]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/vdev.c
Illumos #1948: zpool list should show more detailed pool info
[mirror_zfs.git] / module / zfs / vdev.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
428870ff 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
3541dc6d 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
1bd201e7 25 * Copyright (c) 2012 by Delphix. All rights reserved.
34dc7c2f
BB
26 */
27
34dc7c2f
BB
28#include <sys/zfs_context.h>
29#include <sys/fm/fs/zfs.h>
30#include <sys/spa.h>
31#include <sys/spa_impl.h>
32#include <sys/dmu.h>
33#include <sys/dmu_tx.h>
34#include <sys/vdev_impl.h>
35#include <sys/uberblock_impl.h>
36#include <sys/metaslab.h>
37#include <sys/metaslab_impl.h>
38#include <sys/space_map.h>
39#include <sys/zio.h>
40#include <sys/zap.h>
41#include <sys/fs/zfs.h>
b128c09f 42#include <sys/arc.h>
9babb374 43#include <sys/zil.h>
428870ff 44#include <sys/dsl_scan.h>
34dc7c2f
BB
45
46/*
47 * Virtual device management.
48 */
49
50static vdev_ops_t *vdev_ops_table[] = {
51 &vdev_root_ops,
52 &vdev_raidz_ops,
53 &vdev_mirror_ops,
54 &vdev_replacing_ops,
55 &vdev_spare_ops,
56 &vdev_disk_ops,
57 &vdev_file_ops,
58 &vdev_missing_ops,
428870ff 59 &vdev_hole_ops,
34dc7c2f
BB
60 NULL
61};
62
b128c09f
BB
63/* maximum scrub/resilver I/O queue per leaf vdev */
64int zfs_scrub_limit = 10;
34dc7c2f
BB
65
66/*
67 * Given a vdev type, return the appropriate ops vector.
68 */
69static vdev_ops_t *
70vdev_getops(const char *type)
71{
72 vdev_ops_t *ops, **opspp;
73
74 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
75 if (strcmp(ops->vdev_op_type, type) == 0)
76 break;
77
78 return (ops);
79}
80
81/*
82 * Default asize function: return the MAX of psize with the asize of
83 * all children. This is what's used by anything other than RAID-Z.
84 */
85uint64_t
86vdev_default_asize(vdev_t *vd, uint64_t psize)
87{
88 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
89 uint64_t csize;
d6320ddb 90 int c;
34dc7c2f 91
d6320ddb 92 for (c = 0; c < vd->vdev_children; c++) {
34dc7c2f
BB
93 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
94 asize = MAX(asize, csize);
95 }
96
97 return (asize);
98}
99
100/*
9babb374
BB
101 * Get the minimum allocatable size. We define the allocatable size as
102 * the vdev's asize rounded to the nearest metaslab. This allows us to
103 * replace or attach devices which don't have the same physical size but
104 * can still satisfy the same number of allocations.
34dc7c2f
BB
105 */
106uint64_t
9babb374 107vdev_get_min_asize(vdev_t *vd)
34dc7c2f 108{
9babb374 109 vdev_t *pvd = vd->vdev_parent;
34dc7c2f 110
9babb374 111 /*
1bd201e7 112 * If our parent is NULL (inactive spare or cache) or is the root,
9babb374
BB
113 * just return our own asize.
114 */
115 if (pvd == NULL)
116 return (vd->vdev_asize);
34dc7c2f
BB
117
118 /*
9babb374
BB
119 * The top-level vdev just returns the allocatable size rounded
120 * to the nearest metaslab.
34dc7c2f 121 */
9babb374
BB
122 if (vd == vd->vdev_top)
123 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
34dc7c2f 124
9babb374
BB
125 /*
126 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
127 * so each child must provide at least 1/Nth of its asize.
128 */
129 if (pvd->vdev_ops == &vdev_raidz_ops)
130 return (pvd->vdev_min_asize / pvd->vdev_children);
34dc7c2f 131
9babb374
BB
132 return (pvd->vdev_min_asize);
133}
134
135void
136vdev_set_min_asize(vdev_t *vd)
137{
d6320ddb 138 int c;
9babb374 139 vd->vdev_min_asize = vdev_get_min_asize(vd);
34dc7c2f 140
d6320ddb 141 for (c = 0; c < vd->vdev_children; c++)
9babb374 142 vdev_set_min_asize(vd->vdev_child[c]);
34dc7c2f
BB
143}
144
145vdev_t *
146vdev_lookup_top(spa_t *spa, uint64_t vdev)
147{
148 vdev_t *rvd = spa->spa_root_vdev;
149
b128c09f 150 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
34dc7c2f 151
b128c09f
BB
152 if (vdev < rvd->vdev_children) {
153 ASSERT(rvd->vdev_child[vdev] != NULL);
34dc7c2f 154 return (rvd->vdev_child[vdev]);
b128c09f 155 }
34dc7c2f
BB
156
157 return (NULL);
158}
159
160vdev_t *
161vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
162{
34dc7c2f 163 vdev_t *mvd;
d6320ddb 164 int c;
34dc7c2f
BB
165
166 if (vd->vdev_guid == guid)
167 return (vd);
168
d6320ddb 169 for (c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
170 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
171 NULL)
172 return (mvd);
173
174 return (NULL);
175}
176
177void
178vdev_add_child(vdev_t *pvd, vdev_t *cvd)
179{
180 size_t oldsize, newsize;
181 uint64_t id = cvd->vdev_id;
182 vdev_t **newchild;
183
b128c09f 184 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
185 ASSERT(cvd->vdev_parent == NULL);
186
187 cvd->vdev_parent = pvd;
188
189 if (pvd == NULL)
190 return;
191
192 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
193
194 oldsize = pvd->vdev_children * sizeof (vdev_t *);
195 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
196 newsize = pvd->vdev_children * sizeof (vdev_t *);
197
b8d06fca 198 newchild = kmem_zalloc(newsize, KM_PUSHPAGE);
34dc7c2f
BB
199 if (pvd->vdev_child != NULL) {
200 bcopy(pvd->vdev_child, newchild, oldsize);
201 kmem_free(pvd->vdev_child, oldsize);
202 }
203
204 pvd->vdev_child = newchild;
205 pvd->vdev_child[id] = cvd;
206
207 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
208 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
209
210 /*
211 * Walk up all ancestors to update guid sum.
212 */
213 for (; pvd != NULL; pvd = pvd->vdev_parent)
214 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
34dc7c2f
BB
215}
216
217void
218vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
219{
220 int c;
221 uint_t id = cvd->vdev_id;
222
223 ASSERT(cvd->vdev_parent == pvd);
224
225 if (pvd == NULL)
226 return;
227
228 ASSERT(id < pvd->vdev_children);
229 ASSERT(pvd->vdev_child[id] == cvd);
230
231 pvd->vdev_child[id] = NULL;
232 cvd->vdev_parent = NULL;
233
234 for (c = 0; c < pvd->vdev_children; c++)
235 if (pvd->vdev_child[c])
236 break;
237
238 if (c == pvd->vdev_children) {
239 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
240 pvd->vdev_child = NULL;
241 pvd->vdev_children = 0;
242 }
243
244 /*
245 * Walk up all ancestors to update guid sum.
246 */
247 for (; pvd != NULL; pvd = pvd->vdev_parent)
248 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
34dc7c2f
BB
249}
250
251/*
252 * Remove any holes in the child array.
253 */
254void
255vdev_compact_children(vdev_t *pvd)
256{
257 vdev_t **newchild, *cvd;
258 int oldc = pvd->vdev_children;
9babb374 259 int newc;
d6320ddb 260 int c;
34dc7c2f 261
b128c09f 262 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f 263
d6320ddb 264 for (c = newc = 0; c < oldc; c++)
34dc7c2f
BB
265 if (pvd->vdev_child[c])
266 newc++;
267
b8d06fca 268 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_PUSHPAGE);
34dc7c2f 269
d6320ddb 270 for (c = newc = 0; c < oldc; c++) {
34dc7c2f
BB
271 if ((cvd = pvd->vdev_child[c]) != NULL) {
272 newchild[newc] = cvd;
273 cvd->vdev_id = newc++;
274 }
275 }
276
277 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
278 pvd->vdev_child = newchild;
279 pvd->vdev_children = newc;
280}
281
282/*
283 * Allocate and minimally initialize a vdev_t.
284 */
428870ff 285vdev_t *
34dc7c2f
BB
286vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
287{
288 vdev_t *vd;
d6320ddb 289 int t;
34dc7c2f 290
b8d06fca 291 vd = kmem_zalloc(sizeof (vdev_t), KM_PUSHPAGE);
34dc7c2f
BB
292
293 if (spa->spa_root_vdev == NULL) {
294 ASSERT(ops == &vdev_root_ops);
295 spa->spa_root_vdev = vd;
3541dc6d 296 spa->spa_load_guid = spa_generate_guid(NULL);
34dc7c2f
BB
297 }
298
428870ff 299 if (guid == 0 && ops != &vdev_hole_ops) {
34dc7c2f
BB
300 if (spa->spa_root_vdev == vd) {
301 /*
302 * The root vdev's guid will also be the pool guid,
303 * which must be unique among all pools.
304 */
428870ff 305 guid = spa_generate_guid(NULL);
34dc7c2f
BB
306 } else {
307 /*
308 * Any other vdev's guid must be unique within the pool.
309 */
428870ff 310 guid = spa_generate_guid(spa);
34dc7c2f
BB
311 }
312 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
313 }
314
315 vd->vdev_spa = spa;
316 vd->vdev_id = id;
317 vd->vdev_guid = guid;
318 vd->vdev_guid_sum = guid;
319 vd->vdev_ops = ops;
320 vd->vdev_state = VDEV_STATE_CLOSED;
428870ff 321 vd->vdev_ishole = (ops == &vdev_hole_ops);
34dc7c2f 322
98f72a53
BB
323 list_link_init(&vd->vdev_config_dirty_node);
324 list_link_init(&vd->vdev_state_dirty_node);
34dc7c2f
BB
325 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
326 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
b128c09f 327 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
d6320ddb 328 for (t = 0; t < DTL_TYPES; t++) {
fb5f0bc8
BB
329 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
330 &vd->vdev_dtl_lock);
331 }
34dc7c2f
BB
332 txg_list_create(&vd->vdev_ms_list,
333 offsetof(struct metaslab, ms_txg_node));
334 txg_list_create(&vd->vdev_dtl_list,
335 offsetof(struct vdev, vdev_dtl_node));
336 vd->vdev_stat.vs_timestamp = gethrtime();
337 vdev_queue_init(vd);
338 vdev_cache_init(vd);
339
340 return (vd);
341}
342
343/*
344 * Allocate a new vdev. The 'alloctype' is used to control whether we are
345 * creating a new vdev or loading an existing one - the behavior is slightly
346 * different for each case.
347 */
348int
349vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
350 int alloctype)
351{
352 vdev_ops_t *ops;
353 char *type;
354 uint64_t guid = 0, islog, nparity;
355 vdev_t *vd;
356
b128c09f 357 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
358
359 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
360 return (EINVAL);
361
362 if ((ops = vdev_getops(type)) == NULL)
363 return (EINVAL);
364
365 /*
366 * If this is a load, get the vdev guid from the nvlist.
367 * Otherwise, vdev_alloc_common() will generate one for us.
368 */
369 if (alloctype == VDEV_ALLOC_LOAD) {
370 uint64_t label_id;
371
372 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
373 label_id != id)
374 return (EINVAL);
375
376 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
377 return (EINVAL);
378 } else if (alloctype == VDEV_ALLOC_SPARE) {
379 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
380 return (EINVAL);
381 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
382 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
383 return (EINVAL);
9babb374
BB
384 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
385 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
386 return (EINVAL);
34dc7c2f
BB
387 }
388
389 /*
390 * The first allocated vdev must be of type 'root'.
391 */
392 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
393 return (EINVAL);
394
395 /*
396 * Determine whether we're a log vdev.
397 */
398 islog = 0;
399 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
400 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
401 return (ENOTSUP);
402
428870ff
BB
403 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
404 return (ENOTSUP);
405
34dc7c2f
BB
406 /*
407 * Set the nparity property for RAID-Z vdevs.
408 */
409 nparity = -1ULL;
410 if (ops == &vdev_raidz_ops) {
411 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
412 &nparity) == 0) {
428870ff 413 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
34dc7c2f
BB
414 return (EINVAL);
415 /*
45d1cae3
BB
416 * Previous versions could only support 1 or 2 parity
417 * device.
34dc7c2f 418 */
45d1cae3
BB
419 if (nparity > 1 &&
420 spa_version(spa) < SPA_VERSION_RAIDZ2)
421 return (ENOTSUP);
422 if (nparity > 2 &&
423 spa_version(spa) < SPA_VERSION_RAIDZ3)
34dc7c2f
BB
424 return (ENOTSUP);
425 } else {
426 /*
427 * We require the parity to be specified for SPAs that
428 * support multiple parity levels.
429 */
45d1cae3 430 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
34dc7c2f
BB
431 return (EINVAL);
432 /*
433 * Otherwise, we default to 1 parity device for RAID-Z.
434 */
435 nparity = 1;
436 }
437 } else {
438 nparity = 0;
439 }
440 ASSERT(nparity != -1ULL);
441
442 vd = vdev_alloc_common(spa, id, guid, ops);
443
444 vd->vdev_islog = islog;
445 vd->vdev_nparity = nparity;
446
447 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
448 vd->vdev_path = spa_strdup(vd->vdev_path);
449 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
450 vd->vdev_devid = spa_strdup(vd->vdev_devid);
451 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
452 &vd->vdev_physpath) == 0)
453 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
9babb374
BB
454 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
455 vd->vdev_fru = spa_strdup(vd->vdev_fru);
34dc7c2f
BB
456
457 /*
458 * Set the whole_disk property. If it's not specified, leave the value
459 * as -1.
460 */
461 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
462 &vd->vdev_wholedisk) != 0)
463 vd->vdev_wholedisk = -1ULL;
464
465 /*
466 * Look for the 'not present' flag. This will only be set if the device
467 * was not present at the time of import.
468 */
9babb374
BB
469 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
470 &vd->vdev_not_present);
34dc7c2f
BB
471
472 /*
473 * Get the alignment requirement.
474 */
475 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
476
428870ff
BB
477 /*
478 * Retrieve the vdev creation time.
479 */
480 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
481 &vd->vdev_crtxg);
482
34dc7c2f
BB
483 /*
484 * If we're a top-level vdev, try to load the allocation parameters.
485 */
428870ff
BB
486 if (parent && !parent->vdev_parent &&
487 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
34dc7c2f
BB
488 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
489 &vd->vdev_ms_array);
490 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
491 &vd->vdev_ms_shift);
492 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
493 &vd->vdev_asize);
428870ff
BB
494 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
495 &vd->vdev_removing);
496 }
497
5ffb9d1d 498 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
428870ff
BB
499 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
500 alloctype == VDEV_ALLOC_ADD ||
501 alloctype == VDEV_ALLOC_SPLIT ||
502 alloctype == VDEV_ALLOC_ROOTPOOL);
503 vd->vdev_mg = metaslab_group_create(islog ?
504 spa_log_class(spa) : spa_normal_class(spa), vd);
34dc7c2f
BB
505 }
506
507 /*
508 * If we're a leaf vdev, try to load the DTL object and other state.
509 */
b128c09f 510 if (vd->vdev_ops->vdev_op_leaf &&
9babb374
BB
511 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
512 alloctype == VDEV_ALLOC_ROOTPOOL)) {
b128c09f
BB
513 if (alloctype == VDEV_ALLOC_LOAD) {
514 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
fb5f0bc8 515 &vd->vdev_dtl_smo.smo_object);
b128c09f
BB
516 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
517 &vd->vdev_unspare);
518 }
9babb374
BB
519
520 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
521 uint64_t spare = 0;
522
523 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
524 &spare) == 0 && spare)
525 spa_spare_add(vd);
526 }
527
34dc7c2f
BB
528 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
529 &vd->vdev_offline);
b128c09f 530
572e2857
BB
531 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
532 &vd->vdev_resilvering);
533
34dc7c2f
BB
534 /*
535 * When importing a pool, we want to ignore the persistent fault
536 * state, as the diagnosis made on another system may not be
428870ff
BB
537 * valid in the current context. Local vdevs will
538 * remain in the faulted state.
34dc7c2f 539 */
428870ff 540 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
34dc7c2f
BB
541 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
542 &vd->vdev_faulted);
543 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
544 &vd->vdev_degraded);
545 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
546 &vd->vdev_removed);
428870ff
BB
547
548 if (vd->vdev_faulted || vd->vdev_degraded) {
549 char *aux;
550
551 vd->vdev_label_aux =
552 VDEV_AUX_ERR_EXCEEDED;
553 if (nvlist_lookup_string(nv,
554 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
555 strcmp(aux, "external") == 0)
556 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
557 }
34dc7c2f
BB
558 }
559 }
560
561 /*
562 * Add ourselves to the parent's list of children.
563 */
564 vdev_add_child(parent, vd);
565
566 *vdp = vd;
567
568 return (0);
569}
570
571void
572vdev_free(vdev_t *vd)
573{
d6320ddb 574 int c, t;
34dc7c2f
BB
575 spa_t *spa = vd->vdev_spa;
576
577 /*
578 * vdev_free() implies closing the vdev first. This is simpler than
579 * trying to ensure complicated semantics for all callers.
580 */
581 vdev_close(vd);
582
b128c09f 583 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
428870ff 584 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
34dc7c2f
BB
585
586 /*
587 * Free all children.
588 */
d6320ddb 589 for (c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
590 vdev_free(vd->vdev_child[c]);
591
592 ASSERT(vd->vdev_child == NULL);
593 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
594
595 /*
596 * Discard allocation state.
597 */
428870ff 598 if (vd->vdev_mg != NULL) {
34dc7c2f 599 vdev_metaslab_fini(vd);
428870ff
BB
600 metaslab_group_destroy(vd->vdev_mg);
601 }
34dc7c2f
BB
602
603 ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
604 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
605 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
606
607 /*
608 * Remove this vdev from its parent's child list.
609 */
610 vdev_remove_child(vd->vdev_parent, vd);
611
612 ASSERT(vd->vdev_parent == NULL);
613
614 /*
615 * Clean up vdev structure.
616 */
617 vdev_queue_fini(vd);
618 vdev_cache_fini(vd);
619
620 if (vd->vdev_path)
621 spa_strfree(vd->vdev_path);
622 if (vd->vdev_devid)
623 spa_strfree(vd->vdev_devid);
624 if (vd->vdev_physpath)
625 spa_strfree(vd->vdev_physpath);
9babb374
BB
626 if (vd->vdev_fru)
627 spa_strfree(vd->vdev_fru);
34dc7c2f
BB
628
629 if (vd->vdev_isspare)
630 spa_spare_remove(vd);
631 if (vd->vdev_isl2cache)
632 spa_l2cache_remove(vd);
633
634 txg_list_destroy(&vd->vdev_ms_list);
635 txg_list_destroy(&vd->vdev_dtl_list);
fb5f0bc8 636
34dc7c2f 637 mutex_enter(&vd->vdev_dtl_lock);
d6320ddb 638 for (t = 0; t < DTL_TYPES; t++) {
fb5f0bc8
BB
639 space_map_unload(&vd->vdev_dtl[t]);
640 space_map_destroy(&vd->vdev_dtl[t]);
641 }
34dc7c2f 642 mutex_exit(&vd->vdev_dtl_lock);
fb5f0bc8 643
34dc7c2f
BB
644 mutex_destroy(&vd->vdev_dtl_lock);
645 mutex_destroy(&vd->vdev_stat_lock);
b128c09f 646 mutex_destroy(&vd->vdev_probe_lock);
34dc7c2f
BB
647
648 if (vd == spa->spa_root_vdev)
649 spa->spa_root_vdev = NULL;
650
651 kmem_free(vd, sizeof (vdev_t));
652}
653
654/*
655 * Transfer top-level vdev state from svd to tvd.
656 */
657static void
658vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
659{
660 spa_t *spa = svd->vdev_spa;
661 metaslab_t *msp;
662 vdev_t *vd;
663 int t;
664
665 ASSERT(tvd == tvd->vdev_top);
666
667 tvd->vdev_ms_array = svd->vdev_ms_array;
668 tvd->vdev_ms_shift = svd->vdev_ms_shift;
669 tvd->vdev_ms_count = svd->vdev_ms_count;
670
671 svd->vdev_ms_array = 0;
672 svd->vdev_ms_shift = 0;
673 svd->vdev_ms_count = 0;
674
5ffb9d1d
GW
675 if (tvd->vdev_mg)
676 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
34dc7c2f
BB
677 tvd->vdev_mg = svd->vdev_mg;
678 tvd->vdev_ms = svd->vdev_ms;
679
680 svd->vdev_mg = NULL;
681 svd->vdev_ms = NULL;
682
683 if (tvd->vdev_mg != NULL)
684 tvd->vdev_mg->mg_vd = tvd;
685
686 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
687 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
688 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
689
690 svd->vdev_stat.vs_alloc = 0;
691 svd->vdev_stat.vs_space = 0;
692 svd->vdev_stat.vs_dspace = 0;
693
694 for (t = 0; t < TXG_SIZE; t++) {
695 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
696 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
697 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
698 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
699 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
700 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
701 }
702
b128c09f 703 if (list_link_active(&svd->vdev_config_dirty_node)) {
34dc7c2f
BB
704 vdev_config_clean(svd);
705 vdev_config_dirty(tvd);
706 }
707
b128c09f
BB
708 if (list_link_active(&svd->vdev_state_dirty_node)) {
709 vdev_state_clean(svd);
710 vdev_state_dirty(tvd);
711 }
712
34dc7c2f
BB
713 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
714 svd->vdev_deflate_ratio = 0;
715
716 tvd->vdev_islog = svd->vdev_islog;
717 svd->vdev_islog = 0;
718}
719
720static void
721vdev_top_update(vdev_t *tvd, vdev_t *vd)
722{
d6320ddb
BB
723 int c;
724
34dc7c2f
BB
725 if (vd == NULL)
726 return;
727
728 vd->vdev_top = tvd;
729
d6320ddb 730 for (c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
731 vdev_top_update(tvd, vd->vdev_child[c]);
732}
733
734/*
735 * Add a mirror/replacing vdev above an existing vdev.
736 */
737vdev_t *
738vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
739{
740 spa_t *spa = cvd->vdev_spa;
741 vdev_t *pvd = cvd->vdev_parent;
742 vdev_t *mvd;
743
b128c09f 744 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
745
746 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
747
748 mvd->vdev_asize = cvd->vdev_asize;
9babb374 749 mvd->vdev_min_asize = cvd->vdev_min_asize;
1bd201e7 750 mvd->vdev_max_asize = cvd->vdev_max_asize;
34dc7c2f
BB
751 mvd->vdev_ashift = cvd->vdev_ashift;
752 mvd->vdev_state = cvd->vdev_state;
428870ff 753 mvd->vdev_crtxg = cvd->vdev_crtxg;
34dc7c2f
BB
754
755 vdev_remove_child(pvd, cvd);
756 vdev_add_child(pvd, mvd);
757 cvd->vdev_id = mvd->vdev_children;
758 vdev_add_child(mvd, cvd);
759 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
760
761 if (mvd == mvd->vdev_top)
762 vdev_top_transfer(cvd, mvd);
763
764 return (mvd);
765}
766
767/*
768 * Remove a 1-way mirror/replacing vdev from the tree.
769 */
770void
771vdev_remove_parent(vdev_t *cvd)
772{
773 vdev_t *mvd = cvd->vdev_parent;
774 vdev_t *pvd = mvd->vdev_parent;
775
b128c09f 776 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
777
778 ASSERT(mvd->vdev_children == 1);
779 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
780 mvd->vdev_ops == &vdev_replacing_ops ||
781 mvd->vdev_ops == &vdev_spare_ops);
782 cvd->vdev_ashift = mvd->vdev_ashift;
783
784 vdev_remove_child(mvd, cvd);
785 vdev_remove_child(pvd, mvd);
fb5f0bc8 786
34dc7c2f 787 /*
b128c09f
BB
788 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
789 * Otherwise, we could have detached an offline device, and when we
790 * go to import the pool we'll think we have two top-level vdevs,
791 * instead of a different version of the same top-level vdev.
34dc7c2f 792 */
fb5f0bc8
BB
793 if (mvd->vdev_top == mvd) {
794 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
428870ff 795 cvd->vdev_orig_guid = cvd->vdev_guid;
fb5f0bc8
BB
796 cvd->vdev_guid += guid_delta;
797 cvd->vdev_guid_sum += guid_delta;
798 }
b128c09f
BB
799 cvd->vdev_id = mvd->vdev_id;
800 vdev_add_child(pvd, cvd);
34dc7c2f
BB
801 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
802
803 if (cvd == cvd->vdev_top)
804 vdev_top_transfer(mvd, cvd);
805
806 ASSERT(mvd->vdev_children == 0);
807 vdev_free(mvd);
808}
809
810int
811vdev_metaslab_init(vdev_t *vd, uint64_t txg)
812{
813 spa_t *spa = vd->vdev_spa;
814 objset_t *mos = spa->spa_meta_objset;
34dc7c2f
BB
815 uint64_t m;
816 uint64_t oldc = vd->vdev_ms_count;
817 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
818 metaslab_t **mspp;
819 int error;
820
428870ff
BB
821 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
822
823 /*
824 * This vdev is not being allocated from yet or is a hole.
825 */
826 if (vd->vdev_ms_shift == 0)
34dc7c2f
BB
827 return (0);
828
428870ff
BB
829 ASSERT(!vd->vdev_ishole);
830
9babb374
BB
831 /*
832 * Compute the raidz-deflation ratio. Note, we hard-code
833 * in 128k (1 << 17) because it is the current "typical" blocksize.
834 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
835 * or we will inconsistently account for existing bp's.
836 */
837 vd->vdev_deflate_ratio = (1 << 17) /
838 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
839
34dc7c2f
BB
840 ASSERT(oldc <= newc);
841
b8d06fca 842 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_PUSHPAGE | KM_NODEBUG);
34dc7c2f
BB
843
844 if (oldc != 0) {
845 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
846 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
847 }
848
849 vd->vdev_ms = mspp;
850 vd->vdev_ms_count = newc;
851
852 for (m = oldc; m < newc; m++) {
853 space_map_obj_t smo = { 0, 0, 0 };
854 if (txg == 0) {
855 uint64_t object = 0;
856 error = dmu_read(mos, vd->vdev_ms_array,
9babb374
BB
857 m * sizeof (uint64_t), sizeof (uint64_t), &object,
858 DMU_READ_PREFETCH);
34dc7c2f
BB
859 if (error)
860 return (error);
861 if (object != 0) {
862 dmu_buf_t *db;
863 error = dmu_bonus_hold(mos, object, FTAG, &db);
864 if (error)
865 return (error);
866 ASSERT3U(db->db_size, >=, sizeof (smo));
867 bcopy(db->db_data, &smo, sizeof (smo));
868 ASSERT3U(smo.smo_object, ==, object);
869 dmu_buf_rele(db, FTAG);
870 }
871 }
872 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
873 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
874 }
875
428870ff
BB
876 if (txg == 0)
877 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
878
879 /*
880 * If the vdev is being removed we don't activate
881 * the metaslabs since we want to ensure that no new
882 * allocations are performed on this device.
883 */
884 if (oldc == 0 && !vd->vdev_removing)
885 metaslab_group_activate(vd->vdev_mg);
886
887 if (txg == 0)
888 spa_config_exit(spa, SCL_ALLOC, FTAG);
889
34dc7c2f
BB
890 return (0);
891}
892
893void
894vdev_metaslab_fini(vdev_t *vd)
895{
896 uint64_t m;
897 uint64_t count = vd->vdev_ms_count;
898
899 if (vd->vdev_ms != NULL) {
428870ff 900 metaslab_group_passivate(vd->vdev_mg);
34dc7c2f
BB
901 for (m = 0; m < count; m++)
902 if (vd->vdev_ms[m] != NULL)
903 metaslab_fini(vd->vdev_ms[m]);
904 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
905 vd->vdev_ms = NULL;
906 }
907}
908
b128c09f
BB
909typedef struct vdev_probe_stats {
910 boolean_t vps_readable;
911 boolean_t vps_writeable;
912 int vps_flags;
b128c09f
BB
913} vdev_probe_stats_t;
914
915static void
916vdev_probe_done(zio_t *zio)
34dc7c2f 917{
fb5f0bc8 918 spa_t *spa = zio->io_spa;
d164b209 919 vdev_t *vd = zio->io_vd;
b128c09f 920 vdev_probe_stats_t *vps = zio->io_private;
d164b209
BB
921
922 ASSERT(vd->vdev_probe_zio != NULL);
b128c09f
BB
923
924 if (zio->io_type == ZIO_TYPE_READ) {
b128c09f
BB
925 if (zio->io_error == 0)
926 vps->vps_readable = 1;
fb5f0bc8 927 if (zio->io_error == 0 && spa_writeable(spa)) {
d164b209 928 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
b128c09f
BB
929 zio->io_offset, zio->io_size, zio->io_data,
930 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
931 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
932 } else {
933 zio_buf_free(zio->io_data, zio->io_size);
934 }
935 } else if (zio->io_type == ZIO_TYPE_WRITE) {
b128c09f
BB
936 if (zio->io_error == 0)
937 vps->vps_writeable = 1;
938 zio_buf_free(zio->io_data, zio->io_size);
939 } else if (zio->io_type == ZIO_TYPE_NULL) {
d164b209 940 zio_t *pio;
b128c09f
BB
941
942 vd->vdev_cant_read |= !vps->vps_readable;
943 vd->vdev_cant_write |= !vps->vps_writeable;
944
945 if (vdev_readable(vd) &&
fb5f0bc8 946 (vdev_writeable(vd) || !spa_writeable(spa))) {
b128c09f
BB
947 zio->io_error = 0;
948 } else {
949 ASSERT(zio->io_error != 0);
950 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
fb5f0bc8 951 spa, vd, NULL, 0, 0);
b128c09f
BB
952 zio->io_error = ENXIO;
953 }
d164b209
BB
954
955 mutex_enter(&vd->vdev_probe_lock);
956 ASSERT(vd->vdev_probe_zio == zio);
957 vd->vdev_probe_zio = NULL;
958 mutex_exit(&vd->vdev_probe_lock);
959
960 while ((pio = zio_walk_parents(zio)) != NULL)
961 if (!vdev_accessible(vd, pio))
962 pio->io_error = ENXIO;
963
b128c09f
BB
964 kmem_free(vps, sizeof (*vps));
965 }
966}
34dc7c2f 967
b128c09f
BB
968/*
969 * Determine whether this device is accessible by reading and writing
970 * to several known locations: the pad regions of each vdev label
971 * but the first (which we leave alone in case it contains a VTOC).
972 */
973zio_t *
d164b209 974vdev_probe(vdev_t *vd, zio_t *zio)
b128c09f
BB
975{
976 spa_t *spa = vd->vdev_spa;
d164b209
BB
977 vdev_probe_stats_t *vps = NULL;
978 zio_t *pio;
d6320ddb 979 int l;
d164b209
BB
980
981 ASSERT(vd->vdev_ops->vdev_op_leaf);
34dc7c2f 982
d164b209
BB
983 /*
984 * Don't probe the probe.
985 */
986 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
987 return (NULL);
b128c09f 988
d164b209
BB
989 /*
990 * To prevent 'probe storms' when a device fails, we create
991 * just one probe i/o at a time. All zios that want to probe
992 * this vdev will become parents of the probe io.
993 */
994 mutex_enter(&vd->vdev_probe_lock);
b128c09f 995
d164b209 996 if ((pio = vd->vdev_probe_zio) == NULL) {
b8d06fca 997 vps = kmem_zalloc(sizeof (*vps), KM_PUSHPAGE);
d164b209
BB
998
999 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1000 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
9babb374 1001 ZIO_FLAG_TRYHARD;
d164b209
BB
1002
1003 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1004 /*
1005 * vdev_cant_read and vdev_cant_write can only
1006 * transition from TRUE to FALSE when we have the
1007 * SCL_ZIO lock as writer; otherwise they can only
1008 * transition from FALSE to TRUE. This ensures that
1009 * any zio looking at these values can assume that
1010 * failures persist for the life of the I/O. That's
1011 * important because when a device has intermittent
1012 * connectivity problems, we want to ensure that
1013 * they're ascribed to the device (ENXIO) and not
1014 * the zio (EIO).
1015 *
1016 * Since we hold SCL_ZIO as writer here, clear both
1017 * values so the probe can reevaluate from first
1018 * principles.
1019 */
1020 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1021 vd->vdev_cant_read = B_FALSE;
1022 vd->vdev_cant_write = B_FALSE;
1023 }
1024
1025 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1026 vdev_probe_done, vps,
1027 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1028
428870ff
BB
1029 /*
1030 * We can't change the vdev state in this context, so we
1031 * kick off an async task to do it on our behalf.
1032 */
d164b209
BB
1033 if (zio != NULL) {
1034 vd->vdev_probe_wanted = B_TRUE;
1035 spa_async_request(spa, SPA_ASYNC_PROBE);
1036 }
b128c09f
BB
1037 }
1038
d164b209
BB
1039 if (zio != NULL)
1040 zio_add_child(zio, pio);
b128c09f 1041
d164b209 1042 mutex_exit(&vd->vdev_probe_lock);
b128c09f 1043
d164b209
BB
1044 if (vps == NULL) {
1045 ASSERT(zio != NULL);
1046 return (NULL);
1047 }
b128c09f 1048
d6320ddb 1049 for (l = 1; l < VDEV_LABELS; l++) {
d164b209 1050 zio_nowait(zio_read_phys(pio, vd,
b128c09f 1051 vdev_label_offset(vd->vdev_psize, l,
9babb374
BB
1052 offsetof(vdev_label_t, vl_pad2)),
1053 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
b128c09f
BB
1054 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1055 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1056 }
1057
d164b209
BB
1058 if (zio == NULL)
1059 return (pio);
1060
1061 zio_nowait(pio);
1062 return (NULL);
34dc7c2f
BB
1063}
1064
45d1cae3
BB
1065static void
1066vdev_open_child(void *arg)
1067{
1068 vdev_t *vd = arg;
1069
1070 vd->vdev_open_thread = curthread;
1071 vd->vdev_open_error = vdev_open(vd);
1072 vd->vdev_open_thread = NULL;
1073}
1074
428870ff
BB
1075boolean_t
1076vdev_uses_zvols(vdev_t *vd)
1077{
60101509
BB
1078/*
1079 * Stacking zpools on top of zvols is unsupported until we implement a method
1080 * for determining if an arbitrary block device is a zvol without using the
1081 * path. Solaris would check the 'zvol' path component but this does not
1082 * exist in the Linux port, so we really should do something like stat the
1083 * file and check the major number. This is complicated by the fact that
1084 * we need to do this portably in user or kernel space.
1085 */
1086#if 0
d6320ddb
BB
1087 int c;
1088
428870ff
BB
1089 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1090 strlen(ZVOL_DIR)) == 0)
1091 return (B_TRUE);
d6320ddb 1092 for (c = 0; c < vd->vdev_children; c++)
428870ff
BB
1093 if (vdev_uses_zvols(vd->vdev_child[c]))
1094 return (B_TRUE);
60101509 1095#endif
428870ff
BB
1096 return (B_FALSE);
1097}
1098
45d1cae3
BB
1099void
1100vdev_open_children(vdev_t *vd)
1101{
1102 taskq_t *tq;
1103 int children = vd->vdev_children;
d6320ddb 1104 int c;
45d1cae3 1105
428870ff
BB
1106 /*
1107 * in order to handle pools on top of zvols, do the opens
1108 * in a single thread so that the same thread holds the
1109 * spa_namespace_lock
1110 */
1111 if (vdev_uses_zvols(vd)) {
d6320ddb 1112 for (c = 0; c < children; c++)
428870ff
BB
1113 vd->vdev_child[c]->vdev_open_error =
1114 vdev_open(vd->vdev_child[c]);
1115 return;
1116 }
45d1cae3
BB
1117 tq = taskq_create("vdev_open", children, minclsyspri,
1118 children, children, TASKQ_PREPOPULATE);
1119
d6320ddb 1120 for (c = 0; c < children; c++)
45d1cae3 1121 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
d6320ddb 1122 TQ_SLEEP) != 0);
45d1cae3
BB
1123
1124 taskq_destroy(tq);
1125}
1126
34dc7c2f
BB
1127/*
1128 * Prepare a virtual device for access.
1129 */
1130int
1131vdev_open(vdev_t *vd)
1132{
fb5f0bc8 1133 spa_t *spa = vd->vdev_spa;
34dc7c2f 1134 int error;
34dc7c2f 1135 uint64_t osize = 0;
1bd201e7
CS
1136 uint64_t max_osize = 0;
1137 uint64_t asize, max_asize, psize;
34dc7c2f 1138 uint64_t ashift = 0;
d6320ddb 1139 int c;
34dc7c2f 1140
45d1cae3
BB
1141 ASSERT(vd->vdev_open_thread == curthread ||
1142 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
34dc7c2f
BB
1143 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1144 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1145 vd->vdev_state == VDEV_STATE_OFFLINE);
1146
34dc7c2f 1147 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
9babb374
BB
1148 vd->vdev_cant_read = B_FALSE;
1149 vd->vdev_cant_write = B_FALSE;
1150 vd->vdev_min_asize = vdev_get_min_asize(vd);
34dc7c2f 1151
428870ff
BB
1152 /*
1153 * If this vdev is not removed, check its fault status. If it's
1154 * faulted, bail out of the open.
1155 */
34dc7c2f
BB
1156 if (!vd->vdev_removed && vd->vdev_faulted) {
1157 ASSERT(vd->vdev_children == 0);
428870ff
BB
1158 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1159 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
34dc7c2f 1160 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
428870ff 1161 vd->vdev_label_aux);
34dc7c2f
BB
1162 return (ENXIO);
1163 } else if (vd->vdev_offline) {
1164 ASSERT(vd->vdev_children == 0);
1165 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1166 return (ENXIO);
1167 }
1168
1bd201e7 1169 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
34dc7c2f 1170
428870ff
BB
1171 /*
1172 * Reset the vdev_reopening flag so that we actually close
1173 * the vdev on error.
1174 */
1175 vd->vdev_reopening = B_FALSE;
34dc7c2f 1176 if (zio_injection_enabled && error == 0)
9babb374 1177 error = zio_handle_device_injection(vd, NULL, ENXIO);
34dc7c2f
BB
1178
1179 if (error) {
1180 if (vd->vdev_removed &&
1181 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1182 vd->vdev_removed = B_FALSE;
1183
1184 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1185 vd->vdev_stat.vs_aux);
1186 return (error);
1187 }
1188
1189 vd->vdev_removed = B_FALSE;
1190
428870ff
BB
1191 /*
1192 * Recheck the faulted flag now that we have confirmed that
1193 * the vdev is accessible. If we're faulted, bail.
1194 */
1195 if (vd->vdev_faulted) {
1196 ASSERT(vd->vdev_children == 0);
1197 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1198 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1199 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1200 vd->vdev_label_aux);
1201 return (ENXIO);
1202 }
1203
34dc7c2f
BB
1204 if (vd->vdev_degraded) {
1205 ASSERT(vd->vdev_children == 0);
1206 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1207 VDEV_AUX_ERR_EXCEEDED);
1208 } else {
428870ff 1209 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
34dc7c2f
BB
1210 }
1211
428870ff
BB
1212 /*
1213 * For hole or missing vdevs we just return success.
1214 */
1215 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1216 return (0);
1217
d6320ddb 1218 for (c = 0; c < vd->vdev_children; c++) {
34dc7c2f
BB
1219 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1220 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1221 VDEV_AUX_NONE);
1222 break;
1223 }
9babb374 1224 }
34dc7c2f
BB
1225
1226 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1bd201e7 1227 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
34dc7c2f
BB
1228
1229 if (vd->vdev_children == 0) {
1230 if (osize < SPA_MINDEVSIZE) {
1231 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1232 VDEV_AUX_TOO_SMALL);
1233 return (EOVERFLOW);
1234 }
1235 psize = osize;
1236 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1bd201e7
CS
1237 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1238 VDEV_LABEL_END_SIZE);
34dc7c2f
BB
1239 } else {
1240 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1241 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1242 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1243 VDEV_AUX_TOO_SMALL);
1244 return (EOVERFLOW);
1245 }
1246 psize = 0;
1247 asize = osize;
1bd201e7 1248 max_asize = max_osize;
34dc7c2f
BB
1249 }
1250
1251 vd->vdev_psize = psize;
1252
9babb374
BB
1253 /*
1254 * Make sure the allocatable size hasn't shrunk.
1255 */
1256 if (asize < vd->vdev_min_asize) {
1257 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1258 VDEV_AUX_BAD_LABEL);
1259 return (EINVAL);
1260 }
1261
34dc7c2f
BB
1262 if (vd->vdev_asize == 0) {
1263 /*
1264 * This is the first-ever open, so use the computed values.
1265 * For testing purposes, a higher ashift can be requested.
1266 */
1267 vd->vdev_asize = asize;
1bd201e7 1268 vd->vdev_max_asize = max_asize;
34dc7c2f
BB
1269 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1270 } else {
1271 /*
1272 * Make sure the alignment requirement hasn't increased.
1273 */
1274 if (ashift > vd->vdev_top->vdev_ashift) {
1275 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1276 VDEV_AUX_BAD_LABEL);
1277 return (EINVAL);
1278 }
1bd201e7 1279 vd->vdev_max_asize = max_asize;
9babb374 1280 }
34dc7c2f 1281
9babb374
BB
1282 /*
1283 * If all children are healthy and the asize has increased,
1284 * then we've experienced dynamic LUN growth. If automatic
1285 * expansion is enabled then use the additional space.
1286 */
1287 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1288 (vd->vdev_expanding || spa->spa_autoexpand))
1289 vd->vdev_asize = asize;
34dc7c2f 1290
9babb374 1291 vdev_set_min_asize(vd);
34dc7c2f
BB
1292
1293 /*
1294 * Ensure we can issue some IO before declaring the
1295 * vdev open for business.
1296 */
b128c09f
BB
1297 if (vd->vdev_ops->vdev_op_leaf &&
1298 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
428870ff
BB
1299 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1300 VDEV_AUX_ERR_EXCEEDED);
34dc7c2f
BB
1301 return (error);
1302 }
1303
34dc7c2f 1304 /*
b128c09f 1305 * If a leaf vdev has a DTL, and seems healthy, then kick off a
fb5f0bc8
BB
1306 * resilver. But don't do this if we are doing a reopen for a scrub,
1307 * since this would just restart the scrub we are already doing.
34dc7c2f 1308 */
fb5f0bc8
BB
1309 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1310 vdev_resilver_needed(vd, NULL, NULL))
1311 spa_async_request(spa, SPA_ASYNC_RESILVER);
34dc7c2f
BB
1312
1313 return (0);
1314}
1315
1316/*
1317 * Called once the vdevs are all opened, this routine validates the label
1318 * contents. This needs to be done before vdev_load() so that we don't
1319 * inadvertently do repair I/Os to the wrong device.
1320 *
c7f2d69d
GW
1321 * If 'strict' is false ignore the spa guid check. This is necessary because
1322 * if the machine crashed during a re-guid the new guid might have been written
1323 * to all of the vdev labels, but not the cached config. The strict check
1324 * will be performed when the pool is opened again using the mos config.
1325 *
34dc7c2f
BB
1326 * This function will only return failure if one of the vdevs indicates that it
1327 * has since been destroyed or exported. This is only possible if
1328 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1329 * will be updated but the function will return 0.
1330 */
1331int
c7f2d69d 1332vdev_validate(vdev_t *vd, boolean_t strict)
34dc7c2f
BB
1333{
1334 spa_t *spa = vd->vdev_spa;
34dc7c2f 1335 nvlist_t *label;
428870ff 1336 uint64_t guid = 0, top_guid;
34dc7c2f 1337 uint64_t state;
d6320ddb 1338 int c;
34dc7c2f 1339
d6320ddb 1340 for (c = 0; c < vd->vdev_children; c++)
c7f2d69d 1341 if (vdev_validate(vd->vdev_child[c], strict) != 0)
34dc7c2f
BB
1342 return (EBADF);
1343
1344 /*
1345 * If the device has already failed, or was marked offline, don't do
1346 * any further validation. Otherwise, label I/O will fail and we will
1347 * overwrite the previous state.
1348 */
b128c09f 1349 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
428870ff
BB
1350 uint64_t aux_guid = 0;
1351 nvlist_t *nvl;
34dc7c2f
BB
1352
1353 if ((label = vdev_label_read_config(vd)) == NULL) {
1354 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1355 VDEV_AUX_BAD_LABEL);
1356 return (0);
1357 }
1358
428870ff
BB
1359 /*
1360 * Determine if this vdev has been split off into another
1361 * pool. If so, then refuse to open it.
1362 */
1363 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1364 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1365 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1366 VDEV_AUX_SPLIT_POOL);
1367 nvlist_free(label);
1368 return (0);
1369 }
1370
c7f2d69d
GW
1371 if (strict && (nvlist_lookup_uint64(label,
1372 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1373 guid != spa_guid(spa))) {
34dc7c2f
BB
1374 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1375 VDEV_AUX_CORRUPT_DATA);
1376 nvlist_free(label);
1377 return (0);
1378 }
1379
428870ff
BB
1380 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1381 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1382 &aux_guid) != 0)
1383 aux_guid = 0;
1384
b128c09f
BB
1385 /*
1386 * If this vdev just became a top-level vdev because its
1387 * sibling was detached, it will have adopted the parent's
1388 * vdev guid -- but the label may or may not be on disk yet.
1389 * Fortunately, either version of the label will have the
1390 * same top guid, so if we're a top-level vdev, we can
1391 * safely compare to that instead.
428870ff
BB
1392 *
1393 * If we split this vdev off instead, then we also check the
1394 * original pool's guid. We don't want to consider the vdev
1395 * corrupt if it is partway through a split operation.
b128c09f 1396 */
34dc7c2f 1397 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
b128c09f
BB
1398 &guid) != 0 ||
1399 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1400 &top_guid) != 0 ||
428870ff 1401 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
b128c09f 1402 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
34dc7c2f
BB
1403 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1404 VDEV_AUX_CORRUPT_DATA);
1405 nvlist_free(label);
1406 return (0);
1407 }
1408
1409 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1410 &state) != 0) {
1411 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1412 VDEV_AUX_CORRUPT_DATA);
1413 nvlist_free(label);
1414 return (0);
1415 }
1416
1417 nvlist_free(label);
1418
45d1cae3 1419 /*
572e2857 1420 * If this is a verbatim import, no need to check the
45d1cae3
BB
1421 * state of the pool.
1422 */
572e2857 1423 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
428870ff 1424 spa_load_state(spa) == SPA_LOAD_OPEN &&
34dc7c2f
BB
1425 state != POOL_STATE_ACTIVE)
1426 return (EBADF);
34dc7c2f 1427
b128c09f
BB
1428 /*
1429 * If we were able to open and validate a vdev that was
1430 * previously marked permanently unavailable, clear that state
1431 * now.
1432 */
1433 if (vd->vdev_not_present)
1434 vd->vdev_not_present = 0;
1435 }
34dc7c2f
BB
1436
1437 return (0);
1438}
1439
1440/*
1441 * Close a virtual device.
1442 */
1443void
1444vdev_close(vdev_t *vd)
1445{
428870ff 1446 vdev_t *pvd = vd->vdev_parent;
1fde1e37 1447 ASSERTV(spa_t *spa = vd->vdev_spa);
fb5f0bc8
BB
1448
1449 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1450
428870ff
BB
1451 /*
1452 * If our parent is reopening, then we are as well, unless we are
1453 * going offline.
1454 */
1455 if (pvd != NULL && pvd->vdev_reopening)
1456 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1457
34dc7c2f
BB
1458 vd->vdev_ops->vdev_op_close(vd);
1459
1460 vdev_cache_purge(vd);
1461
1462 /*
9babb374 1463 * We record the previous state before we close it, so that if we are
34dc7c2f
BB
1464 * doing a reopen(), we don't generate FMA ereports if we notice that
1465 * it's still faulted.
1466 */
1467 vd->vdev_prevstate = vd->vdev_state;
1468
1469 if (vd->vdev_offline)
1470 vd->vdev_state = VDEV_STATE_OFFLINE;
1471 else
1472 vd->vdev_state = VDEV_STATE_CLOSED;
1473 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1474}
1475
428870ff
BB
1476void
1477vdev_hold(vdev_t *vd)
1478{
1479 spa_t *spa = vd->vdev_spa;
d6320ddb 1480 int c;
428870ff
BB
1481
1482 ASSERT(spa_is_root(spa));
1483 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1484 return;
1485
d6320ddb 1486 for (c = 0; c < vd->vdev_children; c++)
428870ff
BB
1487 vdev_hold(vd->vdev_child[c]);
1488
1489 if (vd->vdev_ops->vdev_op_leaf)
1490 vd->vdev_ops->vdev_op_hold(vd);
1491}
1492
1493void
1494vdev_rele(vdev_t *vd)
1495{
d6320ddb 1496 int c;
428870ff 1497
d6320ddb
BB
1498 ASSERT(spa_is_root(vd->vdev_spa));
1499 for (c = 0; c < vd->vdev_children; c++)
428870ff
BB
1500 vdev_rele(vd->vdev_child[c]);
1501
1502 if (vd->vdev_ops->vdev_op_leaf)
1503 vd->vdev_ops->vdev_op_rele(vd);
1504}
1505
1506/*
1507 * Reopen all interior vdevs and any unopened leaves. We don't actually
1508 * reopen leaf vdevs which had previously been opened as they might deadlock
1509 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1510 * If the leaf has never been opened then open it, as usual.
1511 */
34dc7c2f
BB
1512void
1513vdev_reopen(vdev_t *vd)
1514{
1515 spa_t *spa = vd->vdev_spa;
1516
b128c09f 1517 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
34dc7c2f 1518
428870ff
BB
1519 /* set the reopening flag unless we're taking the vdev offline */
1520 vd->vdev_reopening = !vd->vdev_offline;
34dc7c2f
BB
1521 vdev_close(vd);
1522 (void) vdev_open(vd);
1523
1524 /*
1525 * Call vdev_validate() here to make sure we have the same device.
1526 * Otherwise, a device with an invalid label could be successfully
1527 * opened in response to vdev_reopen().
1528 */
b128c09f
BB
1529 if (vd->vdev_aux) {
1530 (void) vdev_validate_aux(vd);
1531 if (vdev_readable(vd) && vdev_writeable(vd) &&
9babb374
BB
1532 vd->vdev_aux == &spa->spa_l2cache &&
1533 !l2arc_vdev_present(vd))
1534 l2arc_add_vdev(spa, vd);
b128c09f 1535 } else {
c7f2d69d 1536 (void) vdev_validate(vd, B_TRUE);
b128c09f 1537 }
34dc7c2f
BB
1538
1539 /*
1540 * Reassess parent vdev's health.
1541 */
1542 vdev_propagate_state(vd);
1543}
1544
1545int
1546vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1547{
1548 int error;
1549
1550 /*
1551 * Normally, partial opens (e.g. of a mirror) are allowed.
1552 * For a create, however, we want to fail the request if
1553 * there are any components we can't open.
1554 */
1555 error = vdev_open(vd);
1556
1557 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1558 vdev_close(vd);
1559 return (error ? error : ENXIO);
1560 }
1561
1562 /*
1563 * Recursively initialize all labels.
1564 */
1565 if ((error = vdev_label_init(vd, txg, isreplacing ?
1566 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1567 vdev_close(vd);
1568 return (error);
1569 }
1570
1571 return (0);
1572}
1573
34dc7c2f 1574void
9babb374 1575vdev_metaslab_set_size(vdev_t *vd)
34dc7c2f
BB
1576{
1577 /*
1578 * Aim for roughly 200 metaslabs per vdev.
1579 */
1580 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1581 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
34dc7c2f
BB
1582}
1583
1584void
1585vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1586{
1587 ASSERT(vd == vd->vdev_top);
428870ff 1588 ASSERT(!vd->vdev_ishole);
34dc7c2f 1589 ASSERT(ISP2(flags));
572e2857 1590 ASSERT(spa_writeable(vd->vdev_spa));
34dc7c2f
BB
1591
1592 if (flags & VDD_METASLAB)
1593 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1594
1595 if (flags & VDD_DTL)
1596 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1597
1598 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1599}
1600
fb5f0bc8
BB
1601/*
1602 * DTLs.
1603 *
1604 * A vdev's DTL (dirty time log) is the set of transaction groups for which
428870ff 1605 * the vdev has less than perfect replication. There are four kinds of DTL:
fb5f0bc8
BB
1606 *
1607 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1608 *
1609 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1610 *
1611 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1612 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1613 * txgs that was scrubbed.
1614 *
1615 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1616 * persistent errors or just some device being offline.
1617 * Unlike the other three, the DTL_OUTAGE map is not generally
1618 * maintained; it's only computed when needed, typically to
1619 * determine whether a device can be detached.
1620 *
1621 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1622 * either has the data or it doesn't.
1623 *
1624 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1625 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1626 * if any child is less than fully replicated, then so is its parent.
1627 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1628 * comprising only those txgs which appear in 'maxfaults' or more children;
1629 * those are the txgs we don't have enough replication to read. For example,
1630 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1631 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1632 * two child DTL_MISSING maps.
1633 *
1634 * It should be clear from the above that to compute the DTLs and outage maps
1635 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1636 * Therefore, that is all we keep on disk. When loading the pool, or after
1637 * a configuration change, we generate all other DTLs from first principles.
1638 */
34dc7c2f 1639void
fb5f0bc8 1640vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
34dc7c2f 1641{
fb5f0bc8
BB
1642 space_map_t *sm = &vd->vdev_dtl[t];
1643
1644 ASSERT(t < DTL_TYPES);
1645 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
572e2857 1646 ASSERT(spa_writeable(vd->vdev_spa));
fb5f0bc8 1647
34dc7c2f
BB
1648 mutex_enter(sm->sm_lock);
1649 if (!space_map_contains(sm, txg, size))
1650 space_map_add(sm, txg, size);
1651 mutex_exit(sm->sm_lock);
1652}
1653
fb5f0bc8
BB
1654boolean_t
1655vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
34dc7c2f 1656{
fb5f0bc8
BB
1657 space_map_t *sm = &vd->vdev_dtl[t];
1658 boolean_t dirty = B_FALSE;
34dc7c2f 1659
fb5f0bc8
BB
1660 ASSERT(t < DTL_TYPES);
1661 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
34dc7c2f
BB
1662
1663 mutex_enter(sm->sm_lock);
fb5f0bc8
BB
1664 if (sm->sm_space != 0)
1665 dirty = space_map_contains(sm, txg, size);
34dc7c2f
BB
1666 mutex_exit(sm->sm_lock);
1667
1668 return (dirty);
1669}
1670
fb5f0bc8
BB
1671boolean_t
1672vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1673{
1674 space_map_t *sm = &vd->vdev_dtl[t];
1675 boolean_t empty;
1676
1677 mutex_enter(sm->sm_lock);
1678 empty = (sm->sm_space == 0);
1679 mutex_exit(sm->sm_lock);
1680
1681 return (empty);
1682}
1683
34dc7c2f
BB
1684/*
1685 * Reassess DTLs after a config change or scrub completion.
1686 */
1687void
1688vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1689{
1690 spa_t *spa = vd->vdev_spa;
fb5f0bc8 1691 avl_tree_t reftree;
d6320ddb 1692 int c, t, minref;
34dc7c2f 1693
fb5f0bc8 1694 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
34dc7c2f 1695
d6320ddb 1696 for (c = 0; c < vd->vdev_children; c++)
fb5f0bc8
BB
1697 vdev_dtl_reassess(vd->vdev_child[c], txg,
1698 scrub_txg, scrub_done);
1699
428870ff 1700 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
fb5f0bc8
BB
1701 return;
1702
1703 if (vd->vdev_ops->vdev_op_leaf) {
428870ff
BB
1704 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1705
34dc7c2f 1706 mutex_enter(&vd->vdev_dtl_lock);
b128c09f 1707 if (scrub_txg != 0 &&
428870ff
BB
1708 (spa->spa_scrub_started ||
1709 (scn && scn->scn_phys.scn_errors == 0))) {
b128c09f
BB
1710 /*
1711 * We completed a scrub up to scrub_txg. If we
1712 * did it without rebooting, then the scrub dtl
1713 * will be valid, so excise the old region and
1714 * fold in the scrub dtl. Otherwise, leave the
1715 * dtl as-is if there was an error.
fb5f0bc8
BB
1716 *
1717 * There's little trick here: to excise the beginning
1718 * of the DTL_MISSING map, we put it into a reference
1719 * tree and then add a segment with refcnt -1 that
1720 * covers the range [0, scrub_txg). This means
1721 * that each txg in that range has refcnt -1 or 0.
1722 * We then add DTL_SCRUB with a refcnt of 2, so that
1723 * entries in the range [0, scrub_txg) will have a
1724 * positive refcnt -- either 1 or 2. We then convert
1725 * the reference tree into the new DTL_MISSING map.
b128c09f 1726 */
fb5f0bc8
BB
1727 space_map_ref_create(&reftree);
1728 space_map_ref_add_map(&reftree,
1729 &vd->vdev_dtl[DTL_MISSING], 1);
1730 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1731 space_map_ref_add_map(&reftree,
1732 &vd->vdev_dtl[DTL_SCRUB], 2);
1733 space_map_ref_generate_map(&reftree,
1734 &vd->vdev_dtl[DTL_MISSING], 1);
1735 space_map_ref_destroy(&reftree);
34dc7c2f 1736 }
fb5f0bc8
BB
1737 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1738 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1739 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
34dc7c2f 1740 if (scrub_done)
fb5f0bc8
BB
1741 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1742 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1743 if (!vdev_readable(vd))
1744 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1745 else
1746 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1747 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
34dc7c2f 1748 mutex_exit(&vd->vdev_dtl_lock);
b128c09f 1749
34dc7c2f
BB
1750 if (txg != 0)
1751 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1752 return;
1753 }
1754
34dc7c2f 1755 mutex_enter(&vd->vdev_dtl_lock);
d6320ddb 1756 for (t = 0; t < DTL_TYPES; t++) {
428870ff
BB
1757 /* account for child's outage in parent's missing map */
1758 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
fb5f0bc8
BB
1759 if (t == DTL_SCRUB)
1760 continue; /* leaf vdevs only */
1761 if (t == DTL_PARTIAL)
1762 minref = 1; /* i.e. non-zero */
1763 else if (vd->vdev_nparity != 0)
1764 minref = vd->vdev_nparity + 1; /* RAID-Z */
1765 else
1766 minref = vd->vdev_children; /* any kind of mirror */
1767 space_map_ref_create(&reftree);
d6320ddb 1768 for (c = 0; c < vd->vdev_children; c++) {
fb5f0bc8
BB
1769 vdev_t *cvd = vd->vdev_child[c];
1770 mutex_enter(&cvd->vdev_dtl_lock);
428870ff 1771 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
fb5f0bc8
BB
1772 mutex_exit(&cvd->vdev_dtl_lock);
1773 }
1774 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1775 space_map_ref_destroy(&reftree);
34dc7c2f 1776 }
fb5f0bc8 1777 mutex_exit(&vd->vdev_dtl_lock);
34dc7c2f
BB
1778}
1779
1780static int
1781vdev_dtl_load(vdev_t *vd)
1782{
1783 spa_t *spa = vd->vdev_spa;
fb5f0bc8 1784 space_map_obj_t *smo = &vd->vdev_dtl_smo;
34dc7c2f
BB
1785 objset_t *mos = spa->spa_meta_objset;
1786 dmu_buf_t *db;
1787 int error;
1788
1789 ASSERT(vd->vdev_children == 0);
1790
1791 if (smo->smo_object == 0)
1792 return (0);
1793
428870ff
BB
1794 ASSERT(!vd->vdev_ishole);
1795
34dc7c2f
BB
1796 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1797 return (error);
1798
1799 ASSERT3U(db->db_size, >=, sizeof (*smo));
1800 bcopy(db->db_data, smo, sizeof (*smo));
1801 dmu_buf_rele(db, FTAG);
1802
1803 mutex_enter(&vd->vdev_dtl_lock);
fb5f0bc8
BB
1804 error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1805 NULL, SM_ALLOC, smo, mos);
34dc7c2f
BB
1806 mutex_exit(&vd->vdev_dtl_lock);
1807
1808 return (error);
1809}
1810
1811void
1812vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1813{
1814 spa_t *spa = vd->vdev_spa;
fb5f0bc8
BB
1815 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1816 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
34dc7c2f
BB
1817 objset_t *mos = spa->spa_meta_objset;
1818 space_map_t smsync;
1819 kmutex_t smlock;
1820 dmu_buf_t *db;
1821 dmu_tx_t *tx;
1822
428870ff
BB
1823 ASSERT(!vd->vdev_ishole);
1824
34dc7c2f
BB
1825 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1826
1827 if (vd->vdev_detached) {
1828 if (smo->smo_object != 0) {
1fde1e37 1829 VERIFY(0 == dmu_object_free(mos, smo->smo_object, tx));
34dc7c2f
BB
1830 smo->smo_object = 0;
1831 }
1832 dmu_tx_commit(tx);
34dc7c2f
BB
1833 return;
1834 }
1835
1836 if (smo->smo_object == 0) {
1837 ASSERT(smo->smo_objsize == 0);
1838 ASSERT(smo->smo_alloc == 0);
1839 smo->smo_object = dmu_object_alloc(mos,
1840 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1841 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1842 ASSERT(smo->smo_object != 0);
1843 vdev_config_dirty(vd->vdev_top);
1844 }
1845
1846 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1847
1848 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1849 &smlock);
1850
1851 mutex_enter(&smlock);
1852
1853 mutex_enter(&vd->vdev_dtl_lock);
1854 space_map_walk(sm, space_map_add, &smsync);
1855 mutex_exit(&vd->vdev_dtl_lock);
1856
1857 space_map_truncate(smo, mos, tx);
1858 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1859
1860 space_map_destroy(&smsync);
1861
1862 mutex_exit(&smlock);
1863 mutex_destroy(&smlock);
1864
1865 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1866 dmu_buf_will_dirty(db, tx);
1867 ASSERT3U(db->db_size, >=, sizeof (*smo));
1868 bcopy(smo, db->db_data, sizeof (*smo));
1869 dmu_buf_rele(db, FTAG);
1870
1871 dmu_tx_commit(tx);
1872}
1873
fb5f0bc8
BB
1874/*
1875 * Determine whether the specified vdev can be offlined/detached/removed
1876 * without losing data.
1877 */
1878boolean_t
1879vdev_dtl_required(vdev_t *vd)
1880{
1881 spa_t *spa = vd->vdev_spa;
1882 vdev_t *tvd = vd->vdev_top;
1883 uint8_t cant_read = vd->vdev_cant_read;
1884 boolean_t required;
1885
1886 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1887
1888 if (vd == spa->spa_root_vdev || vd == tvd)
1889 return (B_TRUE);
1890
1891 /*
1892 * Temporarily mark the device as unreadable, and then determine
1893 * whether this results in any DTL outages in the top-level vdev.
1894 * If not, we can safely offline/detach/remove the device.
1895 */
1896 vd->vdev_cant_read = B_TRUE;
1897 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1898 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1899 vd->vdev_cant_read = cant_read;
1900 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1901
572e2857
BB
1902 if (!required && zio_injection_enabled)
1903 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1904
fb5f0bc8
BB
1905 return (required);
1906}
1907
b128c09f
BB
1908/*
1909 * Determine if resilver is needed, and if so the txg range.
1910 */
1911boolean_t
1912vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1913{
1914 boolean_t needed = B_FALSE;
1915 uint64_t thismin = UINT64_MAX;
1916 uint64_t thismax = 0;
d6320ddb 1917 int c;
b128c09f
BB
1918
1919 if (vd->vdev_children == 0) {
1920 mutex_enter(&vd->vdev_dtl_lock);
fb5f0bc8
BB
1921 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1922 vdev_writeable(vd)) {
b128c09f
BB
1923 space_seg_t *ss;
1924
fb5f0bc8 1925 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
b128c09f 1926 thismin = ss->ss_start - 1;
fb5f0bc8 1927 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
b128c09f
BB
1928 thismax = ss->ss_end;
1929 needed = B_TRUE;
1930 }
1931 mutex_exit(&vd->vdev_dtl_lock);
1932 } else {
d6320ddb 1933 for (c = 0; c < vd->vdev_children; c++) {
b128c09f
BB
1934 vdev_t *cvd = vd->vdev_child[c];
1935 uint64_t cmin, cmax;
1936
1937 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1938 thismin = MIN(thismin, cmin);
1939 thismax = MAX(thismax, cmax);
1940 needed = B_TRUE;
1941 }
1942 }
1943 }
1944
1945 if (needed && minp) {
1946 *minp = thismin;
1947 *maxp = thismax;
1948 }
1949 return (needed);
1950}
1951
34dc7c2f
BB
1952void
1953vdev_load(vdev_t *vd)
1954{
d6320ddb
BB
1955 int c;
1956
34dc7c2f
BB
1957 /*
1958 * Recursively load all children.
1959 */
d6320ddb 1960 for (c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
1961 vdev_load(vd->vdev_child[c]);
1962
1963 /*
1964 * If this is a top-level vdev, initialize its metaslabs.
1965 */
428870ff 1966 if (vd == vd->vdev_top && !vd->vdev_ishole &&
34dc7c2f
BB
1967 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1968 vdev_metaslab_init(vd, 0) != 0))
1969 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1970 VDEV_AUX_CORRUPT_DATA);
1971
1972 /*
1973 * If this is a leaf vdev, load its DTL.
1974 */
1975 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1976 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1977 VDEV_AUX_CORRUPT_DATA);
1978}
1979
1980/*
1981 * The special vdev case is used for hot spares and l2cache devices. Its
1982 * sole purpose it to set the vdev state for the associated vdev. To do this,
1983 * we make sure that we can open the underlying device, then try to read the
1984 * label, and make sure that the label is sane and that it hasn't been
1985 * repurposed to another pool.
1986 */
1987int
1988vdev_validate_aux(vdev_t *vd)
1989{
1990 nvlist_t *label;
1991 uint64_t guid, version;
1992 uint64_t state;
1993
b128c09f
BB
1994 if (!vdev_readable(vd))
1995 return (0);
1996
34dc7c2f
BB
1997 if ((label = vdev_label_read_config(vd)) == NULL) {
1998 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1999 VDEV_AUX_CORRUPT_DATA);
2000 return (-1);
2001 }
2002
2003 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2004 version > SPA_VERSION ||
2005 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2006 guid != vd->vdev_guid ||
2007 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2008 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2009 VDEV_AUX_CORRUPT_DATA);
2010 nvlist_free(label);
2011 return (-1);
2012 }
2013
2014 /*
2015 * We don't actually check the pool state here. If it's in fact in
2016 * use by another pool, we update this fact on the fly when requested.
2017 */
2018 nvlist_free(label);
2019 return (0);
2020}
2021
428870ff
BB
2022void
2023vdev_remove(vdev_t *vd, uint64_t txg)
2024{
2025 spa_t *spa = vd->vdev_spa;
2026 objset_t *mos = spa->spa_meta_objset;
2027 dmu_tx_t *tx;
d6320ddb 2028 int m;
428870ff
BB
2029
2030 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2031
2032 if (vd->vdev_dtl_smo.smo_object) {
2033 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
2034 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2035 vd->vdev_dtl_smo.smo_object = 0;
2036 }
2037
2038 if (vd->vdev_ms != NULL) {
d6320ddb 2039 for (m = 0; m < vd->vdev_ms_count; m++) {
428870ff
BB
2040 metaslab_t *msp = vd->vdev_ms[m];
2041
2042 if (msp == NULL || msp->ms_smo.smo_object == 0)
2043 continue;
2044
2045 ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
2046 (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2047 msp->ms_smo.smo_object = 0;
2048 }
2049 }
2050
2051 if (vd->vdev_ms_array) {
2052 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2053 vd->vdev_ms_array = 0;
2054 vd->vdev_ms_shift = 0;
2055 }
2056 dmu_tx_commit(tx);
2057}
2058
34dc7c2f
BB
2059void
2060vdev_sync_done(vdev_t *vd, uint64_t txg)
2061{
2062 metaslab_t *msp;
428870ff
BB
2063 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2064
2065 ASSERT(!vd->vdev_ishole);
34dc7c2f 2066
c65aa5b2 2067 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
34dc7c2f 2068 metaslab_sync_done(msp, txg);
428870ff
BB
2069
2070 if (reassess)
2071 metaslab_sync_reassess(vd->vdev_mg);
34dc7c2f
BB
2072}
2073
2074void
2075vdev_sync(vdev_t *vd, uint64_t txg)
2076{
2077 spa_t *spa = vd->vdev_spa;
2078 vdev_t *lvd;
2079 metaslab_t *msp;
2080 dmu_tx_t *tx;
2081
428870ff
BB
2082 ASSERT(!vd->vdev_ishole);
2083
34dc7c2f
BB
2084 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2085 ASSERT(vd == vd->vdev_top);
2086 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2087 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2088 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2089 ASSERT(vd->vdev_ms_array != 0);
2090 vdev_config_dirty(vd);
2091 dmu_tx_commit(tx);
2092 }
2093
428870ff
BB
2094 /*
2095 * Remove the metadata associated with this vdev once it's empty.
2096 */
2097 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2098 vdev_remove(vd, txg);
2099
34dc7c2f
BB
2100 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2101 metaslab_sync(msp, txg);
2102 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2103 }
2104
2105 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2106 vdev_dtl_sync(lvd, txg);
2107
2108 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2109}
2110
2111uint64_t
2112vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2113{
2114 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2115}
2116
34dc7c2f
BB
2117/*
2118 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2119 * not be opened, and no I/O is attempted.
2120 */
2121int
428870ff 2122vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
34dc7c2f 2123{
572e2857 2124 vdev_t *vd, *tvd;
34dc7c2f 2125
428870ff 2126 spa_vdev_state_enter(spa, SCL_NONE);
34dc7c2f 2127
b128c09f
BB
2128 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2129 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f 2130
34dc7c2f 2131 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 2132 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f 2133
572e2857
BB
2134 tvd = vd->vdev_top;
2135
428870ff
BB
2136 /*
2137 * We don't directly use the aux state here, but if we do a
2138 * vdev_reopen(), we need this value to be present to remember why we
2139 * were faulted.
2140 */
2141 vd->vdev_label_aux = aux;
2142
34dc7c2f
BB
2143 /*
2144 * Faulted state takes precedence over degraded.
2145 */
428870ff 2146 vd->vdev_delayed_close = B_FALSE;
34dc7c2f
BB
2147 vd->vdev_faulted = 1ULL;
2148 vd->vdev_degraded = 0ULL;
428870ff 2149 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
34dc7c2f
BB
2150
2151 /*
428870ff
BB
2152 * If this device has the only valid copy of the data, then
2153 * back off and simply mark the vdev as degraded instead.
34dc7c2f 2154 */
572e2857 2155 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
34dc7c2f
BB
2156 vd->vdev_degraded = 1ULL;
2157 vd->vdev_faulted = 0ULL;
2158
2159 /*
2160 * If we reopen the device and it's not dead, only then do we
2161 * mark it degraded.
2162 */
572e2857 2163 vdev_reopen(tvd);
34dc7c2f 2164
428870ff
BB
2165 if (vdev_readable(vd))
2166 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
34dc7c2f
BB
2167 }
2168
b128c09f 2169 return (spa_vdev_state_exit(spa, vd, 0));
34dc7c2f
BB
2170}
2171
2172/*
2173 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2174 * user that something is wrong. The vdev continues to operate as normal as far
2175 * as I/O is concerned.
2176 */
2177int
428870ff 2178vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
34dc7c2f 2179{
b128c09f 2180 vdev_t *vd;
34dc7c2f 2181
428870ff 2182 spa_vdev_state_enter(spa, SCL_NONE);
34dc7c2f 2183
b128c09f
BB
2184 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2185 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f 2186
34dc7c2f 2187 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 2188 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f
BB
2189
2190 /*
2191 * If the vdev is already faulted, then don't do anything.
2192 */
b128c09f
BB
2193 if (vd->vdev_faulted || vd->vdev_degraded)
2194 return (spa_vdev_state_exit(spa, NULL, 0));
34dc7c2f
BB
2195
2196 vd->vdev_degraded = 1ULL;
2197 if (!vdev_is_dead(vd))
2198 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
428870ff 2199 aux);
34dc7c2f 2200
b128c09f 2201 return (spa_vdev_state_exit(spa, vd, 0));
34dc7c2f
BB
2202}
2203
2204/*
2205 * Online the given vdev. If 'unspare' is set, it implies two things. First,
2206 * any attached spare device should be detached when the device finishes
2207 * resilvering. Second, the online should be treated like a 'test' online case,
2208 * so no FMA events are generated if the device fails to open.
2209 */
2210int
b128c09f 2211vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
34dc7c2f 2212{
9babb374 2213 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
34dc7c2f 2214
428870ff 2215 spa_vdev_state_enter(spa, SCL_NONE);
34dc7c2f 2216
b128c09f
BB
2217 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2218 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f
BB
2219
2220 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 2221 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f 2222
9babb374 2223 tvd = vd->vdev_top;
34dc7c2f
BB
2224 vd->vdev_offline = B_FALSE;
2225 vd->vdev_tmpoffline = B_FALSE;
b128c09f
BB
2226 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2227 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
9babb374
BB
2228
2229 /* XXX - L2ARC 1.0 does not support expansion */
2230 if (!vd->vdev_aux) {
2231 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2232 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2233 }
2234
2235 vdev_reopen(tvd);
34dc7c2f
BB
2236 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2237
9babb374
BB
2238 if (!vd->vdev_aux) {
2239 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2240 pvd->vdev_expanding = B_FALSE;
2241 }
2242
34dc7c2f
BB
2243 if (newstate)
2244 *newstate = vd->vdev_state;
2245 if ((flags & ZFS_ONLINE_UNSPARE) &&
2246 !vdev_is_dead(vd) && vd->vdev_parent &&
2247 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2248 vd->vdev_parent->vdev_child[0] == vd)
2249 vd->vdev_unspare = B_TRUE;
2250
9babb374
BB
2251 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2252
2253 /* XXX - L2ARC 1.0 does not support expansion */
2254 if (vd->vdev_aux)
2255 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2256 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2257 }
fb5f0bc8 2258 return (spa_vdev_state_exit(spa, vd, 0));
34dc7c2f
BB
2259}
2260
428870ff
BB
2261static int
2262vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
34dc7c2f 2263{
9babb374 2264 vdev_t *vd, *tvd;
428870ff
BB
2265 int error = 0;
2266 uint64_t generation;
2267 metaslab_group_t *mg;
34dc7c2f 2268
428870ff
BB
2269top:
2270 spa_vdev_state_enter(spa, SCL_ALLOC);
34dc7c2f 2271
b128c09f
BB
2272 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2273 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f
BB
2274
2275 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 2276 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f 2277
9babb374 2278 tvd = vd->vdev_top;
428870ff
BB
2279 mg = tvd->vdev_mg;
2280 generation = spa->spa_config_generation + 1;
9babb374 2281
34dc7c2f
BB
2282 /*
2283 * If the device isn't already offline, try to offline it.
2284 */
2285 if (!vd->vdev_offline) {
2286 /*
fb5f0bc8 2287 * If this device has the only valid copy of some data,
9babb374
BB
2288 * don't allow it to be offlined. Log devices are always
2289 * expendable.
34dc7c2f 2290 */
9babb374
BB
2291 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2292 vdev_dtl_required(vd))
b128c09f 2293 return (spa_vdev_state_exit(spa, NULL, EBUSY));
34dc7c2f 2294
428870ff
BB
2295 /*
2296 * If the top-level is a slog and it has had allocations
2297 * then proceed. We check that the vdev's metaslab group
2298 * is not NULL since it's possible that we may have just
2299 * added this vdev but not yet initialized its metaslabs.
2300 */
2301 if (tvd->vdev_islog && mg != NULL) {
2302 /*
2303 * Prevent any future allocations.
2304 */
2305 metaslab_group_passivate(mg);
2306 (void) spa_vdev_state_exit(spa, vd, 0);
2307
2308 error = spa_offline_log(spa);
2309
2310 spa_vdev_state_enter(spa, SCL_ALLOC);
2311
2312 /*
2313 * Check to see if the config has changed.
2314 */
2315 if (error || generation != spa->spa_config_generation) {
2316 metaslab_group_activate(mg);
2317 if (error)
2318 return (spa_vdev_state_exit(spa,
2319 vd, error));
2320 (void) spa_vdev_state_exit(spa, vd, 0);
2321 goto top;
2322 }
2323 ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2324 }
2325
34dc7c2f
BB
2326 /*
2327 * Offline this device and reopen its top-level vdev.
9babb374
BB
2328 * If the top-level vdev is a log device then just offline
2329 * it. Otherwise, if this action results in the top-level
2330 * vdev becoming unusable, undo it and fail the request.
34dc7c2f
BB
2331 */
2332 vd->vdev_offline = B_TRUE;
9babb374
BB
2333 vdev_reopen(tvd);
2334
2335 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2336 vdev_is_dead(tvd)) {
34dc7c2f 2337 vd->vdev_offline = B_FALSE;
9babb374 2338 vdev_reopen(tvd);
b128c09f 2339 return (spa_vdev_state_exit(spa, NULL, EBUSY));
34dc7c2f 2340 }
428870ff
BB
2341
2342 /*
2343 * Add the device back into the metaslab rotor so that
2344 * once we online the device it's open for business.
2345 */
2346 if (tvd->vdev_islog && mg != NULL)
2347 metaslab_group_activate(mg);
34dc7c2f
BB
2348 }
2349
b128c09f 2350 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
34dc7c2f 2351
428870ff
BB
2352 return (spa_vdev_state_exit(spa, vd, 0));
2353}
9babb374 2354
428870ff
BB
2355int
2356vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2357{
2358 int error;
9babb374 2359
428870ff
BB
2360 mutex_enter(&spa->spa_vdev_top_lock);
2361 error = vdev_offline_locked(spa, guid, flags);
2362 mutex_exit(&spa->spa_vdev_top_lock);
2363
2364 return (error);
34dc7c2f
BB
2365}
2366
2367/*
2368 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2369 * vdev_offline(), we assume the spa config is locked. We also clear all
2370 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
34dc7c2f
BB
2371 */
2372void
b128c09f 2373vdev_clear(spa_t *spa, vdev_t *vd)
34dc7c2f 2374{
b128c09f 2375 vdev_t *rvd = spa->spa_root_vdev;
d6320ddb 2376 int c;
b128c09f
BB
2377
2378 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
34dc7c2f
BB
2379
2380 if (vd == NULL)
b128c09f 2381 vd = rvd;
34dc7c2f
BB
2382
2383 vd->vdev_stat.vs_read_errors = 0;
2384 vd->vdev_stat.vs_write_errors = 0;
2385 vd->vdev_stat.vs_checksum_errors = 0;
34dc7c2f 2386
d6320ddb 2387 for (c = 0; c < vd->vdev_children; c++)
b128c09f 2388 vdev_clear(spa, vd->vdev_child[c]);
34dc7c2f
BB
2389
2390 /*
b128c09f
BB
2391 * If we're in the FAULTED state or have experienced failed I/O, then
2392 * clear the persistent state and attempt to reopen the device. We
2393 * also mark the vdev config dirty, so that the new faulted state is
2394 * written out to disk.
34dc7c2f 2395 */
b128c09f
BB
2396 if (vd->vdev_faulted || vd->vdev_degraded ||
2397 !vdev_readable(vd) || !vdev_writeable(vd)) {
2398
428870ff
BB
2399 /*
2400 * When reopening in reponse to a clear event, it may be due to
2401 * a fmadm repair request. In this case, if the device is
2402 * still broken, we want to still post the ereport again.
2403 */
2404 vd->vdev_forcefault = B_TRUE;
2405
572e2857 2406 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
b128c09f
BB
2407 vd->vdev_cant_read = B_FALSE;
2408 vd->vdev_cant_write = B_FALSE;
2409
572e2857 2410 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
34dc7c2f 2411
428870ff
BB
2412 vd->vdev_forcefault = B_FALSE;
2413
572e2857 2414 if (vd != rvd && vdev_writeable(vd->vdev_top))
b128c09f
BB
2415 vdev_state_dirty(vd->vdev_top);
2416
2417 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
34dc7c2f
BB
2418 spa_async_request(spa, SPA_ASYNC_RESILVER);
2419
26685276 2420 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_CLEAR);
34dc7c2f 2421 }
428870ff
BB
2422
2423 /*
2424 * When clearing a FMA-diagnosed fault, we always want to
2425 * unspare the device, as we assume that the original spare was
2426 * done in response to the FMA fault.
2427 */
2428 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2429 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2430 vd->vdev_parent->vdev_child[0] == vd)
2431 vd->vdev_unspare = B_TRUE;
34dc7c2f
BB
2432}
2433
b128c09f
BB
2434boolean_t
2435vdev_is_dead(vdev_t *vd)
2436{
428870ff
BB
2437 /*
2438 * Holes and missing devices are always considered "dead".
2439 * This simplifies the code since we don't have to check for
2440 * these types of devices in the various code paths.
2441 * Instead we rely on the fact that we skip over dead devices
2442 * before issuing I/O to them.
2443 */
2444 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2445 vd->vdev_ops == &vdev_missing_ops);
b128c09f
BB
2446}
2447
2448boolean_t
34dc7c2f
BB
2449vdev_readable(vdev_t *vd)
2450{
b128c09f 2451 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
34dc7c2f
BB
2452}
2453
b128c09f 2454boolean_t
34dc7c2f
BB
2455vdev_writeable(vdev_t *vd)
2456{
b128c09f 2457 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
34dc7c2f
BB
2458}
2459
b128c09f
BB
2460boolean_t
2461vdev_allocatable(vdev_t *vd)
34dc7c2f 2462{
fb5f0bc8
BB
2463 uint64_t state = vd->vdev_state;
2464
b128c09f 2465 /*
fb5f0bc8 2466 * We currently allow allocations from vdevs which may be in the
b128c09f
BB
2467 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2468 * fails to reopen then we'll catch it later when we're holding
fb5f0bc8
BB
2469 * the proper locks. Note that we have to get the vdev state
2470 * in a local variable because although it changes atomically,
2471 * we're asking two separate questions about it.
b128c09f 2472 */
fb5f0bc8 2473 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
428870ff 2474 !vd->vdev_cant_write && !vd->vdev_ishole);
34dc7c2f
BB
2475}
2476
b128c09f
BB
2477boolean_t
2478vdev_accessible(vdev_t *vd, zio_t *zio)
34dc7c2f 2479{
b128c09f 2480 ASSERT(zio->io_vd == vd);
34dc7c2f 2481
b128c09f
BB
2482 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2483 return (B_FALSE);
34dc7c2f 2484
b128c09f
BB
2485 if (zio->io_type == ZIO_TYPE_READ)
2486 return (!vd->vdev_cant_read);
34dc7c2f 2487
b128c09f
BB
2488 if (zio->io_type == ZIO_TYPE_WRITE)
2489 return (!vd->vdev_cant_write);
34dc7c2f 2490
b128c09f 2491 return (B_TRUE);
34dc7c2f
BB
2492}
2493
2494/*
2495 * Get statistics for the given vdev.
2496 */
2497void
2498vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2499{
2500 vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
d6320ddb 2501 int c, t;
34dc7c2f
BB
2502
2503 mutex_enter(&vd->vdev_stat_lock);
2504 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2505 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2506 vs->vs_state = vd->vdev_state;
9babb374
BB
2507 vs->vs_rsize = vdev_get_min_asize(vd);
2508 if (vd->vdev_ops->vdev_op_leaf)
2509 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
1bd201e7 2510 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
34dc7c2f
BB
2511 mutex_exit(&vd->vdev_stat_lock);
2512
2513 /*
2514 * If we're getting stats on the root vdev, aggregate the I/O counts
2515 * over all top-level vdevs (i.e. the direct children of the root).
2516 */
2517 if (vd == rvd) {
d6320ddb 2518 for (c = 0; c < rvd->vdev_children; c++) {
34dc7c2f
BB
2519 vdev_t *cvd = rvd->vdev_child[c];
2520 vdev_stat_t *cvs = &cvd->vdev_stat;
2521
2522 mutex_enter(&vd->vdev_stat_lock);
d6320ddb 2523 for (t = 0; t < ZIO_TYPES; t++) {
34dc7c2f
BB
2524 vs->vs_ops[t] += cvs->vs_ops[t];
2525 vs->vs_bytes[t] += cvs->vs_bytes[t];
2526 }
428870ff 2527 cvs->vs_scan_removing = cvd->vdev_removing;
34dc7c2f
BB
2528 mutex_exit(&vd->vdev_stat_lock);
2529 }
2530 }
2531}
2532
2533void
2534vdev_clear_stats(vdev_t *vd)
2535{
2536 mutex_enter(&vd->vdev_stat_lock);
2537 vd->vdev_stat.vs_space = 0;
2538 vd->vdev_stat.vs_dspace = 0;
2539 vd->vdev_stat.vs_alloc = 0;
2540 mutex_exit(&vd->vdev_stat_lock);
2541}
2542
428870ff
BB
2543void
2544vdev_scan_stat_init(vdev_t *vd)
2545{
2546 vdev_stat_t *vs = &vd->vdev_stat;
d6320ddb 2547 int c;
428870ff 2548
d6320ddb 2549 for (c = 0; c < vd->vdev_children; c++)
428870ff
BB
2550 vdev_scan_stat_init(vd->vdev_child[c]);
2551
2552 mutex_enter(&vd->vdev_stat_lock);
2553 vs->vs_scan_processed = 0;
2554 mutex_exit(&vd->vdev_stat_lock);
2555}
2556
34dc7c2f 2557void
b128c09f 2558vdev_stat_update(zio_t *zio, uint64_t psize)
34dc7c2f 2559{
fb5f0bc8
BB
2560 spa_t *spa = zio->io_spa;
2561 vdev_t *rvd = spa->spa_root_vdev;
b128c09f 2562 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
34dc7c2f
BB
2563 vdev_t *pvd;
2564 uint64_t txg = zio->io_txg;
2565 vdev_stat_t *vs = &vd->vdev_stat;
2566 zio_type_t type = zio->io_type;
2567 int flags = zio->io_flags;
2568
b128c09f
BB
2569 /*
2570 * If this i/o is a gang leader, it didn't do any actual work.
2571 */
2572 if (zio->io_gang_tree)
2573 return;
2574
34dc7c2f 2575 if (zio->io_error == 0) {
b128c09f
BB
2576 /*
2577 * If this is a root i/o, don't count it -- we've already
2578 * counted the top-level vdevs, and vdev_get_stats() will
2579 * aggregate them when asked. This reduces contention on
2580 * the root vdev_stat_lock and implicitly handles blocks
2581 * that compress away to holes, for which there is no i/o.
2582 * (Holes never create vdev children, so all the counters
2583 * remain zero, which is what we want.)
2584 *
2585 * Note: this only applies to successful i/o (io_error == 0)
2586 * because unlike i/o counts, errors are not additive.
2587 * When reading a ditto block, for example, failure of
2588 * one top-level vdev does not imply a root-level error.
2589 */
2590 if (vd == rvd)
2591 return;
2592
2593 ASSERT(vd == zio->io_vd);
fb5f0bc8
BB
2594
2595 if (flags & ZIO_FLAG_IO_BYPASS)
2596 return;
2597
2598 mutex_enter(&vd->vdev_stat_lock);
2599
b128c09f 2600 if (flags & ZIO_FLAG_IO_REPAIR) {
572e2857 2601 if (flags & ZIO_FLAG_SCAN_THREAD) {
428870ff
BB
2602 dsl_scan_phys_t *scn_phys =
2603 &spa->spa_dsl_pool->dp_scan->scn_phys;
2604 uint64_t *processed = &scn_phys->scn_processed;
2605
2606 /* XXX cleanup? */
2607 if (vd->vdev_ops->vdev_op_leaf)
2608 atomic_add_64(processed, psize);
2609 vs->vs_scan_processed += psize;
2610 }
2611
fb5f0bc8 2612 if (flags & ZIO_FLAG_SELF_HEAL)
b128c09f 2613 vs->vs_self_healed += psize;
34dc7c2f 2614 }
fb5f0bc8
BB
2615
2616 vs->vs_ops[type]++;
2617 vs->vs_bytes[type] += psize;
2618
2619 mutex_exit(&vd->vdev_stat_lock);
34dc7c2f
BB
2620 return;
2621 }
2622
2623 if (flags & ZIO_FLAG_SPECULATIVE)
2624 return;
2625
9babb374
BB
2626 /*
2627 * If this is an I/O error that is going to be retried, then ignore the
2628 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
2629 * hard errors, when in reality they can happen for any number of
2630 * innocuous reasons (bus resets, MPxIO link failure, etc).
2631 */
2632 if (zio->io_error == EIO &&
2633 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2634 return;
2635
428870ff
BB
2636 /*
2637 * Intent logs writes won't propagate their error to the root
2638 * I/O so don't mark these types of failures as pool-level
2639 * errors.
2640 */
2641 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2642 return;
2643
b128c09f 2644 mutex_enter(&vd->vdev_stat_lock);
9babb374 2645 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
b128c09f
BB
2646 if (zio->io_error == ECKSUM)
2647 vs->vs_checksum_errors++;
2648 else
2649 vs->vs_read_errors++;
34dc7c2f 2650 }
9babb374 2651 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
b128c09f
BB
2652 vs->vs_write_errors++;
2653 mutex_exit(&vd->vdev_stat_lock);
34dc7c2f 2654
fb5f0bc8
BB
2655 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2656 (!(flags & ZIO_FLAG_IO_REPAIR) ||
572e2857 2657 (flags & ZIO_FLAG_SCAN_THREAD) ||
428870ff 2658 spa->spa_claiming)) {
fb5f0bc8 2659 /*
428870ff
BB
2660 * This is either a normal write (not a repair), or it's
2661 * a repair induced by the scrub thread, or it's a repair
2662 * made by zil_claim() during spa_load() in the first txg.
2663 * In the normal case, we commit the DTL change in the same
2664 * txg as the block was born. In the scrub-induced repair
2665 * case, we know that scrubs run in first-pass syncing context,
2666 * so we commit the DTL change in spa_syncing_txg(spa).
2667 * In the zil_claim() case, we commit in spa_first_txg(spa).
fb5f0bc8
BB
2668 *
2669 * We currently do not make DTL entries for failed spontaneous
2670 * self-healing writes triggered by normal (non-scrubbing)
2671 * reads, because we have no transactional context in which to
2672 * do so -- and it's not clear that it'd be desirable anyway.
2673 */
2674 if (vd->vdev_ops->vdev_op_leaf) {
2675 uint64_t commit_txg = txg;
572e2857 2676 if (flags & ZIO_FLAG_SCAN_THREAD) {
fb5f0bc8
BB
2677 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2678 ASSERT(spa_sync_pass(spa) == 1);
2679 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
428870ff
BB
2680 commit_txg = spa_syncing_txg(spa);
2681 } else if (spa->spa_claiming) {
2682 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2683 commit_txg = spa_first_txg(spa);
fb5f0bc8 2684 }
428870ff 2685 ASSERT(commit_txg >= spa_syncing_txg(spa));
fb5f0bc8 2686 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
34dc7c2f 2687 return;
fb5f0bc8
BB
2688 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2689 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2690 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
34dc7c2f 2691 }
fb5f0bc8
BB
2692 if (vd != rvd)
2693 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
34dc7c2f
BB
2694 }
2695}
2696
34dc7c2f 2697/*
428870ff
BB
2698 * Update the in-core space usage stats for this vdev, its metaslab class,
2699 * and the root vdev.
34dc7c2f
BB
2700 */
2701void
428870ff
BB
2702vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2703 int64_t space_delta)
34dc7c2f
BB
2704{
2705 int64_t dspace_delta = space_delta;
2706 spa_t *spa = vd->vdev_spa;
2707 vdev_t *rvd = spa->spa_root_vdev;
428870ff
BB
2708 metaslab_group_t *mg = vd->vdev_mg;
2709 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
34dc7c2f
BB
2710
2711 ASSERT(vd == vd->vdev_top);
2712
2713 /*
2714 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2715 * factor. We must calculate this here and not at the root vdev
2716 * because the root vdev's psize-to-asize is simply the max of its
2717 * childrens', thus not accurate enough for us.
2718 */
2719 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
9babb374 2720 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
34dc7c2f
BB
2721 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2722 vd->vdev_deflate_ratio;
2723
2724 mutex_enter(&vd->vdev_stat_lock);
34dc7c2f 2725 vd->vdev_stat.vs_alloc += alloc_delta;
428870ff 2726 vd->vdev_stat.vs_space += space_delta;
34dc7c2f
BB
2727 vd->vdev_stat.vs_dspace += dspace_delta;
2728 mutex_exit(&vd->vdev_stat_lock);
2729
428870ff 2730 if (mc == spa_normal_class(spa)) {
34dc7c2f 2731 mutex_enter(&rvd->vdev_stat_lock);
34dc7c2f 2732 rvd->vdev_stat.vs_alloc += alloc_delta;
428870ff 2733 rvd->vdev_stat.vs_space += space_delta;
34dc7c2f
BB
2734 rvd->vdev_stat.vs_dspace += dspace_delta;
2735 mutex_exit(&rvd->vdev_stat_lock);
2736 }
428870ff
BB
2737
2738 if (mc != NULL) {
2739 ASSERT(rvd == vd->vdev_parent);
2740 ASSERT(vd->vdev_ms_count != 0);
2741
2742 metaslab_class_space_update(mc,
2743 alloc_delta, defer_delta, space_delta, dspace_delta);
2744 }
34dc7c2f
BB
2745}
2746
2747/*
2748 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2749 * so that it will be written out next time the vdev configuration is synced.
2750 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2751 */
2752void
2753vdev_config_dirty(vdev_t *vd)
2754{
2755 spa_t *spa = vd->vdev_spa;
2756 vdev_t *rvd = spa->spa_root_vdev;
2757 int c;
2758
572e2857
BB
2759 ASSERT(spa_writeable(spa));
2760
34dc7c2f 2761 /*
9babb374
BB
2762 * If this is an aux vdev (as with l2cache and spare devices), then we
2763 * update the vdev config manually and set the sync flag.
b128c09f
BB
2764 */
2765 if (vd->vdev_aux != NULL) {
2766 spa_aux_vdev_t *sav = vd->vdev_aux;
2767 nvlist_t **aux;
2768 uint_t naux;
2769
2770 for (c = 0; c < sav->sav_count; c++) {
2771 if (sav->sav_vdevs[c] == vd)
2772 break;
2773 }
2774
2775 if (c == sav->sav_count) {
2776 /*
2777 * We're being removed. There's nothing more to do.
2778 */
2779 ASSERT(sav->sav_sync == B_TRUE);
2780 return;
2781 }
2782
2783 sav->sav_sync = B_TRUE;
2784
9babb374
BB
2785 if (nvlist_lookup_nvlist_array(sav->sav_config,
2786 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2787 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2788 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2789 }
b128c09f
BB
2790
2791 ASSERT(c < naux);
2792
2793 /*
2794 * Setting the nvlist in the middle if the array is a little
2795 * sketchy, but it will work.
2796 */
2797 nvlist_free(aux[c]);
428870ff 2798 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
b128c09f
BB
2799
2800 return;
2801 }
2802
2803 /*
2804 * The dirty list is protected by the SCL_CONFIG lock. The caller
2805 * must either hold SCL_CONFIG as writer, or must be the sync thread
2806 * (which holds SCL_CONFIG as reader). There's only one sync thread,
34dc7c2f
BB
2807 * so this is sufficient to ensure mutual exclusion.
2808 */
b128c09f
BB
2809 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2810 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2811 spa_config_held(spa, SCL_CONFIG, RW_READER)));
34dc7c2f
BB
2812
2813 if (vd == rvd) {
2814 for (c = 0; c < rvd->vdev_children; c++)
2815 vdev_config_dirty(rvd->vdev_child[c]);
2816 } else {
2817 ASSERT(vd == vd->vdev_top);
2818
428870ff
BB
2819 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2820 !vd->vdev_ishole)
b128c09f 2821 list_insert_head(&spa->spa_config_dirty_list, vd);
34dc7c2f
BB
2822 }
2823}
2824
2825void
2826vdev_config_clean(vdev_t *vd)
2827{
2828 spa_t *spa = vd->vdev_spa;
2829
b128c09f
BB
2830 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2831 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2832 spa_config_held(spa, SCL_CONFIG, RW_READER)));
34dc7c2f 2833
b128c09f
BB
2834 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2835 list_remove(&spa->spa_config_dirty_list, vd);
34dc7c2f
BB
2836}
2837
b128c09f
BB
2838/*
2839 * Mark a top-level vdev's state as dirty, so that the next pass of
2840 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
2841 * the state changes from larger config changes because they require
2842 * much less locking, and are often needed for administrative actions.
2843 */
2844void
2845vdev_state_dirty(vdev_t *vd)
2846{
2847 spa_t *spa = vd->vdev_spa;
2848
572e2857 2849 ASSERT(spa_writeable(spa));
b128c09f
BB
2850 ASSERT(vd == vd->vdev_top);
2851
2852 /*
2853 * The state list is protected by the SCL_STATE lock. The caller
2854 * must either hold SCL_STATE as writer, or must be the sync thread
2855 * (which holds SCL_STATE as reader). There's only one sync thread,
2856 * so this is sufficient to ensure mutual exclusion.
2857 */
2858 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2859 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2860 spa_config_held(spa, SCL_STATE, RW_READER)));
2861
428870ff 2862 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
b128c09f
BB
2863 list_insert_head(&spa->spa_state_dirty_list, vd);
2864}
2865
2866void
2867vdev_state_clean(vdev_t *vd)
2868{
2869 spa_t *spa = vd->vdev_spa;
2870
2871 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2872 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2873 spa_config_held(spa, SCL_STATE, RW_READER)));
2874
2875 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2876 list_remove(&spa->spa_state_dirty_list, vd);
2877}
2878
2879/*
2880 * Propagate vdev state up from children to parent.
2881 */
34dc7c2f
BB
2882void
2883vdev_propagate_state(vdev_t *vd)
2884{
fb5f0bc8
BB
2885 spa_t *spa = vd->vdev_spa;
2886 vdev_t *rvd = spa->spa_root_vdev;
34dc7c2f
BB
2887 int degraded = 0, faulted = 0;
2888 int corrupted = 0;
34dc7c2f 2889 vdev_t *child;
d6320ddb 2890 int c;
34dc7c2f
BB
2891
2892 if (vd->vdev_children > 0) {
d6320ddb 2893 for (c = 0; c < vd->vdev_children; c++) {
34dc7c2f 2894 child = vd->vdev_child[c];
b128c09f 2895
428870ff
BB
2896 /*
2897 * Don't factor holes into the decision.
2898 */
2899 if (child->vdev_ishole)
2900 continue;
2901
b128c09f 2902 if (!vdev_readable(child) ||
fb5f0bc8 2903 (!vdev_writeable(child) && spa_writeable(spa))) {
b128c09f
BB
2904 /*
2905 * Root special: if there is a top-level log
2906 * device, treat the root vdev as if it were
2907 * degraded.
2908 */
2909 if (child->vdev_islog && vd == rvd)
2910 degraded++;
2911 else
2912 faulted++;
2913 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
34dc7c2f 2914 degraded++;
b128c09f 2915 }
34dc7c2f
BB
2916
2917 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2918 corrupted++;
2919 }
2920
2921 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2922
2923 /*
b128c09f 2924 * Root special: if there is a top-level vdev that cannot be
34dc7c2f
BB
2925 * opened due to corrupted metadata, then propagate the root
2926 * vdev's aux state as 'corrupt' rather than 'insufficient
2927 * replicas'.
2928 */
2929 if (corrupted && vd == rvd &&
2930 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2931 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2932 VDEV_AUX_CORRUPT_DATA);
2933 }
2934
b128c09f 2935 if (vd->vdev_parent)
34dc7c2f
BB
2936 vdev_propagate_state(vd->vdev_parent);
2937}
2938
2939/*
2940 * Set a vdev's state. If this is during an open, we don't update the parent
2941 * state, because we're in the process of opening children depth-first.
2942 * Otherwise, we propagate the change to the parent.
2943 *
2944 * If this routine places a device in a faulted state, an appropriate ereport is
2945 * generated.
2946 */
2947void
2948vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2949{
2950 uint64_t save_state;
b128c09f 2951 spa_t *spa = vd->vdev_spa;
34dc7c2f
BB
2952
2953 if (state == vd->vdev_state) {
2954 vd->vdev_stat.vs_aux = aux;
2955 return;
2956 }
2957
2958 save_state = vd->vdev_state;
2959
2960 vd->vdev_state = state;
2961 vd->vdev_stat.vs_aux = aux;
2962
2963 /*
2964 * If we are setting the vdev state to anything but an open state, then
428870ff
BB
2965 * always close the underlying device unless the device has requested
2966 * a delayed close (i.e. we're about to remove or fault the device).
2967 * Otherwise, we keep accessible but invalid devices open forever.
2968 * We don't call vdev_close() itself, because that implies some extra
2969 * checks (offline, etc) that we don't want here. This is limited to
2970 * leaf devices, because otherwise closing the device will affect other
2971 * children.
34dc7c2f 2972 */
428870ff
BB
2973 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2974 vd->vdev_ops->vdev_op_leaf)
34dc7c2f
BB
2975 vd->vdev_ops->vdev_op_close(vd);
2976
428870ff
BB
2977 /*
2978 * If we have brought this vdev back into service, we need
2979 * to notify fmd so that it can gracefully repair any outstanding
2980 * cases due to a missing device. We do this in all cases, even those
2981 * that probably don't correlate to a repaired fault. This is sure to
2982 * catch all cases, and we let the zfs-retire agent sort it out. If
2983 * this is a transient state it's OK, as the retire agent will
2984 * double-check the state of the vdev before repairing it.
2985 */
2986 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2987 vd->vdev_prevstate != state)
2988 zfs_post_state_change(spa, vd);
2989
34dc7c2f
BB
2990 if (vd->vdev_removed &&
2991 state == VDEV_STATE_CANT_OPEN &&
2992 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2993 /*
2994 * If the previous state is set to VDEV_STATE_REMOVED, then this
2995 * device was previously marked removed and someone attempted to
2996 * reopen it. If this failed due to a nonexistent device, then
2997 * keep the device in the REMOVED state. We also let this be if
2998 * it is one of our special test online cases, which is only
2999 * attempting to online the device and shouldn't generate an FMA
3000 * fault.
3001 */
3002 vd->vdev_state = VDEV_STATE_REMOVED;
3003 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3004 } else if (state == VDEV_STATE_REMOVED) {
34dc7c2f
BB
3005 vd->vdev_removed = B_TRUE;
3006 } else if (state == VDEV_STATE_CANT_OPEN) {
3007 /*
572e2857
BB
3008 * If we fail to open a vdev during an import or recovery, we
3009 * mark it as "not available", which signifies that it was
3010 * never there to begin with. Failure to open such a device
3011 * is not considered an error.
34dc7c2f 3012 */
572e2857
BB
3013 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3014 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
34dc7c2f
BB
3015 vd->vdev_ops->vdev_op_leaf)
3016 vd->vdev_not_present = 1;
3017
3018 /*
3019 * Post the appropriate ereport. If the 'prevstate' field is
3020 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3021 * that this is part of a vdev_reopen(). In this case, we don't
3022 * want to post the ereport if the device was already in the
3023 * CANT_OPEN state beforehand.
3024 *
3025 * If the 'checkremove' flag is set, then this is an attempt to
3026 * online the device in response to an insertion event. If we
3027 * hit this case, then we have detected an insertion event for a
3028 * faulted or offline device that wasn't in the removed state.
3029 * In this scenario, we don't post an ereport because we are
3030 * about to replace the device, or attempt an online with
3031 * vdev_forcefault, which will generate the fault for us.
3032 */
3033 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3034 !vd->vdev_not_present && !vd->vdev_checkremove &&
b128c09f 3035 vd != spa->spa_root_vdev) {
34dc7c2f
BB
3036 const char *class;
3037
3038 switch (aux) {
3039 case VDEV_AUX_OPEN_FAILED:
3040 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3041 break;
3042 case VDEV_AUX_CORRUPT_DATA:
3043 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3044 break;
3045 case VDEV_AUX_NO_REPLICAS:
3046 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3047 break;
3048 case VDEV_AUX_BAD_GUID_SUM:
3049 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3050 break;
3051 case VDEV_AUX_TOO_SMALL:
3052 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3053 break;
3054 case VDEV_AUX_BAD_LABEL:
3055 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3056 break;
3057 default:
3058 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3059 }
3060
b128c09f 3061 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
34dc7c2f
BB
3062 }
3063
3064 /* Erase any notion of persistent removed state */
3065 vd->vdev_removed = B_FALSE;
3066 } else {
3067 vd->vdev_removed = B_FALSE;
3068 }
3069
9babb374
BB
3070 if (!isopen && vd->vdev_parent)
3071 vdev_propagate_state(vd->vdev_parent);
34dc7c2f 3072}
b128c09f
BB
3073
3074/*
3075 * Check the vdev configuration to ensure that it's capable of supporting
57a4eddc 3076 * a root pool.
b128c09f
BB
3077 */
3078boolean_t
3079vdev_is_bootable(vdev_t *vd)
3080{
57a4eddc
RL
3081#if defined(__sun__) || defined(__sun)
3082 /*
3083 * Currently, we do not support RAID-Z or partial configuration.
3084 * In addition, only a single top-level vdev is allowed and none of the
3085 * leaves can be wholedisks.
3086 */
d6320ddb
BB
3087 int c;
3088
b128c09f
BB
3089 if (!vd->vdev_ops->vdev_op_leaf) {
3090 char *vdev_type = vd->vdev_ops->vdev_op_type;
3091
3092 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3093 vd->vdev_children > 1) {
3094 return (B_FALSE);
3095 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3096 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3097 return (B_FALSE);
3098 }
3099 } else if (vd->vdev_wholedisk == 1) {
3100 return (B_FALSE);
3101 }
3102
d6320ddb 3103 for (c = 0; c < vd->vdev_children; c++) {
b128c09f
BB
3104 if (!vdev_is_bootable(vd->vdev_child[c]))
3105 return (B_FALSE);
3106 }
57a4eddc 3107#endif /* __sun__ || __sun */
b128c09f
BB
3108 return (B_TRUE);
3109}
9babb374 3110
428870ff
BB
3111/*
3112 * Load the state from the original vdev tree (ovd) which
3113 * we've retrieved from the MOS config object. If the original
572e2857
BB
3114 * vdev was offline or faulted then we transfer that state to the
3115 * device in the current vdev tree (nvd).
428870ff 3116 */
9babb374 3117void
428870ff 3118vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
9babb374 3119{
d6320ddb 3120 int c;
9babb374 3121
572e2857 3122 ASSERT(nvd->vdev_top->vdev_islog);
1fde1e37
BB
3123 ASSERT(spa_config_held(nvd->vdev_spa,
3124 SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
428870ff 3125 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
9babb374 3126
d6320ddb 3127 for (c = 0; c < nvd->vdev_children; c++)
428870ff 3128 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
9babb374 3129
572e2857 3130 if (nvd->vdev_ops->vdev_op_leaf) {
9babb374 3131 /*
572e2857 3132 * Restore the persistent vdev state
9babb374 3133 */
428870ff 3134 nvd->vdev_offline = ovd->vdev_offline;
572e2857
BB
3135 nvd->vdev_faulted = ovd->vdev_faulted;
3136 nvd->vdev_degraded = ovd->vdev_degraded;
3137 nvd->vdev_removed = ovd->vdev_removed;
9babb374
BB
3138 }
3139}
3140
572e2857
BB
3141/*
3142 * Determine if a log device has valid content. If the vdev was
3143 * removed or faulted in the MOS config then we know that
3144 * the content on the log device has already been written to the pool.
3145 */
3146boolean_t
3147vdev_log_state_valid(vdev_t *vd)
3148{
d6320ddb
BB
3149 int c;
3150
572e2857
BB
3151 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3152 !vd->vdev_removed)
3153 return (B_TRUE);
3154
d6320ddb 3155 for (c = 0; c < vd->vdev_children; c++)
572e2857
BB
3156 if (vdev_log_state_valid(vd->vdev_child[c]))
3157 return (B_TRUE);
3158
3159 return (B_FALSE);
3160}
3161
9babb374
BB
3162/*
3163 * Expand a vdev if possible.
3164 */
3165void
3166vdev_expand(vdev_t *vd, uint64_t txg)
3167{
3168 ASSERT(vd->vdev_top == vd);
3169 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3170
3171 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3172 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3173 vdev_config_dirty(vd);
3174 }
3175}
428870ff
BB
3176
3177/*
3178 * Split a vdev.
3179 */
3180void
3181vdev_split(vdev_t *vd)
3182{
3183 vdev_t *cvd, *pvd = vd->vdev_parent;
3184
3185 vdev_remove_child(pvd, vd);
3186 vdev_compact_children(pvd);
3187
3188 cvd = pvd->vdev_child[0];
3189 if (pvd->vdev_children == 1) {
3190 vdev_remove_parent(cvd);
3191 cvd->vdev_splitting = B_TRUE;
3192 }
3193 vdev_propagate_state(cvd);
3194}
c28b2279
BB
3195
3196#if defined(_KERNEL) && defined(HAVE_SPL)
3197EXPORT_SYMBOL(vdev_fault);
3198EXPORT_SYMBOL(vdev_degrade);
3199EXPORT_SYMBOL(vdev_online);
3200EXPORT_SYMBOL(vdev_offline);
3201EXPORT_SYMBOL(vdev_clear);
c409e464
BB
3202
3203module_param(zfs_scrub_limit, int, 0644);
3204MODULE_PARM_DESC(zfs_scrub_limit, "Max scrub/resilver I/O per leaf vdev");
c28b2279 3205#endif