
93cf2076
GW
1139 ASSERT(MUTEX_HELD(&msp->ms_lock));
1140 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
428870ff
BB
1141
1142 if (max_size < size)
1143 return (-1ULL);
1144
93cf2076
GW
1145 rsearch.rs_start = *cursor;
1146 rsearch.rs_end = *cursor + size;
428870ff 1147
93cf2076
GW
1148 rs = avl_find(t, &rsearch, &where);
1149 if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
1150 t = &msp->ms_size_tree;
428870ff 1151
93cf2076
GW
1152 rsearch.rs_start = 0;
1153 rsearch.rs_end = MIN(max_size,
428870ff 1154 1ULL << (hbit + metaslab_ndf_clump_shift));
93cf2076
GW
1155 rs = avl_find(t, &rsearch, &where);
1156 if (rs == NULL)
1157 rs = avl_nearest(t, where, AVL_AFTER);
1158 ASSERT(rs != NULL);
428870ff
BB
1159 }
1160
93cf2076
GW
1161 if ((rs->rs_end - rs->rs_start) >= size) {
1162 *cursor = rs->rs_start + size;
1163 return (rs->rs_start);
428870ff
BB
1164 }
1165 return (-1ULL);
1166}
1167
93cf2076 1168static metaslab_ops_t metaslab_ndf_ops = {
f3a7f661 1169 metaslab_ndf_alloc
428870ff
BB
1170};
1171
93cf2076 1172metaslab_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops;
22c81dd8 1173#endif /* WITH_NDF_BLOCK_ALLOCATOR */
9babb374 1174
93cf2076 1175
34dc7c2f
BB
1176/*
1177 * ==========================================================================
1178 * Metaslabs
1179 * ==========================================================================
1180 */
93cf2076
GW
1181
1182/*
1183 * Wait for any in-progress metaslab loads to complete.
1184 */
1185void
1186metaslab_load_wait(metaslab_t *msp)
1187{
1188 ASSERT(MUTEX_HELD(&msp->ms_lock));
1189
1190 while (msp->ms_loading) {
1191 ASSERT(!msp->ms_loaded);
1192 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1193 }
1194}
1195
1196int
1197metaslab_load(metaslab_t *msp)
1198{
1199 int error = 0;
1200 int t;
1201
1202 ASSERT(MUTEX_HELD(&msp->ms_lock));
1203 ASSERT(!msp->ms_loaded);
1204 ASSERT(!msp->ms_loading);
1205
1206 msp->ms_loading = B_TRUE;
1207
1208 /*
1209 * If the space map has not been allocated yet, then treat
1210 * all the space in the metaslab as free and add it to the
1211 * ms_tree.
1212 */
1213 if (msp->ms_sm != NULL)
1214 error = space_map_load(msp->ms_sm, msp->ms_tree, SM_FREE);
1215 else
1216 range_tree_add(msp->ms_tree, msp->ms_start, msp->ms_size);
1217
1218 msp->ms_loaded = (error == 0);
1219 msp->ms_loading = B_FALSE;
1220
1221 if (msp->ms_loaded) {
1222 for (t = 0; t < TXG_DEFER_SIZE; t++) {
1223 range_tree_walk(msp->ms_defertree[t],
1224 range_tree_remove, msp->ms_tree);
1225 }
1226 }
1227 cv_broadcast(&msp->ms_load_cv);
1228 return (error);
1229}
1230
1231void
1232metaslab_unload(metaslab_t *msp)
1233{
1234 ASSERT(MUTEX_HELD(&msp->ms_lock));
1235 range_tree_vacate(msp->ms_tree, NULL, NULL);
1236 msp->ms_loaded = B_FALSE;
1237 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
1238}
1239
fb42a493
PS
1240int
1241metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg,
1242 metaslab_t **msp)
34dc7c2f
BB
1243{
1244 vdev_t *vd = mg->mg_vd;
93cf2076 1245 objset_t *mos = vd->vdev_spa->spa_meta_objset;
fb42a493
PS
1246 metaslab_t *ms;
1247 int error;
34dc7c2f 1248
79c76d5b 1249 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
fb42a493
PS
1250 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
1251 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
1252 ms->ms_id = id;
1253 ms->ms_start = id << vd->vdev_ms_shift;
1254 ms->ms_size = 1ULL << vd->vdev_ms_shift;
34dc7c2f 1255
93cf2076
GW
1256 /*
1257 * We only open space map objects that already exist. All others
7fc8c33e
BB
1258 * will be opened when we finally allocate an object for it. For
1259 * readonly pools there is no need to open the space map object.
93cf2076 1260 */
7fc8c33e 1261 if (object != 0 && spa_writeable(vd->vdev_spa)) {
fb42a493
PS
1262 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
1263 ms->ms_size, vd->vdev_ashift, &ms->ms_lock);
1264
1265 if (error != 0) {
1266 kmem_free(ms, sizeof (metaslab_t));
1267 return (error);
1268 }
1269
1270 ASSERT(ms->ms_sm != NULL);
93cf2076 1271 }
34dc7c2f
BB
1272
1273 /*
93cf2076
GW
1274 * We create the main range tree here, but we don't create the
1275 * alloctree and freetree until metaslab_sync_done(). This serves
34dc7c2f
BB
1276 * two purposes: it allows metaslab_sync_done() to detect the
1277 * addition of new space; and for debugging, it ensures that we'd
1278 * data fault on any attempt to use this metaslab before it's ready.
1279 */
fb42a493
PS
1280 ms->ms_tree = range_tree_create(&metaslab_rt_ops, ms, &ms->ms_lock);
1281 metaslab_group_add(mg, ms);
34dc7c2f 1282
fb42a493
PS
1283 ms->ms_fragmentation = metaslab_fragmentation(ms);
1284 ms->ms_ops = mg->mg_class->mc_ops;
428870ff 1285
34dc7c2f
BB
1286 /*
1287 * If we're opening an existing pool (txg == 0) or creating
1288 * a new one (txg == TXG_INITIAL), all space is available now.
1289 * If we're adding space to an existing pool, the new space
1290 * does not become available until after this txg has synced.
1291 */
1292 if (txg <= TXG_INITIAL)
fb42a493 1293 metaslab_sync_done(ms, 0);
34dc7c2f 1294
93cf2076
GW
1295 /*
1296 * If metaslab_debug_load is set and we're initializing a metaslab
1297 * that has an allocated space_map object then load the its space
1298 * map so that can verify frees.
1299 */
fb42a493
PS
1300 if (metaslab_debug_load && ms->ms_sm != NULL) {
1301 mutex_enter(&ms->ms_lock);
1302 VERIFY0(metaslab_load(ms));
1303 mutex_exit(&ms->ms_lock);
93cf2076
GW
1304 }
1305
34dc7c2f 1306 if (txg != 0) {
34dc7c2f 1307 vdev_dirty(vd, 0, NULL, txg);
fb42a493 1308 vdev_dirty(vd, VDD_METASLAB, ms, txg);
34dc7c2f
BB
1309 }
1310
fb42a493
PS
1311 *msp = ms;
1312
1313 return (0);
34dc7c2f
BB
1314}
1315
1316void
1317metaslab_fini(metaslab_t *msp)
1318{
d6320ddb 1319 int t;
34dc7c2f 1320
93cf2076 1321 metaslab_group_t *mg = msp->ms_group;
34dc7c2f
BB
1322
1323 metaslab_group_remove(mg, msp);
1324
1325 mutex_enter(&msp->ms_lock);
1326
93cf2076
GW
1327 VERIFY(msp->ms_group == NULL);
1328 vdev_space_update(mg->mg_vd, -space_map_allocated(msp->ms_sm),
1329 0, -msp->ms_size);
1330 space_map_close(msp->ms_sm);
1331
1332 metaslab_unload(msp);
1333 range_tree_destroy(msp->ms_tree);
34dc7c2f 1334
d6320ddb 1335 for (t = 0; t < TXG_SIZE; t++) {
93cf2076
GW
1336 range_tree_destroy(msp->ms_alloctree[t]);
1337 range_tree_destroy(msp->ms_freetree[t]);
34dc7c2f
BB
1338 }
1339
e51be066 1340 for (t = 0; t < TXG_DEFER_SIZE; t++) {
93cf2076 1341 range_tree_destroy(msp->ms_defertree[t]);
e51be066 1342 }
428870ff 1343
c99c9001 1344 ASSERT0(msp->ms_deferspace);
428870ff 1345
34dc7c2f 1346 mutex_exit(&msp->ms_lock);
93cf2076 1347 cv_destroy(&msp->ms_load_cv);
34dc7c2f
BB
1348 mutex_destroy(&msp->ms_lock);
1349
1350 kmem_free(msp, sizeof (metaslab_t));
1351}
1352
f3a7f661
GW
1353#define FRAGMENTATION_TABLE_SIZE 17
1354
93cf2076 1355/*
f3a7f661
GW
1356 * This table defines a segment size based fragmentation metric that will
1357 * allow each metaslab to derive its own fragmentation value. This is done
1358 * by calculating the space in each bucket of the spacemap histogram and
1359 * multiplying that by the fragmetation metric in this table. Doing
1360 * this for all buckets and dividing it by the total amount of free
1361 * space in this metaslab (i.e. the total free space in all buckets) gives
1362 * us the fragmentation metric. This means that a high fragmentation metric
1363 * equates to most of the free space being comprised of small segments.
1364 * Conversely, if the metric is low, then most of the free space is in
1365 * large segments. A 10% change in fragmentation equates to approximately
1366 * double the number of segments.
93cf2076 1367 *
f3a7f661
GW
1368 * This table defines 0% fragmented space using 16MB segments. Testing has
1369 * shown that segments that are greater than or equal to 16MB do not suffer
1370 * from drastic performance problems. Using this value, we derive the rest
1371 * of the table. Since the fragmentation value is never stored on disk, it
1372 * is possible to change these calculations in the future.
1373 */
1374int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
1375 100, /* 512B */
1376 100, /* 1K */
1377 98, /* 2K */
1378 95, /* 4K */
1379 90, /* 8K */
1380 80, /* 16K */
1381 70, /* 32K */
1382 60, /* 64K */
1383 50, /* 128K */
1384 40, /* 256K */
1385 30, /* 512K */
1386 20, /* 1M */
1387 15, /* 2M */
1388 10, /* 4M */
1389 5, /* 8M */
1390 0 /* 16M */
1391};
1392
1393/*
1394 * Calclate the metaslab's fragmentation metric. A return value
1395 * of ZFS_FRAG_INVALID means that the metaslab has not been upgraded and does
1396 * not support this metric. Otherwise, the return value should be in the
1397 * range [0, 100].
93cf2076
GW
1398 */
1399static uint64_t
f3a7f661 1400metaslab_fragmentation(metaslab_t *msp)
93cf2076 1401{
f3a7f661
GW
1402 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1403 uint64_t fragmentation = 0;
1404 uint64_t total = 0;
1405 boolean_t feature_enabled = spa_feature_is_enabled(spa,
1406 SPA_FEATURE_SPACEMAP_HISTOGRAM);
93cf2076
GW
1407 int i;
1408
f3a7f661
GW
1409 if (!feature_enabled)
1410 return (ZFS_FRAG_INVALID);
1411
93cf2076 1412 /*
f3a7f661
GW
1413 * A null space map means that the entire metaslab is free
1414 * and thus is not fragmented.
93cf2076 1415 */
f3a7f661
GW
1416 if (msp->ms_sm == NULL)
1417 return (0);
1418
1419 /*
1420 * If this metaslab's space_map has not been upgraded, flag it
1421 * so that we upgrade next time we encounter it.
1422 */
1423 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
93cf2076
GW
1424 vdev_t *vd = msp->ms_group->mg_vd;
1425
8b0a0840
TC
1426 if (spa_writeable(vd->vdev_spa)) {
1427 uint64_t txg = spa_syncing_txg(spa);
1428
1429 msp->ms_condense_wanted = B_TRUE;
1430 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1431 spa_dbgmsg(spa, "txg %llu, requesting force condense: "
1432 "msp %p, vd %p", txg, msp, vd);
1433 }
f3a7f661 1434 return (ZFS_FRAG_INVALID);
93cf2076
GW
1435 }
1436
f3a7f661
GW
1437 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1438 uint64_t space = 0;
1439 uint8_t shift = msp->ms_sm->sm_shift;
1440 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
1441 FRAGMENTATION_TABLE_SIZE - 1);
93cf2076 1442
93cf2076
GW
1443 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
1444 continue;
1445
f3a7f661
GW
1446 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
1447 total += space;
1448
1449 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
1450 fragmentation += space * zfs_frag_table[idx];
93cf2076 1451 }
f3a7f661
GW
1452
1453 if (total > 0)
1454 fragmentation /= total;
1455 ASSERT3U(fragmentation, <=, 100);
1456 return (fragmentation);
93cf2076 1457}
34dc7c2f 1458
f3a7f661
GW
1459/*
1460 * Compute a weight -- a selection preference value -- for the given metaslab.
1461 * This is based on the amount of free space, the level of fragmentation,
1462 * the LBA range, and whether the metaslab is loaded.
1463 */
34dc7c2f
BB
1464static uint64_t
1465metaslab_weight(metaslab_t *msp)
1466{
1467 metaslab_group_t *mg = msp->ms_group;
34dc7c2f
BB
1468 vdev_t *vd = mg->mg_vd;
1469 uint64_t weight, space;
1470
1471 ASSERT(MUTEX_HELD(&msp->ms_lock));
1472
c2e42f9d
GW
1473 /*
1474 * This vdev is in the process of being removed so there is nothing
1475 * for us to do here.
1476 */
1477 if (vd->vdev_removing) {
93cf2076 1478 ASSERT0(space_map_allocated(msp->ms_sm));
c2e42f9d
GW
1479 ASSERT0(vd->vdev_ms_shift);
1480 return (0);
1481 }
1482
34dc7c2f
BB
1483 /*
1484 * The baseline weight is the metaslab's free space.
1485 */
93cf2076 1486 space = msp->ms_size - space_map_allocated(msp->ms_sm);
f3a7f661
GW
1487
1488 msp->ms_fragmentation = metaslab_fragmentation(msp);
1489 if (metaslab_fragmentation_factor_enabled &&
1490 msp->ms_fragmentation != ZFS_FRAG_INVALID) {
1491 /*
1492 * Use the fragmentation information to inversely scale
1493 * down the baseline weight. We need to ensure that we
1494 * don't exclude this metaslab completely when it's 100%
1495 * fragmented. To avoid this we reduce the fragmented value
1496 * by 1.
1497 */
1498 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
1499
1500 /*
1501 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
1502 * this metaslab again. The fragmentation metric may have
1503 * decreased the space to something smaller than
1504 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
1505 * so that we can consume any remaining space.
1506 */
1507 if (space > 0 && space < SPA_MINBLOCKSIZE)
1508 space = SPA_MINBLOCKSIZE;
1509 }
34dc7c2f
BB
1510 weight = space;
1511
1512 /*
1513 * Modern disks have uniform bit density and constant angular velocity.
1514 * Therefore, the outer recording zones are faster (higher bandwidth)
1515 * than the inner zones by the ratio of outer to inner track diameter,
1516 * which is typically around 2:1. We account for this by assigning
1517 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
1518 * In effect, this means that we'll select the metaslab with the most
1519 * free bandwidth rather than simply the one with the most free space.
1520 */
f3a7f661
GW
1521 if (metaslab_lba_weighting_enabled) {
1522 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
1523 ASSERT(weight >= space && weight <= 2 * space);
1524 }
428870ff 1525
f3a7f661
GW
1526 /*
1527 * If this metaslab is one we're actively using, adjust its
1528 * weight to make it preferable to any inactive metaslab so
1529 * we'll polish it off. If the fragmentation on this metaslab
1530 * has exceed our threshold, then don't mark it active.
1531 */
1532 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
1533 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
428870ff
BB
1534 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
1535 }
34dc7c2f 1536
93cf2076 1537 return (weight);
34dc7c2f
BB
1538}
1539
1540static int
6d974228 1541metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
34dc7c2f 1542{
34dc7c2f
BB
1543 ASSERT(MUTEX_HELD(&msp->ms_lock));
1544
1545 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
93cf2076
GW
1546 metaslab_load_wait(msp);
1547 if (!msp->ms_loaded) {
1548 int error = metaslab_load(msp);
1549 if (error) {
428870ff
BB
1550 metaslab_group_sort(msp->ms_group, msp, 0);
1551 return (error);
1552 }
34dc7c2f 1553 }
9babb374 1554
34dc7c2f
BB
1555 metaslab_group_sort(msp->ms_group, msp,
1556 msp->ms_weight | activation_weight);
1557 }
93cf2076 1558 ASSERT(msp->ms_loaded);
34dc7c2f
BB
1559 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
1560
1561 return (0);
1562}
1563
1564static void
1565metaslab_passivate(metaslab_t *msp, uint64_t size)
1566{
1567 /*
1568 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
1569 * this metaslab again. In that case, it had better be empty,
1570 * or we would be leaving space on the table.
1571 */
93cf2076 1572 ASSERT(size >= SPA_MINBLOCKSIZE || range_tree_space(msp->ms_tree) == 0);
34dc7c2f
BB
1573 metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size));
1574 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
1575}
1576
93cf2076
GW
1577static void
1578metaslab_preload(void *arg)
1579{
1580 metaslab_t *msp = arg;
1581 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1582
080b3100
GW
1583 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
1584
93cf2076
GW
1585 mutex_enter(&msp->ms_lock);
1586 metaslab_load_wait(msp);
1587 if (!msp->ms_loaded)
1588 (void) metaslab_load(msp);
1589
1590 /*
1591 * Set the ms_access_txg value so that we don't unload it right away.
1592 */
1593 msp->ms_access_txg = spa_syncing_txg(spa) + metaslab_unload_delay + 1;
1594 mutex_exit(&msp->ms_lock);
1595}
1596
1597static void
1598metaslab_group_preload(metaslab_group_t *mg)
1599{
1600 spa_t *spa = mg->mg_vd->vdev_spa;
1601 metaslab_t *msp;
1602 avl_tree_t *t = &mg->mg_metaslab_tree;
1603 int m = 0;
1604
1605 if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
1606 taskq_wait(mg->mg_taskq);
1607 return;
1608 }
93cf2076 1609
080b3100 1610 mutex_enter(&mg->mg_lock);
93cf2076 1611 /*
080b3100 1612 * Load the next potential metaslabs
93cf2076 1613 */
080b3100
GW
1614 msp = avl_first(t);
1615 while (msp != NULL) {
1616 metaslab_t *msp_next = AVL_NEXT(t, msp);
93cf2076 1617
f3a7f661
GW
1618 /*
1619 * We preload only the maximum number of metaslabs specified
1620 * by metaslab_preload_limit. If a metaslab is being forced
1621 * to condense then we preload it too. This will ensure
1622 * that force condensing happens in the next txg.
1623 */
1624 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
1625 msp = msp_next;
1626 continue;
1627 }
93cf2076 1628
080b3100
GW
1629 /*
1630 * We must drop the metaslab group lock here to preserve
1631 * lock ordering with the ms_lock (when grabbing both
1632 * the mg_lock and the ms_lock, the ms_lock must be taken
1633 * first). As a result, it is possible that the ordering
1634 * of the metaslabs within the avl tree may change before
1635 * we reacquire the lock. The metaslab cannot be removed from
1636 * the tree while we're in syncing context so it is safe to
1637 * drop the mg_lock here. If the metaslabs are reordered
1638 * nothing will break -- we just may end up loading a
1639 * less than optimal one.
1640 */
1641 mutex_exit(&mg->mg_lock);
93cf2076 1642 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
79c76d5b 1643 msp, TQ_SLEEP) != 0);
080b3100
GW
1644 mutex_enter(&mg->mg_lock);
1645 msp = msp_next;
93cf2076
GW
1646 }
1647 mutex_exit(&mg->mg_lock);
1648}
1649
e51be066 1650/*
93cf2076
GW
1651 * Determine if the space map's on-disk footprint is past our tolerance
1652 * for inefficiency. We would like to use the following criteria to make
1653 * our decision:
e51be066
GW
1654 *
1655 * 1. The size of the space map object should not dramatically increase as a
93cf2076 1656 * result of writing out the free space range tree.
e51be066
GW
1657 *
1658 * 2. The minimal on-disk space map representation is zfs_condense_pct/100
93cf2076
GW
1659 * times the size than the free space range tree representation
1660 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1.MB).
e51be066 1661 *
b02fe35d
AR
1662 * 3. The on-disk size of the space map should actually decrease.
1663 *
e51be066
GW
1664 * Checking the first condition is tricky since we don't want to walk
1665 * the entire AVL tree calculating the estimated on-disk size. Instead we
93cf2076
GW
1666 * use the size-ordered range tree in the metaslab and calculate the
1667 * size required to write out the largest segment in our free tree. If the
e51be066
GW
1668 * size required to represent that segment on disk is larger than the space
1669 * map object then we avoid condensing this map.
1670 *
1671 * To determine the second criterion we use a best-case estimate and assume
1672 * each segment can be represented on-disk as a single 64-bit entry. We refer
1673 * to this best-case estimate as the space map's minimal form.
b02fe35d
AR
1674 *
1675 * Unfortunately, we cannot compute the on-disk size of the space map in this
1676 * context because we cannot accurately compute the effects of compression, etc.
1677 * Instead, we apply the heuristic described in the block comment for
1678 * zfs_metaslab_condense_block_threshold - we only condense if the space used
1679 * is greater than a threshold number of blocks.
e51be066
GW
1680 */
1681static boolean_t
1682metaslab_should_condense(metaslab_t *msp)
1683{
93cf2076
GW
1684 space_map_t *sm = msp->ms_sm;
1685 range_seg_t *rs;
b02fe35d
AR
1686 uint64_t size, entries, segsz, object_size, optimal_size, record_size;
1687 dmu_object_info_t doi;
1688 uint64_t vdev_blocksize = 1 << msp->ms_group->mg_vd->vdev_ashift;
e51be066
GW
1689
1690 ASSERT(MUTEX_HELD(&msp->ms_lock));
93cf2076 1691 ASSERT(msp->ms_loaded);
e51be066
GW
1692
1693 /*
93cf2076 1694 * Use the ms_size_tree range tree, which is ordered by size, to
f3a7f661
GW
1695 * obtain the largest segment in the free tree. We always condense
1696 * metaslabs that are empty and metaslabs for which a condense
1697 * request has been made.
e51be066 1698 */
93cf2076 1699 rs = avl_last(&msp->ms_size_tree);
f3a7f661 1700 if (rs == NULL || msp->ms_condense_wanted)
e51be066
GW
1701 return (B_TRUE);
1702
1703 /*
1704 * Calculate the number of 64-bit entries this segment would
1705 * require when written to disk. If this single segment would be
1706 * larger on-disk than the entire current on-disk structure, then
1707 * clearly condensing will increase the on-disk structure size.
1708 */
93cf2076 1709 size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
e51be066
GW
1710 entries = size / (MIN(size, SM_RUN_MAX));
1711 segsz = entries * sizeof (uint64_t);
1712
b02fe35d
AR
1713 optimal_size = sizeof (uint64_t) * avl_numnodes(&msp->ms_tree->rt_root);
1714 object_size = space_map_length(msp->ms_sm);
1715
1716 dmu_object_info_from_db(sm->sm_dbuf, &doi);
1717 record_size = MAX(doi.doi_data_block_size, vdev_blocksize);
1718
1719 return (segsz <= object_size &&
1720 object_size >= (optimal_size * zfs_condense_pct / 100) &&
1721 object_size > zfs_metaslab_condense_block_threshold * record_size);
e51be066
GW
1722}
1723
1724/*
1725 * Condense the on-disk space map representation to its minimized form.
1726 * The minimized form consists of a small number of allocations followed by
93cf2076 1727 * the entries of the free range tree.
e51be066
GW
1728 */
1729static void
1730metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
1731{
1732 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
93cf2076
GW
1733 range_tree_t *freetree = msp->ms_freetree[txg & TXG_MASK];
1734 range_tree_t *condense_tree;
1735 space_map_t *sm = msp->ms_sm;
e51be066
GW
1736 int t;
1737
1738 ASSERT(MUTEX_HELD(&msp->ms_lock));
1739 ASSERT3U(spa_sync_pass(spa), ==, 1);
93cf2076 1740 ASSERT(msp->ms_loaded);
e51be066 1741
f3a7f661 1742
e51be066 1743 spa_dbgmsg(spa, "condensing: txg %llu, msp[%llu] %p, "
f3a7f661
GW
1744 "smp size %llu, segments %lu, forcing condense=%s", txg,
1745 msp->ms_id, msp, space_map_length(msp->ms_sm),
1746 avl_numnodes(&msp->ms_tree->rt_root),
1747 msp->ms_condense_wanted ? "TRUE" : "FALSE");
1748
1749 msp->ms_condense_wanted = B_FALSE;
e51be066
GW
1750
1751 /*
93cf2076 1752 * Create an range tree that is 100% allocated. We remove segments
e51be066
GW
1753 * that have been freed in this txg, any deferred frees that exist,
1754 * and any allocation in the future. Removing segments should be
93cf2076
GW
1755 * a relatively inexpensive operation since we expect these trees to
1756 * have a small number of nodes.
e51be066 1757 */
93cf2076
GW
1758 condense_tree = range_tree_create(NULL, NULL, &msp->ms_lock);
1759 range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
e51be066
GW
1760
1761 /*
93cf2076 1762 * Remove what's been freed in this txg from the condense_tree.
e51be066 1763 * Since we're in sync_pass 1, we know that all the frees from
93cf2076 1764 * this txg are in the freetree.
e51be066 1765 */
93cf2076 1766 range_tree_walk(freetree, range_tree_remove, condense_tree);
e51be066 1767
93cf2076
GW
1768 for (t = 0; t < TXG_DEFER_SIZE; t++) {
1769 range_tree_walk(msp->ms_defertree[t],
1770 range_tree_remove, condense_tree);
1771 }
e51be066 1772
93cf2076
GW
1773 for (t = 1; t < TXG_CONCURRENT_STATES; t++) {
1774 range_tree_walk(msp->ms_alloctree[(txg + t) & TXG_MASK],
1775 range_tree_remove, condense_tree);
1776 }
e51be066
GW
1777
1778 /*
1779 * We're about to drop the metaslab's lock thus allowing
1780 * other consumers to change it's content. Set the
93cf2076 1781 * metaslab's ms_condensing flag to ensure that
e51be066
GW
1782 * allocations on this metaslab do not occur while we're
1783 * in the middle of committing it to disk. This is only critical
93cf2076 1784 * for the ms_tree as all other range trees use per txg
e51be066
GW
1785 * views of their content.
1786 */
93cf2076 1787 msp->ms_condensing = B_TRUE;
e51be066
GW
1788
1789 mutex_exit(&msp->ms_lock);
93cf2076 1790 space_map_truncate(sm, tx);
e51be066
GW
1791 mutex_enter(&msp->ms_lock);
1792
1793 /*
1794 * While we would ideally like to create a space_map representation
1795 * that consists only of allocation records, doing so can be
93cf2076 1796 * prohibitively expensive because the in-core free tree can be
e51be066 1797 * large, and therefore computationally expensive to subtract
93cf2076
GW
1798 * from the condense_tree. Instead we sync out two trees, a cheap
1799 * allocation only tree followed by the in-core free tree. While not
e51be066
GW
1800 * optimal, this is typically close to optimal, and much cheaper to
1801 * compute.
1802 */
93cf2076
GW
1803 space_map_write(sm, condense_tree, SM_ALLOC, tx);
1804 range_tree_vacate(condense_tree, NULL, NULL);
1805 range_tree_destroy(condense_tree);
e51be066 1806
93cf2076
GW
1807 space_map_write(sm, msp->ms_tree, SM_FREE, tx);
1808 msp->ms_condensing = B_FALSE;
e51be066
GW
1809}
1810
34dc7c2f
BB
1811/*
1812 * Write a metaslab to disk in the context of the specified transaction group.
1813 */
1814void
1815metaslab_sync(metaslab_t *msp, uint64_t txg)
1816{
93cf2076
GW
1817 metaslab_group_t *mg = msp->ms_group;
1818 vdev_t *vd = mg->mg_vd;
34dc7c2f 1819 spa_t *spa = vd->vdev_spa;
428870ff 1820 objset_t *mos = spa_meta_objset(spa);
93cf2076
GW
1821 range_tree_t *alloctree = msp->ms_alloctree[txg & TXG_MASK];
1822 range_tree_t **freetree = &msp->ms_freetree[txg & TXG_MASK];
1823 range_tree_t **freed_tree =
1824 &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK];
34dc7c2f 1825 dmu_tx_t *tx;
93cf2076 1826 uint64_t object = space_map_object(msp->ms_sm);
34dc7c2f 1827
428870ff
BB
1828 ASSERT(!vd->vdev_ishole);
1829
e51be066
GW
1830 /*
1831 * This metaslab has just been added so there's no work to do now.
1832 */
93cf2076
GW
1833 if (*freetree == NULL) {
1834 ASSERT3P(alloctree, ==, NULL);
e51be066
GW
1835 return;
1836 }
1837
93cf2076
GW
1838 ASSERT3P(alloctree, !=, NULL);
1839 ASSERT3P(*freetree, !=, NULL);
1840 ASSERT3P(*freed_tree, !=, NULL);
e51be066 1841
f3a7f661
GW
1842 /*
1843 * Normally, we don't want to process a metaslab if there
1844 * are no allocations or frees to perform. However, if the metaslab
1845 * is being forced to condense we need to let it through.
1846 */
93cf2076 1847 if (range_tree_space(alloctree) == 0 &&
f3a7f661
GW
1848 range_tree_space(*freetree) == 0 &&
1849 !msp->ms_condense_wanted)
428870ff 1850 return;
34dc7c2f
BB
1851
1852 /*
1853 * The only state that can actually be changing concurrently with
93cf2076
GW
1854 * metaslab_sync() is the metaslab's ms_tree. No other thread can
1855 * be modifying this txg's alloctree, freetree, freed_tree, or
1856 * space_map_phys_t. Therefore, we only hold ms_lock to satify
1857 * space_map ASSERTs. We drop it whenever we call into the DMU,
1858 * because the DMU can call down to us (e.g. via zio_free()) at
1859 * any time.
34dc7c2f 1860 */
428870ff
BB
1861
1862 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
34dc7c2f 1863
93cf2076
GW
1864 if (msp->ms_sm == NULL) {
1865 uint64_t new_object;
1866
1867 new_object = space_map_alloc(mos, tx);
1868 VERIFY3U(new_object, !=, 0);
1869
1870 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
1871 msp->ms_start, msp->ms_size, vd->vdev_ashift,
1872 &msp->ms_lock));
1873 ASSERT(msp->ms_sm != NULL);
34dc7c2f
BB
1874 }
1875
428870ff
BB
1876 mutex_enter(&msp->ms_lock);
1877
96358617
MA
1878 /*
1879 * Note: metaslab_condense() clears the space_map's histogram.
1880 * Therefore we muse verify and remove this histogram before
1881 * condensing.
1882 */
1883 metaslab_group_histogram_verify(mg);
1884 metaslab_class_histogram_verify(mg->mg_class);
1885 metaslab_group_histogram_remove(mg, msp);
1886
93cf2076 1887 if (msp->ms_loaded && spa_sync_pass(spa) == 1 &&
e51be066
GW
1888 metaslab_should_condense(msp)) {
1889 metaslab_condense(msp, txg, tx);
1890 } else {
93cf2076
GW
1891 space_map_write(msp->ms_sm, alloctree, SM_ALLOC, tx);
1892 space_map_write(msp->ms_sm, *freetree, SM_FREE, tx);
e51be066 1893 }
428870ff 1894
93cf2076
GW
1895 if (msp->ms_loaded) {
1896 /*
1897 * When the space map is loaded, we have an accruate
1898 * histogram in the range tree. This gives us an opportunity
1899 * to bring the space map's histogram up-to-date so we clear
1900 * it first before updating it.
1901 */
1902 space_map_histogram_clear(msp->ms_sm);
1903 space_map_histogram_add(msp->ms_sm, msp->ms_tree, tx);
1904 } else {
1905 /*
1906 * Since the space map is not loaded we simply update the
1907 * exisiting histogram with what was freed in this txg. This
1908 * means that the on-disk histogram may not have an accurate
1909 * view of the free space but it's close enough to allow
1910 * us to make allocation decisions.
1911 */
1912 space_map_histogram_add(msp->ms_sm, *freetree, tx);
1913 }
f3a7f661
GW
1914 metaslab_group_histogram_add(mg, msp);
1915 metaslab_group_histogram_verify(mg);
1916 metaslab_class_histogram_verify(mg->mg_class);
34dc7c2f 1917
e51be066 1918 /*
93cf2076
GW
1919 * For sync pass 1, we avoid traversing this txg's free range tree
1920 * and instead will just swap the pointers for freetree and
1921 * freed_tree. We can safely do this since the freed_tree is
e51be066
GW
1922 * guaranteed to be empty on the initial pass.
1923 */
1924 if (spa_sync_pass(spa) == 1) {
93cf2076 1925 range_tree_swap(freetree, freed_tree);
e51be066 1926 } else {
93cf2076 1927 range_tree_vacate(*freetree, range_tree_add, *freed_tree);
34dc7c2f 1928 }
f3a7f661 1929 range_tree_vacate(alloctree, NULL, NULL);
34dc7c2f 1930
93cf2076
GW
1931 ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
1932 ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK]));
34dc7c2f
BB
1933
1934 mutex_exit(&msp->ms_lock);
1935
93cf2076
GW
1936 if (object != space_map_object(msp->ms_sm)) {
1937 object = space_map_object(msp->ms_sm);
1938 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
1939 msp->ms_id, sizeof (uint64_t), &object, tx);
1940 }
34dc7c2f
BB
1941 dmu_tx_commit(tx);
1942}
1943
1944/*
1945 * Called after a transaction group has completely synced to mark
1946 * all of the metaslab's free space as usable.
1947 */
1948void
1949metaslab_sync_done(metaslab_t *msp, uint64_t txg)
1950{
34dc7c2f
BB
1951 metaslab_group_t *mg = msp->ms_group;
1952 vdev_t *vd = mg->mg_vd;
93cf2076
GW
1953 range_tree_t **freed_tree;
1954 range_tree_t **defer_tree;
428870ff 1955 int64_t alloc_delta, defer_delta;
d6320ddb 1956 int t;
428870ff
BB
1957
1958 ASSERT(!vd->vdev_ishole);
34dc7c2f
BB
1959
1960 mutex_enter(&msp->ms_lock);
1961
1962 /*
1963 * If this metaslab is just becoming available, initialize its
93cf2076
GW
1964 * alloctrees, freetrees, and defertree and add its capacity to
1965 * the vdev.
34dc7c2f 1966 */
93cf2076 1967 if (msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK] == NULL) {
d6320ddb 1968 for (t = 0; t < TXG_SIZE; t++) {
93cf2076
GW
1969 ASSERT(msp->ms_alloctree[t] == NULL);
1970 ASSERT(msp->ms_freetree[t] == NULL);
1971
1972 msp->ms_alloctree[t] = range_tree_create(NULL, msp,
1973 &msp->ms_lock);
1974 msp->ms_freetree[t] = range_tree_create(NULL, msp,
1975 &msp->ms_lock);
34dc7c2f 1976 }
428870ff 1977
e51be066 1978 for (t = 0; t < TXG_DEFER_SIZE; t++) {
93cf2076 1979 ASSERT(msp->ms_defertree[t] == NULL);
e51be066 1980
93cf2076
GW
1981 msp->ms_defertree[t] = range_tree_create(NULL, msp,
1982 &msp->ms_lock);
1983 }
428870ff 1984
93cf2076 1985 vdev_space_update(vd, 0, 0, msp->ms_size);
34dc7c2f
BB
1986 }
1987
93cf2076
GW
1988 freed_tree = &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK];
1989 defer_tree = &msp->ms_defertree[txg % TXG_DEFER_SIZE];
1990
1991 alloc_delta = space_map_alloc_delta(msp->ms_sm);
1992 defer_delta = range_tree_space(*freed_tree) -
1993 range_tree_space(*defer_tree);
428870ff
BB
1994
1995 vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
34dc7c2f 1996
93cf2076
GW
1997 ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
1998 ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK]));
34dc7c2f
BB
1999
2000 /*
93cf2076 2001 * If there's a metaslab_load() in progress, wait for it to complete
34dc7c2f 2002 * so that we have a consistent view of the in-core space map.
34dc7c2f 2003 */
93cf2076 2004 metaslab_load_wait(msp);
c2e42f9d
GW
2005
2006 /*
93cf2076
GW
2007 * Move the frees from the defer_tree back to the free
2008 * range tree (if it's loaded). Swap the freed_tree and the
2009 * defer_tree -- this is safe to do because we've just emptied out
2010 * the defer_tree.
c2e42f9d 2011 */
93cf2076
GW
2012 range_tree_vacate(*defer_tree,
2013 msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree);
2014 range_tree_swap(freed_tree, defer_tree);
34dc7c2f 2015
93cf2076 2016 space_map_update(msp->ms_sm);
34dc7c2f 2017
428870ff
BB
2018 msp->ms_deferspace += defer_delta;
2019 ASSERT3S(msp->ms_deferspace, >=, 0);
93cf2076 2020 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
428870ff
BB
2021 if (msp->ms_deferspace != 0) {
2022 /*
2023 * Keep syncing this metaslab until all deferred frees
2024 * are back in circulation.
2025 */
2026 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2027 }
2028
93cf2076
GW
2029 if (msp->ms_loaded && msp->ms_access_txg < txg) {
2030 for (t = 1; t < TXG_CONCURRENT_STATES; t++) {
2031 VERIFY0(range_tree_space(
2032 msp->ms_alloctree[(txg + t) & TXG_MASK]));
2033 }
34dc7c2f 2034
93cf2076
GW
2035 if (!metaslab_debug_unload)
2036 metaslab_unload(msp);
34dc7c2f
BB
2037 }
2038
2039 metaslab_group_sort(mg, msp, metaslab_weight(msp));
34dc7c2f
BB
2040 mutex_exit(&msp->ms_lock);
2041}
2042
428870ff
BB
2043void
2044metaslab_sync_reassess(metaslab_group_t *mg)
2045{
1be627f5 2046 metaslab_group_alloc_update(mg);
f3a7f661 2047 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
6d974228 2048
428870ff 2049 /*
93cf2076 2050 * Preload the next potential metaslabs
428870ff 2051 */
93cf2076 2052 metaslab_group_preload(mg);
428870ff
BB
2053}
2054
34dc7c2f
BB
2055static uint64_t
2056metaslab_distance(metaslab_t *msp, dva_t *dva)
2057{
2058 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
2059 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
93cf2076 2060 uint64_t start = msp->ms_id;
34dc7c2f
BB
2061
2062 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
2063 return (1ULL << 63);
2064
2065 if (offset < start)
2066 return ((start - offset) << ms_shift);
2067 if (offset > start)
2068 return ((offset - start) << ms_shift);
2069 return (0);
2070}
2071
2072static uint64_t
6d974228 2073metaslab_group_alloc(metaslab_group_t *mg, uint64_t psize, uint64_t asize,
672692c7 2074 uint64_t txg, uint64_t min_distance, dva_t *dva, int d)
34dc7c2f 2075{
6d974228 2076 spa_t *spa = mg->mg_vd->vdev_spa;
34dc7c2f
BB
2077 metaslab_t *msp = NULL;
2078 uint64_t offset = -1ULL;
2079 avl_tree_t *t = &mg->mg_metaslab_tree;
2080 uint64_t activation_weight;
2081 uint64_t target_distance;
2082 int i;
2083
2084 activation_weight = METASLAB_WEIGHT_PRIMARY;
9babb374
BB
2085 for (i = 0; i < d; i++) {
2086 if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
34dc7c2f 2087 activation_weight = METASLAB_WEIGHT_SECONDARY;
9babb374
BB
2088 break;
2089 }
2090 }
34dc7c2f
BB
2091
2092 for (;;) {
9babb374
BB
2093 boolean_t was_active;
2094
34dc7c2f
BB
2095 mutex_enter(&mg->mg_lock);
2096 for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) {
6d974228
GW
2097 if (msp->ms_weight < asize) {
2098 spa_dbgmsg(spa, "%s: failed to meet weight "
2099 "requirement: vdev %llu, txg %llu, mg %p, "
2100 "msp %p, psize %llu, asize %llu, "
672692c7
GW
2101 "weight %llu", spa_name(spa),
2102 mg->mg_vd->vdev_id, txg,
2103 mg, msp, psize, asize, msp->ms_weight);
34dc7c2f
BB
2104 mutex_exit(&mg->mg_lock);
2105 return (-1ULL);
2106 }
7a614407
GW
2107
2108 /*
2109 * If the selected metaslab is condensing, skip it.
2110 */
93cf2076 2111 if (msp->ms_condensing)
7a614407
GW
2112 continue;
2113
9babb374 2114 was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
34dc7c2f
BB
2115 if (activation_weight == METASLAB_WEIGHT_PRIMARY)
2116 break;
2117
2118 target_distance = min_distance +
93cf2076
GW
2119 (space_map_allocated(msp->ms_sm) != 0 ? 0 :
2120 min_distance >> 1);
34dc7c2f
BB
2121
2122 for (i = 0; i < d; i++)
2123 if (metaslab_distance(msp, &dva[i]) <
2124 target_distance)
2125 break;
2126 if (i == d)
2127 break;
2128 }
2129 mutex_exit(&mg->mg_lock);
2130 if (msp == NULL)
2131 return (-1ULL);
2132
ac72fac3
GW
2133 mutex_enter(&msp->ms_lock);
2134
34dc7c2f
BB
2135 /*
2136 * Ensure that the metaslab we have selected is still
2137 * capable of handling our request. It's possible that
2138 * another thread may have changed the weight while we
2139 * were blocked on the metaslab lock.
2140 */
6d974228 2141 if (msp->ms_weight < asize || (was_active &&
9babb374
BB
2142 !(msp->ms_weight & METASLAB_ACTIVE_MASK) &&
2143 activation_weight == METASLAB_WEIGHT_PRIMARY)) {
34dc7c2f
BB
2144 mutex_exit(&msp->ms_lock);
2145 continue;
2146 }
2147
2148 if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
2149 activation_weight == METASLAB_WEIGHT_PRIMARY) {
2150 metaslab_passivate(msp,
2151 msp->ms_weight & ~METASLAB_ACTIVE_MASK);
2152 mutex_exit(&msp->ms_lock);
2153 continue;
2154 }
2155
6d974228 2156 if (metaslab_activate(msp, activation_weight) != 0) {
34dc7c2f
BB
2157 mutex_exit(&msp->ms_lock);
2158 continue;
2159 }
2160
7a614407
GW
2161 /*
2162 * If this metaslab is currently condensing then pick again as
2163 * we can't manipulate this metaslab until it's committed
2164 * to disk.
2165 */
93cf2076 2166 if (msp->ms_condensing) {
7a614407
GW
2167 mutex_exit(&msp->ms_lock);
2168 continue;
2169 }
2170
93cf2076 2171 if ((offset = metaslab_block_alloc(msp, asize)) != -1ULL)
34dc7c2f
BB
2172 break;
2173
93cf2076 2174 metaslab_passivate(msp, metaslab_block_maxsize(msp));
34dc7c2f
BB
2175 mutex_exit(&msp->ms_lock);
2176 }
2177
93cf2076 2178 if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
34dc7c2f
BB
2179 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
2180
93cf2076
GW
2181 range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, asize);
2182 msp->ms_access_txg = txg + metaslab_unload_delay;
34dc7c2f
BB
2183
2184 mutex_exit(&msp->ms_lock);
2185
2186 return (offset);
2187}
2188
2189/*
2190 * Allocate a block for the specified i/o.
2191 */
2192static int
2193metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
b128c09f 2194 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags)
34dc7c2f 2195{
920dd524 2196 metaslab_group_t *mg, *fast_mg, *rotor;
34dc7c2f
BB
2197 vdev_t *vd;
2198 int dshift = 3;
2199 int all_zero;
fb5f0bc8
BB
2200 int zio_lock = B_FALSE;
2201 boolean_t allocatable;
34dc7c2f
BB
2202 uint64_t offset = -1ULL;
2203 uint64_t asize;
2204 uint64_t distance;
2205
2206 ASSERT(!DVA_IS_VALID(&dva[d]));
2207
2208 /*
2209 * For testing, make some blocks above a certain size be gang blocks.
2210 */
428870ff 2211 if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0)
2e528b49 2212 return (SET_ERROR(ENOSPC));
34dc7c2f 2213
920dd524
ED
2214 if (flags & METASLAB_FASTWRITE)
2215 mutex_enter(&mc->mc_fastwrite_lock);
2216
34dc7c2f
BB
2217 /*
2218 * Start at the rotor and loop through all mgs until we find something.
428870ff 2219 * Note that there's no locking on mc_rotor or mc_aliquot because
34dc7c2f
BB
2220 * nothing actually breaks if we miss a few updates -- we just won't
2221 * allocate quite as evenly. It all balances out over time.
2222 *
2223 * If we are doing ditto or log blocks, try to spread them across
2224 * consecutive vdevs. If we're forced to reuse a vdev before we've
2225 * allocated all of our ditto blocks, then try and spread them out on
2226 * that vdev as much as possible. If it turns out to not be possible,
2227 * gradually lower our standards until anything becomes acceptable.
2228 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
2229 * gives us hope of containing our fault domains to something we're
2230 * able to reason about. Otherwise, any two top-level vdev failures
2231 * will guarantee the loss of data. With consecutive allocation,
2232 * only two adjacent top-level vdev failures will result in data loss.
2233 *
2234 * If we are doing gang blocks (hintdva is non-NULL), try to keep
2235 * ourselves on the same vdev as our gang block header. That
2236 * way, we can hope for locality in vdev_cache, plus it makes our
2237 * fault domains something tractable.
2238 */
2239 if (hintdva) {
2240 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
428870ff
BB
2241
2242 /*
2243 * It's possible the vdev we're using as the hint no
2244 * longer exists (i.e. removed). Consult the rotor when
2245 * all else fails.
2246 */
2247 if (vd != NULL) {
34dc7c2f 2248 mg = vd->vdev_mg;
428870ff
BB
2249
2250 if (flags & METASLAB_HINTBP_AVOID &&
2251 mg->mg_next != NULL)
2252 mg = mg->mg_next;
2253 } else {
2254 mg = mc->mc_rotor;
2255 }
34dc7c2f
BB
2256 } else if (d != 0) {
2257 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
2258 mg = vd->vdev_mg->mg_next;
920dd524
ED
2259 } else if (flags & METASLAB_FASTWRITE) {
2260 mg = fast_mg = mc->mc_rotor;
2261
2262 do {
2263 if (fast_mg->mg_vd->vdev_pending_fastwrite <
2264 mg->mg_vd->vdev_pending_fastwrite)
2265 mg = fast_mg;
2266 } while ((fast_mg = fast_mg->mg_next) != mc->mc_rotor);
2267
34dc7c2f
BB
2268 } else {
2269 mg = mc->mc_rotor;
2270 }
2271
2272 /*
428870ff
BB
2273 * If the hint put us into the wrong metaslab class, or into a
2274 * metaslab group that has been passivated, just follow the rotor.
34dc7c2f 2275 */
428870ff 2276 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
34dc7c2f
BB
2277 mg = mc->mc_rotor;
2278
2279 rotor = mg;
2280top:
2281 all_zero = B_TRUE;
2282 do {
428870ff
BB
2283 ASSERT(mg->mg_activation_count == 1);
2284
34dc7c2f 2285 vd = mg->mg_vd;
fb5f0bc8 2286
34dc7c2f 2287 /*
b128c09f 2288 * Don't allocate from faulted devices.
34dc7c2f 2289 */
fb5f0bc8
BB
2290 if (zio_lock) {
2291 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
2292 allocatable = vdev_allocatable(vd);
2293 spa_config_exit(spa, SCL_ZIO, FTAG);
2294 } else {
2295 allocatable = vdev_allocatable(vd);
2296 }
ac72fac3
GW
2297
2298 /*
2299 * Determine if the selected metaslab group is eligible
2300 * for allocations. If we're ganging or have requested
2301 * an allocation for the smallest gang block size
2302 * then we don't want to avoid allocating to the this
2303 * metaslab group. If we're in this condition we should
2304 * try to allocate from any device possible so that we
2305 * don't inadvertently return ENOSPC and suspend the pool
2306 * even though space is still available.
2307 */
2308 if (allocatable && CAN_FASTGANG(flags) &&
2309 psize > SPA_GANGBLOCKSIZE)
2310 allocatable = metaslab_group_allocatable(mg);
2311
fb5f0bc8 2312 if (!allocatable)
34dc7c2f 2313 goto next;
fb5f0bc8 2314
34dc7c2f
BB
2315 /*
2316 * Avoid writing single-copy data to a failing vdev
43a696ed 2317 * unless the user instructs us that it is okay.
34dc7c2f
BB
2318 */
2319 if ((vd->vdev_stat.vs_write_errors > 0 ||
2320 vd->vdev_state < VDEV_STATE_HEALTHY) &&
f3a7f661 2321 d == 0 && dshift == 3 && vd->vdev_children == 0) {
34dc7c2f
BB
2322 all_zero = B_FALSE;
2323 goto next;
2324 }
2325
2326 ASSERT(mg->mg_class == mc);
2327
2328 distance = vd->vdev_asize >> dshift;
2329 if (distance <= (1ULL << vd->vdev_ms_shift))
2330 distance = 0;
2331 else
2332 all_zero = B_FALSE;
2333
2334 asize = vdev_psize_to_asize(vd, psize);
2335 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
2336
6d974228 2337 offset = metaslab_group_alloc(mg, psize, asize, txg, distance,
672692c7 2338 dva, d);
34dc7c2f
BB
2339 if (offset != -1ULL) {
2340 /*
2341 * If we've just selected this metaslab group,
2342 * figure out whether the corresponding vdev is
2343 * over- or under-used relative to the pool,
2344 * and set an allocation bias to even it out.
2345 */
f3a7f661 2346 if (mc->mc_aliquot == 0 && metaslab_bias_enabled) {
34dc7c2f 2347 vdev_stat_t *vs = &vd->vdev_stat;
428870ff 2348 int64_t vu, cu;
34dc7c2f 2349
6d974228
GW
2350 vu = (vs->vs_alloc * 100) / (vs->vs_space + 1);
2351 cu = (mc->mc_alloc * 100) / (mc->mc_space + 1);
34dc7c2f
BB
2352
2353 /*
6d974228
GW
2354 * Calculate how much more or less we should
2355 * try to allocate from this device during
2356 * this iteration around the rotor.
2357 * For example, if a device is 80% full
2358 * and the pool is 20% full then we should
2359 * reduce allocations by 60% on this device.
2360 *
2361 * mg_bias = (20 - 80) * 512K / 100 = -307K
2362 *
2363 * This reduces allocations by 307K for this
2364 * iteration.
34dc7c2f 2365 */
428870ff 2366 mg->mg_bias = ((cu - vu) *
6d974228 2367 (int64_t)mg->mg_aliquot) / 100;
f3a7f661
GW
2368 } else if (!metaslab_bias_enabled) {
2369 mg->mg_bias = 0;
34dc7c2f
BB
2370 }
2371
920dd524
ED
2372 if ((flags & METASLAB_FASTWRITE) ||
2373 atomic_add_64_nv(&mc->mc_aliquot, asize) >=
34dc7c2f
BB
2374 mg->mg_aliquot + mg->mg_bias) {
2375 mc->mc_rotor = mg->mg_next;
428870ff 2376 mc->mc_aliquot = 0;
34dc7c2f
BB
2377 }
2378
2379 DVA_SET_VDEV(&dva[d], vd->vdev_id);
2380 DVA_SET_OFFSET(&dva[d], offset);
b128c09f 2381 DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
34dc7c2f
BB
2382 DVA_SET_ASIZE(&dva[d], asize);
2383
920dd524
ED
2384 if (flags & METASLAB_FASTWRITE) {
2385 atomic_add_64(&vd->vdev_pending_fastwrite,
2386 psize);
2387 mutex_exit(&mc->mc_fastwrite_lock);
2388 }
2389
34dc7c2f
BB
2390 return (0);
2391 }
2392next:
2393 mc->mc_rotor = mg->mg_next;
428870ff 2394 mc->mc_aliquot = 0;
34dc7c2f
BB
2395 } while ((mg = mg->mg_next) != rotor);
2396
2397 if (!all_zero) {
2398 dshift++;
2399 ASSERT(dshift < 64);
2400 goto top;
2401 }
2402
9babb374 2403 if (!allocatable && !zio_lock) {
fb5f0bc8
BB
2404 dshift = 3;
2405 zio_lock = B_TRUE;
2406 goto top;
2407 }
2408
34dc7c2f
BB
2409 bzero(&dva[d], sizeof (dva_t));
2410
920dd524
ED
2411 if (flags & METASLAB_FASTWRITE)
2412 mutex_exit(&mc->mc_fastwrite_lock);
2e528b49
MA
2413
2414 return (SET_ERROR(ENOSPC));
34dc7c2f
BB
2415}
2416
2417/*
2418 * Free the block represented by DVA in the context of the specified
2419 * transaction group.
2420 */
2421static void
2422metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
2423{
2424 uint64_t vdev = DVA_GET_VDEV(dva);
2425 uint64_t offset = DVA_GET_OFFSET(dva);
2426 uint64_t size = DVA_GET_ASIZE(dva);
2427 vdev_t *vd;
2428 metaslab_t *msp;
2429
2430 ASSERT(DVA_IS_VALID(dva));
2431
2432 if (txg > spa_freeze_txg(spa))
2433 return;
2434
2435 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
2436 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
2437 cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
2438 (u_longlong_t)vdev, (u_longlong_t)offset);
2439 ASSERT(0);
2440 return;
2441 }
2442
2443 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2444
2445 if (DVA_GET_GANG(dva))
2446 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
2447
2448 mutex_enter(&msp->ms_lock);
2449
2450 if (now) {
93cf2076 2451 range_tree_remove(msp->ms_alloctree[txg & TXG_MASK],
34dc7c2f 2452 offset, size);
93cf2076
GW
2453
2454 VERIFY(!msp->ms_condensing);
2455 VERIFY3U(offset, >=, msp->ms_start);
2456 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
2457 VERIFY3U(range_tree_space(msp->ms_tree) + size, <=,
2458 msp->ms_size);
2459 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
2460 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2461 range_tree_add(msp->ms_tree, offset, size);
34dc7c2f 2462 } else {
93cf2076 2463 if (range_tree_space(msp->ms_freetree[txg & TXG_MASK]) == 0)
34dc7c2f 2464 vdev_dirty(vd, VDD_METASLAB, msp, txg);
93cf2076
GW
2465 range_tree_add(msp->ms_freetree[txg & TXG_MASK],
2466 offset, size);
34dc7c2f
BB
2467 }
2468
2469 mutex_exit(&msp->ms_lock);
2470}
2471
2472/*
2473 * Intent log support: upon opening the pool after a crash, notify the SPA
2474 * of blocks that the intent log has allocated for immediate write, but
2475 * which are still considered free by the SPA because the last transaction
2476 * group didn't commit yet.
2477 */
2478static int
2479metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
2480{
2481 uint64_t vdev = DVA_GET_VDEV(dva);
2482 uint64_t offset = DVA_GET_OFFSET(dva);
2483 uint64_t size = DVA_GET_ASIZE(dva);
2484 vdev_t *vd;
2485 metaslab_t *msp;
428870ff 2486 int error = 0;
34dc7c2f
BB
2487
2488 ASSERT(DVA_IS_VALID(dva));
2489
2490 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
2491 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
2e528b49 2492 return (SET_ERROR(ENXIO));
34dc7c2f
BB
2493
2494 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2495
2496 if (DVA_GET_GANG(dva))
2497 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
2498
2499 mutex_enter(&msp->ms_lock);
2500
93cf2076 2501 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded)
6d974228 2502 error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
428870ff 2503
93cf2076 2504 if (error == 0 && !range_tree_contains(msp->ms_tree, offset, size))
2e528b49 2505 error = SET_ERROR(ENOENT);
428870ff 2506
b128c09f 2507 if (error || txg == 0) { /* txg == 0 indicates dry run */
34dc7c2f
BB
2508 mutex_exit(&msp->ms_lock);
2509 return (error);
2510 }
2511
93cf2076
GW
2512 VERIFY(!msp->ms_condensing);
2513 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
2514 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2515 VERIFY3U(range_tree_space(msp->ms_tree) - size, <=, msp->ms_size);
2516 range_tree_remove(msp->ms_tree, offset, size);
b128c09f 2517
fb5f0bc8 2518 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
93cf2076 2519 if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
b128c09f 2520 vdev_dirty(vd, VDD_METASLAB, msp, txg);
93cf2076 2521 range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, size);
b128c09f 2522 }
34dc7c2f
BB
2523
2524 mutex_exit(&msp->ms_lock);
2525
2526 return (0);
2527}
2528
2529int
2530metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
b128c09f 2531 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags)
34dc7c2f
BB
2532{
2533 dva_t *dva = bp->blk_dva;
2534 dva_t *hintdva = hintbp->blk_dva;
d6320ddb 2535 int d, error = 0;
34dc7c2f 2536
b128c09f 2537 ASSERT(bp->blk_birth == 0);
428870ff 2538 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
b128c09f
BB
2539
2540 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2541
2542 if (mc->mc_rotor == NULL) { /* no vdevs in this class */
2543 spa_config_exit(spa, SCL_ALLOC, FTAG);
2e528b49 2544 return (SET_ERROR(ENOSPC));
b128c09f 2545 }
34dc7c2f
BB
2546
2547 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
2548 ASSERT(BP_GET_NDVAS(bp) == 0);
2549 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
2550
d6320ddb 2551 for (d = 0; d < ndvas; d++) {
34dc7c2f 2552 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
b128c09f 2553 txg, flags);
93cf2076 2554 if (error != 0) {
34dc7c2f
BB
2555 for (d--; d >= 0; d--) {
2556 metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
2557 bzero(&dva[d], sizeof (dva_t));
2558 }
b128c09f 2559 spa_config_exit(spa, SCL_ALLOC, FTAG);
34dc7c2f
BB
2560 return (error);
2561 }
2562 }
2563 ASSERT(error == 0);
2564 ASSERT(BP_GET_NDVAS(bp) == ndvas);
2565
b128c09f
BB
2566 spa_config_exit(spa, SCL_ALLOC, FTAG);
2567
428870ff 2568 BP_SET_BIRTH(bp, txg, txg);
b128c09f 2569
34dc7c2f
BB
2570 return (0);
2571}
2572
2573void
2574metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
2575{
2576 const dva_t *dva = bp->blk_dva;
d6320ddb 2577 int d, ndvas = BP_GET_NDVAS(bp);
34dc7c2f
BB
2578
2579 ASSERT(!BP_IS_HOLE(bp));
428870ff 2580 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
b128c09f
BB
2581
2582 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
34dc7c2f 2583
d6320ddb 2584 for (d = 0; d < ndvas; d++)
34dc7c2f 2585 metaslab_free_dva(spa, &dva[d], txg, now);
b128c09f
BB
2586
2587 spa_config_exit(spa, SCL_FREE, FTAG);
34dc7c2f
BB
2588}
2589
2590int
2591metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
2592{
2593 const dva_t *dva = bp->blk_dva;
2594 int ndvas = BP_GET_NDVAS(bp);
d6320ddb 2595 int d, error = 0;
34dc7c2f
BB
2596
2597 ASSERT(!BP_IS_HOLE(bp));
2598
b128c09f
BB
2599 if (txg != 0) {
2600 /*
2601 * First do a dry run to make sure all DVAs are claimable,
2602 * so we don't have to unwind from partial failures below.
2603 */
2604 if ((error = metaslab_claim(spa, bp, 0)) != 0)
2605 return (error);
2606 }
2607
2608 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2609
d6320ddb 2610 for (d = 0; d < ndvas; d++)
34dc7c2f 2611 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
b128c09f
BB
2612 break;
2613
2614 spa_config_exit(spa, SCL_ALLOC, FTAG);
2615
2616 ASSERT(error == 0 || txg == 0);
34dc7c2f 2617
b128c09f 2618 return (error);
34dc7c2f 2619}
920dd524 2620
d1d7e268
MK
2621void
2622metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
920dd524
ED
2623{
2624 const dva_t *dva = bp->blk_dva;
2625 int ndvas = BP_GET_NDVAS(bp);
2626 uint64_t psize = BP_GET_PSIZE(bp);
2627 int d;
2628 vdev_t *vd;
2629
2630 ASSERT(!BP_IS_HOLE(bp));
9b67f605 2631 ASSERT(!BP_IS_EMBEDDED(bp));
920dd524
ED
2632 ASSERT(psize > 0);
2633
2634 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2635
2636 for (d = 0; d < ndvas; d++) {
2637 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
2638 continue;
2639 atomic_add_64(&vd->vdev_pending_fastwrite, psize);
2640 }
2641
2642 spa_config_exit(spa, SCL_VDEV, FTAG);
2643}
2644
d1d7e268
MK
2645void
2646metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
920dd524
ED
2647{
2648 const dva_t *dva = bp->blk_dva;
2649 int ndvas = BP_GET_NDVAS(bp);
2650 uint64_t psize = BP_GET_PSIZE(bp);
2651 int d;
2652 vdev_t *vd;
2653
2654 ASSERT(!BP_IS_HOLE(bp));
9b67f605 2655 ASSERT(!BP_IS_EMBEDDED(bp));
920dd524
ED
2656 ASSERT(psize > 0);
2657
2658 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2659
2660 for (d = 0; d < ndvas; d++) {
2661 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
2662 continue;
2663 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
2664 atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
2665 }
2666
2667 spa_config_exit(spa, SCL_VDEV, FTAG);
2668}
30b92c1d 2669
13fe0198
MA
2670void
2671metaslab_check_free(spa_t *spa, const blkptr_t *bp)
2672{
2673 int i, j;
2674
2675 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
2676 return;
2677
2678 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2679 for (i = 0; i < BP_GET_NDVAS(bp); i++) {
93cf2076
GW
2680 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
2681 vdev_t *vd = vdev_lookup_top(spa, vdev);
2682 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
13fe0198 2683 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
93cf2076 2684 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
13fe0198 2685
93cf2076
GW
2686 if (msp->ms_loaded)
2687 range_tree_verify(msp->ms_tree, offset, size);
13fe0198
MA
2688
2689 for (j = 0; j < TXG_SIZE; j++)
93cf2076 2690 range_tree_verify(msp->ms_freetree[j], offset, size);
13fe0198 2691 for (j = 0; j < TXG_DEFER_SIZE; j++)
93cf2076 2692 range_tree_verify(msp->ms_defertree[j], offset, size);
13fe0198
MA
2693 }
2694 spa_config_exit(spa, SCL_VDEV, FTAG);
2695}
2696
30b92c1d 2697#if defined(_KERNEL) && defined(HAVE_SPL)
aa7d06a9 2698module_param(metaslab_debug_load, int, 0644);
aa7d06a9 2699module_param(metaslab_debug_unload, int, 0644);
f3a7f661
GW
2700module_param(metaslab_preload_enabled, int, 0644);
2701module_param(zfs_mg_noalloc_threshold, int, 0644);
2702module_param(zfs_mg_fragmentation_threshold, int, 0644);
2703module_param(zfs_metaslab_fragmentation_threshold, int, 0644);
2704module_param(metaslab_fragmentation_factor_enabled, int, 0644);
2705module_param(metaslab_lba_weighting_enabled, int, 0644);
2706module_param(metaslab_bias_enabled, int, 0644);
2707
93cf2076
GW
2708MODULE_PARM_DESC(metaslab_debug_load,
2709 "load all metaslabs when pool is first opened");
1ce04573
BB
2710MODULE_PARM_DESC(metaslab_debug_unload,
2711 "prevent metaslabs from being unloaded");
f3a7f661
GW
2712MODULE_PARM_DESC(metaslab_preload_enabled,
2713 "preload potential metaslabs during reassessment");
f4a4046b 2714
f4a4046b
TC
2715MODULE_PARM_DESC(zfs_mg_noalloc_threshold,
2716 "percentage of free space for metaslab group to allow allocation");
f3a7f661
GW
2717MODULE_PARM_DESC(zfs_mg_fragmentation_threshold,
2718 "fragmentation for metaslab group to allow allocation");
2719
2720MODULE_PARM_DESC(zfs_metaslab_fragmentation_threshold,
2721 "fragmentation for metaslab to allow allocation");
2722MODULE_PARM_DESC(metaslab_fragmentation_factor_enabled,
2723 "use the fragmentation metric to prefer less fragmented metaslabs");
2724MODULE_PARM_DESC(metaslab_lba_weighting_enabled,
2725 "prefer metaslabs with lower LBAs");
2726MODULE_PARM_DESC(metaslab_bias_enabled,
2727 "enable metaslab group biasing");
30b92c1d 2728#endif /* _KERNEL && HAVE_SPL */