]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/vdev.c
Update to onnv_147
[mirror_zfs.git] / module / zfs / vdev.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
428870ff 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
34dc7c2f
BB
24 */
25
34dc7c2f
BB
26#include <sys/zfs_context.h>
27#include <sys/fm/fs/zfs.h>
28#include <sys/spa.h>
29#include <sys/spa_impl.h>
30#include <sys/dmu.h>
31#include <sys/dmu_tx.h>
32#include <sys/vdev_impl.h>
33#include <sys/uberblock_impl.h>
34#include <sys/metaslab.h>
35#include <sys/metaslab_impl.h>
36#include <sys/space_map.h>
37#include <sys/zio.h>
38#include <sys/zap.h>
39#include <sys/fs/zfs.h>
b128c09f 40#include <sys/arc.h>
9babb374 41#include <sys/zil.h>
428870ff 42#include <sys/dsl_scan.h>
34dc7c2f
BB
43
44/*
45 * Virtual device management.
46 */
47
48static vdev_ops_t *vdev_ops_table[] = {
49 &vdev_root_ops,
50 &vdev_raidz_ops,
51 &vdev_mirror_ops,
52 &vdev_replacing_ops,
53 &vdev_spare_ops,
54 &vdev_disk_ops,
55 &vdev_file_ops,
56 &vdev_missing_ops,
428870ff 57 &vdev_hole_ops,
34dc7c2f
BB
58 NULL
59};
60
b128c09f
BB
61/* maximum scrub/resilver I/O queue per leaf vdev */
62int zfs_scrub_limit = 10;
34dc7c2f
BB
63
64/*
65 * Given a vdev type, return the appropriate ops vector.
66 */
67static vdev_ops_t *
68vdev_getops(const char *type)
69{
70 vdev_ops_t *ops, **opspp;
71
72 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
73 if (strcmp(ops->vdev_op_type, type) == 0)
74 break;
75
76 return (ops);
77}
78
79/*
80 * Default asize function: return the MAX of psize with the asize of
81 * all children. This is what's used by anything other than RAID-Z.
82 */
83uint64_t
84vdev_default_asize(vdev_t *vd, uint64_t psize)
85{
86 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
87 uint64_t csize;
34dc7c2f 88
9babb374 89 for (int c = 0; c < vd->vdev_children; c++) {
34dc7c2f
BB
90 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
91 asize = MAX(asize, csize);
92 }
93
94 return (asize);
95}
96
97/*
9babb374
BB
98 * Get the minimum allocatable size. We define the allocatable size as
99 * the vdev's asize rounded to the nearest metaslab. This allows us to
100 * replace or attach devices which don't have the same physical size but
101 * can still satisfy the same number of allocations.
34dc7c2f
BB
102 */
103uint64_t
9babb374 104vdev_get_min_asize(vdev_t *vd)
34dc7c2f 105{
9babb374 106 vdev_t *pvd = vd->vdev_parent;
34dc7c2f 107
9babb374
BB
108 /*
109 * The our parent is NULL (inactive spare or cache) or is the root,
110 * just return our own asize.
111 */
112 if (pvd == NULL)
113 return (vd->vdev_asize);
34dc7c2f
BB
114
115 /*
9babb374
BB
116 * The top-level vdev just returns the allocatable size rounded
117 * to the nearest metaslab.
34dc7c2f 118 */
9babb374
BB
119 if (vd == vd->vdev_top)
120 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
34dc7c2f 121
9babb374
BB
122 /*
123 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
124 * so each child must provide at least 1/Nth of its asize.
125 */
126 if (pvd->vdev_ops == &vdev_raidz_ops)
127 return (pvd->vdev_min_asize / pvd->vdev_children);
34dc7c2f 128
9babb374
BB
129 return (pvd->vdev_min_asize);
130}
131
132void
133vdev_set_min_asize(vdev_t *vd)
134{
135 vd->vdev_min_asize = vdev_get_min_asize(vd);
34dc7c2f 136
9babb374
BB
137 for (int c = 0; c < vd->vdev_children; c++)
138 vdev_set_min_asize(vd->vdev_child[c]);
34dc7c2f
BB
139}
140
141vdev_t *
142vdev_lookup_top(spa_t *spa, uint64_t vdev)
143{
144 vdev_t *rvd = spa->spa_root_vdev;
145
b128c09f 146 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
34dc7c2f 147
b128c09f
BB
148 if (vdev < rvd->vdev_children) {
149 ASSERT(rvd->vdev_child[vdev] != NULL);
34dc7c2f 150 return (rvd->vdev_child[vdev]);
b128c09f 151 }
34dc7c2f
BB
152
153 return (NULL);
154}
155
156vdev_t *
157vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
158{
34dc7c2f
BB
159 vdev_t *mvd;
160
161 if (vd->vdev_guid == guid)
162 return (vd);
163
9babb374 164 for (int c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
165 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
166 NULL)
167 return (mvd);
168
169 return (NULL);
170}
171
172void
173vdev_add_child(vdev_t *pvd, vdev_t *cvd)
174{
175 size_t oldsize, newsize;
176 uint64_t id = cvd->vdev_id;
177 vdev_t **newchild;
178
b128c09f 179 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
180 ASSERT(cvd->vdev_parent == NULL);
181
182 cvd->vdev_parent = pvd;
183
184 if (pvd == NULL)
185 return;
186
187 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
188
189 oldsize = pvd->vdev_children * sizeof (vdev_t *);
190 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
191 newsize = pvd->vdev_children * sizeof (vdev_t *);
192
193 newchild = kmem_zalloc(newsize, KM_SLEEP);
194 if (pvd->vdev_child != NULL) {
195 bcopy(pvd->vdev_child, newchild, oldsize);
196 kmem_free(pvd->vdev_child, oldsize);
197 }
198
199 pvd->vdev_child = newchild;
200 pvd->vdev_child[id] = cvd;
201
202 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
203 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
204
205 /*
206 * Walk up all ancestors to update guid sum.
207 */
208 for (; pvd != NULL; pvd = pvd->vdev_parent)
209 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
34dc7c2f
BB
210}
211
212void
213vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
214{
215 int c;
216 uint_t id = cvd->vdev_id;
217
218 ASSERT(cvd->vdev_parent == pvd);
219
220 if (pvd == NULL)
221 return;
222
223 ASSERT(id < pvd->vdev_children);
224 ASSERT(pvd->vdev_child[id] == cvd);
225
226 pvd->vdev_child[id] = NULL;
227 cvd->vdev_parent = NULL;
228
229 for (c = 0; c < pvd->vdev_children; c++)
230 if (pvd->vdev_child[c])
231 break;
232
233 if (c == pvd->vdev_children) {
234 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
235 pvd->vdev_child = NULL;
236 pvd->vdev_children = 0;
237 }
238
239 /*
240 * Walk up all ancestors to update guid sum.
241 */
242 for (; pvd != NULL; pvd = pvd->vdev_parent)
243 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
34dc7c2f
BB
244}
245
246/*
247 * Remove any holes in the child array.
248 */
249void
250vdev_compact_children(vdev_t *pvd)
251{
252 vdev_t **newchild, *cvd;
253 int oldc = pvd->vdev_children;
9babb374 254 int newc;
34dc7c2f 255
b128c09f 256 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f 257
9babb374 258 for (int c = newc = 0; c < oldc; c++)
34dc7c2f
BB
259 if (pvd->vdev_child[c])
260 newc++;
261
262 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
263
9babb374 264 for (int c = newc = 0; c < oldc; c++) {
34dc7c2f
BB
265 if ((cvd = pvd->vdev_child[c]) != NULL) {
266 newchild[newc] = cvd;
267 cvd->vdev_id = newc++;
268 }
269 }
270
271 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
272 pvd->vdev_child = newchild;
273 pvd->vdev_children = newc;
274}
275
276/*
277 * Allocate and minimally initialize a vdev_t.
278 */
428870ff 279vdev_t *
34dc7c2f
BB
280vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
281{
282 vdev_t *vd;
283
284 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
285
286 if (spa->spa_root_vdev == NULL) {
287 ASSERT(ops == &vdev_root_ops);
288 spa->spa_root_vdev = vd;
289 }
290
428870ff 291 if (guid == 0 && ops != &vdev_hole_ops) {
34dc7c2f
BB
292 if (spa->spa_root_vdev == vd) {
293 /*
294 * The root vdev's guid will also be the pool guid,
295 * which must be unique among all pools.
296 */
428870ff 297 guid = spa_generate_guid(NULL);
34dc7c2f
BB
298 } else {
299 /*
300 * Any other vdev's guid must be unique within the pool.
301 */
428870ff 302 guid = spa_generate_guid(spa);
34dc7c2f
BB
303 }
304 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
305 }
306
307 vd->vdev_spa = spa;
308 vd->vdev_id = id;
309 vd->vdev_guid = guid;
310 vd->vdev_guid_sum = guid;
311 vd->vdev_ops = ops;
312 vd->vdev_state = VDEV_STATE_CLOSED;
428870ff 313 vd->vdev_ishole = (ops == &vdev_hole_ops);
34dc7c2f
BB
314
315 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
316 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
b128c09f 317 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
fb5f0bc8
BB
318 for (int t = 0; t < DTL_TYPES; t++) {
319 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
320 &vd->vdev_dtl_lock);
321 }
34dc7c2f
BB
322 txg_list_create(&vd->vdev_ms_list,
323 offsetof(struct metaslab, ms_txg_node));
324 txg_list_create(&vd->vdev_dtl_list,
325 offsetof(struct vdev, vdev_dtl_node));
326 vd->vdev_stat.vs_timestamp = gethrtime();
327 vdev_queue_init(vd);
328 vdev_cache_init(vd);
329
330 return (vd);
331}
332
333/*
334 * Allocate a new vdev. The 'alloctype' is used to control whether we are
335 * creating a new vdev or loading an existing one - the behavior is slightly
336 * different for each case.
337 */
338int
339vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
340 int alloctype)
341{
342 vdev_ops_t *ops;
343 char *type;
344 uint64_t guid = 0, islog, nparity;
345 vdev_t *vd;
346
b128c09f 347 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
348
349 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
350 return (EINVAL);
351
352 if ((ops = vdev_getops(type)) == NULL)
353 return (EINVAL);
354
355 /*
356 * If this is a load, get the vdev guid from the nvlist.
357 * Otherwise, vdev_alloc_common() will generate one for us.
358 */
359 if (alloctype == VDEV_ALLOC_LOAD) {
360 uint64_t label_id;
361
362 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
363 label_id != id)
364 return (EINVAL);
365
366 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
367 return (EINVAL);
368 } else if (alloctype == VDEV_ALLOC_SPARE) {
369 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
370 return (EINVAL);
371 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
372 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
373 return (EINVAL);
9babb374
BB
374 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
375 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
376 return (EINVAL);
34dc7c2f
BB
377 }
378
379 /*
380 * The first allocated vdev must be of type 'root'.
381 */
382 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
383 return (EINVAL);
384
385 /*
386 * Determine whether we're a log vdev.
387 */
388 islog = 0;
389 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
390 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
391 return (ENOTSUP);
392
428870ff
BB
393 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
394 return (ENOTSUP);
395
34dc7c2f
BB
396 /*
397 * Set the nparity property for RAID-Z vdevs.
398 */
399 nparity = -1ULL;
400 if (ops == &vdev_raidz_ops) {
401 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
402 &nparity) == 0) {
428870ff 403 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
34dc7c2f
BB
404 return (EINVAL);
405 /*
45d1cae3
BB
406 * Previous versions could only support 1 or 2 parity
407 * device.
34dc7c2f 408 */
45d1cae3
BB
409 if (nparity > 1 &&
410 spa_version(spa) < SPA_VERSION_RAIDZ2)
411 return (ENOTSUP);
412 if (nparity > 2 &&
413 spa_version(spa) < SPA_VERSION_RAIDZ3)
34dc7c2f
BB
414 return (ENOTSUP);
415 } else {
416 /*
417 * We require the parity to be specified for SPAs that
418 * support multiple parity levels.
419 */
45d1cae3 420 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
34dc7c2f
BB
421 return (EINVAL);
422 /*
423 * Otherwise, we default to 1 parity device for RAID-Z.
424 */
425 nparity = 1;
426 }
427 } else {
428 nparity = 0;
429 }
430 ASSERT(nparity != -1ULL);
431
432 vd = vdev_alloc_common(spa, id, guid, ops);
433
434 vd->vdev_islog = islog;
435 vd->vdev_nparity = nparity;
436
437 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
438 vd->vdev_path = spa_strdup(vd->vdev_path);
439 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
440 vd->vdev_devid = spa_strdup(vd->vdev_devid);
441 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
442 &vd->vdev_physpath) == 0)
443 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
9babb374
BB
444 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
445 vd->vdev_fru = spa_strdup(vd->vdev_fru);
34dc7c2f
BB
446
447 /*
448 * Set the whole_disk property. If it's not specified, leave the value
449 * as -1.
450 */
451 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
452 &vd->vdev_wholedisk) != 0)
453 vd->vdev_wholedisk = -1ULL;
454
455 /*
456 * Look for the 'not present' flag. This will only be set if the device
457 * was not present at the time of import.
458 */
9babb374
BB
459 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
460 &vd->vdev_not_present);
34dc7c2f
BB
461
462 /*
463 * Get the alignment requirement.
464 */
465 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
466
428870ff
BB
467 /*
468 * Retrieve the vdev creation time.
469 */
470 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
471 &vd->vdev_crtxg);
472
34dc7c2f
BB
473 /*
474 * If we're a top-level vdev, try to load the allocation parameters.
475 */
428870ff
BB
476 if (parent && !parent->vdev_parent &&
477 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
34dc7c2f
BB
478 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
479 &vd->vdev_ms_array);
480 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
481 &vd->vdev_ms_shift);
482 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
483 &vd->vdev_asize);
428870ff
BB
484 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
485 &vd->vdev_removing);
486 }
487
488 if (parent && !parent->vdev_parent) {
489 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
490 alloctype == VDEV_ALLOC_ADD ||
491 alloctype == VDEV_ALLOC_SPLIT ||
492 alloctype == VDEV_ALLOC_ROOTPOOL);
493 vd->vdev_mg = metaslab_group_create(islog ?
494 spa_log_class(spa) : spa_normal_class(spa), vd);
34dc7c2f
BB
495 }
496
497 /*
498 * If we're a leaf vdev, try to load the DTL object and other state.
499 */
b128c09f 500 if (vd->vdev_ops->vdev_op_leaf &&
9babb374
BB
501 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
502 alloctype == VDEV_ALLOC_ROOTPOOL)) {
b128c09f
BB
503 if (alloctype == VDEV_ALLOC_LOAD) {
504 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
fb5f0bc8 505 &vd->vdev_dtl_smo.smo_object);
b128c09f
BB
506 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
507 &vd->vdev_unspare);
508 }
9babb374
BB
509
510 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
511 uint64_t spare = 0;
512
513 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
514 &spare) == 0 && spare)
515 spa_spare_add(vd);
516 }
517
34dc7c2f
BB
518 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
519 &vd->vdev_offline);
b128c09f 520
572e2857
BB
521 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
522 &vd->vdev_resilvering);
523
34dc7c2f
BB
524 /*
525 * When importing a pool, we want to ignore the persistent fault
526 * state, as the diagnosis made on another system may not be
428870ff
BB
527 * valid in the current context. Local vdevs will
528 * remain in the faulted state.
34dc7c2f 529 */
428870ff 530 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
34dc7c2f
BB
531 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
532 &vd->vdev_faulted);
533 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
534 &vd->vdev_degraded);
535 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
536 &vd->vdev_removed);
428870ff
BB
537
538 if (vd->vdev_faulted || vd->vdev_degraded) {
539 char *aux;
540
541 vd->vdev_label_aux =
542 VDEV_AUX_ERR_EXCEEDED;
543 if (nvlist_lookup_string(nv,
544 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
545 strcmp(aux, "external") == 0)
546 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
547 }
34dc7c2f
BB
548 }
549 }
550
551 /*
552 * Add ourselves to the parent's list of children.
553 */
554 vdev_add_child(parent, vd);
555
556 *vdp = vd;
557
558 return (0);
559}
560
561void
562vdev_free(vdev_t *vd)
563{
34dc7c2f
BB
564 spa_t *spa = vd->vdev_spa;
565
566 /*
567 * vdev_free() implies closing the vdev first. This is simpler than
568 * trying to ensure complicated semantics for all callers.
569 */
570 vdev_close(vd);
571
b128c09f 572 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
428870ff 573 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
34dc7c2f
BB
574
575 /*
576 * Free all children.
577 */
9babb374 578 for (int c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
579 vdev_free(vd->vdev_child[c]);
580
581 ASSERT(vd->vdev_child == NULL);
582 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
583
584 /*
585 * Discard allocation state.
586 */
428870ff 587 if (vd->vdev_mg != NULL) {
34dc7c2f 588 vdev_metaslab_fini(vd);
428870ff
BB
589 metaslab_group_destroy(vd->vdev_mg);
590 }
34dc7c2f
BB
591
592 ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
593 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
594 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
595
596 /*
597 * Remove this vdev from its parent's child list.
598 */
599 vdev_remove_child(vd->vdev_parent, vd);
600
601 ASSERT(vd->vdev_parent == NULL);
602
603 /*
604 * Clean up vdev structure.
605 */
606 vdev_queue_fini(vd);
607 vdev_cache_fini(vd);
608
609 if (vd->vdev_path)
610 spa_strfree(vd->vdev_path);
611 if (vd->vdev_devid)
612 spa_strfree(vd->vdev_devid);
613 if (vd->vdev_physpath)
614 spa_strfree(vd->vdev_physpath);
9babb374
BB
615 if (vd->vdev_fru)
616 spa_strfree(vd->vdev_fru);
34dc7c2f
BB
617
618 if (vd->vdev_isspare)
619 spa_spare_remove(vd);
620 if (vd->vdev_isl2cache)
621 spa_l2cache_remove(vd);
622
623 txg_list_destroy(&vd->vdev_ms_list);
624 txg_list_destroy(&vd->vdev_dtl_list);
fb5f0bc8 625
34dc7c2f 626 mutex_enter(&vd->vdev_dtl_lock);
fb5f0bc8
BB
627 for (int t = 0; t < DTL_TYPES; t++) {
628 space_map_unload(&vd->vdev_dtl[t]);
629 space_map_destroy(&vd->vdev_dtl[t]);
630 }
34dc7c2f 631 mutex_exit(&vd->vdev_dtl_lock);
fb5f0bc8 632
34dc7c2f
BB
633 mutex_destroy(&vd->vdev_dtl_lock);
634 mutex_destroy(&vd->vdev_stat_lock);
b128c09f 635 mutex_destroy(&vd->vdev_probe_lock);
34dc7c2f
BB
636
637 if (vd == spa->spa_root_vdev)
638 spa->spa_root_vdev = NULL;
639
640 kmem_free(vd, sizeof (vdev_t));
641}
642
643/*
644 * Transfer top-level vdev state from svd to tvd.
645 */
646static void
647vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
648{
649 spa_t *spa = svd->vdev_spa;
650 metaslab_t *msp;
651 vdev_t *vd;
652 int t;
653
654 ASSERT(tvd == tvd->vdev_top);
655
656 tvd->vdev_ms_array = svd->vdev_ms_array;
657 tvd->vdev_ms_shift = svd->vdev_ms_shift;
658 tvd->vdev_ms_count = svd->vdev_ms_count;
659
660 svd->vdev_ms_array = 0;
661 svd->vdev_ms_shift = 0;
662 svd->vdev_ms_count = 0;
663
664 tvd->vdev_mg = svd->vdev_mg;
665 tvd->vdev_ms = svd->vdev_ms;
666
667 svd->vdev_mg = NULL;
668 svd->vdev_ms = NULL;
669
670 if (tvd->vdev_mg != NULL)
671 tvd->vdev_mg->mg_vd = tvd;
672
673 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
674 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
675 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
676
677 svd->vdev_stat.vs_alloc = 0;
678 svd->vdev_stat.vs_space = 0;
679 svd->vdev_stat.vs_dspace = 0;
680
681 for (t = 0; t < TXG_SIZE; t++) {
682 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
683 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
684 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
685 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
686 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
687 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
688 }
689
b128c09f 690 if (list_link_active(&svd->vdev_config_dirty_node)) {
34dc7c2f
BB
691 vdev_config_clean(svd);
692 vdev_config_dirty(tvd);
693 }
694
b128c09f
BB
695 if (list_link_active(&svd->vdev_state_dirty_node)) {
696 vdev_state_clean(svd);
697 vdev_state_dirty(tvd);
698 }
699
34dc7c2f
BB
700 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
701 svd->vdev_deflate_ratio = 0;
702
703 tvd->vdev_islog = svd->vdev_islog;
704 svd->vdev_islog = 0;
705}
706
707static void
708vdev_top_update(vdev_t *tvd, vdev_t *vd)
709{
34dc7c2f
BB
710 if (vd == NULL)
711 return;
712
713 vd->vdev_top = tvd;
714
9babb374 715 for (int c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
716 vdev_top_update(tvd, vd->vdev_child[c]);
717}
718
719/*
720 * Add a mirror/replacing vdev above an existing vdev.
721 */
722vdev_t *
723vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
724{
725 spa_t *spa = cvd->vdev_spa;
726 vdev_t *pvd = cvd->vdev_parent;
727 vdev_t *mvd;
728
b128c09f 729 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
730
731 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
732
733 mvd->vdev_asize = cvd->vdev_asize;
9babb374 734 mvd->vdev_min_asize = cvd->vdev_min_asize;
34dc7c2f
BB
735 mvd->vdev_ashift = cvd->vdev_ashift;
736 mvd->vdev_state = cvd->vdev_state;
428870ff 737 mvd->vdev_crtxg = cvd->vdev_crtxg;
34dc7c2f
BB
738
739 vdev_remove_child(pvd, cvd);
740 vdev_add_child(pvd, mvd);
741 cvd->vdev_id = mvd->vdev_children;
742 vdev_add_child(mvd, cvd);
743 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
744
745 if (mvd == mvd->vdev_top)
746 vdev_top_transfer(cvd, mvd);
747
748 return (mvd);
749}
750
751/*
752 * Remove a 1-way mirror/replacing vdev from the tree.
753 */
754void
755vdev_remove_parent(vdev_t *cvd)
756{
757 vdev_t *mvd = cvd->vdev_parent;
758 vdev_t *pvd = mvd->vdev_parent;
759
b128c09f 760 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
761
762 ASSERT(mvd->vdev_children == 1);
763 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
764 mvd->vdev_ops == &vdev_replacing_ops ||
765 mvd->vdev_ops == &vdev_spare_ops);
766 cvd->vdev_ashift = mvd->vdev_ashift;
767
768 vdev_remove_child(mvd, cvd);
769 vdev_remove_child(pvd, mvd);
fb5f0bc8 770
34dc7c2f 771 /*
b128c09f
BB
772 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
773 * Otherwise, we could have detached an offline device, and when we
774 * go to import the pool we'll think we have two top-level vdevs,
775 * instead of a different version of the same top-level vdev.
34dc7c2f 776 */
fb5f0bc8
BB
777 if (mvd->vdev_top == mvd) {
778 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
428870ff 779 cvd->vdev_orig_guid = cvd->vdev_guid;
fb5f0bc8
BB
780 cvd->vdev_guid += guid_delta;
781 cvd->vdev_guid_sum += guid_delta;
782 }
b128c09f
BB
783 cvd->vdev_id = mvd->vdev_id;
784 vdev_add_child(pvd, cvd);
34dc7c2f
BB
785 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
786
787 if (cvd == cvd->vdev_top)
788 vdev_top_transfer(mvd, cvd);
789
790 ASSERT(mvd->vdev_children == 0);
791 vdev_free(mvd);
792}
793
794int
795vdev_metaslab_init(vdev_t *vd, uint64_t txg)
796{
797 spa_t *spa = vd->vdev_spa;
798 objset_t *mos = spa->spa_meta_objset;
34dc7c2f
BB
799 uint64_t m;
800 uint64_t oldc = vd->vdev_ms_count;
801 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
802 metaslab_t **mspp;
803 int error;
804
428870ff
BB
805 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
806
807 /*
808 * This vdev is not being allocated from yet or is a hole.
809 */
810 if (vd->vdev_ms_shift == 0)
34dc7c2f
BB
811 return (0);
812
428870ff
BB
813 ASSERT(!vd->vdev_ishole);
814
9babb374
BB
815 /*
816 * Compute the raidz-deflation ratio. Note, we hard-code
817 * in 128k (1 << 17) because it is the current "typical" blocksize.
818 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
819 * or we will inconsistently account for existing bp's.
820 */
821 vd->vdev_deflate_ratio = (1 << 17) /
822 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
823
34dc7c2f
BB
824 ASSERT(oldc <= newc);
825
34dc7c2f
BB
826 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
827
828 if (oldc != 0) {
829 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
830 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
831 }
832
833 vd->vdev_ms = mspp;
834 vd->vdev_ms_count = newc;
835
836 for (m = oldc; m < newc; m++) {
837 space_map_obj_t smo = { 0, 0, 0 };
838 if (txg == 0) {
839 uint64_t object = 0;
840 error = dmu_read(mos, vd->vdev_ms_array,
9babb374
BB
841 m * sizeof (uint64_t), sizeof (uint64_t), &object,
842 DMU_READ_PREFETCH);
34dc7c2f
BB
843 if (error)
844 return (error);
845 if (object != 0) {
846 dmu_buf_t *db;
847 error = dmu_bonus_hold(mos, object, FTAG, &db);
848 if (error)
849 return (error);
850 ASSERT3U(db->db_size, >=, sizeof (smo));
851 bcopy(db->db_data, &smo, sizeof (smo));
852 ASSERT3U(smo.smo_object, ==, object);
853 dmu_buf_rele(db, FTAG);
854 }
855 }
856 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
857 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
858 }
859
428870ff
BB
860 if (txg == 0)
861 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
862
863 /*
864 * If the vdev is being removed we don't activate
865 * the metaslabs since we want to ensure that no new
866 * allocations are performed on this device.
867 */
868 if (oldc == 0 && !vd->vdev_removing)
869 metaslab_group_activate(vd->vdev_mg);
870
871 if (txg == 0)
872 spa_config_exit(spa, SCL_ALLOC, FTAG);
873
34dc7c2f
BB
874 return (0);
875}
876
877void
878vdev_metaslab_fini(vdev_t *vd)
879{
880 uint64_t m;
881 uint64_t count = vd->vdev_ms_count;
882
883 if (vd->vdev_ms != NULL) {
428870ff 884 metaslab_group_passivate(vd->vdev_mg);
34dc7c2f
BB
885 for (m = 0; m < count; m++)
886 if (vd->vdev_ms[m] != NULL)
887 metaslab_fini(vd->vdev_ms[m]);
888 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
889 vd->vdev_ms = NULL;
890 }
891}
892
b128c09f
BB
893typedef struct vdev_probe_stats {
894 boolean_t vps_readable;
895 boolean_t vps_writeable;
896 int vps_flags;
b128c09f
BB
897} vdev_probe_stats_t;
898
899static void
900vdev_probe_done(zio_t *zio)
34dc7c2f 901{
fb5f0bc8 902 spa_t *spa = zio->io_spa;
d164b209 903 vdev_t *vd = zio->io_vd;
b128c09f 904 vdev_probe_stats_t *vps = zio->io_private;
d164b209
BB
905
906 ASSERT(vd->vdev_probe_zio != NULL);
b128c09f
BB
907
908 if (zio->io_type == ZIO_TYPE_READ) {
b128c09f
BB
909 if (zio->io_error == 0)
910 vps->vps_readable = 1;
fb5f0bc8 911 if (zio->io_error == 0 && spa_writeable(spa)) {
d164b209 912 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
b128c09f
BB
913 zio->io_offset, zio->io_size, zio->io_data,
914 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
915 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
916 } else {
917 zio_buf_free(zio->io_data, zio->io_size);
918 }
919 } else if (zio->io_type == ZIO_TYPE_WRITE) {
b128c09f
BB
920 if (zio->io_error == 0)
921 vps->vps_writeable = 1;
922 zio_buf_free(zio->io_data, zio->io_size);
923 } else if (zio->io_type == ZIO_TYPE_NULL) {
d164b209 924 zio_t *pio;
b128c09f
BB
925
926 vd->vdev_cant_read |= !vps->vps_readable;
927 vd->vdev_cant_write |= !vps->vps_writeable;
928
929 if (vdev_readable(vd) &&
fb5f0bc8 930 (vdev_writeable(vd) || !spa_writeable(spa))) {
b128c09f
BB
931 zio->io_error = 0;
932 } else {
933 ASSERT(zio->io_error != 0);
934 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
fb5f0bc8 935 spa, vd, NULL, 0, 0);
b128c09f
BB
936 zio->io_error = ENXIO;
937 }
d164b209
BB
938
939 mutex_enter(&vd->vdev_probe_lock);
940 ASSERT(vd->vdev_probe_zio == zio);
941 vd->vdev_probe_zio = NULL;
942 mutex_exit(&vd->vdev_probe_lock);
943
944 while ((pio = zio_walk_parents(zio)) != NULL)
945 if (!vdev_accessible(vd, pio))
946 pio->io_error = ENXIO;
947
b128c09f
BB
948 kmem_free(vps, sizeof (*vps));
949 }
950}
34dc7c2f 951
b128c09f
BB
952/*
953 * Determine whether this device is accessible by reading and writing
954 * to several known locations: the pad regions of each vdev label
955 * but the first (which we leave alone in case it contains a VTOC).
956 */
957zio_t *
d164b209 958vdev_probe(vdev_t *vd, zio_t *zio)
b128c09f
BB
959{
960 spa_t *spa = vd->vdev_spa;
d164b209
BB
961 vdev_probe_stats_t *vps = NULL;
962 zio_t *pio;
963
964 ASSERT(vd->vdev_ops->vdev_op_leaf);
34dc7c2f 965
d164b209
BB
966 /*
967 * Don't probe the probe.
968 */
969 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
970 return (NULL);
b128c09f 971
d164b209
BB
972 /*
973 * To prevent 'probe storms' when a device fails, we create
974 * just one probe i/o at a time. All zios that want to probe
975 * this vdev will become parents of the probe io.
976 */
977 mutex_enter(&vd->vdev_probe_lock);
b128c09f 978
d164b209
BB
979 if ((pio = vd->vdev_probe_zio) == NULL) {
980 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
981
982 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
983 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
9babb374 984 ZIO_FLAG_TRYHARD;
d164b209
BB
985
986 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
987 /*
988 * vdev_cant_read and vdev_cant_write can only
989 * transition from TRUE to FALSE when we have the
990 * SCL_ZIO lock as writer; otherwise they can only
991 * transition from FALSE to TRUE. This ensures that
992 * any zio looking at these values can assume that
993 * failures persist for the life of the I/O. That's
994 * important because when a device has intermittent
995 * connectivity problems, we want to ensure that
996 * they're ascribed to the device (ENXIO) and not
997 * the zio (EIO).
998 *
999 * Since we hold SCL_ZIO as writer here, clear both
1000 * values so the probe can reevaluate from first
1001 * principles.
1002 */
1003 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1004 vd->vdev_cant_read = B_FALSE;
1005 vd->vdev_cant_write = B_FALSE;
1006 }
1007
1008 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1009 vdev_probe_done, vps,
1010 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1011
428870ff
BB
1012 /*
1013 * We can't change the vdev state in this context, so we
1014 * kick off an async task to do it on our behalf.
1015 */
d164b209
BB
1016 if (zio != NULL) {
1017 vd->vdev_probe_wanted = B_TRUE;
1018 spa_async_request(spa, SPA_ASYNC_PROBE);
1019 }
b128c09f
BB
1020 }
1021
d164b209
BB
1022 if (zio != NULL)
1023 zio_add_child(zio, pio);
b128c09f 1024
d164b209 1025 mutex_exit(&vd->vdev_probe_lock);
b128c09f 1026
d164b209
BB
1027 if (vps == NULL) {
1028 ASSERT(zio != NULL);
1029 return (NULL);
1030 }
b128c09f
BB
1031
1032 for (int l = 1; l < VDEV_LABELS; l++) {
d164b209 1033 zio_nowait(zio_read_phys(pio, vd,
b128c09f 1034 vdev_label_offset(vd->vdev_psize, l,
9babb374
BB
1035 offsetof(vdev_label_t, vl_pad2)),
1036 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
b128c09f
BB
1037 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1038 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1039 }
1040
d164b209
BB
1041 if (zio == NULL)
1042 return (pio);
1043
1044 zio_nowait(pio);
1045 return (NULL);
34dc7c2f
BB
1046}
1047
45d1cae3
BB
1048static void
1049vdev_open_child(void *arg)
1050{
1051 vdev_t *vd = arg;
1052
1053 vd->vdev_open_thread = curthread;
1054 vd->vdev_open_error = vdev_open(vd);
1055 vd->vdev_open_thread = NULL;
1056}
1057
428870ff
BB
1058boolean_t
1059vdev_uses_zvols(vdev_t *vd)
1060{
1061 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1062 strlen(ZVOL_DIR)) == 0)
1063 return (B_TRUE);
1064 for (int c = 0; c < vd->vdev_children; c++)
1065 if (vdev_uses_zvols(vd->vdev_child[c]))
1066 return (B_TRUE);
1067 return (B_FALSE);
1068}
1069
45d1cae3
BB
1070void
1071vdev_open_children(vdev_t *vd)
1072{
1073 taskq_t *tq;
1074 int children = vd->vdev_children;
1075
428870ff
BB
1076 /*
1077 * in order to handle pools on top of zvols, do the opens
1078 * in a single thread so that the same thread holds the
1079 * spa_namespace_lock
1080 */
1081 if (vdev_uses_zvols(vd)) {
1082 for (int c = 0; c < children; c++)
1083 vd->vdev_child[c]->vdev_open_error =
1084 vdev_open(vd->vdev_child[c]);
1085 return;
1086 }
45d1cae3
BB
1087 tq = taskq_create("vdev_open", children, minclsyspri,
1088 children, children, TASKQ_PREPOPULATE);
1089
1090 for (int c = 0; c < children; c++)
1091 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1092 TQ_SLEEP) != NULL);
1093
1094 taskq_destroy(tq);
1095}
1096
34dc7c2f
BB
1097/*
1098 * Prepare a virtual device for access.
1099 */
1100int
1101vdev_open(vdev_t *vd)
1102{
fb5f0bc8 1103 spa_t *spa = vd->vdev_spa;
34dc7c2f 1104 int error;
34dc7c2f
BB
1105 uint64_t osize = 0;
1106 uint64_t asize, psize;
1107 uint64_t ashift = 0;
1108
45d1cae3
BB
1109 ASSERT(vd->vdev_open_thread == curthread ||
1110 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
34dc7c2f
BB
1111 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1112 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1113 vd->vdev_state == VDEV_STATE_OFFLINE);
1114
34dc7c2f 1115 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
9babb374
BB
1116 vd->vdev_cant_read = B_FALSE;
1117 vd->vdev_cant_write = B_FALSE;
1118 vd->vdev_min_asize = vdev_get_min_asize(vd);
34dc7c2f 1119
428870ff
BB
1120 /*
1121 * If this vdev is not removed, check its fault status. If it's
1122 * faulted, bail out of the open.
1123 */
34dc7c2f
BB
1124 if (!vd->vdev_removed && vd->vdev_faulted) {
1125 ASSERT(vd->vdev_children == 0);
428870ff
BB
1126 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1127 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
34dc7c2f 1128 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
428870ff 1129 vd->vdev_label_aux);
34dc7c2f
BB
1130 return (ENXIO);
1131 } else if (vd->vdev_offline) {
1132 ASSERT(vd->vdev_children == 0);
1133 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1134 return (ENXIO);
1135 }
1136
1137 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1138
428870ff
BB
1139 /*
1140 * Reset the vdev_reopening flag so that we actually close
1141 * the vdev on error.
1142 */
1143 vd->vdev_reopening = B_FALSE;
34dc7c2f 1144 if (zio_injection_enabled && error == 0)
9babb374 1145 error = zio_handle_device_injection(vd, NULL, ENXIO);
34dc7c2f
BB
1146
1147 if (error) {
1148 if (vd->vdev_removed &&
1149 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1150 vd->vdev_removed = B_FALSE;
1151
1152 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1153 vd->vdev_stat.vs_aux);
1154 return (error);
1155 }
1156
1157 vd->vdev_removed = B_FALSE;
1158
428870ff
BB
1159 /*
1160 * Recheck the faulted flag now that we have confirmed that
1161 * the vdev is accessible. If we're faulted, bail.
1162 */
1163 if (vd->vdev_faulted) {
1164 ASSERT(vd->vdev_children == 0);
1165 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1166 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1167 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1168 vd->vdev_label_aux);
1169 return (ENXIO);
1170 }
1171
34dc7c2f
BB
1172 if (vd->vdev_degraded) {
1173 ASSERT(vd->vdev_children == 0);
1174 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1175 VDEV_AUX_ERR_EXCEEDED);
1176 } else {
428870ff 1177 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
34dc7c2f
BB
1178 }
1179
428870ff
BB
1180 /*
1181 * For hole or missing vdevs we just return success.
1182 */
1183 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1184 return (0);
1185
9babb374 1186 for (int c = 0; c < vd->vdev_children; c++) {
34dc7c2f
BB
1187 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1188 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1189 VDEV_AUX_NONE);
1190 break;
1191 }
9babb374 1192 }
34dc7c2f
BB
1193
1194 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1195
1196 if (vd->vdev_children == 0) {
1197 if (osize < SPA_MINDEVSIZE) {
1198 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1199 VDEV_AUX_TOO_SMALL);
1200 return (EOVERFLOW);
1201 }
1202 psize = osize;
1203 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1204 } else {
1205 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1206 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1207 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1208 VDEV_AUX_TOO_SMALL);
1209 return (EOVERFLOW);
1210 }
1211 psize = 0;
1212 asize = osize;
1213 }
1214
1215 vd->vdev_psize = psize;
1216
9babb374
BB
1217 /*
1218 * Make sure the allocatable size hasn't shrunk.
1219 */
1220 if (asize < vd->vdev_min_asize) {
1221 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1222 VDEV_AUX_BAD_LABEL);
1223 return (EINVAL);
1224 }
1225
34dc7c2f
BB
1226 if (vd->vdev_asize == 0) {
1227 /*
1228 * This is the first-ever open, so use the computed values.
1229 * For testing purposes, a higher ashift can be requested.
1230 */
1231 vd->vdev_asize = asize;
1232 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1233 } else {
1234 /*
1235 * Make sure the alignment requirement hasn't increased.
1236 */
1237 if (ashift > vd->vdev_top->vdev_ashift) {
1238 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1239 VDEV_AUX_BAD_LABEL);
1240 return (EINVAL);
1241 }
9babb374 1242 }
34dc7c2f 1243
9babb374
BB
1244 /*
1245 * If all children are healthy and the asize has increased,
1246 * then we've experienced dynamic LUN growth. If automatic
1247 * expansion is enabled then use the additional space.
1248 */
1249 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1250 (vd->vdev_expanding || spa->spa_autoexpand))
1251 vd->vdev_asize = asize;
34dc7c2f 1252
9babb374 1253 vdev_set_min_asize(vd);
34dc7c2f
BB
1254
1255 /*
1256 * Ensure we can issue some IO before declaring the
1257 * vdev open for business.
1258 */
b128c09f
BB
1259 if (vd->vdev_ops->vdev_op_leaf &&
1260 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
428870ff
BB
1261 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1262 VDEV_AUX_ERR_EXCEEDED);
34dc7c2f
BB
1263 return (error);
1264 }
1265
34dc7c2f 1266 /*
b128c09f 1267 * If a leaf vdev has a DTL, and seems healthy, then kick off a
fb5f0bc8
BB
1268 * resilver. But don't do this if we are doing a reopen for a scrub,
1269 * since this would just restart the scrub we are already doing.
34dc7c2f 1270 */
fb5f0bc8
BB
1271 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1272 vdev_resilver_needed(vd, NULL, NULL))
1273 spa_async_request(spa, SPA_ASYNC_RESILVER);
34dc7c2f
BB
1274
1275 return (0);
1276}
1277
1278/*
1279 * Called once the vdevs are all opened, this routine validates the label
1280 * contents. This needs to be done before vdev_load() so that we don't
1281 * inadvertently do repair I/Os to the wrong device.
1282 *
1283 * This function will only return failure if one of the vdevs indicates that it
1284 * has since been destroyed or exported. This is only possible if
1285 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1286 * will be updated but the function will return 0.
1287 */
1288int
1289vdev_validate(vdev_t *vd)
1290{
1291 spa_t *spa = vd->vdev_spa;
34dc7c2f 1292 nvlist_t *label;
428870ff 1293 uint64_t guid = 0, top_guid;
34dc7c2f
BB
1294 uint64_t state;
1295
9babb374 1296 for (int c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
1297 if (vdev_validate(vd->vdev_child[c]) != 0)
1298 return (EBADF);
1299
1300 /*
1301 * If the device has already failed, or was marked offline, don't do
1302 * any further validation. Otherwise, label I/O will fail and we will
1303 * overwrite the previous state.
1304 */
b128c09f 1305 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
428870ff
BB
1306 uint64_t aux_guid = 0;
1307 nvlist_t *nvl;
34dc7c2f
BB
1308
1309 if ((label = vdev_label_read_config(vd)) == NULL) {
1310 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1311 VDEV_AUX_BAD_LABEL);
1312 return (0);
1313 }
1314
428870ff
BB
1315 /*
1316 * Determine if this vdev has been split off into another
1317 * pool. If so, then refuse to open it.
1318 */
1319 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1320 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1321 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1322 VDEV_AUX_SPLIT_POOL);
1323 nvlist_free(label);
1324 return (0);
1325 }
1326
34dc7c2f
BB
1327 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1328 &guid) != 0 || guid != spa_guid(spa)) {
1329 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1330 VDEV_AUX_CORRUPT_DATA);
1331 nvlist_free(label);
1332 return (0);
1333 }
1334
428870ff
BB
1335 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1336 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1337 &aux_guid) != 0)
1338 aux_guid = 0;
1339
b128c09f
BB
1340 /*
1341 * If this vdev just became a top-level vdev because its
1342 * sibling was detached, it will have adopted the parent's
1343 * vdev guid -- but the label may or may not be on disk yet.
1344 * Fortunately, either version of the label will have the
1345 * same top guid, so if we're a top-level vdev, we can
1346 * safely compare to that instead.
428870ff
BB
1347 *
1348 * If we split this vdev off instead, then we also check the
1349 * original pool's guid. We don't want to consider the vdev
1350 * corrupt if it is partway through a split operation.
b128c09f 1351 */
34dc7c2f 1352 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
b128c09f
BB
1353 &guid) != 0 ||
1354 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1355 &top_guid) != 0 ||
428870ff 1356 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
b128c09f 1357 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
34dc7c2f
BB
1358 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1359 VDEV_AUX_CORRUPT_DATA);
1360 nvlist_free(label);
1361 return (0);
1362 }
1363
1364 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1365 &state) != 0) {
1366 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1367 VDEV_AUX_CORRUPT_DATA);
1368 nvlist_free(label);
1369 return (0);
1370 }
1371
1372 nvlist_free(label);
1373
45d1cae3 1374 /*
572e2857 1375 * If this is a verbatim import, no need to check the
45d1cae3
BB
1376 * state of the pool.
1377 */
572e2857 1378 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
428870ff 1379 spa_load_state(spa) == SPA_LOAD_OPEN &&
34dc7c2f
BB
1380 state != POOL_STATE_ACTIVE)
1381 return (EBADF);
34dc7c2f 1382
b128c09f
BB
1383 /*
1384 * If we were able to open and validate a vdev that was
1385 * previously marked permanently unavailable, clear that state
1386 * now.
1387 */
1388 if (vd->vdev_not_present)
1389 vd->vdev_not_present = 0;
1390 }
34dc7c2f
BB
1391
1392 return (0);
1393}
1394
1395/*
1396 * Close a virtual device.
1397 */
1398void
1399vdev_close(vdev_t *vd)
1400{
fb5f0bc8 1401 spa_t *spa = vd->vdev_spa;
428870ff 1402 vdev_t *pvd = vd->vdev_parent;
fb5f0bc8
BB
1403
1404 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1405
428870ff
BB
1406 /*
1407 * If our parent is reopening, then we are as well, unless we are
1408 * going offline.
1409 */
1410 if (pvd != NULL && pvd->vdev_reopening)
1411 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1412
34dc7c2f
BB
1413 vd->vdev_ops->vdev_op_close(vd);
1414
1415 vdev_cache_purge(vd);
1416
1417 /*
9babb374 1418 * We record the previous state before we close it, so that if we are
34dc7c2f
BB
1419 * doing a reopen(), we don't generate FMA ereports if we notice that
1420 * it's still faulted.
1421 */
1422 vd->vdev_prevstate = vd->vdev_state;
1423
1424 if (vd->vdev_offline)
1425 vd->vdev_state = VDEV_STATE_OFFLINE;
1426 else
1427 vd->vdev_state = VDEV_STATE_CLOSED;
1428 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1429}
1430
428870ff
BB
1431void
1432vdev_hold(vdev_t *vd)
1433{
1434 spa_t *spa = vd->vdev_spa;
1435
1436 ASSERT(spa_is_root(spa));
1437 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1438 return;
1439
1440 for (int c = 0; c < vd->vdev_children; c++)
1441 vdev_hold(vd->vdev_child[c]);
1442
1443 if (vd->vdev_ops->vdev_op_leaf)
1444 vd->vdev_ops->vdev_op_hold(vd);
1445}
1446
1447void
1448vdev_rele(vdev_t *vd)
1449{
1450 spa_t *spa = vd->vdev_spa;
1451
1452 ASSERT(spa_is_root(spa));
1453 for (int c = 0; c < vd->vdev_children; c++)
1454 vdev_rele(vd->vdev_child[c]);
1455
1456 if (vd->vdev_ops->vdev_op_leaf)
1457 vd->vdev_ops->vdev_op_rele(vd);
1458}
1459
1460/*
1461 * Reopen all interior vdevs and any unopened leaves. We don't actually
1462 * reopen leaf vdevs which had previously been opened as they might deadlock
1463 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1464 * If the leaf has never been opened then open it, as usual.
1465 */
34dc7c2f
BB
1466void
1467vdev_reopen(vdev_t *vd)
1468{
1469 spa_t *spa = vd->vdev_spa;
1470
b128c09f 1471 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
34dc7c2f 1472
428870ff
BB
1473 /* set the reopening flag unless we're taking the vdev offline */
1474 vd->vdev_reopening = !vd->vdev_offline;
34dc7c2f
BB
1475 vdev_close(vd);
1476 (void) vdev_open(vd);
1477
1478 /*
1479 * Call vdev_validate() here to make sure we have the same device.
1480 * Otherwise, a device with an invalid label could be successfully
1481 * opened in response to vdev_reopen().
1482 */
b128c09f
BB
1483 if (vd->vdev_aux) {
1484 (void) vdev_validate_aux(vd);
1485 if (vdev_readable(vd) && vdev_writeable(vd) &&
9babb374
BB
1486 vd->vdev_aux == &spa->spa_l2cache &&
1487 !l2arc_vdev_present(vd))
1488 l2arc_add_vdev(spa, vd);
b128c09f
BB
1489 } else {
1490 (void) vdev_validate(vd);
1491 }
34dc7c2f
BB
1492
1493 /*
1494 * Reassess parent vdev's health.
1495 */
1496 vdev_propagate_state(vd);
1497}
1498
1499int
1500vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1501{
1502 int error;
1503
1504 /*
1505 * Normally, partial opens (e.g. of a mirror) are allowed.
1506 * For a create, however, we want to fail the request if
1507 * there are any components we can't open.
1508 */
1509 error = vdev_open(vd);
1510
1511 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1512 vdev_close(vd);
1513 return (error ? error : ENXIO);
1514 }
1515
1516 /*
1517 * Recursively initialize all labels.
1518 */
1519 if ((error = vdev_label_init(vd, txg, isreplacing ?
1520 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1521 vdev_close(vd);
1522 return (error);
1523 }
1524
1525 return (0);
1526}
1527
34dc7c2f 1528void
9babb374 1529vdev_metaslab_set_size(vdev_t *vd)
34dc7c2f
BB
1530{
1531 /*
1532 * Aim for roughly 200 metaslabs per vdev.
1533 */
1534 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1535 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
34dc7c2f
BB
1536}
1537
1538void
1539vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1540{
1541 ASSERT(vd == vd->vdev_top);
428870ff 1542 ASSERT(!vd->vdev_ishole);
34dc7c2f 1543 ASSERT(ISP2(flags));
572e2857 1544 ASSERT(spa_writeable(vd->vdev_spa));
34dc7c2f
BB
1545
1546 if (flags & VDD_METASLAB)
1547 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1548
1549 if (flags & VDD_DTL)
1550 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1551
1552 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1553}
1554
fb5f0bc8
BB
1555/*
1556 * DTLs.
1557 *
1558 * A vdev's DTL (dirty time log) is the set of transaction groups for which
428870ff 1559 * the vdev has less than perfect replication. There are four kinds of DTL:
fb5f0bc8
BB
1560 *
1561 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1562 *
1563 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1564 *
1565 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1566 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1567 * txgs that was scrubbed.
1568 *
1569 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1570 * persistent errors or just some device being offline.
1571 * Unlike the other three, the DTL_OUTAGE map is not generally
1572 * maintained; it's only computed when needed, typically to
1573 * determine whether a device can be detached.
1574 *
1575 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1576 * either has the data or it doesn't.
1577 *
1578 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1579 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1580 * if any child is less than fully replicated, then so is its parent.
1581 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1582 * comprising only those txgs which appear in 'maxfaults' or more children;
1583 * those are the txgs we don't have enough replication to read. For example,
1584 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1585 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1586 * two child DTL_MISSING maps.
1587 *
1588 * It should be clear from the above that to compute the DTLs and outage maps
1589 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1590 * Therefore, that is all we keep on disk. When loading the pool, or after
1591 * a configuration change, we generate all other DTLs from first principles.
1592 */
34dc7c2f 1593void
fb5f0bc8 1594vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
34dc7c2f 1595{
fb5f0bc8
BB
1596 space_map_t *sm = &vd->vdev_dtl[t];
1597
1598 ASSERT(t < DTL_TYPES);
1599 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
572e2857 1600 ASSERT(spa_writeable(vd->vdev_spa));
fb5f0bc8 1601
34dc7c2f
BB
1602 mutex_enter(sm->sm_lock);
1603 if (!space_map_contains(sm, txg, size))
1604 space_map_add(sm, txg, size);
1605 mutex_exit(sm->sm_lock);
1606}
1607
fb5f0bc8
BB
1608boolean_t
1609vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
34dc7c2f 1610{
fb5f0bc8
BB
1611 space_map_t *sm = &vd->vdev_dtl[t];
1612 boolean_t dirty = B_FALSE;
34dc7c2f 1613
fb5f0bc8
BB
1614 ASSERT(t < DTL_TYPES);
1615 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
34dc7c2f
BB
1616
1617 mutex_enter(sm->sm_lock);
fb5f0bc8
BB
1618 if (sm->sm_space != 0)
1619 dirty = space_map_contains(sm, txg, size);
34dc7c2f
BB
1620 mutex_exit(sm->sm_lock);
1621
1622 return (dirty);
1623}
1624
fb5f0bc8
BB
1625boolean_t
1626vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1627{
1628 space_map_t *sm = &vd->vdev_dtl[t];
1629 boolean_t empty;
1630
1631 mutex_enter(sm->sm_lock);
1632 empty = (sm->sm_space == 0);
1633 mutex_exit(sm->sm_lock);
1634
1635 return (empty);
1636}
1637
34dc7c2f
BB
1638/*
1639 * Reassess DTLs after a config change or scrub completion.
1640 */
1641void
1642vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1643{
1644 spa_t *spa = vd->vdev_spa;
fb5f0bc8
BB
1645 avl_tree_t reftree;
1646 int minref;
34dc7c2f 1647
fb5f0bc8 1648 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
34dc7c2f 1649
fb5f0bc8
BB
1650 for (int c = 0; c < vd->vdev_children; c++)
1651 vdev_dtl_reassess(vd->vdev_child[c], txg,
1652 scrub_txg, scrub_done);
1653
428870ff 1654 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
fb5f0bc8
BB
1655 return;
1656
1657 if (vd->vdev_ops->vdev_op_leaf) {
428870ff
BB
1658 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1659
34dc7c2f 1660 mutex_enter(&vd->vdev_dtl_lock);
b128c09f 1661 if (scrub_txg != 0 &&
428870ff
BB
1662 (spa->spa_scrub_started ||
1663 (scn && scn->scn_phys.scn_errors == 0))) {
b128c09f
BB
1664 /*
1665 * We completed a scrub up to scrub_txg. If we
1666 * did it without rebooting, then the scrub dtl
1667 * will be valid, so excise the old region and
1668 * fold in the scrub dtl. Otherwise, leave the
1669 * dtl as-is if there was an error.
fb5f0bc8
BB
1670 *
1671 * There's little trick here: to excise the beginning
1672 * of the DTL_MISSING map, we put it into a reference
1673 * tree and then add a segment with refcnt -1 that
1674 * covers the range [0, scrub_txg). This means
1675 * that each txg in that range has refcnt -1 or 0.
1676 * We then add DTL_SCRUB with a refcnt of 2, so that
1677 * entries in the range [0, scrub_txg) will have a
1678 * positive refcnt -- either 1 or 2. We then convert
1679 * the reference tree into the new DTL_MISSING map.
b128c09f 1680 */
fb5f0bc8
BB
1681 space_map_ref_create(&reftree);
1682 space_map_ref_add_map(&reftree,
1683 &vd->vdev_dtl[DTL_MISSING], 1);
1684 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1685 space_map_ref_add_map(&reftree,
1686 &vd->vdev_dtl[DTL_SCRUB], 2);
1687 space_map_ref_generate_map(&reftree,
1688 &vd->vdev_dtl[DTL_MISSING], 1);
1689 space_map_ref_destroy(&reftree);
34dc7c2f 1690 }
fb5f0bc8
BB
1691 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1692 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1693 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
34dc7c2f 1694 if (scrub_done)
fb5f0bc8
BB
1695 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1696 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1697 if (!vdev_readable(vd))
1698 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1699 else
1700 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1701 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
34dc7c2f 1702 mutex_exit(&vd->vdev_dtl_lock);
b128c09f 1703
34dc7c2f
BB
1704 if (txg != 0)
1705 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1706 return;
1707 }
1708
34dc7c2f 1709 mutex_enter(&vd->vdev_dtl_lock);
fb5f0bc8 1710 for (int t = 0; t < DTL_TYPES; t++) {
428870ff
BB
1711 /* account for child's outage in parent's missing map */
1712 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
fb5f0bc8
BB
1713 if (t == DTL_SCRUB)
1714 continue; /* leaf vdevs only */
1715 if (t == DTL_PARTIAL)
1716 minref = 1; /* i.e. non-zero */
1717 else if (vd->vdev_nparity != 0)
1718 minref = vd->vdev_nparity + 1; /* RAID-Z */
1719 else
1720 minref = vd->vdev_children; /* any kind of mirror */
1721 space_map_ref_create(&reftree);
1722 for (int c = 0; c < vd->vdev_children; c++) {
1723 vdev_t *cvd = vd->vdev_child[c];
1724 mutex_enter(&cvd->vdev_dtl_lock);
428870ff 1725 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
fb5f0bc8
BB
1726 mutex_exit(&cvd->vdev_dtl_lock);
1727 }
1728 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1729 space_map_ref_destroy(&reftree);
34dc7c2f 1730 }
fb5f0bc8 1731 mutex_exit(&vd->vdev_dtl_lock);
34dc7c2f
BB
1732}
1733
1734static int
1735vdev_dtl_load(vdev_t *vd)
1736{
1737 spa_t *spa = vd->vdev_spa;
fb5f0bc8 1738 space_map_obj_t *smo = &vd->vdev_dtl_smo;
34dc7c2f
BB
1739 objset_t *mos = spa->spa_meta_objset;
1740 dmu_buf_t *db;
1741 int error;
1742
1743 ASSERT(vd->vdev_children == 0);
1744
1745 if (smo->smo_object == 0)
1746 return (0);
1747
428870ff
BB
1748 ASSERT(!vd->vdev_ishole);
1749
34dc7c2f
BB
1750 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1751 return (error);
1752
1753 ASSERT3U(db->db_size, >=, sizeof (*smo));
1754 bcopy(db->db_data, smo, sizeof (*smo));
1755 dmu_buf_rele(db, FTAG);
1756
1757 mutex_enter(&vd->vdev_dtl_lock);
fb5f0bc8
BB
1758 error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1759 NULL, SM_ALLOC, smo, mos);
34dc7c2f
BB
1760 mutex_exit(&vd->vdev_dtl_lock);
1761
1762 return (error);
1763}
1764
1765void
1766vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1767{
1768 spa_t *spa = vd->vdev_spa;
fb5f0bc8
BB
1769 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1770 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
34dc7c2f
BB
1771 objset_t *mos = spa->spa_meta_objset;
1772 space_map_t smsync;
1773 kmutex_t smlock;
1774 dmu_buf_t *db;
1775 dmu_tx_t *tx;
1776
428870ff
BB
1777 ASSERT(!vd->vdev_ishole);
1778
34dc7c2f
BB
1779 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1780
1781 if (vd->vdev_detached) {
1782 if (smo->smo_object != 0) {
1783 int err = dmu_object_free(mos, smo->smo_object, tx);
1784 ASSERT3U(err, ==, 0);
1785 smo->smo_object = 0;
1786 }
1787 dmu_tx_commit(tx);
34dc7c2f
BB
1788 return;
1789 }
1790
1791 if (smo->smo_object == 0) {
1792 ASSERT(smo->smo_objsize == 0);
1793 ASSERT(smo->smo_alloc == 0);
1794 smo->smo_object = dmu_object_alloc(mos,
1795 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1796 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1797 ASSERT(smo->smo_object != 0);
1798 vdev_config_dirty(vd->vdev_top);
1799 }
1800
1801 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1802
1803 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1804 &smlock);
1805
1806 mutex_enter(&smlock);
1807
1808 mutex_enter(&vd->vdev_dtl_lock);
1809 space_map_walk(sm, space_map_add, &smsync);
1810 mutex_exit(&vd->vdev_dtl_lock);
1811
1812 space_map_truncate(smo, mos, tx);
1813 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1814
1815 space_map_destroy(&smsync);
1816
1817 mutex_exit(&smlock);
1818 mutex_destroy(&smlock);
1819
1820 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1821 dmu_buf_will_dirty(db, tx);
1822 ASSERT3U(db->db_size, >=, sizeof (*smo));
1823 bcopy(smo, db->db_data, sizeof (*smo));
1824 dmu_buf_rele(db, FTAG);
1825
1826 dmu_tx_commit(tx);
1827}
1828
fb5f0bc8
BB
1829/*
1830 * Determine whether the specified vdev can be offlined/detached/removed
1831 * without losing data.
1832 */
1833boolean_t
1834vdev_dtl_required(vdev_t *vd)
1835{
1836 spa_t *spa = vd->vdev_spa;
1837 vdev_t *tvd = vd->vdev_top;
1838 uint8_t cant_read = vd->vdev_cant_read;
1839 boolean_t required;
1840
1841 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1842
1843 if (vd == spa->spa_root_vdev || vd == tvd)
1844 return (B_TRUE);
1845
1846 /*
1847 * Temporarily mark the device as unreadable, and then determine
1848 * whether this results in any DTL outages in the top-level vdev.
1849 * If not, we can safely offline/detach/remove the device.
1850 */
1851 vd->vdev_cant_read = B_TRUE;
1852 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1853 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1854 vd->vdev_cant_read = cant_read;
1855 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1856
572e2857
BB
1857 if (!required && zio_injection_enabled)
1858 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1859
fb5f0bc8
BB
1860 return (required);
1861}
1862
b128c09f
BB
1863/*
1864 * Determine if resilver is needed, and if so the txg range.
1865 */
1866boolean_t
1867vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1868{
1869 boolean_t needed = B_FALSE;
1870 uint64_t thismin = UINT64_MAX;
1871 uint64_t thismax = 0;
1872
1873 if (vd->vdev_children == 0) {
1874 mutex_enter(&vd->vdev_dtl_lock);
fb5f0bc8
BB
1875 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1876 vdev_writeable(vd)) {
b128c09f
BB
1877 space_seg_t *ss;
1878
fb5f0bc8 1879 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
b128c09f 1880 thismin = ss->ss_start - 1;
fb5f0bc8 1881 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
b128c09f
BB
1882 thismax = ss->ss_end;
1883 needed = B_TRUE;
1884 }
1885 mutex_exit(&vd->vdev_dtl_lock);
1886 } else {
fb5f0bc8 1887 for (int c = 0; c < vd->vdev_children; c++) {
b128c09f
BB
1888 vdev_t *cvd = vd->vdev_child[c];
1889 uint64_t cmin, cmax;
1890
1891 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1892 thismin = MIN(thismin, cmin);
1893 thismax = MAX(thismax, cmax);
1894 needed = B_TRUE;
1895 }
1896 }
1897 }
1898
1899 if (needed && minp) {
1900 *minp = thismin;
1901 *maxp = thismax;
1902 }
1903 return (needed);
1904}
1905
34dc7c2f
BB
1906void
1907vdev_load(vdev_t *vd)
1908{
34dc7c2f
BB
1909 /*
1910 * Recursively load all children.
1911 */
fb5f0bc8 1912 for (int c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
1913 vdev_load(vd->vdev_child[c]);
1914
1915 /*
1916 * If this is a top-level vdev, initialize its metaslabs.
1917 */
428870ff 1918 if (vd == vd->vdev_top && !vd->vdev_ishole &&
34dc7c2f
BB
1919 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1920 vdev_metaslab_init(vd, 0) != 0))
1921 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1922 VDEV_AUX_CORRUPT_DATA);
1923
1924 /*
1925 * If this is a leaf vdev, load its DTL.
1926 */
1927 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1928 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1929 VDEV_AUX_CORRUPT_DATA);
1930}
1931
1932/*
1933 * The special vdev case is used for hot spares and l2cache devices. Its
1934 * sole purpose it to set the vdev state for the associated vdev. To do this,
1935 * we make sure that we can open the underlying device, then try to read the
1936 * label, and make sure that the label is sane and that it hasn't been
1937 * repurposed to another pool.
1938 */
1939int
1940vdev_validate_aux(vdev_t *vd)
1941{
1942 nvlist_t *label;
1943 uint64_t guid, version;
1944 uint64_t state;
1945
b128c09f
BB
1946 if (!vdev_readable(vd))
1947 return (0);
1948
34dc7c2f
BB
1949 if ((label = vdev_label_read_config(vd)) == NULL) {
1950 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1951 VDEV_AUX_CORRUPT_DATA);
1952 return (-1);
1953 }
1954
1955 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1956 version > SPA_VERSION ||
1957 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1958 guid != vd->vdev_guid ||
1959 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1960 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1961 VDEV_AUX_CORRUPT_DATA);
1962 nvlist_free(label);
1963 return (-1);
1964 }
1965
1966 /*
1967 * We don't actually check the pool state here. If it's in fact in
1968 * use by another pool, we update this fact on the fly when requested.
1969 */
1970 nvlist_free(label);
1971 return (0);
1972}
1973
428870ff
BB
1974void
1975vdev_remove(vdev_t *vd, uint64_t txg)
1976{
1977 spa_t *spa = vd->vdev_spa;
1978 objset_t *mos = spa->spa_meta_objset;
1979 dmu_tx_t *tx;
1980
1981 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
1982
1983 if (vd->vdev_dtl_smo.smo_object) {
1984 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
1985 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
1986 vd->vdev_dtl_smo.smo_object = 0;
1987 }
1988
1989 if (vd->vdev_ms != NULL) {
1990 for (int m = 0; m < vd->vdev_ms_count; m++) {
1991 metaslab_t *msp = vd->vdev_ms[m];
1992
1993 if (msp == NULL || msp->ms_smo.smo_object == 0)
1994 continue;
1995
1996 ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
1997 (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
1998 msp->ms_smo.smo_object = 0;
1999 }
2000 }
2001
2002 if (vd->vdev_ms_array) {
2003 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2004 vd->vdev_ms_array = 0;
2005 vd->vdev_ms_shift = 0;
2006 }
2007 dmu_tx_commit(tx);
2008}
2009
34dc7c2f
BB
2010void
2011vdev_sync_done(vdev_t *vd, uint64_t txg)
2012{
2013 metaslab_t *msp;
428870ff
BB
2014 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2015
2016 ASSERT(!vd->vdev_ishole);
34dc7c2f 2017
34dc7c2f
BB
2018 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2019 metaslab_sync_done(msp, txg);
428870ff
BB
2020
2021 if (reassess)
2022 metaslab_sync_reassess(vd->vdev_mg);
34dc7c2f
BB
2023}
2024
2025void
2026vdev_sync(vdev_t *vd, uint64_t txg)
2027{
2028 spa_t *spa = vd->vdev_spa;
2029 vdev_t *lvd;
2030 metaslab_t *msp;
2031 dmu_tx_t *tx;
2032
428870ff
BB
2033 ASSERT(!vd->vdev_ishole);
2034
34dc7c2f
BB
2035 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2036 ASSERT(vd == vd->vdev_top);
2037 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2038 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2039 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2040 ASSERT(vd->vdev_ms_array != 0);
2041 vdev_config_dirty(vd);
2042 dmu_tx_commit(tx);
2043 }
2044
428870ff
BB
2045 /*
2046 * Remove the metadata associated with this vdev once it's empty.
2047 */
2048 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2049 vdev_remove(vd, txg);
2050
34dc7c2f
BB
2051 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2052 metaslab_sync(msp, txg);
2053 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2054 }
2055
2056 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2057 vdev_dtl_sync(lvd, txg);
2058
2059 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2060}
2061
2062uint64_t
2063vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2064{
2065 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2066}
2067
34dc7c2f
BB
2068/*
2069 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2070 * not be opened, and no I/O is attempted.
2071 */
2072int
428870ff 2073vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
34dc7c2f 2074{
572e2857 2075 vdev_t *vd, *tvd;
34dc7c2f 2076
428870ff 2077 spa_vdev_state_enter(spa, SCL_NONE);
34dc7c2f 2078
b128c09f
BB
2079 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2080 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f 2081
34dc7c2f 2082 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 2083 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f 2084
572e2857
BB
2085 tvd = vd->vdev_top;
2086
428870ff
BB
2087 /*
2088 * We don't directly use the aux state here, but if we do a
2089 * vdev_reopen(), we need this value to be present to remember why we
2090 * were faulted.
2091 */
2092 vd->vdev_label_aux = aux;
2093
34dc7c2f
BB
2094 /*
2095 * Faulted state takes precedence over degraded.
2096 */
428870ff 2097 vd->vdev_delayed_close = B_FALSE;
34dc7c2f
BB
2098 vd->vdev_faulted = 1ULL;
2099 vd->vdev_degraded = 0ULL;
428870ff 2100 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
34dc7c2f
BB
2101
2102 /*
428870ff
BB
2103 * If this device has the only valid copy of the data, then
2104 * back off and simply mark the vdev as degraded instead.
34dc7c2f 2105 */
572e2857 2106 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
34dc7c2f
BB
2107 vd->vdev_degraded = 1ULL;
2108 vd->vdev_faulted = 0ULL;
2109
2110 /*
2111 * If we reopen the device and it's not dead, only then do we
2112 * mark it degraded.
2113 */
572e2857 2114 vdev_reopen(tvd);
34dc7c2f 2115
428870ff
BB
2116 if (vdev_readable(vd))
2117 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
34dc7c2f
BB
2118 }
2119
b128c09f 2120 return (spa_vdev_state_exit(spa, vd, 0));
34dc7c2f
BB
2121}
2122
2123/*
2124 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2125 * user that something is wrong. The vdev continues to operate as normal as far
2126 * as I/O is concerned.
2127 */
2128int
428870ff 2129vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
34dc7c2f 2130{
b128c09f 2131 vdev_t *vd;
34dc7c2f 2132
428870ff 2133 spa_vdev_state_enter(spa, SCL_NONE);
34dc7c2f 2134
b128c09f
BB
2135 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2136 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f 2137
34dc7c2f 2138 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 2139 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f
BB
2140
2141 /*
2142 * If the vdev is already faulted, then don't do anything.
2143 */
b128c09f
BB
2144 if (vd->vdev_faulted || vd->vdev_degraded)
2145 return (spa_vdev_state_exit(spa, NULL, 0));
34dc7c2f
BB
2146
2147 vd->vdev_degraded = 1ULL;
2148 if (!vdev_is_dead(vd))
2149 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
428870ff 2150 aux);
34dc7c2f 2151
b128c09f 2152 return (spa_vdev_state_exit(spa, vd, 0));
34dc7c2f
BB
2153}
2154
2155/*
2156 * Online the given vdev. If 'unspare' is set, it implies two things. First,
2157 * any attached spare device should be detached when the device finishes
2158 * resilvering. Second, the online should be treated like a 'test' online case,
2159 * so no FMA events are generated if the device fails to open.
2160 */
2161int
b128c09f 2162vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
34dc7c2f 2163{
9babb374 2164 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
34dc7c2f 2165
428870ff 2166 spa_vdev_state_enter(spa, SCL_NONE);
34dc7c2f 2167
b128c09f
BB
2168 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2169 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f
BB
2170
2171 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 2172 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f 2173
9babb374 2174 tvd = vd->vdev_top;
34dc7c2f
BB
2175 vd->vdev_offline = B_FALSE;
2176 vd->vdev_tmpoffline = B_FALSE;
b128c09f
BB
2177 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2178 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
9babb374
BB
2179
2180 /* XXX - L2ARC 1.0 does not support expansion */
2181 if (!vd->vdev_aux) {
2182 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2183 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2184 }
2185
2186 vdev_reopen(tvd);
34dc7c2f
BB
2187 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2188
9babb374
BB
2189 if (!vd->vdev_aux) {
2190 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2191 pvd->vdev_expanding = B_FALSE;
2192 }
2193
34dc7c2f
BB
2194 if (newstate)
2195 *newstate = vd->vdev_state;
2196 if ((flags & ZFS_ONLINE_UNSPARE) &&
2197 !vdev_is_dead(vd) && vd->vdev_parent &&
2198 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2199 vd->vdev_parent->vdev_child[0] == vd)
2200 vd->vdev_unspare = B_TRUE;
2201
9babb374
BB
2202 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2203
2204 /* XXX - L2ARC 1.0 does not support expansion */
2205 if (vd->vdev_aux)
2206 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2207 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2208 }
fb5f0bc8 2209 return (spa_vdev_state_exit(spa, vd, 0));
34dc7c2f
BB
2210}
2211
428870ff
BB
2212static int
2213vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
34dc7c2f 2214{
9babb374 2215 vdev_t *vd, *tvd;
428870ff
BB
2216 int error = 0;
2217 uint64_t generation;
2218 metaslab_group_t *mg;
34dc7c2f 2219
428870ff
BB
2220top:
2221 spa_vdev_state_enter(spa, SCL_ALLOC);
34dc7c2f 2222
b128c09f
BB
2223 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2224 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f
BB
2225
2226 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 2227 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f 2228
9babb374 2229 tvd = vd->vdev_top;
428870ff
BB
2230 mg = tvd->vdev_mg;
2231 generation = spa->spa_config_generation + 1;
9babb374 2232
34dc7c2f
BB
2233 /*
2234 * If the device isn't already offline, try to offline it.
2235 */
2236 if (!vd->vdev_offline) {
2237 /*
fb5f0bc8 2238 * If this device has the only valid copy of some data,
9babb374
BB
2239 * don't allow it to be offlined. Log devices are always
2240 * expendable.
34dc7c2f 2241 */
9babb374
BB
2242 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2243 vdev_dtl_required(vd))
b128c09f 2244 return (spa_vdev_state_exit(spa, NULL, EBUSY));
34dc7c2f 2245
428870ff
BB
2246 /*
2247 * If the top-level is a slog and it has had allocations
2248 * then proceed. We check that the vdev's metaslab group
2249 * is not NULL since it's possible that we may have just
2250 * added this vdev but not yet initialized its metaslabs.
2251 */
2252 if (tvd->vdev_islog && mg != NULL) {
2253 /*
2254 * Prevent any future allocations.
2255 */
2256 metaslab_group_passivate(mg);
2257 (void) spa_vdev_state_exit(spa, vd, 0);
2258
2259 error = spa_offline_log(spa);
2260
2261 spa_vdev_state_enter(spa, SCL_ALLOC);
2262
2263 /*
2264 * Check to see if the config has changed.
2265 */
2266 if (error || generation != spa->spa_config_generation) {
2267 metaslab_group_activate(mg);
2268 if (error)
2269 return (spa_vdev_state_exit(spa,
2270 vd, error));
2271 (void) spa_vdev_state_exit(spa, vd, 0);
2272 goto top;
2273 }
2274 ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2275 }
2276
34dc7c2f
BB
2277 /*
2278 * Offline this device and reopen its top-level vdev.
9babb374
BB
2279 * If the top-level vdev is a log device then just offline
2280 * it. Otherwise, if this action results in the top-level
2281 * vdev becoming unusable, undo it and fail the request.
34dc7c2f
BB
2282 */
2283 vd->vdev_offline = B_TRUE;
9babb374
BB
2284 vdev_reopen(tvd);
2285
2286 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2287 vdev_is_dead(tvd)) {
34dc7c2f 2288 vd->vdev_offline = B_FALSE;
9babb374 2289 vdev_reopen(tvd);
b128c09f 2290 return (spa_vdev_state_exit(spa, NULL, EBUSY));
34dc7c2f 2291 }
428870ff
BB
2292
2293 /*
2294 * Add the device back into the metaslab rotor so that
2295 * once we online the device it's open for business.
2296 */
2297 if (tvd->vdev_islog && mg != NULL)
2298 metaslab_group_activate(mg);
34dc7c2f
BB
2299 }
2300
b128c09f 2301 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
34dc7c2f 2302
428870ff
BB
2303 return (spa_vdev_state_exit(spa, vd, 0));
2304}
9babb374 2305
428870ff
BB
2306int
2307vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2308{
2309 int error;
9babb374 2310
428870ff
BB
2311 mutex_enter(&spa->spa_vdev_top_lock);
2312 error = vdev_offline_locked(spa, guid, flags);
2313 mutex_exit(&spa->spa_vdev_top_lock);
2314
2315 return (error);
34dc7c2f
BB
2316}
2317
2318/*
2319 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2320 * vdev_offline(), we assume the spa config is locked. We also clear all
2321 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
34dc7c2f
BB
2322 */
2323void
b128c09f 2324vdev_clear(spa_t *spa, vdev_t *vd)
34dc7c2f 2325{
b128c09f
BB
2326 vdev_t *rvd = spa->spa_root_vdev;
2327
2328 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
34dc7c2f
BB
2329
2330 if (vd == NULL)
b128c09f 2331 vd = rvd;
34dc7c2f
BB
2332
2333 vd->vdev_stat.vs_read_errors = 0;
2334 vd->vdev_stat.vs_write_errors = 0;
2335 vd->vdev_stat.vs_checksum_errors = 0;
34dc7c2f 2336
b128c09f
BB
2337 for (int c = 0; c < vd->vdev_children; c++)
2338 vdev_clear(spa, vd->vdev_child[c]);
34dc7c2f
BB
2339
2340 /*
b128c09f
BB
2341 * If we're in the FAULTED state or have experienced failed I/O, then
2342 * clear the persistent state and attempt to reopen the device. We
2343 * also mark the vdev config dirty, so that the new faulted state is
2344 * written out to disk.
34dc7c2f 2345 */
b128c09f
BB
2346 if (vd->vdev_faulted || vd->vdev_degraded ||
2347 !vdev_readable(vd) || !vdev_writeable(vd)) {
2348
428870ff
BB
2349 /*
2350 * When reopening in reponse to a clear event, it may be due to
2351 * a fmadm repair request. In this case, if the device is
2352 * still broken, we want to still post the ereport again.
2353 */
2354 vd->vdev_forcefault = B_TRUE;
2355
572e2857 2356 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
b128c09f
BB
2357 vd->vdev_cant_read = B_FALSE;
2358 vd->vdev_cant_write = B_FALSE;
2359
572e2857 2360 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
34dc7c2f 2361
428870ff
BB
2362 vd->vdev_forcefault = B_FALSE;
2363
572e2857 2364 if (vd != rvd && vdev_writeable(vd->vdev_top))
b128c09f
BB
2365 vdev_state_dirty(vd->vdev_top);
2366
2367 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
34dc7c2f
BB
2368 spa_async_request(spa, SPA_ASYNC_RESILVER);
2369
2370 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2371 }
428870ff
BB
2372
2373 /*
2374 * When clearing a FMA-diagnosed fault, we always want to
2375 * unspare the device, as we assume that the original spare was
2376 * done in response to the FMA fault.
2377 */
2378 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2379 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2380 vd->vdev_parent->vdev_child[0] == vd)
2381 vd->vdev_unspare = B_TRUE;
34dc7c2f
BB
2382}
2383
b128c09f
BB
2384boolean_t
2385vdev_is_dead(vdev_t *vd)
2386{
428870ff
BB
2387 /*
2388 * Holes and missing devices are always considered "dead".
2389 * This simplifies the code since we don't have to check for
2390 * these types of devices in the various code paths.
2391 * Instead we rely on the fact that we skip over dead devices
2392 * before issuing I/O to them.
2393 */
2394 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2395 vd->vdev_ops == &vdev_missing_ops);
b128c09f
BB
2396}
2397
2398boolean_t
34dc7c2f
BB
2399vdev_readable(vdev_t *vd)
2400{
b128c09f 2401 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
34dc7c2f
BB
2402}
2403
b128c09f 2404boolean_t
34dc7c2f
BB
2405vdev_writeable(vdev_t *vd)
2406{
b128c09f 2407 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
34dc7c2f
BB
2408}
2409
b128c09f
BB
2410boolean_t
2411vdev_allocatable(vdev_t *vd)
34dc7c2f 2412{
fb5f0bc8
BB
2413 uint64_t state = vd->vdev_state;
2414
b128c09f 2415 /*
fb5f0bc8 2416 * We currently allow allocations from vdevs which may be in the
b128c09f
BB
2417 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2418 * fails to reopen then we'll catch it later when we're holding
fb5f0bc8
BB
2419 * the proper locks. Note that we have to get the vdev state
2420 * in a local variable because although it changes atomically,
2421 * we're asking two separate questions about it.
b128c09f 2422 */
fb5f0bc8 2423 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
428870ff 2424 !vd->vdev_cant_write && !vd->vdev_ishole);
34dc7c2f
BB
2425}
2426
b128c09f
BB
2427boolean_t
2428vdev_accessible(vdev_t *vd, zio_t *zio)
34dc7c2f 2429{
b128c09f 2430 ASSERT(zio->io_vd == vd);
34dc7c2f 2431
b128c09f
BB
2432 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2433 return (B_FALSE);
34dc7c2f 2434
b128c09f
BB
2435 if (zio->io_type == ZIO_TYPE_READ)
2436 return (!vd->vdev_cant_read);
34dc7c2f 2437
b128c09f
BB
2438 if (zio->io_type == ZIO_TYPE_WRITE)
2439 return (!vd->vdev_cant_write);
34dc7c2f 2440
b128c09f 2441 return (B_TRUE);
34dc7c2f
BB
2442}
2443
2444/*
2445 * Get statistics for the given vdev.
2446 */
2447void
2448vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2449{
2450 vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
34dc7c2f
BB
2451
2452 mutex_enter(&vd->vdev_stat_lock);
2453 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2454 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2455 vs->vs_state = vd->vdev_state;
9babb374
BB
2456 vs->vs_rsize = vdev_get_min_asize(vd);
2457 if (vd->vdev_ops->vdev_op_leaf)
2458 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
34dc7c2f
BB
2459 mutex_exit(&vd->vdev_stat_lock);
2460
2461 /*
2462 * If we're getting stats on the root vdev, aggregate the I/O counts
2463 * over all top-level vdevs (i.e. the direct children of the root).
2464 */
2465 if (vd == rvd) {
b128c09f 2466 for (int c = 0; c < rvd->vdev_children; c++) {
34dc7c2f
BB
2467 vdev_t *cvd = rvd->vdev_child[c];
2468 vdev_stat_t *cvs = &cvd->vdev_stat;
2469
2470 mutex_enter(&vd->vdev_stat_lock);
b128c09f 2471 for (int t = 0; t < ZIO_TYPES; t++) {
34dc7c2f
BB
2472 vs->vs_ops[t] += cvs->vs_ops[t];
2473 vs->vs_bytes[t] += cvs->vs_bytes[t];
2474 }
428870ff 2475 cvs->vs_scan_removing = cvd->vdev_removing;
34dc7c2f
BB
2476 mutex_exit(&vd->vdev_stat_lock);
2477 }
2478 }
2479}
2480
2481void
2482vdev_clear_stats(vdev_t *vd)
2483{
2484 mutex_enter(&vd->vdev_stat_lock);
2485 vd->vdev_stat.vs_space = 0;
2486 vd->vdev_stat.vs_dspace = 0;
2487 vd->vdev_stat.vs_alloc = 0;
2488 mutex_exit(&vd->vdev_stat_lock);
2489}
2490
428870ff
BB
2491void
2492vdev_scan_stat_init(vdev_t *vd)
2493{
2494 vdev_stat_t *vs = &vd->vdev_stat;
2495
2496 for (int c = 0; c < vd->vdev_children; c++)
2497 vdev_scan_stat_init(vd->vdev_child[c]);
2498
2499 mutex_enter(&vd->vdev_stat_lock);
2500 vs->vs_scan_processed = 0;
2501 mutex_exit(&vd->vdev_stat_lock);
2502}
2503
34dc7c2f 2504void
b128c09f 2505vdev_stat_update(zio_t *zio, uint64_t psize)
34dc7c2f 2506{
fb5f0bc8
BB
2507 spa_t *spa = zio->io_spa;
2508 vdev_t *rvd = spa->spa_root_vdev;
b128c09f 2509 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
34dc7c2f
BB
2510 vdev_t *pvd;
2511 uint64_t txg = zio->io_txg;
2512 vdev_stat_t *vs = &vd->vdev_stat;
2513 zio_type_t type = zio->io_type;
2514 int flags = zio->io_flags;
2515
b128c09f
BB
2516 /*
2517 * If this i/o is a gang leader, it didn't do any actual work.
2518 */
2519 if (zio->io_gang_tree)
2520 return;
2521
34dc7c2f 2522 if (zio->io_error == 0) {
b128c09f
BB
2523 /*
2524 * If this is a root i/o, don't count it -- we've already
2525 * counted the top-level vdevs, and vdev_get_stats() will
2526 * aggregate them when asked. This reduces contention on
2527 * the root vdev_stat_lock and implicitly handles blocks
2528 * that compress away to holes, for which there is no i/o.
2529 * (Holes never create vdev children, so all the counters
2530 * remain zero, which is what we want.)
2531 *
2532 * Note: this only applies to successful i/o (io_error == 0)
2533 * because unlike i/o counts, errors are not additive.
2534 * When reading a ditto block, for example, failure of
2535 * one top-level vdev does not imply a root-level error.
2536 */
2537 if (vd == rvd)
2538 return;
2539
2540 ASSERT(vd == zio->io_vd);
fb5f0bc8
BB
2541
2542 if (flags & ZIO_FLAG_IO_BYPASS)
2543 return;
2544
2545 mutex_enter(&vd->vdev_stat_lock);
2546
b128c09f 2547 if (flags & ZIO_FLAG_IO_REPAIR) {
572e2857 2548 if (flags & ZIO_FLAG_SCAN_THREAD) {
428870ff
BB
2549 dsl_scan_phys_t *scn_phys =
2550 &spa->spa_dsl_pool->dp_scan->scn_phys;
2551 uint64_t *processed = &scn_phys->scn_processed;
2552
2553 /* XXX cleanup? */
2554 if (vd->vdev_ops->vdev_op_leaf)
2555 atomic_add_64(processed, psize);
2556 vs->vs_scan_processed += psize;
2557 }
2558
fb5f0bc8 2559 if (flags & ZIO_FLAG_SELF_HEAL)
b128c09f 2560 vs->vs_self_healed += psize;
34dc7c2f 2561 }
fb5f0bc8
BB
2562
2563 vs->vs_ops[type]++;
2564 vs->vs_bytes[type] += psize;
2565
2566 mutex_exit(&vd->vdev_stat_lock);
34dc7c2f
BB
2567 return;
2568 }
2569
2570 if (flags & ZIO_FLAG_SPECULATIVE)
2571 return;
2572
9babb374
BB
2573 /*
2574 * If this is an I/O error that is going to be retried, then ignore the
2575 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
2576 * hard errors, when in reality they can happen for any number of
2577 * innocuous reasons (bus resets, MPxIO link failure, etc).
2578 */
2579 if (zio->io_error == EIO &&
2580 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2581 return;
2582
428870ff
BB
2583 /*
2584 * Intent logs writes won't propagate their error to the root
2585 * I/O so don't mark these types of failures as pool-level
2586 * errors.
2587 */
2588 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2589 return;
2590
b128c09f 2591 mutex_enter(&vd->vdev_stat_lock);
9babb374 2592 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
b128c09f
BB
2593 if (zio->io_error == ECKSUM)
2594 vs->vs_checksum_errors++;
2595 else
2596 vs->vs_read_errors++;
34dc7c2f 2597 }
9babb374 2598 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
b128c09f
BB
2599 vs->vs_write_errors++;
2600 mutex_exit(&vd->vdev_stat_lock);
34dc7c2f 2601
fb5f0bc8
BB
2602 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2603 (!(flags & ZIO_FLAG_IO_REPAIR) ||
572e2857 2604 (flags & ZIO_FLAG_SCAN_THREAD) ||
428870ff 2605 spa->spa_claiming)) {
fb5f0bc8 2606 /*
428870ff
BB
2607 * This is either a normal write (not a repair), or it's
2608 * a repair induced by the scrub thread, or it's a repair
2609 * made by zil_claim() during spa_load() in the first txg.
2610 * In the normal case, we commit the DTL change in the same
2611 * txg as the block was born. In the scrub-induced repair
2612 * case, we know that scrubs run in first-pass syncing context,
2613 * so we commit the DTL change in spa_syncing_txg(spa).
2614 * In the zil_claim() case, we commit in spa_first_txg(spa).
fb5f0bc8
BB
2615 *
2616 * We currently do not make DTL entries for failed spontaneous
2617 * self-healing writes triggered by normal (non-scrubbing)
2618 * reads, because we have no transactional context in which to
2619 * do so -- and it's not clear that it'd be desirable anyway.
2620 */
2621 if (vd->vdev_ops->vdev_op_leaf) {
2622 uint64_t commit_txg = txg;
572e2857 2623 if (flags & ZIO_FLAG_SCAN_THREAD) {
fb5f0bc8
BB
2624 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2625 ASSERT(spa_sync_pass(spa) == 1);
2626 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
428870ff
BB
2627 commit_txg = spa_syncing_txg(spa);
2628 } else if (spa->spa_claiming) {
2629 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2630 commit_txg = spa_first_txg(spa);
fb5f0bc8 2631 }
428870ff 2632 ASSERT(commit_txg >= spa_syncing_txg(spa));
fb5f0bc8 2633 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
34dc7c2f 2634 return;
fb5f0bc8
BB
2635 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2636 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2637 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
34dc7c2f 2638 }
fb5f0bc8
BB
2639 if (vd != rvd)
2640 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
34dc7c2f
BB
2641 }
2642}
2643
34dc7c2f 2644/*
428870ff
BB
2645 * Update the in-core space usage stats for this vdev, its metaslab class,
2646 * and the root vdev.
34dc7c2f
BB
2647 */
2648void
428870ff
BB
2649vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2650 int64_t space_delta)
34dc7c2f
BB
2651{
2652 int64_t dspace_delta = space_delta;
2653 spa_t *spa = vd->vdev_spa;
2654 vdev_t *rvd = spa->spa_root_vdev;
428870ff
BB
2655 metaslab_group_t *mg = vd->vdev_mg;
2656 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
34dc7c2f
BB
2657
2658 ASSERT(vd == vd->vdev_top);
2659
2660 /*
2661 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2662 * factor. We must calculate this here and not at the root vdev
2663 * because the root vdev's psize-to-asize is simply the max of its
2664 * childrens', thus not accurate enough for us.
2665 */
2666 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
9babb374 2667 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
34dc7c2f
BB
2668 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2669 vd->vdev_deflate_ratio;
2670
2671 mutex_enter(&vd->vdev_stat_lock);
34dc7c2f 2672 vd->vdev_stat.vs_alloc += alloc_delta;
428870ff 2673 vd->vdev_stat.vs_space += space_delta;
34dc7c2f
BB
2674 vd->vdev_stat.vs_dspace += dspace_delta;
2675 mutex_exit(&vd->vdev_stat_lock);
2676
428870ff 2677 if (mc == spa_normal_class(spa)) {
34dc7c2f 2678 mutex_enter(&rvd->vdev_stat_lock);
34dc7c2f 2679 rvd->vdev_stat.vs_alloc += alloc_delta;
428870ff 2680 rvd->vdev_stat.vs_space += space_delta;
34dc7c2f
BB
2681 rvd->vdev_stat.vs_dspace += dspace_delta;
2682 mutex_exit(&rvd->vdev_stat_lock);
2683 }
428870ff
BB
2684
2685 if (mc != NULL) {
2686 ASSERT(rvd == vd->vdev_parent);
2687 ASSERT(vd->vdev_ms_count != 0);
2688
2689 metaslab_class_space_update(mc,
2690 alloc_delta, defer_delta, space_delta, dspace_delta);
2691 }
34dc7c2f
BB
2692}
2693
2694/*
2695 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2696 * so that it will be written out next time the vdev configuration is synced.
2697 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2698 */
2699void
2700vdev_config_dirty(vdev_t *vd)
2701{
2702 spa_t *spa = vd->vdev_spa;
2703 vdev_t *rvd = spa->spa_root_vdev;
2704 int c;
2705
572e2857
BB
2706 ASSERT(spa_writeable(spa));
2707
34dc7c2f 2708 /*
9babb374
BB
2709 * If this is an aux vdev (as with l2cache and spare devices), then we
2710 * update the vdev config manually and set the sync flag.
b128c09f
BB
2711 */
2712 if (vd->vdev_aux != NULL) {
2713 spa_aux_vdev_t *sav = vd->vdev_aux;
2714 nvlist_t **aux;
2715 uint_t naux;
2716
2717 for (c = 0; c < sav->sav_count; c++) {
2718 if (sav->sav_vdevs[c] == vd)
2719 break;
2720 }
2721
2722 if (c == sav->sav_count) {
2723 /*
2724 * We're being removed. There's nothing more to do.
2725 */
2726 ASSERT(sav->sav_sync == B_TRUE);
2727 return;
2728 }
2729
2730 sav->sav_sync = B_TRUE;
2731
9babb374
BB
2732 if (nvlist_lookup_nvlist_array(sav->sav_config,
2733 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2734 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2735 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2736 }
b128c09f
BB
2737
2738 ASSERT(c < naux);
2739
2740 /*
2741 * Setting the nvlist in the middle if the array is a little
2742 * sketchy, but it will work.
2743 */
2744 nvlist_free(aux[c]);
428870ff 2745 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
b128c09f
BB
2746
2747 return;
2748 }
2749
2750 /*
2751 * The dirty list is protected by the SCL_CONFIG lock. The caller
2752 * must either hold SCL_CONFIG as writer, or must be the sync thread
2753 * (which holds SCL_CONFIG as reader). There's only one sync thread,
34dc7c2f
BB
2754 * so this is sufficient to ensure mutual exclusion.
2755 */
b128c09f
BB
2756 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2757 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2758 spa_config_held(spa, SCL_CONFIG, RW_READER)));
34dc7c2f
BB
2759
2760 if (vd == rvd) {
2761 for (c = 0; c < rvd->vdev_children; c++)
2762 vdev_config_dirty(rvd->vdev_child[c]);
2763 } else {
2764 ASSERT(vd == vd->vdev_top);
2765
428870ff
BB
2766 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2767 !vd->vdev_ishole)
b128c09f 2768 list_insert_head(&spa->spa_config_dirty_list, vd);
34dc7c2f
BB
2769 }
2770}
2771
2772void
2773vdev_config_clean(vdev_t *vd)
2774{
2775 spa_t *spa = vd->vdev_spa;
2776
b128c09f
BB
2777 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2778 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2779 spa_config_held(spa, SCL_CONFIG, RW_READER)));
34dc7c2f 2780
b128c09f
BB
2781 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2782 list_remove(&spa->spa_config_dirty_list, vd);
34dc7c2f
BB
2783}
2784
b128c09f
BB
2785/*
2786 * Mark a top-level vdev's state as dirty, so that the next pass of
2787 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
2788 * the state changes from larger config changes because they require
2789 * much less locking, and are often needed for administrative actions.
2790 */
2791void
2792vdev_state_dirty(vdev_t *vd)
2793{
2794 spa_t *spa = vd->vdev_spa;
2795
572e2857 2796 ASSERT(spa_writeable(spa));
b128c09f
BB
2797 ASSERT(vd == vd->vdev_top);
2798
2799 /*
2800 * The state list is protected by the SCL_STATE lock. The caller
2801 * must either hold SCL_STATE as writer, or must be the sync thread
2802 * (which holds SCL_STATE as reader). There's only one sync thread,
2803 * so this is sufficient to ensure mutual exclusion.
2804 */
2805 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2806 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2807 spa_config_held(spa, SCL_STATE, RW_READER)));
2808
428870ff 2809 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
b128c09f
BB
2810 list_insert_head(&spa->spa_state_dirty_list, vd);
2811}
2812
2813void
2814vdev_state_clean(vdev_t *vd)
2815{
2816 spa_t *spa = vd->vdev_spa;
2817
2818 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2819 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2820 spa_config_held(spa, SCL_STATE, RW_READER)));
2821
2822 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2823 list_remove(&spa->spa_state_dirty_list, vd);
2824}
2825
2826/*
2827 * Propagate vdev state up from children to parent.
2828 */
34dc7c2f
BB
2829void
2830vdev_propagate_state(vdev_t *vd)
2831{
fb5f0bc8
BB
2832 spa_t *spa = vd->vdev_spa;
2833 vdev_t *rvd = spa->spa_root_vdev;
34dc7c2f
BB
2834 int degraded = 0, faulted = 0;
2835 int corrupted = 0;
34dc7c2f
BB
2836 vdev_t *child;
2837
2838 if (vd->vdev_children > 0) {
9babb374 2839 for (int c = 0; c < vd->vdev_children; c++) {
34dc7c2f 2840 child = vd->vdev_child[c];
b128c09f 2841
428870ff
BB
2842 /*
2843 * Don't factor holes into the decision.
2844 */
2845 if (child->vdev_ishole)
2846 continue;
2847
b128c09f 2848 if (!vdev_readable(child) ||
fb5f0bc8 2849 (!vdev_writeable(child) && spa_writeable(spa))) {
b128c09f
BB
2850 /*
2851 * Root special: if there is a top-level log
2852 * device, treat the root vdev as if it were
2853 * degraded.
2854 */
2855 if (child->vdev_islog && vd == rvd)
2856 degraded++;
2857 else
2858 faulted++;
2859 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
34dc7c2f 2860 degraded++;
b128c09f 2861 }
34dc7c2f
BB
2862
2863 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2864 corrupted++;
2865 }
2866
2867 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2868
2869 /*
b128c09f 2870 * Root special: if there is a top-level vdev that cannot be
34dc7c2f
BB
2871 * opened due to corrupted metadata, then propagate the root
2872 * vdev's aux state as 'corrupt' rather than 'insufficient
2873 * replicas'.
2874 */
2875 if (corrupted && vd == rvd &&
2876 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2877 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2878 VDEV_AUX_CORRUPT_DATA);
2879 }
2880
b128c09f 2881 if (vd->vdev_parent)
34dc7c2f
BB
2882 vdev_propagate_state(vd->vdev_parent);
2883}
2884
2885/*
2886 * Set a vdev's state. If this is during an open, we don't update the parent
2887 * state, because we're in the process of opening children depth-first.
2888 * Otherwise, we propagate the change to the parent.
2889 *
2890 * If this routine places a device in a faulted state, an appropriate ereport is
2891 * generated.
2892 */
2893void
2894vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2895{
2896 uint64_t save_state;
b128c09f 2897 spa_t *spa = vd->vdev_spa;
34dc7c2f
BB
2898
2899 if (state == vd->vdev_state) {
2900 vd->vdev_stat.vs_aux = aux;
2901 return;
2902 }
2903
2904 save_state = vd->vdev_state;
2905
2906 vd->vdev_state = state;
2907 vd->vdev_stat.vs_aux = aux;
2908
2909 /*
2910 * If we are setting the vdev state to anything but an open state, then
428870ff
BB
2911 * always close the underlying device unless the device has requested
2912 * a delayed close (i.e. we're about to remove or fault the device).
2913 * Otherwise, we keep accessible but invalid devices open forever.
2914 * We don't call vdev_close() itself, because that implies some extra
2915 * checks (offline, etc) that we don't want here. This is limited to
2916 * leaf devices, because otherwise closing the device will affect other
2917 * children.
34dc7c2f 2918 */
428870ff
BB
2919 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2920 vd->vdev_ops->vdev_op_leaf)
34dc7c2f
BB
2921 vd->vdev_ops->vdev_op_close(vd);
2922
428870ff
BB
2923 /*
2924 * If we have brought this vdev back into service, we need
2925 * to notify fmd so that it can gracefully repair any outstanding
2926 * cases due to a missing device. We do this in all cases, even those
2927 * that probably don't correlate to a repaired fault. This is sure to
2928 * catch all cases, and we let the zfs-retire agent sort it out. If
2929 * this is a transient state it's OK, as the retire agent will
2930 * double-check the state of the vdev before repairing it.
2931 */
2932 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2933 vd->vdev_prevstate != state)
2934 zfs_post_state_change(spa, vd);
2935
34dc7c2f
BB
2936 if (vd->vdev_removed &&
2937 state == VDEV_STATE_CANT_OPEN &&
2938 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2939 /*
2940 * If the previous state is set to VDEV_STATE_REMOVED, then this
2941 * device was previously marked removed and someone attempted to
2942 * reopen it. If this failed due to a nonexistent device, then
2943 * keep the device in the REMOVED state. We also let this be if
2944 * it is one of our special test online cases, which is only
2945 * attempting to online the device and shouldn't generate an FMA
2946 * fault.
2947 */
2948 vd->vdev_state = VDEV_STATE_REMOVED;
2949 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2950 } else if (state == VDEV_STATE_REMOVED) {
34dc7c2f
BB
2951 vd->vdev_removed = B_TRUE;
2952 } else if (state == VDEV_STATE_CANT_OPEN) {
2953 /*
572e2857
BB
2954 * If we fail to open a vdev during an import or recovery, we
2955 * mark it as "not available", which signifies that it was
2956 * never there to begin with. Failure to open such a device
2957 * is not considered an error.
34dc7c2f 2958 */
572e2857
BB
2959 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
2960 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
34dc7c2f
BB
2961 vd->vdev_ops->vdev_op_leaf)
2962 vd->vdev_not_present = 1;
2963
2964 /*
2965 * Post the appropriate ereport. If the 'prevstate' field is
2966 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2967 * that this is part of a vdev_reopen(). In this case, we don't
2968 * want to post the ereport if the device was already in the
2969 * CANT_OPEN state beforehand.
2970 *
2971 * If the 'checkremove' flag is set, then this is an attempt to
2972 * online the device in response to an insertion event. If we
2973 * hit this case, then we have detected an insertion event for a
2974 * faulted or offline device that wasn't in the removed state.
2975 * In this scenario, we don't post an ereport because we are
2976 * about to replace the device, or attempt an online with
2977 * vdev_forcefault, which will generate the fault for us.
2978 */
2979 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2980 !vd->vdev_not_present && !vd->vdev_checkremove &&
b128c09f 2981 vd != spa->spa_root_vdev) {
34dc7c2f
BB
2982 const char *class;
2983
2984 switch (aux) {
2985 case VDEV_AUX_OPEN_FAILED:
2986 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2987 break;
2988 case VDEV_AUX_CORRUPT_DATA:
2989 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2990 break;
2991 case VDEV_AUX_NO_REPLICAS:
2992 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2993 break;
2994 case VDEV_AUX_BAD_GUID_SUM:
2995 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2996 break;
2997 case VDEV_AUX_TOO_SMALL:
2998 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2999 break;
3000 case VDEV_AUX_BAD_LABEL:
3001 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3002 break;
3003 default:
3004 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3005 }
3006
b128c09f 3007 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
34dc7c2f
BB
3008 }
3009
3010 /* Erase any notion of persistent removed state */
3011 vd->vdev_removed = B_FALSE;
3012 } else {
3013 vd->vdev_removed = B_FALSE;
3014 }
3015
9babb374
BB
3016 if (!isopen && vd->vdev_parent)
3017 vdev_propagate_state(vd->vdev_parent);
34dc7c2f 3018}
b128c09f
BB
3019
3020/*
3021 * Check the vdev configuration to ensure that it's capable of supporting
3022 * a root pool. Currently, we do not support RAID-Z or partial configuration.
3023 * In addition, only a single top-level vdev is allowed and none of the leaves
3024 * can be wholedisks.
3025 */
3026boolean_t
3027vdev_is_bootable(vdev_t *vd)
3028{
b128c09f
BB
3029 if (!vd->vdev_ops->vdev_op_leaf) {
3030 char *vdev_type = vd->vdev_ops->vdev_op_type;
3031
3032 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3033 vd->vdev_children > 1) {
3034 return (B_FALSE);
3035 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3036 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3037 return (B_FALSE);
3038 }
3039 } else if (vd->vdev_wholedisk == 1) {
3040 return (B_FALSE);
3041 }
3042
9babb374 3043 for (int c = 0; c < vd->vdev_children; c++) {
b128c09f
BB
3044 if (!vdev_is_bootable(vd->vdev_child[c]))
3045 return (B_FALSE);
3046 }
3047 return (B_TRUE);
3048}
9babb374 3049
428870ff
BB
3050/*
3051 * Load the state from the original vdev tree (ovd) which
3052 * we've retrieved from the MOS config object. If the original
572e2857
BB
3053 * vdev was offline or faulted then we transfer that state to the
3054 * device in the current vdev tree (nvd).
428870ff 3055 */
9babb374 3056void
428870ff 3057vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
9babb374 3058{
428870ff 3059 spa_t *spa = nvd->vdev_spa;
9babb374 3060
572e2857 3061 ASSERT(nvd->vdev_top->vdev_islog);
428870ff
BB
3062 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3063 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
9babb374 3064
428870ff
BB
3065 for (int c = 0; c < nvd->vdev_children; c++)
3066 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
9babb374 3067
572e2857 3068 if (nvd->vdev_ops->vdev_op_leaf) {
9babb374 3069 /*
572e2857 3070 * Restore the persistent vdev state
9babb374 3071 */
428870ff 3072 nvd->vdev_offline = ovd->vdev_offline;
572e2857
BB
3073 nvd->vdev_faulted = ovd->vdev_faulted;
3074 nvd->vdev_degraded = ovd->vdev_degraded;
3075 nvd->vdev_removed = ovd->vdev_removed;
9babb374
BB
3076 }
3077}
3078
572e2857
BB
3079/*
3080 * Determine if a log device has valid content. If the vdev was
3081 * removed or faulted in the MOS config then we know that
3082 * the content on the log device has already been written to the pool.
3083 */
3084boolean_t
3085vdev_log_state_valid(vdev_t *vd)
3086{
3087 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3088 !vd->vdev_removed)
3089 return (B_TRUE);
3090
3091 for (int c = 0; c < vd->vdev_children; c++)
3092 if (vdev_log_state_valid(vd->vdev_child[c]))
3093 return (B_TRUE);
3094
3095 return (B_FALSE);
3096}
3097
9babb374
BB
3098/*
3099 * Expand a vdev if possible.
3100 */
3101void
3102vdev_expand(vdev_t *vd, uint64_t txg)
3103{
3104 ASSERT(vd->vdev_top == vd);
3105 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3106
3107 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3108 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3109 vdev_config_dirty(vd);
3110 }
3111}
428870ff
BB
3112
3113/*
3114 * Split a vdev.
3115 */
3116void
3117vdev_split(vdev_t *vd)
3118{
3119 vdev_t *cvd, *pvd = vd->vdev_parent;
3120
3121 vdev_remove_child(pvd, vd);
3122 vdev_compact_children(pvd);
3123
3124 cvd = pvd->vdev_child[0];
3125 if (pvd->vdev_children == 1) {
3126 vdev_remove_parent(cvd);
3127 cvd->vdev_splitting = B_TRUE;
3128 }
3129 vdev_propagate_state(cvd);
3130}