]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/txg.c
Ignore *.{deb,rpm,tar.gz} files in the top directory.
[mirror_zfs.git] / module / zfs / txg.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
29809a6c 23 * Portions Copyright 2011 Martin Matuska
89103a26 24 * Copyright (c) 2013 by Delphix. All rights reserved.
34dc7c2f
BB
25 */
26
34dc7c2f
BB
27#include <sys/zfs_context.h>
28#include <sys/txg_impl.h>
29#include <sys/dmu_impl.h>
428870ff 30#include <sys/dmu_tx.h>
34dc7c2f 31#include <sys/dsl_pool.h>
428870ff 32#include <sys/dsl_scan.h>
34dc7c2f 33#include <sys/callb.h>
e95853a3 34#include <sys/spa_impl.h>
34dc7c2f
BB
35
36/*
89103a26
AL
37 * ZFS Transaction Groups
38 * ----------------------
39 *
40 * ZFS transaction groups are, as the name implies, groups of transactions
41 * that act on persistent state. ZFS asserts consistency at the granularity of
42 * these transaction groups. Each successive transaction group (txg) is
43 * assigned a 64-bit consecutive identifier. There are three active
44 * transaction group states: open, quiescing, or syncing. At any given time,
45 * there may be an active txg associated with each state; each active txg may
46 * either be processing, or blocked waiting to enter the next state. There may
47 * be up to three active txgs, and there is always a txg in the open state
48 * (though it may be blocked waiting to enter the quiescing state). In broad
49 * strokes, transactions — operations that change in-memory structures — are
50 * accepted into the txg in the open state, and are completed while the txg is
51 * in the open or quiescing states. The accumulated changes are written to
52 * disk in the syncing state.
53 *
54 * Open
55 *
56 * When a new txg becomes active, it first enters the open state. New
57 * transactions — updates to in-memory structures — are assigned to the
58 * currently open txg. There is always a txg in the open state so that ZFS can
59 * accept new changes (though the txg may refuse new changes if it has hit
60 * some limit). ZFS advances the open txg to the next state for a variety of
61 * reasons such as it hitting a time or size threshold, or the execution of an
62 * administrative action that must be completed in the syncing state.
63 *
64 * Quiescing
65 *
66 * After a txg exits the open state, it enters the quiescing state. The
67 * quiescing state is intended to provide a buffer between accepting new
68 * transactions in the open state and writing them out to stable storage in
69 * the syncing state. While quiescing, transactions can continue their
70 * operation without delaying either of the other states. Typically, a txg is
71 * in the quiescing state very briefly since the operations are bounded by
72 * software latencies rather than, say, slower I/O latencies. After all
73 * transactions complete, the txg is ready to enter the next state.
74 *
75 * Syncing
76 *
77 * In the syncing state, the in-memory state built up during the open and (to
78 * a lesser degree) the quiescing states is written to stable storage. The
79 * process of writing out modified data can, in turn modify more data. For
80 * example when we write new blocks, we need to allocate space for them; those
81 * allocations modify metadata (space maps)... which themselves must be
82 * written to stable storage. During the sync state, ZFS iterates, writing out
83 * data until it converges and all in-memory changes have been written out.
84 * The first such pass is the largest as it encompasses all the modified user
85 * data (as opposed to filesystem metadata). Subsequent passes typically have
86 * far less data to write as they consist exclusively of filesystem metadata.
87 *
88 * To ensure convergence, after a certain number of passes ZFS begins
89 * overwriting locations on stable storage that had been allocated earlier in
90 * the syncing state (and subsequently freed). ZFS usually allocates new
91 * blocks to optimize for large, continuous, writes. For the syncing state to
92 * converge however it must complete a pass where no new blocks are allocated
93 * since each allocation requires a modification of persistent metadata.
94 * Further, to hasten convergence, after a prescribed number of passes, ZFS
95 * also defers frees, and stops compressing.
96 *
97 * In addition to writing out user data, we must also execute synctasks during
98 * the syncing context. A synctask is the mechanism by which some
99 * administrative activities work such as creating and destroying snapshots or
100 * datasets. Note that when a synctask is initiated it enters the open txg,
101 * and ZFS then pushes that txg as quickly as possible to completion of the
102 * syncing state in order to reduce the latency of the administrative
103 * activity. To complete the syncing state, ZFS writes out a new uberblock,
104 * the root of the tree of blocks that comprise all state stored on the ZFS
105 * pool. Finally, if there is a quiesced txg waiting, we signal that it can
106 * now transition to the syncing state.
34dc7c2f
BB
107 */
108
109static void txg_sync_thread(dsl_pool_t *dp);
110static void txg_quiesce_thread(dsl_pool_t *dp);
111
572e2857 112int zfs_txg_timeout = 5; /* max seconds worth of delta per txg */
34dc7c2f
BB
113
114/*
115 * Prepare the txg subsystem.
116 */
117void
118txg_init(dsl_pool_t *dp, uint64_t txg)
119{
120 tx_state_t *tx = &dp->dp_tx;
121 int c;
122 bzero(tx, sizeof (tx_state_t));
123
00b46022 124 tx->tx_cpu = vmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP);
34dc7c2f
BB
125
126 for (c = 0; c < max_ncpus; c++) {
127 int i;
128
129 mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL);
130 for (i = 0; i < TXG_SIZE; i++) {
131 cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT,
132 NULL);
428870ff
BB
133 list_create(&tx->tx_cpu[c].tc_callbacks[i],
134 sizeof (dmu_tx_callback_t),
135 offsetof(dmu_tx_callback_t, dcb_node));
34dc7c2f
BB
136 }
137 }
138
34dc7c2f
BB
139 mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL);
140
fb5f0bc8
BB
141 cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL);
142 cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL);
143 cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL);
144 cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL);
145 cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL);
146
34dc7c2f
BB
147 tx->tx_open_txg = txg;
148}
149
150/*
151 * Close down the txg subsystem.
152 */
153void
154txg_fini(dsl_pool_t *dp)
155{
156 tx_state_t *tx = &dp->dp_tx;
157 int c;
158
159 ASSERT(tx->tx_threads == 0);
160
34dc7c2f
BB
161 mutex_destroy(&tx->tx_sync_lock);
162
fb5f0bc8
BB
163 cv_destroy(&tx->tx_sync_more_cv);
164 cv_destroy(&tx->tx_sync_done_cv);
165 cv_destroy(&tx->tx_quiesce_more_cv);
166 cv_destroy(&tx->tx_quiesce_done_cv);
167 cv_destroy(&tx->tx_exit_cv);
168
34dc7c2f
BB
169 for (c = 0; c < max_ncpus; c++) {
170 int i;
171
172 mutex_destroy(&tx->tx_cpu[c].tc_lock);
428870ff 173 for (i = 0; i < TXG_SIZE; i++) {
34dc7c2f 174 cv_destroy(&tx->tx_cpu[c].tc_cv[i]);
428870ff
BB
175 list_destroy(&tx->tx_cpu[c].tc_callbacks[i]);
176 }
34dc7c2f
BB
177 }
178
428870ff
BB
179 if (tx->tx_commit_cb_taskq != NULL)
180 taskq_destroy(tx->tx_commit_cb_taskq);
181
00b46022 182 vmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t));
34dc7c2f
BB
183
184 bzero(tx, sizeof (tx_state_t));
185}
186
187/*
188 * Start syncing transaction groups.
189 */
190void
191txg_sync_start(dsl_pool_t *dp)
192{
193 tx_state_t *tx = &dp->dp_tx;
194
195 mutex_enter(&tx->tx_sync_lock);
196
197 dprintf("pool %p\n", dp);
198
199 ASSERT(tx->tx_threads == 0);
200
201 tx->tx_threads = 2;
202
203 tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread,
204 dp, 0, &p0, TS_RUN, minclsyspri);
205
b128c09f
BB
206 /*
207 * The sync thread can need a larger-than-default stack size on
208 * 32-bit x86. This is due in part to nested pools and
209 * scrub_visitbp() recursion.
210 */
428870ff 211 tx->tx_sync_thread = thread_create(NULL, 32<<10, txg_sync_thread,
34dc7c2f
BB
212 dp, 0, &p0, TS_RUN, minclsyspri);
213
214 mutex_exit(&tx->tx_sync_lock);
215}
216
217static void
218txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr)
219{
220 CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG);
221 mutex_enter(&tx->tx_sync_lock);
222}
223
224static void
225txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp)
226{
227 ASSERT(*tpp != NULL);
228 *tpp = NULL;
229 tx->tx_threads--;
230 cv_broadcast(&tx->tx_exit_cv);
231 CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */
232 thread_exit();
233}
234
235static void
236txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, uint64_t time)
237{
238 CALLB_CPR_SAFE_BEGIN(cpr);
239
240 if (time)
bfd214af 241 (void) cv_timedwait_interruptible(cv, &tx->tx_sync_lock,
428870ff 242 ddi_get_lbolt() + time);
34dc7c2f 243 else
bfd214af 244 cv_wait_interruptible(cv, &tx->tx_sync_lock);
34dc7c2f
BB
245
246 CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock);
247}
248
249/*
250 * Stop syncing transaction groups.
251 */
252void
253txg_sync_stop(dsl_pool_t *dp)
254{
255 tx_state_t *tx = &dp->dp_tx;
256
257 dprintf("pool %p\n", dp);
258 /*
259 * Finish off any work in progress.
260 */
261 ASSERT(tx->tx_threads == 2);
428870ff
BB
262
263 /*
264 * We need to ensure that we've vacated the deferred space_maps.
265 */
266 txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE);
34dc7c2f
BB
267
268 /*
269 * Wake all sync threads and wait for them to die.
270 */
271 mutex_enter(&tx->tx_sync_lock);
272
273 ASSERT(tx->tx_threads == 2);
274
275 tx->tx_exiting = 1;
276
277 cv_broadcast(&tx->tx_quiesce_more_cv);
278 cv_broadcast(&tx->tx_quiesce_done_cv);
279 cv_broadcast(&tx->tx_sync_more_cv);
280
281 while (tx->tx_threads != 0)
282 cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock);
283
284 tx->tx_exiting = 0;
285
286 mutex_exit(&tx->tx_sync_lock);
287}
288
289uint64_t
290txg_hold_open(dsl_pool_t *dp, txg_handle_t *th)
291{
292 tx_state_t *tx = &dp->dp_tx;
15a9e033 293 tx_cpu_t *tc;
34dc7c2f
BB
294 uint64_t txg;
295
15a9e033
PS
296 /*
297 * It appears the processor id is simply used as a "random"
298 * number to index into the array, and there isn't any other
299 * significance to the chosen tx_cpu. Because.. Why not use
300 * the current cpu to index into the array?
301 */
302 kpreempt_disable();
303 tc = &tx->tx_cpu[CPU_SEQID];
304 kpreempt_enable();
305
34dc7c2f
BB
306 mutex_enter(&tc->tc_lock);
307
308 txg = tx->tx_open_txg;
309 tc->tc_count[txg & TXG_MASK]++;
310
311 th->th_cpu = tc;
312 th->th_txg = txg;
313
314 return (txg);
315}
316
317void
318txg_rele_to_quiesce(txg_handle_t *th)
319{
320 tx_cpu_t *tc = th->th_cpu;
321
322 mutex_exit(&tc->tc_lock);
323}
324
428870ff
BB
325void
326txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks)
327{
328 tx_cpu_t *tc = th->th_cpu;
329 int g = th->th_txg & TXG_MASK;
330
331 mutex_enter(&tc->tc_lock);
332 list_move_tail(&tc->tc_callbacks[g], tx_callbacks);
333 mutex_exit(&tc->tc_lock);
334}
335
34dc7c2f
BB
336void
337txg_rele_to_sync(txg_handle_t *th)
338{
339 tx_cpu_t *tc = th->th_cpu;
340 int g = th->th_txg & TXG_MASK;
341
342 mutex_enter(&tc->tc_lock);
343 ASSERT(tc->tc_count[g] != 0);
344 if (--tc->tc_count[g] == 0)
345 cv_broadcast(&tc->tc_cv[g]);
346 mutex_exit(&tc->tc_lock);
347
348 th->th_cpu = NULL; /* defensive */
349}
350
351static void
352txg_quiesce(dsl_pool_t *dp, uint64_t txg)
353{
e95853a3
BB
354 hrtime_t start;
355 txg_history_t *th;
34dc7c2f
BB
356 tx_state_t *tx = &dp->dp_tx;
357 int g = txg & TXG_MASK;
358 int c;
359
360 /*
361 * Grab all tx_cpu locks so nobody else can get into this txg.
362 */
363 for (c = 0; c < max_ncpus; c++)
364 mutex_enter(&tx->tx_cpu[c].tc_lock);
365
366 ASSERT(txg == tx->tx_open_txg);
367 tx->tx_open_txg++;
368
e95853a3
BB
369 /*
370 * Measure how long the txg was open and replace the kstat.
371 */
372 th = dsl_pool_txg_history_get(dp, txg);
373 th->th_kstat.open_time = gethrtime() - th->th_kstat.birth;
374 th->th_kstat.state = TXG_STATE_QUIESCING;
375 dsl_pool_txg_history_put(th);
376 dsl_pool_txg_history_add(dp, tx->tx_open_txg);
377
34dc7c2f
BB
378 /*
379 * Now that we've incremented tx_open_txg, we can let threads
380 * enter the next transaction group.
381 */
382 for (c = 0; c < max_ncpus; c++)
383 mutex_exit(&tx->tx_cpu[c].tc_lock);
384
385 /*
386 * Quiesce the transaction group by waiting for everyone to txg_exit().
387 */
e95853a3
BB
388 start = gethrtime();
389
34dc7c2f
BB
390 for (c = 0; c < max_ncpus; c++) {
391 tx_cpu_t *tc = &tx->tx_cpu[c];
392 mutex_enter(&tc->tc_lock);
393 while (tc->tc_count[g] != 0)
394 cv_wait(&tc->tc_cv[g], &tc->tc_lock);
395 mutex_exit(&tc->tc_lock);
396 }
e95853a3
BB
397
398 /*
399 * Measure how long the txg took to quiesce.
400 */
401 th = dsl_pool_txg_history_get(dp, txg);
402 th->th_kstat.quiesce_time = gethrtime() - start;
403 dsl_pool_txg_history_put(th);
34dc7c2f
BB
404}
405
428870ff
BB
406static void
407txg_do_callbacks(list_t *cb_list)
408{
409 dmu_tx_do_callbacks(cb_list, 0);
410
411 list_destroy(cb_list);
412
413 kmem_free(cb_list, sizeof (list_t));
414}
415
416/*
417 * Dispatch the commit callbacks registered on this txg to worker threads.
418 */
419static void
420txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg)
421{
422 int c;
423 tx_state_t *tx = &dp->dp_tx;
424 list_t *cb_list;
425
426 for (c = 0; c < max_ncpus; c++) {
427 tx_cpu_t *tc = &tx->tx_cpu[c];
428 /* No need to lock tx_cpu_t at this point */
429
430 int g = txg & TXG_MASK;
431
432 if (list_is_empty(&tc->tc_callbacks[g]))
433 continue;
434
435 if (tx->tx_commit_cb_taskq == NULL) {
436 /*
437 * Commit callback taskq hasn't been created yet.
438 */
439 tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb",
090ff092
RC
440 100, minclsyspri, max_ncpus, INT_MAX,
441 TASKQ_THREADS_CPU_PCT | TASKQ_PREPOPULATE);
428870ff
BB
442 }
443
b8d06fca 444 cb_list = kmem_alloc(sizeof (list_t), KM_PUSHPAGE);
428870ff
BB
445 list_create(cb_list, sizeof (dmu_tx_callback_t),
446 offsetof(dmu_tx_callback_t, dcb_node));
447
090ff092 448 list_move_tail(cb_list, &tc->tc_callbacks[g]);
428870ff
BB
449
450 (void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *)
451 txg_do_callbacks, cb_list, TQ_SLEEP);
452 }
453}
454
54a179e7
RC
455/*
456 * Wait for pending commit callbacks of already-synced transactions to finish
457 * processing.
458 * Calling this function from within a commit callback will deadlock.
459 */
460void
461txg_wait_callbacks(dsl_pool_t *dp)
462{
463 tx_state_t *tx = &dp->dp_tx;
464
465 if (tx->tx_commit_cb_taskq != NULL)
466 taskq_wait(tx->tx_commit_cb_taskq);
467}
468
34dc7c2f
BB
469static void
470txg_sync_thread(dsl_pool_t *dp)
471{
428870ff 472 spa_t *spa = dp->dp_spa;
34dc7c2f
BB
473 tx_state_t *tx = &dp->dp_tx;
474 callb_cpr_t cpr;
b128c09f 475 uint64_t start, delta;
34dc7c2f 476
8630650a
BB
477#ifdef _KERNEL
478 /*
479 * Annotate this process with a flag that indicates that it is
480 * unsafe to use KM_SLEEP during memory allocations due to the
481 * potential for a deadlock. KM_PUSHPAGE should be used instead.
482 */
483 current->flags |= PF_NOFS;
484#endif /* _KERNEL */
485
34dc7c2f
BB
486 txg_thread_enter(tx, &cpr);
487
488 start = delta = 0;
34dc7c2f 489 for (;;) {
e95853a3
BB
490 hrtime_t hrstart;
491 txg_history_t *th;
87d98efe 492 uint64_t timer, timeout;
b128c09f 493 uint64_t txg;
34dc7c2f 494
87d98efe
BB
495 timeout = zfs_txg_timeout * hz;
496
34dc7c2f 497 /*
428870ff 498 * We sync when we're scanning, there's someone waiting
b128c09f
BB
499 * on us, or the quiesce thread has handed off a txg to
500 * us, or we have reached our timeout.
34dc7c2f
BB
501 */
502 timer = (delta >= timeout ? 0 : timeout - delta);
428870ff 503 while (!dsl_scan_active(dp->dp_scan) &&
b128c09f 504 !tx->tx_exiting && timer > 0 &&
34dc7c2f
BB
505 tx->tx_synced_txg >= tx->tx_sync_txg_waiting &&
506 tx->tx_quiesced_txg == 0) {
507 dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n",
508 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
509 txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer);
428870ff 510 delta = ddi_get_lbolt() - start;
34dc7c2f
BB
511 timer = (delta > timeout ? 0 : timeout - delta);
512 }
513
514 /*
515 * Wait until the quiesce thread hands off a txg to us,
516 * prompting it to do so if necessary.
517 */
518 while (!tx->tx_exiting && tx->tx_quiesced_txg == 0) {
519 if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1)
520 tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1;
521 cv_broadcast(&tx->tx_quiesce_more_cv);
522 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0);
523 }
524
525 if (tx->tx_exiting)
526 txg_thread_exit(tx, &cpr, &tx->tx_sync_thread);
527
34dc7c2f
BB
528 /*
529 * Consume the quiesced txg which has been handed off to
530 * us. This may cause the quiescing thread to now be
531 * able to quiesce another txg, so we must signal it.
532 */
533 txg = tx->tx_quiesced_txg;
534 tx->tx_quiesced_txg = 0;
535 tx->tx_syncing_txg = txg;
536 cv_broadcast(&tx->tx_quiesce_more_cv);
34dc7c2f 537
e95853a3
BB
538 th = dsl_pool_txg_history_get(dp, txg);
539 th->th_kstat.state = TXG_STATE_SYNCING;
540 vdev_get_stats(spa->spa_root_vdev, &th->th_vs1);
541 dsl_pool_txg_history_put(th);
542
34dc7c2f
BB
543 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
544 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
545 mutex_exit(&tx->tx_sync_lock);
b128c09f 546
428870ff 547 start = ddi_get_lbolt();
e95853a3 548 hrstart = gethrtime();
428870ff
BB
549 spa_sync(spa, txg);
550 delta = ddi_get_lbolt() - start;
34dc7c2f 551
34dc7c2f 552 mutex_enter(&tx->tx_sync_lock);
34dc7c2f
BB
553 tx->tx_synced_txg = txg;
554 tx->tx_syncing_txg = 0;
34dc7c2f 555 cv_broadcast(&tx->tx_sync_done_cv);
428870ff
BB
556
557 /*
558 * Dispatch commit callbacks to worker threads.
559 */
560 txg_dispatch_callbacks(dp, txg);
e95853a3
BB
561
562 /*
563 * Measure the txg sync time determine the amount of I/O done.
564 */
565 th = dsl_pool_txg_history_get(dp, txg);
566 vdev_get_stats(spa->spa_root_vdev, &th->th_vs2);
567 th->th_kstat.sync_time = gethrtime() - hrstart;
568 th->th_kstat.nread = th->th_vs2.vs_bytes[ZIO_TYPE_READ] -
569 th->th_vs1.vs_bytes[ZIO_TYPE_READ];
570 th->th_kstat.nwritten = th->th_vs2.vs_bytes[ZIO_TYPE_WRITE] -
571 th->th_vs1.vs_bytes[ZIO_TYPE_WRITE];
572 th->th_kstat.reads = th->th_vs2.vs_ops[ZIO_TYPE_READ] -
573 th->th_vs1.vs_ops[ZIO_TYPE_READ];
574 th->th_kstat.writes = th->th_vs2.vs_ops[ZIO_TYPE_WRITE] -
575 th->th_vs1.vs_ops[ZIO_TYPE_WRITE];
576 th->th_kstat.state = TXG_STATE_COMMITTED;
577 dsl_pool_txg_history_put(th);
34dc7c2f
BB
578 }
579}
580
581static void
582txg_quiesce_thread(dsl_pool_t *dp)
583{
584 tx_state_t *tx = &dp->dp_tx;
585 callb_cpr_t cpr;
586
587 txg_thread_enter(tx, &cpr);
588
589 for (;;) {
590 uint64_t txg;
591
592 /*
593 * We quiesce when there's someone waiting on us.
594 * However, we can only have one txg in "quiescing" or
595 * "quiesced, waiting to sync" state. So we wait until
596 * the "quiesced, waiting to sync" txg has been consumed
597 * by the sync thread.
598 */
599 while (!tx->tx_exiting &&
600 (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting ||
601 tx->tx_quiesced_txg != 0))
602 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0);
603
604 if (tx->tx_exiting)
605 txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread);
606
607 txg = tx->tx_open_txg;
608 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
609 txg, tx->tx_quiesce_txg_waiting,
610 tx->tx_sync_txg_waiting);
611 mutex_exit(&tx->tx_sync_lock);
612 txg_quiesce(dp, txg);
613 mutex_enter(&tx->tx_sync_lock);
614
615 /*
616 * Hand this txg off to the sync thread.
617 */
618 dprintf("quiesce done, handing off txg %llu\n", txg);
619 tx->tx_quiesced_txg = txg;
620 cv_broadcast(&tx->tx_sync_more_cv);
621 cv_broadcast(&tx->tx_quiesce_done_cv);
622 }
623}
624
625/*
626 * Delay this thread by 'ticks' if we are still in the open transaction
627 * group and there is already a waiting txg quiesing or quiesced. Abort
628 * the delay if this txg stalls or enters the quiesing state.
629 */
630void
631txg_delay(dsl_pool_t *dp, uint64_t txg, int ticks)
632{
633 tx_state_t *tx = &dp->dp_tx;
cddafdcb 634 clock_t timeout = ddi_get_lbolt() + ticks;
34dc7c2f
BB
635
636 /* don't delay if this txg could transition to quiesing immediately */
637 if (tx->tx_open_txg > txg ||
638 tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1)
639 return;
640
641 mutex_enter(&tx->tx_sync_lock);
642 if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) {
643 mutex_exit(&tx->tx_sync_lock);
644 return;
645 }
646
428870ff 647 while (ddi_get_lbolt() < timeout &&
34dc7c2f
BB
648 tx->tx_syncing_txg < txg-1 && !txg_stalled(dp))
649 (void) cv_timedwait(&tx->tx_quiesce_more_cv, &tx->tx_sync_lock,
650 timeout);
651
570827e1
BB
652 DMU_TX_STAT_BUMP(dmu_tx_delay);
653
34dc7c2f
BB
654 mutex_exit(&tx->tx_sync_lock);
655}
656
657void
658txg_wait_synced(dsl_pool_t *dp, uint64_t txg)
659{
660 tx_state_t *tx = &dp->dp_tx;
661
662 mutex_enter(&tx->tx_sync_lock);
663 ASSERT(tx->tx_threads == 2);
664 if (txg == 0)
428870ff 665 txg = tx->tx_open_txg + TXG_DEFER_SIZE;
34dc7c2f
BB
666 if (tx->tx_sync_txg_waiting < txg)
667 tx->tx_sync_txg_waiting = txg;
668 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
669 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
670 while (tx->tx_synced_txg < txg) {
671 dprintf("broadcasting sync more "
672 "tx_synced=%llu waiting=%llu dp=%p\n",
673 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
674 cv_broadcast(&tx->tx_sync_more_cv);
675 cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock);
676 }
677 mutex_exit(&tx->tx_sync_lock);
678}
679
680void
681txg_wait_open(dsl_pool_t *dp, uint64_t txg)
682{
683 tx_state_t *tx = &dp->dp_tx;
684
685 mutex_enter(&tx->tx_sync_lock);
686 ASSERT(tx->tx_threads == 2);
687 if (txg == 0)
688 txg = tx->tx_open_txg + 1;
689 if (tx->tx_quiesce_txg_waiting < txg)
690 tx->tx_quiesce_txg_waiting = txg;
691 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
692 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
693 while (tx->tx_open_txg < txg) {
694 cv_broadcast(&tx->tx_quiesce_more_cv);
695 cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock);
696 }
697 mutex_exit(&tx->tx_sync_lock);
698}
699
b128c09f 700boolean_t
34dc7c2f
BB
701txg_stalled(dsl_pool_t *dp)
702{
703 tx_state_t *tx = &dp->dp_tx;
704 return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg);
705}
706
b128c09f
BB
707boolean_t
708txg_sync_waiting(dsl_pool_t *dp)
709{
710 tx_state_t *tx = &dp->dp_tx;
711
712 return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting ||
713 tx->tx_quiesced_txg != 0);
714}
715
34dc7c2f
BB
716/*
717 * Per-txg object lists.
718 */
719void
720txg_list_create(txg_list_t *tl, size_t offset)
721{
722 int t;
723
724 mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL);
725
726 tl->tl_offset = offset;
727
728 for (t = 0; t < TXG_SIZE; t++)
729 tl->tl_head[t] = NULL;
730}
731
732void
733txg_list_destroy(txg_list_t *tl)
734{
735 int t;
736
737 for (t = 0; t < TXG_SIZE; t++)
738 ASSERT(txg_list_empty(tl, t));
739
740 mutex_destroy(&tl->tl_lock);
741}
742
29809a6c 743boolean_t
34dc7c2f
BB
744txg_list_empty(txg_list_t *tl, uint64_t txg)
745{
746 return (tl->tl_head[txg & TXG_MASK] == NULL);
747}
748
749/*
750 * Add an entry to the list.
751 * Returns 0 if it's a new entry, 1 if it's already there.
752 */
753int
754txg_list_add(txg_list_t *tl, void *p, uint64_t txg)
755{
756 int t = txg & TXG_MASK;
757 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
758 int already_on_list;
759
760 mutex_enter(&tl->tl_lock);
761 already_on_list = tn->tn_member[t];
762 if (!already_on_list) {
763 tn->tn_member[t] = 1;
764 tn->tn_next[t] = tl->tl_head[t];
765 tl->tl_head[t] = tn;
766 }
767 mutex_exit(&tl->tl_lock);
768
769 return (already_on_list);
770}
771
428870ff
BB
772/*
773 * Add an entry to the end of the list (walks list to find end).
774 * Returns 0 if it's a new entry, 1 if it's already there.
775 */
776int
777txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg)
778{
779 int t = txg & TXG_MASK;
780 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
781 int already_on_list;
782
783 mutex_enter(&tl->tl_lock);
784 already_on_list = tn->tn_member[t];
785 if (!already_on_list) {
786 txg_node_t **tp;
787
788 for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t])
789 continue;
790
791 tn->tn_member[t] = 1;
792 tn->tn_next[t] = NULL;
793 *tp = tn;
794 }
795 mutex_exit(&tl->tl_lock);
796
797 return (already_on_list);
798}
799
34dc7c2f
BB
800/*
801 * Remove the head of the list and return it.
802 */
803void *
804txg_list_remove(txg_list_t *tl, uint64_t txg)
805{
806 int t = txg & TXG_MASK;
807 txg_node_t *tn;
808 void *p = NULL;
809
810 mutex_enter(&tl->tl_lock);
811 if ((tn = tl->tl_head[t]) != NULL) {
812 p = (char *)tn - tl->tl_offset;
813 tl->tl_head[t] = tn->tn_next[t];
814 tn->tn_next[t] = NULL;
815 tn->tn_member[t] = 0;
816 }
817 mutex_exit(&tl->tl_lock);
818
819 return (p);
820}
821
822/*
823 * Remove a specific item from the list and return it.
824 */
825void *
826txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg)
827{
828 int t = txg & TXG_MASK;
829 txg_node_t *tn, **tp;
830
831 mutex_enter(&tl->tl_lock);
832
833 for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) {
834 if ((char *)tn - tl->tl_offset == p) {
835 *tp = tn->tn_next[t];
836 tn->tn_next[t] = NULL;
837 tn->tn_member[t] = 0;
838 mutex_exit(&tl->tl_lock);
839 return (p);
840 }
841 }
842
843 mutex_exit(&tl->tl_lock);
844
845 return (NULL);
846}
847
848int
849txg_list_member(txg_list_t *tl, void *p, uint64_t txg)
850{
851 int t = txg & TXG_MASK;
852 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
853
854 return (tn->tn_member[t]);
855}
856
857/*
858 * Walk a txg list -- only safe if you know it's not changing.
859 */
860void *
861txg_list_head(txg_list_t *tl, uint64_t txg)
862{
863 int t = txg & TXG_MASK;
864 txg_node_t *tn = tl->tl_head[t];
865
866 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
867}
868
869void *
870txg_list_next(txg_list_t *tl, void *p, uint64_t txg)
871{
872 int t = txg & TXG_MASK;
873 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
874
875 tn = tn->tn_next[t];
876
877 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
878}
c28b2279
BB
879
880#if defined(_KERNEL) && defined(HAVE_SPL)
881EXPORT_SYMBOL(txg_init);
882EXPORT_SYMBOL(txg_fini);
883EXPORT_SYMBOL(txg_sync_start);
884EXPORT_SYMBOL(txg_sync_stop);
885EXPORT_SYMBOL(txg_hold_open);
886EXPORT_SYMBOL(txg_rele_to_quiesce);
887EXPORT_SYMBOL(txg_rele_to_sync);
888EXPORT_SYMBOL(txg_register_callbacks);
889EXPORT_SYMBOL(txg_delay);
890EXPORT_SYMBOL(txg_wait_synced);
891EXPORT_SYMBOL(txg_wait_open);
54a179e7 892EXPORT_SYMBOL(txg_wait_callbacks);
c28b2279
BB
893EXPORT_SYMBOL(txg_stalled);
894EXPORT_SYMBOL(txg_sync_waiting);
87d98efe
BB
895
896module_param(zfs_txg_timeout, int, 0644);
897MODULE_PARM_DESC(zfs_txg_timeout, "Max seconds worth of delta per txg");
c28b2279 898#endif