]> git.proxmox.com Git - mirror_zfs-debian.git/blame - module/zfs/spa_misc.c
Update to onnv_147
[mirror_zfs-debian.git] / module / zfs / spa_misc.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
34dc7c2f
BB
23 */
24
34dc7c2f
BB
25#include <sys/zfs_context.h>
26#include <sys/spa_impl.h>
27#include <sys/zio.h>
28#include <sys/zio_checksum.h>
29#include <sys/zio_compress.h>
30#include <sys/dmu.h>
31#include <sys/dmu_tx.h>
32#include <sys/zap.h>
33#include <sys/zil.h>
34#include <sys/vdev_impl.h>
35#include <sys/metaslab.h>
36#include <sys/uberblock_impl.h>
37#include <sys/txg.h>
38#include <sys/avl.h>
39#include <sys/unique.h>
40#include <sys/dsl_pool.h>
41#include <sys/dsl_dir.h>
42#include <sys/dsl_prop.h>
428870ff 43#include <sys/dsl_scan.h>
34dc7c2f
BB
44#include <sys/fs/zfs.h>
45#include <sys/metaslab_impl.h>
b128c09f 46#include <sys/arc.h>
428870ff 47#include <sys/ddt.h>
34dc7c2f
BB
48#include "zfs_prop.h"
49
50/*
51 * SPA locking
52 *
53 * There are four basic locks for managing spa_t structures:
54 *
55 * spa_namespace_lock (global mutex)
56 *
57 * This lock must be acquired to do any of the following:
58 *
59 * - Lookup a spa_t by name
60 * - Add or remove a spa_t from the namespace
61 * - Increase spa_refcount from non-zero
62 * - Check if spa_refcount is zero
63 * - Rename a spa_t
64 * - add/remove/attach/detach devices
65 * - Held for the duration of create/destroy/import/export
66 *
67 * It does not need to handle recursion. A create or destroy may
68 * reference objects (files or zvols) in other pools, but by
69 * definition they must have an existing reference, and will never need
70 * to lookup a spa_t by name.
71 *
72 * spa_refcount (per-spa refcount_t protected by mutex)
73 *
74 * This reference count keep track of any active users of the spa_t. The
75 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
76 * the refcount is never really 'zero' - opening a pool implicitly keeps
b128c09f 77 * some references in the DMU. Internally we check against spa_minref, but
34dc7c2f
BB
78 * present the image of a zero/non-zero value to consumers.
79 *
b128c09f 80 * spa_config_lock[] (per-spa array of rwlocks)
34dc7c2f
BB
81 *
82 * This protects the spa_t from config changes, and must be held in
83 * the following circumstances:
84 *
85 * - RW_READER to perform I/O to the spa
86 * - RW_WRITER to change the vdev config
87 *
34dc7c2f
BB
88 * The locking order is fairly straightforward:
89 *
90 * spa_namespace_lock -> spa_refcount
91 *
92 * The namespace lock must be acquired to increase the refcount from 0
93 * or to check if it is zero.
94 *
b128c09f 95 * spa_refcount -> spa_config_lock[]
34dc7c2f
BB
96 *
97 * There must be at least one valid reference on the spa_t to acquire
98 * the config lock.
99 *
b128c09f 100 * spa_namespace_lock -> spa_config_lock[]
34dc7c2f
BB
101 *
102 * The namespace lock must always be taken before the config lock.
103 *
104 *
b128c09f 105 * The spa_namespace_lock can be acquired directly and is globally visible.
34dc7c2f 106 *
b128c09f
BB
107 * The namespace is manipulated using the following functions, all of which
108 * require the spa_namespace_lock to be held.
34dc7c2f
BB
109 *
110 * spa_lookup() Lookup a spa_t by name.
111 *
112 * spa_add() Create a new spa_t in the namespace.
113 *
114 * spa_remove() Remove a spa_t from the namespace. This also
115 * frees up any memory associated with the spa_t.
116 *
117 * spa_next() Returns the next spa_t in the system, or the
118 * first if NULL is passed.
119 *
120 * spa_evict_all() Shutdown and remove all spa_t structures in
121 * the system.
122 *
123 * spa_guid_exists() Determine whether a pool/device guid exists.
124 *
125 * The spa_refcount is manipulated using the following functions:
126 *
127 * spa_open_ref() Adds a reference to the given spa_t. Must be
128 * called with spa_namespace_lock held if the
129 * refcount is currently zero.
130 *
131 * spa_close() Remove a reference from the spa_t. This will
132 * not free the spa_t or remove it from the
133 * namespace. No locking is required.
134 *
135 * spa_refcount_zero() Returns true if the refcount is currently
136 * zero. Must be called with spa_namespace_lock
137 * held.
138 *
b128c09f
BB
139 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
140 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
141 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
142 *
143 * To read the configuration, it suffices to hold one of these locks as reader.
144 * To modify the configuration, you must hold all locks as writer. To modify
145 * vdev state without altering the vdev tree's topology (e.g. online/offline),
146 * you must hold SCL_STATE and SCL_ZIO as writer.
147 *
148 * We use these distinct config locks to avoid recursive lock entry.
149 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
150 * block allocations (SCL_ALLOC), which may require reading space maps
151 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
152 *
153 * The spa config locks cannot be normal rwlocks because we need the
154 * ability to hand off ownership. For example, SCL_ZIO is acquired
155 * by the issuing thread and later released by an interrupt thread.
156 * They do, however, obey the usual write-wanted semantics to prevent
157 * writer (i.e. system administrator) starvation.
158 *
159 * The lock acquisition rules are as follows:
160 *
161 * SCL_CONFIG
162 * Protects changes to the vdev tree topology, such as vdev
163 * add/remove/attach/detach. Protects the dirty config list
164 * (spa_config_dirty_list) and the set of spares and l2arc devices.
165 *
166 * SCL_STATE
167 * Protects changes to pool state and vdev state, such as vdev
168 * online/offline/fault/degrade/clear. Protects the dirty state list
169 * (spa_state_dirty_list) and global pool state (spa_state).
170 *
171 * SCL_ALLOC
172 * Protects changes to metaslab groups and classes.
173 * Held as reader by metaslab_alloc() and metaslab_claim().
174 *
175 * SCL_ZIO
176 * Held by bp-level zios (those which have no io_vd upon entry)
177 * to prevent changes to the vdev tree. The bp-level zio implicitly
178 * protects all of its vdev child zios, which do not hold SCL_ZIO.
179 *
180 * SCL_FREE
181 * Protects changes to metaslab groups and classes.
182 * Held as reader by metaslab_free(). SCL_FREE is distinct from
183 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
184 * blocks in zio_done() while another i/o that holds either
185 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
186 *
187 * SCL_VDEV
188 * Held as reader to prevent changes to the vdev tree during trivial
428870ff 189 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
b128c09f
BB
190 * other locks, and lower than all of them, to ensure that it's safe
191 * to acquire regardless of caller context.
192 *
193 * In addition, the following rules apply:
194 *
195 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
196 * The lock ordering is SCL_CONFIG > spa_props_lock.
197 *
198 * (b) I/O operations on leaf vdevs. For any zio operation that takes
199 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
200 * or zio_write_phys() -- the caller must ensure that the config cannot
201 * cannot change in the interim, and that the vdev cannot be reopened.
202 * SCL_STATE as reader suffices for both.
34dc7c2f
BB
203 *
204 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
205 *
206 * spa_vdev_enter() Acquire the namespace lock and the config lock
207 * for writing.
208 *
209 * spa_vdev_exit() Release the config lock, wait for all I/O
210 * to complete, sync the updated configs to the
211 * cache, and release the namespace lock.
212 *
b128c09f
BB
213 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
214 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
215 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
216 *
217 * spa_rename() is also implemented within this file since is requires
218 * manipulation of the namespace.
34dc7c2f
BB
219 */
220
221static avl_tree_t spa_namespace_avl;
222kmutex_t spa_namespace_lock;
223static kcondvar_t spa_namespace_cv;
224static int spa_active_count;
225int spa_max_replication_override = SPA_DVAS_PER_BP;
226
227static kmutex_t spa_spare_lock;
228static avl_tree_t spa_spare_avl;
229static kmutex_t spa_l2cache_lock;
230static avl_tree_t spa_l2cache_avl;
231
232kmem_cache_t *spa_buffer_pool;
fb5f0bc8 233int spa_mode_global;
34dc7c2f
BB
234
235#ifdef ZFS_DEBUG
236/* Everything except dprintf is on by default in debug builds */
237int zfs_flags = ~ZFS_DEBUG_DPRINTF;
238#else
239int zfs_flags = 0;
240#endif
241
242/*
243 * zfs_recover can be set to nonzero to attempt to recover from
244 * otherwise-fatal errors, typically caused by on-disk corruption. When
245 * set, calls to zfs_panic_recover() will turn into warning messages.
246 */
247int zfs_recover = 0;
248
34dc7c2f
BB
249
250/*
251 * ==========================================================================
252 * SPA config locking
253 * ==========================================================================
254 */
255static void
b128c09f
BB
256spa_config_lock_init(spa_t *spa)
257{
258 for (int i = 0; i < SCL_LOCKS; i++) {
259 spa_config_lock_t *scl = &spa->spa_config_lock[i];
260 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
261 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
262 refcount_create(&scl->scl_count);
263 scl->scl_writer = NULL;
264 scl->scl_write_wanted = 0;
265 }
34dc7c2f
BB
266}
267
268static void
b128c09f
BB
269spa_config_lock_destroy(spa_t *spa)
270{
271 for (int i = 0; i < SCL_LOCKS; i++) {
272 spa_config_lock_t *scl = &spa->spa_config_lock[i];
273 mutex_destroy(&scl->scl_lock);
274 cv_destroy(&scl->scl_cv);
275 refcount_destroy(&scl->scl_count);
276 ASSERT(scl->scl_writer == NULL);
277 ASSERT(scl->scl_write_wanted == 0);
278 }
279}
280
281int
282spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
34dc7c2f 283{
b128c09f
BB
284 for (int i = 0; i < SCL_LOCKS; i++) {
285 spa_config_lock_t *scl = &spa->spa_config_lock[i];
286 if (!(locks & (1 << i)))
287 continue;
288 mutex_enter(&scl->scl_lock);
289 if (rw == RW_READER) {
290 if (scl->scl_writer || scl->scl_write_wanted) {
291 mutex_exit(&scl->scl_lock);
292 spa_config_exit(spa, locks ^ (1 << i), tag);
293 return (0);
294 }
295 } else {
296 ASSERT(scl->scl_writer != curthread);
297 if (!refcount_is_zero(&scl->scl_count)) {
298 mutex_exit(&scl->scl_lock);
299 spa_config_exit(spa, locks ^ (1 << i), tag);
300 return (0);
301 }
302 scl->scl_writer = curthread;
303 }
304 (void) refcount_add(&scl->scl_count, tag);
305 mutex_exit(&scl->scl_lock);
306 }
307 return (1);
34dc7c2f
BB
308}
309
310void
b128c09f 311spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
34dc7c2f 312{
45d1cae3
BB
313 int wlocks_held = 0;
314
b128c09f
BB
315 for (int i = 0; i < SCL_LOCKS; i++) {
316 spa_config_lock_t *scl = &spa->spa_config_lock[i];
45d1cae3
BB
317 if (scl->scl_writer == curthread)
318 wlocks_held |= (1 << i);
b128c09f
BB
319 if (!(locks & (1 << i)))
320 continue;
321 mutex_enter(&scl->scl_lock);
322 if (rw == RW_READER) {
323 while (scl->scl_writer || scl->scl_write_wanted) {
324 cv_wait(&scl->scl_cv, &scl->scl_lock);
325 }
326 } else {
327 ASSERT(scl->scl_writer != curthread);
328 while (!refcount_is_zero(&scl->scl_count)) {
329 scl->scl_write_wanted++;
330 cv_wait(&scl->scl_cv, &scl->scl_lock);
331 scl->scl_write_wanted--;
332 }
333 scl->scl_writer = curthread;
334 }
335 (void) refcount_add(&scl->scl_count, tag);
336 mutex_exit(&scl->scl_lock);
34dc7c2f 337 }
45d1cae3 338 ASSERT(wlocks_held <= locks);
34dc7c2f
BB
339}
340
341void
b128c09f 342spa_config_exit(spa_t *spa, int locks, void *tag)
34dc7c2f 343{
b128c09f
BB
344 for (int i = SCL_LOCKS - 1; i >= 0; i--) {
345 spa_config_lock_t *scl = &spa->spa_config_lock[i];
346 if (!(locks & (1 << i)))
347 continue;
348 mutex_enter(&scl->scl_lock);
349 ASSERT(!refcount_is_zero(&scl->scl_count));
350 if (refcount_remove(&scl->scl_count, tag) == 0) {
351 ASSERT(scl->scl_writer == NULL ||
352 scl->scl_writer == curthread);
353 scl->scl_writer = NULL; /* OK in either case */
354 cv_broadcast(&scl->scl_cv);
355 }
356 mutex_exit(&scl->scl_lock);
34dc7c2f 357 }
34dc7c2f
BB
358}
359
b128c09f
BB
360int
361spa_config_held(spa_t *spa, int locks, krw_t rw)
34dc7c2f 362{
b128c09f 363 int locks_held = 0;
34dc7c2f 364
b128c09f
BB
365 for (int i = 0; i < SCL_LOCKS; i++) {
366 spa_config_lock_t *scl = &spa->spa_config_lock[i];
367 if (!(locks & (1 << i)))
368 continue;
369 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
370 (rw == RW_WRITER && scl->scl_writer == curthread))
371 locks_held |= 1 << i;
372 }
373
374 return (locks_held);
34dc7c2f
BB
375}
376
377/*
378 * ==========================================================================
379 * SPA namespace functions
380 * ==========================================================================
381 */
382
383/*
384 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
385 * Returns NULL if no matching spa_t is found.
386 */
387spa_t *
388spa_lookup(const char *name)
389{
b128c09f
BB
390 static spa_t search; /* spa_t is large; don't allocate on stack */
391 spa_t *spa;
34dc7c2f
BB
392 avl_index_t where;
393 char c;
394 char *cp;
395
396 ASSERT(MUTEX_HELD(&spa_namespace_lock));
397
398 /*
399 * If it's a full dataset name, figure out the pool name and
400 * just use that.
401 */
402 cp = strpbrk(name, "/@");
403 if (cp) {
404 c = *cp;
405 *cp = '\0';
406 }
407
b128c09f 408 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
34dc7c2f
BB
409 spa = avl_find(&spa_namespace_avl, &search, &where);
410
411 if (cp)
412 *cp = c;
413
414 return (spa);
415}
416
417/*
418 * Create an uninitialized spa_t with the given name. Requires
419 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
420 * exist by calling spa_lookup() first.
421 */
422spa_t *
428870ff 423spa_add(const char *name, nvlist_t *config, const char *altroot)
34dc7c2f
BB
424{
425 spa_t *spa;
b128c09f 426 spa_config_dirent_t *dp;
34dc7c2f
BB
427
428 ASSERT(MUTEX_HELD(&spa_namespace_lock));
429
430 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
431
34dc7c2f 432 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f 433 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
428870ff 434 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f 435 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
428870ff 436 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f 437 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
428870ff
BB
438 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
439 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
440 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
441
442 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
428870ff 443 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
34dc7c2f 444 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
b128c09f 445 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
34dc7c2f 446
428870ff
BB
447 for (int t = 0; t < TXG_SIZE; t++)
448 bplist_create(&spa->spa_free_bplist[t]);
449
b128c09f 450 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
34dc7c2f
BB
451 spa->spa_state = POOL_STATE_UNINITIALIZED;
452 spa->spa_freeze_txg = UINT64_MAX;
453 spa->spa_final_txg = UINT64_MAX;
428870ff
BB
454 spa->spa_load_max_txg = UINT64_MAX;
455 spa->spa_proc = &p0;
456 spa->spa_proc_state = SPA_PROC_NONE;
34dc7c2f
BB
457
458 refcount_create(&spa->spa_refcount);
b128c09f 459 spa_config_lock_init(spa);
34dc7c2f
BB
460
461 avl_add(&spa_namespace_avl, spa);
462
34dc7c2f
BB
463 /*
464 * Set the alternate root, if there is one.
465 */
466 if (altroot) {
467 spa->spa_root = spa_strdup(altroot);
468 spa_active_count++;
469 }
470
b128c09f
BB
471 /*
472 * Every pool starts with the default cachefile
473 */
474 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
475 offsetof(spa_config_dirent_t, scd_link));
476
477 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
428870ff 478 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
b128c09f
BB
479 list_insert_head(&spa->spa_config_list, dp);
480
572e2857
BB
481 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
482 KM_SLEEP) == 0);
483
428870ff
BB
484 if (config != NULL)
485 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
486
34dc7c2f
BB
487 return (spa);
488}
489
490/*
491 * Removes a spa_t from the namespace, freeing up any memory used. Requires
492 * spa_namespace_lock. This is called only after the spa_t has been closed and
493 * deactivated.
494 */
495void
496spa_remove(spa_t *spa)
497{
b128c09f
BB
498 spa_config_dirent_t *dp;
499
34dc7c2f
BB
500 ASSERT(MUTEX_HELD(&spa_namespace_lock));
501 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
34dc7c2f 502
428870ff
BB
503 nvlist_free(spa->spa_config_splitting);
504
34dc7c2f
BB
505 avl_remove(&spa_namespace_avl, spa);
506 cv_broadcast(&spa_namespace_cv);
507
508 if (spa->spa_root) {
509 spa_strfree(spa->spa_root);
510 spa_active_count--;
511 }
512
b128c09f
BB
513 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
514 list_remove(&spa->spa_config_list, dp);
515 if (dp->scd_path != NULL)
516 spa_strfree(dp->scd_path);
517 kmem_free(dp, sizeof (spa_config_dirent_t));
518 }
34dc7c2f 519
b128c09f 520 list_destroy(&spa->spa_config_list);
34dc7c2f 521
572e2857 522 nvlist_free(spa->spa_load_info);
34dc7c2f
BB
523 spa_config_set(spa, NULL);
524
525 refcount_destroy(&spa->spa_refcount);
526
b128c09f 527 spa_config_lock_destroy(spa);
34dc7c2f 528
428870ff
BB
529 for (int t = 0; t < TXG_SIZE; t++)
530 bplist_destroy(&spa->spa_free_bplist[t]);
531
34dc7c2f 532 cv_destroy(&spa->spa_async_cv);
428870ff 533 cv_destroy(&spa->spa_proc_cv);
34dc7c2f 534 cv_destroy(&spa->spa_scrub_io_cv);
b128c09f 535 cv_destroy(&spa->spa_suspend_cv);
34dc7c2f 536
34dc7c2f 537 mutex_destroy(&spa->spa_async_lock);
34dc7c2f 538 mutex_destroy(&spa->spa_errlist_lock);
428870ff 539 mutex_destroy(&spa->spa_errlog_lock);
34dc7c2f 540 mutex_destroy(&spa->spa_history_lock);
428870ff 541 mutex_destroy(&spa->spa_proc_lock);
34dc7c2f 542 mutex_destroy(&spa->spa_props_lock);
428870ff 543 mutex_destroy(&spa->spa_scrub_lock);
b128c09f 544 mutex_destroy(&spa->spa_suspend_lock);
428870ff 545 mutex_destroy(&spa->spa_vdev_top_lock);
34dc7c2f
BB
546
547 kmem_free(spa, sizeof (spa_t));
548}
549
550/*
551 * Given a pool, return the next pool in the namespace, or NULL if there is
552 * none. If 'prev' is NULL, return the first pool.
553 */
554spa_t *
555spa_next(spa_t *prev)
556{
557 ASSERT(MUTEX_HELD(&spa_namespace_lock));
558
559 if (prev)
560 return (AVL_NEXT(&spa_namespace_avl, prev));
561 else
562 return (avl_first(&spa_namespace_avl));
563}
564
565/*
566 * ==========================================================================
567 * SPA refcount functions
568 * ==========================================================================
569 */
570
571/*
572 * Add a reference to the given spa_t. Must have at least one reference, or
573 * have the namespace lock held.
574 */
575void
576spa_open_ref(spa_t *spa, void *tag)
577{
b128c09f 578 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
34dc7c2f 579 MUTEX_HELD(&spa_namespace_lock));
34dc7c2f
BB
580 (void) refcount_add(&spa->spa_refcount, tag);
581}
582
583/*
584 * Remove a reference to the given spa_t. Must have at least one reference, or
585 * have the namespace lock held.
586 */
587void
588spa_close(spa_t *spa, void *tag)
589{
b128c09f 590 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
34dc7c2f 591 MUTEX_HELD(&spa_namespace_lock));
34dc7c2f
BB
592 (void) refcount_remove(&spa->spa_refcount, tag);
593}
594
595/*
596 * Check to see if the spa refcount is zero. Must be called with
b128c09f 597 * spa_namespace_lock held. We really compare against spa_minref, which is the
34dc7c2f
BB
598 * number of references acquired when opening a pool
599 */
600boolean_t
601spa_refcount_zero(spa_t *spa)
602{
603 ASSERT(MUTEX_HELD(&spa_namespace_lock));
604
b128c09f 605 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
34dc7c2f
BB
606}
607
608/*
609 * ==========================================================================
610 * SPA spare and l2cache tracking
611 * ==========================================================================
612 */
613
614/*
615 * Hot spares and cache devices are tracked using the same code below,
616 * for 'auxiliary' devices.
617 */
618
619typedef struct spa_aux {
620 uint64_t aux_guid;
621 uint64_t aux_pool;
622 avl_node_t aux_avl;
623 int aux_count;
624} spa_aux_t;
625
626static int
627spa_aux_compare(const void *a, const void *b)
628{
629 const spa_aux_t *sa = a;
630 const spa_aux_t *sb = b;
631
632 if (sa->aux_guid < sb->aux_guid)
633 return (-1);
634 else if (sa->aux_guid > sb->aux_guid)
635 return (1);
636 else
637 return (0);
638}
639
640void
641spa_aux_add(vdev_t *vd, avl_tree_t *avl)
642{
643 avl_index_t where;
644 spa_aux_t search;
645 spa_aux_t *aux;
646
647 search.aux_guid = vd->vdev_guid;
648 if ((aux = avl_find(avl, &search, &where)) != NULL) {
649 aux->aux_count++;
650 } else {
651 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
652 aux->aux_guid = vd->vdev_guid;
653 aux->aux_count = 1;
654 avl_insert(avl, aux, where);
655 }
656}
657
658void
659spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
660{
661 spa_aux_t search;
662 spa_aux_t *aux;
663 avl_index_t where;
664
665 search.aux_guid = vd->vdev_guid;
666 aux = avl_find(avl, &search, &where);
667
668 ASSERT(aux != NULL);
669
670 if (--aux->aux_count == 0) {
671 avl_remove(avl, aux);
672 kmem_free(aux, sizeof (spa_aux_t));
673 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
674 aux->aux_pool = 0ULL;
675 }
676}
677
678boolean_t
b128c09f 679spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
34dc7c2f
BB
680{
681 spa_aux_t search, *found;
34dc7c2f
BB
682
683 search.aux_guid = guid;
b128c09f 684 found = avl_find(avl, &search, NULL);
34dc7c2f
BB
685
686 if (pool) {
687 if (found)
688 *pool = found->aux_pool;
689 else
690 *pool = 0ULL;
691 }
692
b128c09f
BB
693 if (refcnt) {
694 if (found)
695 *refcnt = found->aux_count;
696 else
697 *refcnt = 0;
698 }
699
34dc7c2f
BB
700 return (found != NULL);
701}
702
703void
704spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
705{
706 spa_aux_t search, *found;
707 avl_index_t where;
708
709 search.aux_guid = vd->vdev_guid;
710 found = avl_find(avl, &search, &where);
711 ASSERT(found != NULL);
712 ASSERT(found->aux_pool == 0ULL);
713
714 found->aux_pool = spa_guid(vd->vdev_spa);
715}
716
717/*
718 * Spares are tracked globally due to the following constraints:
719 *
720 * - A spare may be part of multiple pools.
721 * - A spare may be added to a pool even if it's actively in use within
722 * another pool.
723 * - A spare in use in any pool can only be the source of a replacement if
724 * the target is a spare in the same pool.
725 *
726 * We keep track of all spares on the system through the use of a reference
727 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
728 * spare, then we bump the reference count in the AVL tree. In addition, we set
729 * the 'vdev_isspare' member to indicate that the device is a spare (active or
730 * inactive). When a spare is made active (used to replace a device in the
731 * pool), we also keep track of which pool its been made a part of.
732 *
733 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
734 * called under the spa_namespace lock as part of vdev reconfiguration. The
735 * separate spare lock exists for the status query path, which does not need to
736 * be completely consistent with respect to other vdev configuration changes.
737 */
738
739static int
740spa_spare_compare(const void *a, const void *b)
741{
742 return (spa_aux_compare(a, b));
743}
744
745void
746spa_spare_add(vdev_t *vd)
747{
748 mutex_enter(&spa_spare_lock);
749 ASSERT(!vd->vdev_isspare);
750 spa_aux_add(vd, &spa_spare_avl);
751 vd->vdev_isspare = B_TRUE;
752 mutex_exit(&spa_spare_lock);
753}
754
755void
756spa_spare_remove(vdev_t *vd)
757{
758 mutex_enter(&spa_spare_lock);
759 ASSERT(vd->vdev_isspare);
760 spa_aux_remove(vd, &spa_spare_avl);
761 vd->vdev_isspare = B_FALSE;
762 mutex_exit(&spa_spare_lock);
763}
764
765boolean_t
b128c09f 766spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
34dc7c2f
BB
767{
768 boolean_t found;
769
770 mutex_enter(&spa_spare_lock);
b128c09f 771 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
34dc7c2f
BB
772 mutex_exit(&spa_spare_lock);
773
774 return (found);
775}
776
777void
778spa_spare_activate(vdev_t *vd)
779{
780 mutex_enter(&spa_spare_lock);
781 ASSERT(vd->vdev_isspare);
782 spa_aux_activate(vd, &spa_spare_avl);
783 mutex_exit(&spa_spare_lock);
784}
785
786/*
787 * Level 2 ARC devices are tracked globally for the same reasons as spares.
788 * Cache devices currently only support one pool per cache device, and so
789 * for these devices the aux reference count is currently unused beyond 1.
790 */
791
792static int
793spa_l2cache_compare(const void *a, const void *b)
794{
795 return (spa_aux_compare(a, b));
796}
797
798void
799spa_l2cache_add(vdev_t *vd)
800{
801 mutex_enter(&spa_l2cache_lock);
802 ASSERT(!vd->vdev_isl2cache);
803 spa_aux_add(vd, &spa_l2cache_avl);
804 vd->vdev_isl2cache = B_TRUE;
805 mutex_exit(&spa_l2cache_lock);
806}
807
808void
809spa_l2cache_remove(vdev_t *vd)
810{
811 mutex_enter(&spa_l2cache_lock);
812 ASSERT(vd->vdev_isl2cache);
813 spa_aux_remove(vd, &spa_l2cache_avl);
814 vd->vdev_isl2cache = B_FALSE;
815 mutex_exit(&spa_l2cache_lock);
816}
817
818boolean_t
819spa_l2cache_exists(uint64_t guid, uint64_t *pool)
820{
821 boolean_t found;
822
823 mutex_enter(&spa_l2cache_lock);
b128c09f 824 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
34dc7c2f
BB
825 mutex_exit(&spa_l2cache_lock);
826
827 return (found);
828}
829
830void
831spa_l2cache_activate(vdev_t *vd)
832{
833 mutex_enter(&spa_l2cache_lock);
834 ASSERT(vd->vdev_isl2cache);
835 spa_aux_activate(vd, &spa_l2cache_avl);
836 mutex_exit(&spa_l2cache_lock);
837}
838
34dc7c2f
BB
839/*
840 * ==========================================================================
841 * SPA vdev locking
842 * ==========================================================================
843 */
844
845/*
846 * Lock the given spa_t for the purpose of adding or removing a vdev.
847 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
848 * It returns the next transaction group for the spa_t.
849 */
850uint64_t
851spa_vdev_enter(spa_t *spa)
852{
428870ff 853 mutex_enter(&spa->spa_vdev_top_lock);
34dc7c2f 854 mutex_enter(&spa_namespace_lock);
428870ff
BB
855 return (spa_vdev_config_enter(spa));
856}
857
858/*
859 * Internal implementation for spa_vdev_enter(). Used when a vdev
860 * operation requires multiple syncs (i.e. removing a device) while
861 * keeping the spa_namespace_lock held.
862 */
863uint64_t
864spa_vdev_config_enter(spa_t *spa)
865{
866 ASSERT(MUTEX_HELD(&spa_namespace_lock));
34dc7c2f 867
b128c09f 868 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
34dc7c2f
BB
869
870 return (spa_last_synced_txg(spa) + 1);
871}
872
873/*
428870ff
BB
874 * Used in combination with spa_vdev_config_enter() to allow the syncing
875 * of multiple transactions without releasing the spa_namespace_lock.
34dc7c2f 876 */
428870ff
BB
877void
878spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
34dc7c2f 879{
428870ff
BB
880 ASSERT(MUTEX_HELD(&spa_namespace_lock));
881
34dc7c2f
BB
882 int config_changed = B_FALSE;
883
884 ASSERT(txg > spa_last_synced_txg(spa));
885
b128c09f
BB
886 spa->spa_pending_vdev = NULL;
887
34dc7c2f
BB
888 /*
889 * Reassess the DTLs.
890 */
891 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
892
b128c09f 893 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
34dc7c2f 894 config_changed = B_TRUE;
428870ff 895 spa->spa_config_generation++;
34dc7c2f
BB
896 }
897
428870ff
BB
898 /*
899 * Verify the metaslab classes.
900 */
901 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
902 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
903
b128c09f 904 spa_config_exit(spa, SCL_ALL, spa);
34dc7c2f 905
428870ff
BB
906 /*
907 * Panic the system if the specified tag requires it. This
908 * is useful for ensuring that configurations are updated
909 * transactionally.
910 */
911 if (zio_injection_enabled)
912 zio_handle_panic_injection(spa, tag, 0);
913
34dc7c2f
BB
914 /*
915 * Note: this txg_wait_synced() is important because it ensures
916 * that there won't be more than one config change per txg.
917 * This allows us to use the txg as the generation number.
918 */
919 if (error == 0)
920 txg_wait_synced(spa->spa_dsl_pool, txg);
921
922 if (vd != NULL) {
fb5f0bc8
BB
923 ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0);
924 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
34dc7c2f 925 vdev_free(vd);
fb5f0bc8 926 spa_config_exit(spa, SCL_ALL, spa);
34dc7c2f
BB
927 }
928
929 /*
930 * If the config changed, update the config cache.
931 */
932 if (config_changed)
b128c09f 933 spa_config_sync(spa, B_FALSE, B_TRUE);
428870ff 934}
34dc7c2f 935
428870ff
BB
936/*
937 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
938 * locking of spa_vdev_enter(), we also want make sure the transactions have
939 * synced to disk, and then update the global configuration cache with the new
940 * information.
941 */
942int
943spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
944{
945 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
34dc7c2f 946 mutex_exit(&spa_namespace_lock);
428870ff 947 mutex_exit(&spa->spa_vdev_top_lock);
34dc7c2f
BB
948
949 return (error);
950}
951
b128c09f
BB
952/*
953 * Lock the given spa_t for the purpose of changing vdev state.
954 */
955void
428870ff 956spa_vdev_state_enter(spa_t *spa, int oplocks)
b128c09f 957{
428870ff
BB
958 int locks = SCL_STATE_ALL | oplocks;
959
960 /*
961 * Root pools may need to read of the underlying devfs filesystem
962 * when opening up a vdev. Unfortunately if we're holding the
963 * SCL_ZIO lock it will result in a deadlock when we try to issue
964 * the read from the root filesystem. Instead we "prefetch"
965 * the associated vnodes that we need prior to opening the
966 * underlying devices and cache them so that we can prevent
967 * any I/O when we are doing the actual open.
968 */
969 if (spa_is_root(spa)) {
970 int low = locks & ~(SCL_ZIO - 1);
971 int high = locks & ~low;
972
973 spa_config_enter(spa, high, spa, RW_WRITER);
974 vdev_hold(spa->spa_root_vdev);
975 spa_config_enter(spa, low, spa, RW_WRITER);
976 } else {
977 spa_config_enter(spa, locks, spa, RW_WRITER);
978 }
979 spa->spa_vdev_locks = locks;
b128c09f
BB
980}
981
982int
983spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
984{
428870ff
BB
985 boolean_t config_changed = B_FALSE;
986
987 if (vd != NULL || error == 0)
988 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
989 0, 0, B_FALSE);
990
991 if (vd != NULL) {
b128c09f 992 vdev_state_dirty(vd->vdev_top);
428870ff
BB
993 config_changed = B_TRUE;
994 spa->spa_config_generation++;
995 }
b128c09f 996
428870ff
BB
997 if (spa_is_root(spa))
998 vdev_rele(spa->spa_root_vdev);
999
1000 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1001 spa_config_exit(spa, spa->spa_vdev_locks, spa);
b128c09f 1002
fb5f0bc8
BB
1003 /*
1004 * If anything changed, wait for it to sync. This ensures that,
1005 * from the system administrator's perspective, zpool(1M) commands
1006 * are synchronous. This is important for things like zpool offline:
1007 * when the command completes, you expect no further I/O from ZFS.
1008 */
1009 if (vd != NULL)
1010 txg_wait_synced(spa->spa_dsl_pool, 0);
1011
428870ff
BB
1012 /*
1013 * If the config changed, update the config cache.
1014 */
1015 if (config_changed) {
1016 mutex_enter(&spa_namespace_lock);
1017 spa_config_sync(spa, B_FALSE, B_TRUE);
1018 mutex_exit(&spa_namespace_lock);
1019 }
1020
b128c09f
BB
1021 return (error);
1022}
1023
34dc7c2f
BB
1024/*
1025 * ==========================================================================
1026 * Miscellaneous functions
1027 * ==========================================================================
1028 */
1029
1030/*
1031 * Rename a spa_t.
1032 */
1033int
1034spa_rename(const char *name, const char *newname)
1035{
1036 spa_t *spa;
1037 int err;
1038
1039 /*
1040 * Lookup the spa_t and grab the config lock for writing. We need to
1041 * actually open the pool so that we can sync out the necessary labels.
1042 * It's OK to call spa_open() with the namespace lock held because we
1043 * allow recursive calls for other reasons.
1044 */
1045 mutex_enter(&spa_namespace_lock);
1046 if ((err = spa_open(name, &spa, FTAG)) != 0) {
1047 mutex_exit(&spa_namespace_lock);
1048 return (err);
1049 }
1050
b128c09f 1051 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
34dc7c2f
BB
1052
1053 avl_remove(&spa_namespace_avl, spa);
b128c09f 1054 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
34dc7c2f
BB
1055 avl_add(&spa_namespace_avl, spa);
1056
1057 /*
1058 * Sync all labels to disk with the new names by marking the root vdev
1059 * dirty and waiting for it to sync. It will pick up the new pool name
1060 * during the sync.
1061 */
1062 vdev_config_dirty(spa->spa_root_vdev);
1063
b128c09f 1064 spa_config_exit(spa, SCL_ALL, FTAG);
34dc7c2f
BB
1065
1066 txg_wait_synced(spa->spa_dsl_pool, 0);
1067
1068 /*
1069 * Sync the updated config cache.
1070 */
b128c09f 1071 spa_config_sync(spa, B_FALSE, B_TRUE);
34dc7c2f
BB
1072
1073 spa_close(spa, FTAG);
1074
1075 mutex_exit(&spa_namespace_lock);
1076
1077 return (0);
1078}
1079
34dc7c2f 1080/*
572e2857
BB
1081 * Return the spa_t associated with given pool_guid, if it exists. If
1082 * device_guid is non-zero, determine whether the pool exists *and* contains
1083 * a device with the specified device_guid.
34dc7c2f 1084 */
572e2857
BB
1085spa_t *
1086spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
34dc7c2f
BB
1087{
1088 spa_t *spa;
1089 avl_tree_t *t = &spa_namespace_avl;
1090
1091 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1092
1093 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1094 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1095 continue;
1096 if (spa->spa_root_vdev == NULL)
1097 continue;
1098 if (spa_guid(spa) == pool_guid) {
1099 if (device_guid == 0)
1100 break;
1101
1102 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1103 device_guid) != NULL)
1104 break;
1105
1106 /*
1107 * Check any devices we may be in the process of adding.
1108 */
1109 if (spa->spa_pending_vdev) {
1110 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1111 device_guid) != NULL)
1112 break;
1113 }
1114 }
1115 }
1116
572e2857
BB
1117 return (spa);
1118}
1119
1120/*
1121 * Determine whether a pool with the given pool_guid exists.
1122 */
1123boolean_t
1124spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1125{
1126 return (spa_by_guid(pool_guid, device_guid) != NULL);
34dc7c2f
BB
1127}
1128
1129char *
1130spa_strdup(const char *s)
1131{
1132 size_t len;
1133 char *new;
1134
1135 len = strlen(s);
1136 new = kmem_alloc(len + 1, KM_SLEEP);
1137 bcopy(s, new, len);
1138 new[len] = '\0';
1139
1140 return (new);
1141}
1142
1143void
1144spa_strfree(char *s)
1145{
1146 kmem_free(s, strlen(s) + 1);
1147}
1148
1149uint64_t
1150spa_get_random(uint64_t range)
1151{
1152 uint64_t r;
1153
1154 ASSERT(range != 0);
1155
1156 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1157
1158 return (r % range);
1159}
1160
428870ff
BB
1161uint64_t
1162spa_generate_guid(spa_t *spa)
34dc7c2f 1163{
428870ff 1164 uint64_t guid = spa_get_random(-1ULL);
34dc7c2f 1165
428870ff
BB
1166 if (spa != NULL) {
1167 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1168 guid = spa_get_random(-1ULL);
1169 } else {
1170 while (guid == 0 || spa_guid_exists(guid, 0))
1171 guid = spa_get_random(-1ULL);
34dc7c2f
BB
1172 }
1173
428870ff
BB
1174 return (guid);
1175}
1176
1177void
1178sprintf_blkptr(char *buf, const blkptr_t *bp)
1179{
1180 char *type = NULL;
1181 char *checksum = NULL;
1182 char *compress = NULL;
34dc7c2f 1183
428870ff
BB
1184 if (bp != NULL) {
1185 type = dmu_ot[BP_GET_TYPE(bp)].ot_name;
1186 checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1187 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
34dc7c2f
BB
1188 }
1189
428870ff 1190 SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress);
34dc7c2f
BB
1191}
1192
1193void
1194spa_freeze(spa_t *spa)
1195{
1196 uint64_t freeze_txg = 0;
1197
b128c09f 1198 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
34dc7c2f
BB
1199 if (spa->spa_freeze_txg == UINT64_MAX) {
1200 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1201 spa->spa_freeze_txg = freeze_txg;
1202 }
b128c09f 1203 spa_config_exit(spa, SCL_ALL, FTAG);
34dc7c2f
BB
1204 if (freeze_txg != 0)
1205 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1206}
1207
1208void
1209zfs_panic_recover(const char *fmt, ...)
1210{
1211 va_list adx;
1212
1213 va_start(adx, fmt);
1214 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1215 va_end(adx);
1216}
1217
428870ff
BB
1218/*
1219 * This is a stripped-down version of strtoull, suitable only for converting
1220 * lowercase hexidecimal numbers that don't overflow.
1221 */
1222uint64_t
1223strtonum(const char *str, char **nptr)
1224{
1225 uint64_t val = 0;
1226 char c;
1227 int digit;
1228
1229 while ((c = *str) != '\0') {
1230 if (c >= '0' && c <= '9')
1231 digit = c - '0';
1232 else if (c >= 'a' && c <= 'f')
1233 digit = 10 + c - 'a';
1234 else
1235 break;
1236
1237 val *= 16;
1238 val += digit;
1239
1240 str++;
1241 }
1242
1243 if (nptr)
1244 *nptr = (char *)str;
1245
1246 return (val);
1247}
1248
34dc7c2f
BB
1249/*
1250 * ==========================================================================
1251 * Accessor functions
1252 * ==========================================================================
1253 */
1254
b128c09f
BB
1255boolean_t
1256spa_shutting_down(spa_t *spa)
34dc7c2f 1257{
b128c09f 1258 return (spa->spa_async_suspended);
34dc7c2f
BB
1259}
1260
1261dsl_pool_t *
1262spa_get_dsl(spa_t *spa)
1263{
1264 return (spa->spa_dsl_pool);
1265}
1266
1267blkptr_t *
1268spa_get_rootblkptr(spa_t *spa)
1269{
1270 return (&spa->spa_ubsync.ub_rootbp);
1271}
1272
1273void
1274spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1275{
1276 spa->spa_uberblock.ub_rootbp = *bp;
1277}
1278
1279void
1280spa_altroot(spa_t *spa, char *buf, size_t buflen)
1281{
1282 if (spa->spa_root == NULL)
1283 buf[0] = '\0';
1284 else
1285 (void) strncpy(buf, spa->spa_root, buflen);
1286}
1287
1288int
1289spa_sync_pass(spa_t *spa)
1290{
1291 return (spa->spa_sync_pass);
1292}
1293
1294char *
1295spa_name(spa_t *spa)
1296{
34dc7c2f
BB
1297 return (spa->spa_name);
1298}
1299
1300uint64_t
1301spa_guid(spa_t *spa)
1302{
1303 /*
1304 * If we fail to parse the config during spa_load(), we can go through
1305 * the error path (which posts an ereport) and end up here with no root
1306 * vdev. We stash the original pool guid in 'spa_load_guid' to handle
1307 * this case.
1308 */
1309 if (spa->spa_root_vdev != NULL)
1310 return (spa->spa_root_vdev->vdev_guid);
1311 else
1312 return (spa->spa_load_guid);
1313}
1314
1315uint64_t
1316spa_last_synced_txg(spa_t *spa)
1317{
1318 return (spa->spa_ubsync.ub_txg);
1319}
1320
1321uint64_t
1322spa_first_txg(spa_t *spa)
1323{
1324 return (spa->spa_first_txg);
1325}
1326
428870ff
BB
1327uint64_t
1328spa_syncing_txg(spa_t *spa)
1329{
1330 return (spa->spa_syncing_txg);
1331}
1332
b128c09f 1333pool_state_t
34dc7c2f
BB
1334spa_state(spa_t *spa)
1335{
1336 return (spa->spa_state);
1337}
1338
428870ff
BB
1339spa_load_state_t
1340spa_load_state(spa_t *spa)
34dc7c2f 1341{
428870ff 1342 return (spa->spa_load_state);
34dc7c2f
BB
1343}
1344
34dc7c2f 1345uint64_t
428870ff 1346spa_freeze_txg(spa_t *spa)
34dc7c2f 1347{
428870ff 1348 return (spa->spa_freeze_txg);
34dc7c2f
BB
1349}
1350
428870ff 1351/* ARGSUSED */
34dc7c2f 1352uint64_t
428870ff 1353spa_get_asize(spa_t *spa, uint64_t lsize)
34dc7c2f 1354{
428870ff
BB
1355 /*
1356 * The worst case is single-sector max-parity RAID-Z blocks, in which
1357 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
1358 * times the size; so just assume that. Add to this the fact that
1359 * we can have up to 3 DVAs per bp, and one more factor of 2 because
1360 * the block may be dittoed with up to 3 DVAs by ddt_sync().
1361 */
1362 return (lsize * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2);
34dc7c2f
BB
1363}
1364
34dc7c2f
BB
1365uint64_t
1366spa_get_dspace(spa_t *spa)
1367{
428870ff 1368 return (spa->spa_dspace);
34dc7c2f
BB
1369}
1370
428870ff
BB
1371void
1372spa_update_dspace(spa_t *spa)
34dc7c2f 1373{
428870ff
BB
1374 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1375 ddt_get_dedup_dspace(spa);
34dc7c2f
BB
1376}
1377
1378/*
1379 * Return the failure mode that has been set to this pool. The default
1380 * behavior will be to block all I/Os when a complete failure occurs.
1381 */
1382uint8_t
1383spa_get_failmode(spa_t *spa)
1384{
1385 return (spa->spa_failmode);
1386}
1387
b128c09f
BB
1388boolean_t
1389spa_suspended(spa_t *spa)
1390{
1391 return (spa->spa_suspended);
1392}
1393
34dc7c2f
BB
1394uint64_t
1395spa_version(spa_t *spa)
1396{
1397 return (spa->spa_ubsync.ub_version);
1398}
1399
428870ff
BB
1400boolean_t
1401spa_deflate(spa_t *spa)
1402{
1403 return (spa->spa_deflate);
1404}
1405
1406metaslab_class_t *
1407spa_normal_class(spa_t *spa)
1408{
1409 return (spa->spa_normal_class);
1410}
1411
1412metaslab_class_t *
1413spa_log_class(spa_t *spa)
1414{
1415 return (spa->spa_log_class);
1416}
1417
34dc7c2f
BB
1418int
1419spa_max_replication(spa_t *spa)
1420{
1421 /*
1422 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1423 * handle BPs with more than one DVA allocated. Set our max
1424 * replication level accordingly.
1425 */
1426 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1427 return (1);
1428 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1429}
1430
428870ff
BB
1431int
1432spa_prev_software_version(spa_t *spa)
1433{
1434 return (spa->spa_prev_software_version);
1435}
1436
34dc7c2f 1437uint64_t
428870ff 1438dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
34dc7c2f 1439{
428870ff
BB
1440 uint64_t asize = DVA_GET_ASIZE(dva);
1441 uint64_t dsize = asize;
34dc7c2f 1442
428870ff 1443 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
34dc7c2f 1444
428870ff
BB
1445 if (asize != 0 && spa->spa_deflate) {
1446 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1447 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
34dc7c2f 1448 }
428870ff
BB
1449
1450 return (dsize);
1451}
1452
1453uint64_t
1454bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1455{
1456 uint64_t dsize = 0;
1457
1458 for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1459 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1460
1461 return (dsize);
1462}
1463
1464uint64_t
1465bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1466{
1467 uint64_t dsize = 0;
1468
1469 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1470
1471 for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1472 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1473
b128c09f 1474 spa_config_exit(spa, SCL_VDEV, FTAG);
428870ff
BB
1475
1476 return (dsize);
34dc7c2f
BB
1477}
1478
1479/*
1480 * ==========================================================================
1481 * Initialization and Termination
1482 * ==========================================================================
1483 */
1484
1485static int
1486spa_name_compare(const void *a1, const void *a2)
1487{
1488 const spa_t *s1 = a1;
1489 const spa_t *s2 = a2;
1490 int s;
1491
1492 s = strcmp(s1->spa_name, s2->spa_name);
1493 if (s > 0)
1494 return (1);
1495 if (s < 0)
1496 return (-1);
1497 return (0);
1498}
1499
1500int
1501spa_busy(void)
1502{
1503 return (spa_active_count);
1504}
1505
1506void
1507spa_boot_init()
1508{
1509 spa_config_load();
1510}
1511
1512void
1513spa_init(int mode)
1514{
1515 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1516 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1517 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1518 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1519
1520 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1521 offsetof(spa_t, spa_avl));
1522
1523 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1524 offsetof(spa_aux_t, aux_avl));
1525
1526 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1527 offsetof(spa_aux_t, aux_avl));
1528
fb5f0bc8 1529 spa_mode_global = mode;
34dc7c2f
BB
1530
1531 refcount_init();
1532 unique_init();
1533 zio_init();
1534 dmu_init();
1535 zil_init();
1536 vdev_cache_stat_init();
1537 zfs_prop_init();
1538 zpool_prop_init();
1539 spa_config_load();
b128c09f 1540 l2arc_start();
34dc7c2f
BB
1541}
1542
1543void
1544spa_fini(void)
1545{
b128c09f
BB
1546 l2arc_stop();
1547
34dc7c2f
BB
1548 spa_evict_all();
1549
1550 vdev_cache_stat_fini();
1551 zil_fini();
1552 dmu_fini();
1553 zio_fini();
1554 unique_fini();
1555 refcount_fini();
1556
1557 avl_destroy(&spa_namespace_avl);
1558 avl_destroy(&spa_spare_avl);
1559 avl_destroy(&spa_l2cache_avl);
1560
1561 cv_destroy(&spa_namespace_cv);
1562 mutex_destroy(&spa_namespace_lock);
1563 mutex_destroy(&spa_spare_lock);
1564 mutex_destroy(&spa_l2cache_lock);
1565}
1566
1567/*
1568 * Return whether this pool has slogs. No locking needed.
1569 * It's not a problem if the wrong answer is returned as it's only for
1570 * performance and not correctness
1571 */
1572boolean_t
1573spa_has_slogs(spa_t *spa)
1574{
1575 return (spa->spa_log_class->mc_rotor != NULL);
1576}
b128c09f 1577
428870ff
BB
1578spa_log_state_t
1579spa_get_log_state(spa_t *spa)
1580{
1581 return (spa->spa_log_state);
1582}
1583
1584void
1585spa_set_log_state(spa_t *spa, spa_log_state_t state)
1586{
1587 spa->spa_log_state = state;
1588}
1589
b128c09f
BB
1590boolean_t
1591spa_is_root(spa_t *spa)
1592{
1593 return (spa->spa_is_root);
1594}
fb5f0bc8
BB
1595
1596boolean_t
1597spa_writeable(spa_t *spa)
1598{
1599 return (!!(spa->spa_mode & FWRITE));
1600}
1601
1602int
1603spa_mode(spa_t *spa)
1604{
1605 return (spa->spa_mode);
1606}
428870ff
BB
1607
1608uint64_t
1609spa_bootfs(spa_t *spa)
1610{
1611 return (spa->spa_bootfs);
1612}
1613
1614uint64_t
1615spa_delegation(spa_t *spa)
1616{
1617 return (spa->spa_delegation);
1618}
1619
1620objset_t *
1621spa_meta_objset(spa_t *spa)
1622{
1623 return (spa->spa_meta_objset);
1624}
1625
1626enum zio_checksum
1627spa_dedup_checksum(spa_t *spa)
1628{
1629 return (spa->spa_dedup_checksum);
1630}
1631
1632/*
1633 * Reset pool scan stat per scan pass (or reboot).
1634 */
1635void
1636spa_scan_stat_init(spa_t *spa)
1637{
1638 /* data not stored on disk */
1639 spa->spa_scan_pass_start = gethrestime_sec();
1640 spa->spa_scan_pass_exam = 0;
1641 vdev_scan_stat_init(spa->spa_root_vdev);
1642}
1643
1644/*
1645 * Get scan stats for zpool status reports
1646 */
1647int
1648spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1649{
1650 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1651
1652 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1653 return (ENOENT);
1654 bzero(ps, sizeof (pool_scan_stat_t));
1655
1656 /* data stored on disk */
1657 ps->pss_func = scn->scn_phys.scn_func;
1658 ps->pss_start_time = scn->scn_phys.scn_start_time;
1659 ps->pss_end_time = scn->scn_phys.scn_end_time;
1660 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1661 ps->pss_examined = scn->scn_phys.scn_examined;
1662 ps->pss_to_process = scn->scn_phys.scn_to_process;
1663 ps->pss_processed = scn->scn_phys.scn_processed;
1664 ps->pss_errors = scn->scn_phys.scn_errors;
1665 ps->pss_state = scn->scn_phys.scn_state;
1666
1667 /* data not stored on disk */
1668 ps->pss_pass_start = spa->spa_scan_pass_start;
1669 ps->pss_pass_exam = spa->spa_scan_pass_exam;
1670
1671 return (0);
1672}