]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/vdev.c
Add AUTHORS to master branch
[mirror_zfs.git] / module / zfs / vdev.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
d164b209 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
34dc7c2f
BB
24 * Use is subject to license terms.
25 */
26
34dc7c2f
BB
27#include <sys/zfs_context.h>
28#include <sys/fm/fs/zfs.h>
29#include <sys/spa.h>
30#include <sys/spa_impl.h>
31#include <sys/dmu.h>
32#include <sys/dmu_tx.h>
33#include <sys/vdev_impl.h>
34#include <sys/uberblock_impl.h>
35#include <sys/metaslab.h>
36#include <sys/metaslab_impl.h>
37#include <sys/space_map.h>
38#include <sys/zio.h>
39#include <sys/zap.h>
40#include <sys/fs/zfs.h>
b128c09f 41#include <sys/arc.h>
9babb374 42#include <sys/zil.h>
34dc7c2f
BB
43
44/*
45 * Virtual device management.
46 */
47
48static vdev_ops_t *vdev_ops_table[] = {
49 &vdev_root_ops,
50 &vdev_raidz_ops,
51 &vdev_mirror_ops,
52 &vdev_replacing_ops,
53 &vdev_spare_ops,
54 &vdev_disk_ops,
55 &vdev_file_ops,
56 &vdev_missing_ops,
57 NULL
58};
59
b128c09f
BB
60/* maximum scrub/resilver I/O queue per leaf vdev */
61int zfs_scrub_limit = 10;
34dc7c2f
BB
62
63/*
64 * Given a vdev type, return the appropriate ops vector.
65 */
66static vdev_ops_t *
67vdev_getops(const char *type)
68{
69 vdev_ops_t *ops, **opspp;
70
71 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
72 if (strcmp(ops->vdev_op_type, type) == 0)
73 break;
74
75 return (ops);
76}
77
78/*
79 * Default asize function: return the MAX of psize with the asize of
80 * all children. This is what's used by anything other than RAID-Z.
81 */
82uint64_t
83vdev_default_asize(vdev_t *vd, uint64_t psize)
84{
85 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
86 uint64_t csize;
34dc7c2f 87
9babb374 88 for (int c = 0; c < vd->vdev_children; c++) {
34dc7c2f
BB
89 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
90 asize = MAX(asize, csize);
91 }
92
93 return (asize);
94}
95
96/*
9babb374
BB
97 * Get the minimum allocatable size. We define the allocatable size as
98 * the vdev's asize rounded to the nearest metaslab. This allows us to
99 * replace or attach devices which don't have the same physical size but
100 * can still satisfy the same number of allocations.
34dc7c2f
BB
101 */
102uint64_t
9babb374 103vdev_get_min_asize(vdev_t *vd)
34dc7c2f 104{
9babb374 105 vdev_t *pvd = vd->vdev_parent;
34dc7c2f 106
9babb374
BB
107 /*
108 * The our parent is NULL (inactive spare or cache) or is the root,
109 * just return our own asize.
110 */
111 if (pvd == NULL)
112 return (vd->vdev_asize);
34dc7c2f
BB
113
114 /*
9babb374
BB
115 * The top-level vdev just returns the allocatable size rounded
116 * to the nearest metaslab.
34dc7c2f 117 */
9babb374
BB
118 if (vd == vd->vdev_top)
119 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
34dc7c2f 120
9babb374
BB
121 /*
122 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
123 * so each child must provide at least 1/Nth of its asize.
124 */
125 if (pvd->vdev_ops == &vdev_raidz_ops)
126 return (pvd->vdev_min_asize / pvd->vdev_children);
34dc7c2f 127
9babb374
BB
128 return (pvd->vdev_min_asize);
129}
130
131void
132vdev_set_min_asize(vdev_t *vd)
133{
134 vd->vdev_min_asize = vdev_get_min_asize(vd);
34dc7c2f 135
9babb374
BB
136 for (int c = 0; c < vd->vdev_children; c++)
137 vdev_set_min_asize(vd->vdev_child[c]);
34dc7c2f
BB
138}
139
140vdev_t *
141vdev_lookup_top(spa_t *spa, uint64_t vdev)
142{
143 vdev_t *rvd = spa->spa_root_vdev;
144
b128c09f 145 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
34dc7c2f 146
b128c09f
BB
147 if (vdev < rvd->vdev_children) {
148 ASSERT(rvd->vdev_child[vdev] != NULL);
34dc7c2f 149 return (rvd->vdev_child[vdev]);
b128c09f 150 }
34dc7c2f
BB
151
152 return (NULL);
153}
154
155vdev_t *
156vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
157{
34dc7c2f
BB
158 vdev_t *mvd;
159
160 if (vd->vdev_guid == guid)
161 return (vd);
162
9babb374 163 for (int c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
164 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
165 NULL)
166 return (mvd);
167
168 return (NULL);
169}
170
171void
172vdev_add_child(vdev_t *pvd, vdev_t *cvd)
173{
174 size_t oldsize, newsize;
175 uint64_t id = cvd->vdev_id;
176 vdev_t **newchild;
177
b128c09f 178 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
179 ASSERT(cvd->vdev_parent == NULL);
180
181 cvd->vdev_parent = pvd;
182
183 if (pvd == NULL)
184 return;
185
186 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
187
188 oldsize = pvd->vdev_children * sizeof (vdev_t *);
189 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
190 newsize = pvd->vdev_children * sizeof (vdev_t *);
191
192 newchild = kmem_zalloc(newsize, KM_SLEEP);
193 if (pvd->vdev_child != NULL) {
194 bcopy(pvd->vdev_child, newchild, oldsize);
195 kmem_free(pvd->vdev_child, oldsize);
196 }
197
198 pvd->vdev_child = newchild;
199 pvd->vdev_child[id] = cvd;
200
201 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
202 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
203
204 /*
205 * Walk up all ancestors to update guid sum.
206 */
207 for (; pvd != NULL; pvd = pvd->vdev_parent)
208 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
209
210 if (cvd->vdev_ops->vdev_op_leaf)
211 cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
212}
213
214void
215vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
216{
217 int c;
218 uint_t id = cvd->vdev_id;
219
220 ASSERT(cvd->vdev_parent == pvd);
221
222 if (pvd == NULL)
223 return;
224
225 ASSERT(id < pvd->vdev_children);
226 ASSERT(pvd->vdev_child[id] == cvd);
227
228 pvd->vdev_child[id] = NULL;
229 cvd->vdev_parent = NULL;
230
231 for (c = 0; c < pvd->vdev_children; c++)
232 if (pvd->vdev_child[c])
233 break;
234
235 if (c == pvd->vdev_children) {
236 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
237 pvd->vdev_child = NULL;
238 pvd->vdev_children = 0;
239 }
240
241 /*
242 * Walk up all ancestors to update guid sum.
243 */
244 for (; pvd != NULL; pvd = pvd->vdev_parent)
245 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
246
247 if (cvd->vdev_ops->vdev_op_leaf)
248 cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
249}
250
251/*
252 * Remove any holes in the child array.
253 */
254void
255vdev_compact_children(vdev_t *pvd)
256{
257 vdev_t **newchild, *cvd;
258 int oldc = pvd->vdev_children;
9babb374 259 int newc;
34dc7c2f 260
b128c09f 261 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f 262
9babb374 263 for (int c = newc = 0; c < oldc; c++)
34dc7c2f
BB
264 if (pvd->vdev_child[c])
265 newc++;
266
267 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
268
9babb374 269 for (int c = newc = 0; c < oldc; c++) {
34dc7c2f
BB
270 if ((cvd = pvd->vdev_child[c]) != NULL) {
271 newchild[newc] = cvd;
272 cvd->vdev_id = newc++;
273 }
274 }
275
276 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
277 pvd->vdev_child = newchild;
278 pvd->vdev_children = newc;
279}
280
281/*
282 * Allocate and minimally initialize a vdev_t.
283 */
284static vdev_t *
285vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
286{
287 vdev_t *vd;
288
289 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
290
291 if (spa->spa_root_vdev == NULL) {
292 ASSERT(ops == &vdev_root_ops);
293 spa->spa_root_vdev = vd;
294 }
295
296 if (guid == 0) {
297 if (spa->spa_root_vdev == vd) {
298 /*
299 * The root vdev's guid will also be the pool guid,
300 * which must be unique among all pools.
301 */
302 while (guid == 0 || spa_guid_exists(guid, 0))
303 guid = spa_get_random(-1ULL);
304 } else {
305 /*
306 * Any other vdev's guid must be unique within the pool.
307 */
308 while (guid == 0 ||
309 spa_guid_exists(spa_guid(spa), guid))
310 guid = spa_get_random(-1ULL);
311 }
312 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
313 }
314
315 vd->vdev_spa = spa;
316 vd->vdev_id = id;
317 vd->vdev_guid = guid;
318 vd->vdev_guid_sum = guid;
319 vd->vdev_ops = ops;
320 vd->vdev_state = VDEV_STATE_CLOSED;
321
322 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
323 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
b128c09f 324 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
fb5f0bc8
BB
325 for (int t = 0; t < DTL_TYPES; t++) {
326 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
327 &vd->vdev_dtl_lock);
328 }
34dc7c2f
BB
329 txg_list_create(&vd->vdev_ms_list,
330 offsetof(struct metaslab, ms_txg_node));
331 txg_list_create(&vd->vdev_dtl_list,
332 offsetof(struct vdev, vdev_dtl_node));
333 vd->vdev_stat.vs_timestamp = gethrtime();
334 vdev_queue_init(vd);
335 vdev_cache_init(vd);
336
337 return (vd);
338}
339
340/*
341 * Allocate a new vdev. The 'alloctype' is used to control whether we are
342 * creating a new vdev or loading an existing one - the behavior is slightly
343 * different for each case.
344 */
345int
346vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
347 int alloctype)
348{
349 vdev_ops_t *ops;
350 char *type;
351 uint64_t guid = 0, islog, nparity;
352 vdev_t *vd;
353
b128c09f 354 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
355
356 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
357 return (EINVAL);
358
359 if ((ops = vdev_getops(type)) == NULL)
360 return (EINVAL);
361
362 /*
363 * If this is a load, get the vdev guid from the nvlist.
364 * Otherwise, vdev_alloc_common() will generate one for us.
365 */
366 if (alloctype == VDEV_ALLOC_LOAD) {
367 uint64_t label_id;
368
369 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
370 label_id != id)
371 return (EINVAL);
372
373 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
374 return (EINVAL);
375 } else if (alloctype == VDEV_ALLOC_SPARE) {
376 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
377 return (EINVAL);
378 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
379 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
380 return (EINVAL);
9babb374
BB
381 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
382 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
383 return (EINVAL);
34dc7c2f
BB
384 }
385
386 /*
387 * The first allocated vdev must be of type 'root'.
388 */
389 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
390 return (EINVAL);
391
392 /*
393 * Determine whether we're a log vdev.
394 */
395 islog = 0;
396 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
397 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
398 return (ENOTSUP);
399
400 /*
401 * Set the nparity property for RAID-Z vdevs.
402 */
403 nparity = -1ULL;
404 if (ops == &vdev_raidz_ops) {
405 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
406 &nparity) == 0) {
407 /*
45d1cae3 408 * Currently, we can only support 3 parity devices.
34dc7c2f 409 */
45d1cae3 410 if (nparity == 0 || nparity > 3)
34dc7c2f
BB
411 return (EINVAL);
412 /*
45d1cae3
BB
413 * Previous versions could only support 1 or 2 parity
414 * device.
34dc7c2f 415 */
45d1cae3
BB
416 if (nparity > 1 &&
417 spa_version(spa) < SPA_VERSION_RAIDZ2)
418 return (ENOTSUP);
419 if (nparity > 2 &&
420 spa_version(spa) < SPA_VERSION_RAIDZ3)
34dc7c2f
BB
421 return (ENOTSUP);
422 } else {
423 /*
424 * We require the parity to be specified for SPAs that
425 * support multiple parity levels.
426 */
45d1cae3 427 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
34dc7c2f
BB
428 return (EINVAL);
429 /*
430 * Otherwise, we default to 1 parity device for RAID-Z.
431 */
432 nparity = 1;
433 }
434 } else {
435 nparity = 0;
436 }
437 ASSERT(nparity != -1ULL);
438
439 vd = vdev_alloc_common(spa, id, guid, ops);
440
441 vd->vdev_islog = islog;
442 vd->vdev_nparity = nparity;
443
444 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
445 vd->vdev_path = spa_strdup(vd->vdev_path);
446 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
447 vd->vdev_devid = spa_strdup(vd->vdev_devid);
448 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
449 &vd->vdev_physpath) == 0)
450 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
9babb374
BB
451 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
452 vd->vdev_fru = spa_strdup(vd->vdev_fru);
34dc7c2f
BB
453
454 /*
455 * Set the whole_disk property. If it's not specified, leave the value
456 * as -1.
457 */
458 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
459 &vd->vdev_wholedisk) != 0)
460 vd->vdev_wholedisk = -1ULL;
461
462 /*
463 * Look for the 'not present' flag. This will only be set if the device
464 * was not present at the time of import.
465 */
9babb374
BB
466 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
467 &vd->vdev_not_present);
34dc7c2f
BB
468
469 /*
470 * Get the alignment requirement.
471 */
472 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
473
474 /*
475 * If we're a top-level vdev, try to load the allocation parameters.
476 */
477 if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
478 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
479 &vd->vdev_ms_array);
480 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
481 &vd->vdev_ms_shift);
482 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
483 &vd->vdev_asize);
484 }
485
486 /*
487 * If we're a leaf vdev, try to load the DTL object and other state.
488 */
b128c09f 489 if (vd->vdev_ops->vdev_op_leaf &&
9babb374
BB
490 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
491 alloctype == VDEV_ALLOC_ROOTPOOL)) {
b128c09f
BB
492 if (alloctype == VDEV_ALLOC_LOAD) {
493 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
fb5f0bc8 494 &vd->vdev_dtl_smo.smo_object);
b128c09f
BB
495 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
496 &vd->vdev_unspare);
497 }
9babb374
BB
498
499 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
500 uint64_t spare = 0;
501
502 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
503 &spare) == 0 && spare)
504 spa_spare_add(vd);
505 }
506
34dc7c2f
BB
507 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
508 &vd->vdev_offline);
b128c09f 509
34dc7c2f
BB
510 /*
511 * When importing a pool, we want to ignore the persistent fault
512 * state, as the diagnosis made on another system may not be
513 * valid in the current context.
514 */
515 if (spa->spa_load_state == SPA_LOAD_OPEN) {
516 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
517 &vd->vdev_faulted);
518 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
519 &vd->vdev_degraded);
520 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
521 &vd->vdev_removed);
522 }
523 }
524
525 /*
526 * Add ourselves to the parent's list of children.
527 */
528 vdev_add_child(parent, vd);
529
530 *vdp = vd;
531
532 return (0);
533}
534
535void
536vdev_free(vdev_t *vd)
537{
34dc7c2f
BB
538 spa_t *spa = vd->vdev_spa;
539
540 /*
541 * vdev_free() implies closing the vdev first. This is simpler than
542 * trying to ensure complicated semantics for all callers.
543 */
544 vdev_close(vd);
545
b128c09f 546 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
34dc7c2f
BB
547
548 /*
549 * Free all children.
550 */
9babb374 551 for (int c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
552 vdev_free(vd->vdev_child[c]);
553
554 ASSERT(vd->vdev_child == NULL);
555 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
556
557 /*
558 * Discard allocation state.
559 */
560 if (vd == vd->vdev_top)
561 vdev_metaslab_fini(vd);
562
563 ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
564 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
565 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
566
567 /*
568 * Remove this vdev from its parent's child list.
569 */
570 vdev_remove_child(vd->vdev_parent, vd);
571
572 ASSERT(vd->vdev_parent == NULL);
573
574 /*
575 * Clean up vdev structure.
576 */
577 vdev_queue_fini(vd);
578 vdev_cache_fini(vd);
579
580 if (vd->vdev_path)
581 spa_strfree(vd->vdev_path);
582 if (vd->vdev_devid)
583 spa_strfree(vd->vdev_devid);
584 if (vd->vdev_physpath)
585 spa_strfree(vd->vdev_physpath);
9babb374
BB
586 if (vd->vdev_fru)
587 spa_strfree(vd->vdev_fru);
34dc7c2f
BB
588
589 if (vd->vdev_isspare)
590 spa_spare_remove(vd);
591 if (vd->vdev_isl2cache)
592 spa_l2cache_remove(vd);
593
594 txg_list_destroy(&vd->vdev_ms_list);
595 txg_list_destroy(&vd->vdev_dtl_list);
fb5f0bc8 596
34dc7c2f 597 mutex_enter(&vd->vdev_dtl_lock);
fb5f0bc8
BB
598 for (int t = 0; t < DTL_TYPES; t++) {
599 space_map_unload(&vd->vdev_dtl[t]);
600 space_map_destroy(&vd->vdev_dtl[t]);
601 }
34dc7c2f 602 mutex_exit(&vd->vdev_dtl_lock);
fb5f0bc8 603
34dc7c2f
BB
604 mutex_destroy(&vd->vdev_dtl_lock);
605 mutex_destroy(&vd->vdev_stat_lock);
b128c09f 606 mutex_destroy(&vd->vdev_probe_lock);
34dc7c2f
BB
607
608 if (vd == spa->spa_root_vdev)
609 spa->spa_root_vdev = NULL;
610
611 kmem_free(vd, sizeof (vdev_t));
612}
613
614/*
615 * Transfer top-level vdev state from svd to tvd.
616 */
617static void
618vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
619{
620 spa_t *spa = svd->vdev_spa;
621 metaslab_t *msp;
622 vdev_t *vd;
623 int t;
624
625 ASSERT(tvd == tvd->vdev_top);
626
627 tvd->vdev_ms_array = svd->vdev_ms_array;
628 tvd->vdev_ms_shift = svd->vdev_ms_shift;
629 tvd->vdev_ms_count = svd->vdev_ms_count;
630
631 svd->vdev_ms_array = 0;
632 svd->vdev_ms_shift = 0;
633 svd->vdev_ms_count = 0;
634
635 tvd->vdev_mg = svd->vdev_mg;
636 tvd->vdev_ms = svd->vdev_ms;
637
638 svd->vdev_mg = NULL;
639 svd->vdev_ms = NULL;
640
641 if (tvd->vdev_mg != NULL)
642 tvd->vdev_mg->mg_vd = tvd;
643
644 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
645 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
646 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
647
648 svd->vdev_stat.vs_alloc = 0;
649 svd->vdev_stat.vs_space = 0;
650 svd->vdev_stat.vs_dspace = 0;
651
652 for (t = 0; t < TXG_SIZE; t++) {
653 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
654 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
655 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
656 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
657 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
658 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
659 }
660
b128c09f 661 if (list_link_active(&svd->vdev_config_dirty_node)) {
34dc7c2f
BB
662 vdev_config_clean(svd);
663 vdev_config_dirty(tvd);
664 }
665
b128c09f
BB
666 if (list_link_active(&svd->vdev_state_dirty_node)) {
667 vdev_state_clean(svd);
668 vdev_state_dirty(tvd);
669 }
670
34dc7c2f
BB
671 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
672 svd->vdev_deflate_ratio = 0;
673
674 tvd->vdev_islog = svd->vdev_islog;
675 svd->vdev_islog = 0;
676}
677
678static void
679vdev_top_update(vdev_t *tvd, vdev_t *vd)
680{
34dc7c2f
BB
681 if (vd == NULL)
682 return;
683
684 vd->vdev_top = tvd;
685
9babb374 686 for (int c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
687 vdev_top_update(tvd, vd->vdev_child[c]);
688}
689
690/*
691 * Add a mirror/replacing vdev above an existing vdev.
692 */
693vdev_t *
694vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
695{
696 spa_t *spa = cvd->vdev_spa;
697 vdev_t *pvd = cvd->vdev_parent;
698 vdev_t *mvd;
699
b128c09f 700 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
701
702 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
703
704 mvd->vdev_asize = cvd->vdev_asize;
9babb374 705 mvd->vdev_min_asize = cvd->vdev_min_asize;
34dc7c2f
BB
706 mvd->vdev_ashift = cvd->vdev_ashift;
707 mvd->vdev_state = cvd->vdev_state;
708
709 vdev_remove_child(pvd, cvd);
710 vdev_add_child(pvd, mvd);
711 cvd->vdev_id = mvd->vdev_children;
712 vdev_add_child(mvd, cvd);
713 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
714
715 if (mvd == mvd->vdev_top)
716 vdev_top_transfer(cvd, mvd);
717
718 return (mvd);
719}
720
721/*
722 * Remove a 1-way mirror/replacing vdev from the tree.
723 */
724void
725vdev_remove_parent(vdev_t *cvd)
726{
727 vdev_t *mvd = cvd->vdev_parent;
728 vdev_t *pvd = mvd->vdev_parent;
729
b128c09f 730 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
731
732 ASSERT(mvd->vdev_children == 1);
733 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
734 mvd->vdev_ops == &vdev_replacing_ops ||
735 mvd->vdev_ops == &vdev_spare_ops);
736 cvd->vdev_ashift = mvd->vdev_ashift;
737
738 vdev_remove_child(mvd, cvd);
739 vdev_remove_child(pvd, mvd);
fb5f0bc8 740
34dc7c2f 741 /*
b128c09f
BB
742 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
743 * Otherwise, we could have detached an offline device, and when we
744 * go to import the pool we'll think we have two top-level vdevs,
745 * instead of a different version of the same top-level vdev.
34dc7c2f 746 */
fb5f0bc8
BB
747 if (mvd->vdev_top == mvd) {
748 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
749 cvd->vdev_guid += guid_delta;
750 cvd->vdev_guid_sum += guid_delta;
751 }
b128c09f
BB
752 cvd->vdev_id = mvd->vdev_id;
753 vdev_add_child(pvd, cvd);
34dc7c2f
BB
754 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
755
756 if (cvd == cvd->vdev_top)
757 vdev_top_transfer(mvd, cvd);
758
759 ASSERT(mvd->vdev_children == 0);
760 vdev_free(mvd);
761}
762
763int
764vdev_metaslab_init(vdev_t *vd, uint64_t txg)
765{
766 spa_t *spa = vd->vdev_spa;
767 objset_t *mos = spa->spa_meta_objset;
768 metaslab_class_t *mc;
769 uint64_t m;
770 uint64_t oldc = vd->vdev_ms_count;
771 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
772 metaslab_t **mspp;
773 int error;
774
775 if (vd->vdev_ms_shift == 0) /* not being allocated from yet */
776 return (0);
777
9babb374
BB
778 /*
779 * Compute the raidz-deflation ratio. Note, we hard-code
780 * in 128k (1 << 17) because it is the current "typical" blocksize.
781 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
782 * or we will inconsistently account for existing bp's.
783 */
784 vd->vdev_deflate_ratio = (1 << 17) /
785 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
786
34dc7c2f
BB
787 ASSERT(oldc <= newc);
788
789 if (vd->vdev_islog)
790 mc = spa->spa_log_class;
791 else
792 mc = spa->spa_normal_class;
793
794 if (vd->vdev_mg == NULL)
795 vd->vdev_mg = metaslab_group_create(mc, vd);
796
797 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
798
799 if (oldc != 0) {
800 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
801 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
802 }
803
804 vd->vdev_ms = mspp;
805 vd->vdev_ms_count = newc;
806
807 for (m = oldc; m < newc; m++) {
808 space_map_obj_t smo = { 0, 0, 0 };
809 if (txg == 0) {
810 uint64_t object = 0;
811 error = dmu_read(mos, vd->vdev_ms_array,
9babb374
BB
812 m * sizeof (uint64_t), sizeof (uint64_t), &object,
813 DMU_READ_PREFETCH);
34dc7c2f
BB
814 if (error)
815 return (error);
816 if (object != 0) {
817 dmu_buf_t *db;
818 error = dmu_bonus_hold(mos, object, FTAG, &db);
819 if (error)
820 return (error);
821 ASSERT3U(db->db_size, >=, sizeof (smo));
822 bcopy(db->db_data, &smo, sizeof (smo));
823 ASSERT3U(smo.smo_object, ==, object);
824 dmu_buf_rele(db, FTAG);
825 }
826 }
827 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
828 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
829 }
830
831 return (0);
832}
833
834void
835vdev_metaslab_fini(vdev_t *vd)
836{
837 uint64_t m;
838 uint64_t count = vd->vdev_ms_count;
839
840 if (vd->vdev_ms != NULL) {
841 for (m = 0; m < count; m++)
842 if (vd->vdev_ms[m] != NULL)
843 metaslab_fini(vd->vdev_ms[m]);
844 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
845 vd->vdev_ms = NULL;
846 }
847}
848
b128c09f
BB
849typedef struct vdev_probe_stats {
850 boolean_t vps_readable;
851 boolean_t vps_writeable;
852 int vps_flags;
b128c09f
BB
853} vdev_probe_stats_t;
854
855static void
856vdev_probe_done(zio_t *zio)
34dc7c2f 857{
fb5f0bc8 858 spa_t *spa = zio->io_spa;
d164b209 859 vdev_t *vd = zio->io_vd;
b128c09f 860 vdev_probe_stats_t *vps = zio->io_private;
d164b209
BB
861
862 ASSERT(vd->vdev_probe_zio != NULL);
b128c09f
BB
863
864 if (zio->io_type == ZIO_TYPE_READ) {
b128c09f
BB
865 if (zio->io_error == 0)
866 vps->vps_readable = 1;
fb5f0bc8 867 if (zio->io_error == 0 && spa_writeable(spa)) {
d164b209 868 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
b128c09f
BB
869 zio->io_offset, zio->io_size, zio->io_data,
870 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
871 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
872 } else {
873 zio_buf_free(zio->io_data, zio->io_size);
874 }
875 } else if (zio->io_type == ZIO_TYPE_WRITE) {
b128c09f
BB
876 if (zio->io_error == 0)
877 vps->vps_writeable = 1;
878 zio_buf_free(zio->io_data, zio->io_size);
879 } else if (zio->io_type == ZIO_TYPE_NULL) {
d164b209 880 zio_t *pio;
b128c09f
BB
881
882 vd->vdev_cant_read |= !vps->vps_readable;
883 vd->vdev_cant_write |= !vps->vps_writeable;
884
885 if (vdev_readable(vd) &&
fb5f0bc8 886 (vdev_writeable(vd) || !spa_writeable(spa))) {
b128c09f
BB
887 zio->io_error = 0;
888 } else {
889 ASSERT(zio->io_error != 0);
890 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
fb5f0bc8 891 spa, vd, NULL, 0, 0);
b128c09f
BB
892 zio->io_error = ENXIO;
893 }
d164b209
BB
894
895 mutex_enter(&vd->vdev_probe_lock);
896 ASSERT(vd->vdev_probe_zio == zio);
897 vd->vdev_probe_zio = NULL;
898 mutex_exit(&vd->vdev_probe_lock);
899
900 while ((pio = zio_walk_parents(zio)) != NULL)
901 if (!vdev_accessible(vd, pio))
902 pio->io_error = ENXIO;
903
b128c09f
BB
904 kmem_free(vps, sizeof (*vps));
905 }
906}
34dc7c2f 907
b128c09f
BB
908/*
909 * Determine whether this device is accessible by reading and writing
910 * to several known locations: the pad regions of each vdev label
911 * but the first (which we leave alone in case it contains a VTOC).
912 */
913zio_t *
d164b209 914vdev_probe(vdev_t *vd, zio_t *zio)
b128c09f
BB
915{
916 spa_t *spa = vd->vdev_spa;
d164b209
BB
917 vdev_probe_stats_t *vps = NULL;
918 zio_t *pio;
919
920 ASSERT(vd->vdev_ops->vdev_op_leaf);
34dc7c2f 921
d164b209
BB
922 /*
923 * Don't probe the probe.
924 */
925 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
926 return (NULL);
b128c09f 927
d164b209
BB
928 /*
929 * To prevent 'probe storms' when a device fails, we create
930 * just one probe i/o at a time. All zios that want to probe
931 * this vdev will become parents of the probe io.
932 */
933 mutex_enter(&vd->vdev_probe_lock);
b128c09f 934
d164b209
BB
935 if ((pio = vd->vdev_probe_zio) == NULL) {
936 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
937
938 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
939 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
9babb374 940 ZIO_FLAG_TRYHARD;
d164b209
BB
941
942 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
943 /*
944 * vdev_cant_read and vdev_cant_write can only
945 * transition from TRUE to FALSE when we have the
946 * SCL_ZIO lock as writer; otherwise they can only
947 * transition from FALSE to TRUE. This ensures that
948 * any zio looking at these values can assume that
949 * failures persist for the life of the I/O. That's
950 * important because when a device has intermittent
951 * connectivity problems, we want to ensure that
952 * they're ascribed to the device (ENXIO) and not
953 * the zio (EIO).
954 *
955 * Since we hold SCL_ZIO as writer here, clear both
956 * values so the probe can reevaluate from first
957 * principles.
958 */
959 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
960 vd->vdev_cant_read = B_FALSE;
961 vd->vdev_cant_write = B_FALSE;
962 }
963
964 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
965 vdev_probe_done, vps,
966 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
967
968 if (zio != NULL) {
969 vd->vdev_probe_wanted = B_TRUE;
970 spa_async_request(spa, SPA_ASYNC_PROBE);
971 }
b128c09f
BB
972 }
973
d164b209
BB
974 if (zio != NULL)
975 zio_add_child(zio, pio);
b128c09f 976
d164b209 977 mutex_exit(&vd->vdev_probe_lock);
b128c09f 978
d164b209
BB
979 if (vps == NULL) {
980 ASSERT(zio != NULL);
981 return (NULL);
982 }
b128c09f
BB
983
984 for (int l = 1; l < VDEV_LABELS; l++) {
d164b209 985 zio_nowait(zio_read_phys(pio, vd,
b128c09f 986 vdev_label_offset(vd->vdev_psize, l,
9babb374
BB
987 offsetof(vdev_label_t, vl_pad2)),
988 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
b128c09f
BB
989 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
990 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
991 }
992
d164b209
BB
993 if (zio == NULL)
994 return (pio);
995
996 zio_nowait(pio);
997 return (NULL);
34dc7c2f
BB
998}
999
45d1cae3
BB
1000static void
1001vdev_open_child(void *arg)
1002{
1003 vdev_t *vd = arg;
1004
1005 vd->vdev_open_thread = curthread;
1006 vd->vdev_open_error = vdev_open(vd);
1007 vd->vdev_open_thread = NULL;
1008}
1009
1010void
1011vdev_open_children(vdev_t *vd)
1012{
1013 taskq_t *tq;
1014 int children = vd->vdev_children;
1015
1016 tq = taskq_create("vdev_open", children, minclsyspri,
1017 children, children, TASKQ_PREPOPULATE);
1018
1019 for (int c = 0; c < children; c++)
1020 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1021 TQ_SLEEP) != NULL);
1022
1023 taskq_destroy(tq);
1024}
1025
34dc7c2f
BB
1026/*
1027 * Prepare a virtual device for access.
1028 */
1029int
1030vdev_open(vdev_t *vd)
1031{
fb5f0bc8 1032 spa_t *spa = vd->vdev_spa;
34dc7c2f 1033 int error;
34dc7c2f
BB
1034 uint64_t osize = 0;
1035 uint64_t asize, psize;
1036 uint64_t ashift = 0;
1037
45d1cae3
BB
1038 ASSERT(vd->vdev_open_thread == curthread ||
1039 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
34dc7c2f
BB
1040 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1041 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1042 vd->vdev_state == VDEV_STATE_OFFLINE);
1043
34dc7c2f 1044 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
9babb374
BB
1045 vd->vdev_cant_read = B_FALSE;
1046 vd->vdev_cant_write = B_FALSE;
1047 vd->vdev_min_asize = vdev_get_min_asize(vd);
34dc7c2f
BB
1048
1049 if (!vd->vdev_removed && vd->vdev_faulted) {
1050 ASSERT(vd->vdev_children == 0);
1051 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1052 VDEV_AUX_ERR_EXCEEDED);
1053 return (ENXIO);
1054 } else if (vd->vdev_offline) {
1055 ASSERT(vd->vdev_children == 0);
1056 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1057 return (ENXIO);
1058 }
1059
1060 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1061
1062 if (zio_injection_enabled && error == 0)
9babb374 1063 error = zio_handle_device_injection(vd, NULL, ENXIO);
34dc7c2f
BB
1064
1065 if (error) {
1066 if (vd->vdev_removed &&
1067 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1068 vd->vdev_removed = B_FALSE;
1069
1070 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1071 vd->vdev_stat.vs_aux);
1072 return (error);
1073 }
1074
1075 vd->vdev_removed = B_FALSE;
1076
1077 if (vd->vdev_degraded) {
1078 ASSERT(vd->vdev_children == 0);
1079 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1080 VDEV_AUX_ERR_EXCEEDED);
1081 } else {
1082 vd->vdev_state = VDEV_STATE_HEALTHY;
1083 }
1084
9babb374 1085 for (int c = 0; c < vd->vdev_children; c++) {
34dc7c2f
BB
1086 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1087 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1088 VDEV_AUX_NONE);
1089 break;
1090 }
9babb374 1091 }
34dc7c2f
BB
1092
1093 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1094
1095 if (vd->vdev_children == 0) {
1096 if (osize < SPA_MINDEVSIZE) {
1097 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1098 VDEV_AUX_TOO_SMALL);
1099 return (EOVERFLOW);
1100 }
1101 psize = osize;
1102 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1103 } else {
1104 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1105 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1106 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1107 VDEV_AUX_TOO_SMALL);
1108 return (EOVERFLOW);
1109 }
1110 psize = 0;
1111 asize = osize;
1112 }
1113
1114 vd->vdev_psize = psize;
1115
9babb374
BB
1116 /*
1117 * Make sure the allocatable size hasn't shrunk.
1118 */
1119 if (asize < vd->vdev_min_asize) {
1120 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1121 VDEV_AUX_BAD_LABEL);
1122 return (EINVAL);
1123 }
1124
34dc7c2f
BB
1125 if (vd->vdev_asize == 0) {
1126 /*
1127 * This is the first-ever open, so use the computed values.
1128 * For testing purposes, a higher ashift can be requested.
1129 */
1130 vd->vdev_asize = asize;
1131 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1132 } else {
1133 /*
1134 * Make sure the alignment requirement hasn't increased.
1135 */
1136 if (ashift > vd->vdev_top->vdev_ashift) {
1137 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1138 VDEV_AUX_BAD_LABEL);
1139 return (EINVAL);
1140 }
9babb374 1141 }
34dc7c2f 1142
9babb374
BB
1143 /*
1144 * If all children are healthy and the asize has increased,
1145 * then we've experienced dynamic LUN growth. If automatic
1146 * expansion is enabled then use the additional space.
1147 */
1148 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1149 (vd->vdev_expanding || spa->spa_autoexpand))
1150 vd->vdev_asize = asize;
34dc7c2f 1151
9babb374 1152 vdev_set_min_asize(vd);
34dc7c2f
BB
1153
1154 /*
1155 * Ensure we can issue some IO before declaring the
1156 * vdev open for business.
1157 */
b128c09f
BB
1158 if (vd->vdev_ops->vdev_op_leaf &&
1159 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
34dc7c2f 1160 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
b128c09f 1161 VDEV_AUX_IO_FAILURE);
34dc7c2f
BB
1162 return (error);
1163 }
1164
34dc7c2f 1165 /*
b128c09f 1166 * If a leaf vdev has a DTL, and seems healthy, then kick off a
fb5f0bc8
BB
1167 * resilver. But don't do this if we are doing a reopen for a scrub,
1168 * since this would just restart the scrub we are already doing.
34dc7c2f 1169 */
fb5f0bc8
BB
1170 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1171 vdev_resilver_needed(vd, NULL, NULL))
1172 spa_async_request(spa, SPA_ASYNC_RESILVER);
34dc7c2f
BB
1173
1174 return (0);
1175}
1176
1177/*
1178 * Called once the vdevs are all opened, this routine validates the label
1179 * contents. This needs to be done before vdev_load() so that we don't
1180 * inadvertently do repair I/Os to the wrong device.
1181 *
1182 * This function will only return failure if one of the vdevs indicates that it
1183 * has since been destroyed or exported. This is only possible if
1184 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1185 * will be updated but the function will return 0.
1186 */
1187int
1188vdev_validate(vdev_t *vd)
1189{
1190 spa_t *spa = vd->vdev_spa;
34dc7c2f 1191 nvlist_t *label;
b128c09f 1192 uint64_t guid, top_guid;
34dc7c2f
BB
1193 uint64_t state;
1194
9babb374 1195 for (int c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
1196 if (vdev_validate(vd->vdev_child[c]) != 0)
1197 return (EBADF);
1198
1199 /*
1200 * If the device has already failed, or was marked offline, don't do
1201 * any further validation. Otherwise, label I/O will fail and we will
1202 * overwrite the previous state.
1203 */
b128c09f 1204 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
34dc7c2f
BB
1205
1206 if ((label = vdev_label_read_config(vd)) == NULL) {
1207 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1208 VDEV_AUX_BAD_LABEL);
1209 return (0);
1210 }
1211
1212 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1213 &guid) != 0 || guid != spa_guid(spa)) {
1214 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1215 VDEV_AUX_CORRUPT_DATA);
1216 nvlist_free(label);
1217 return (0);
1218 }
1219
b128c09f
BB
1220 /*
1221 * If this vdev just became a top-level vdev because its
1222 * sibling was detached, it will have adopted the parent's
1223 * vdev guid -- but the label may or may not be on disk yet.
1224 * Fortunately, either version of the label will have the
1225 * same top guid, so if we're a top-level vdev, we can
1226 * safely compare to that instead.
1227 */
34dc7c2f 1228 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
b128c09f
BB
1229 &guid) != 0 ||
1230 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1231 &top_guid) != 0 ||
1232 (vd->vdev_guid != guid &&
1233 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
34dc7c2f
BB
1234 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1235 VDEV_AUX_CORRUPT_DATA);
1236 nvlist_free(label);
1237 return (0);
1238 }
1239
1240 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1241 &state) != 0) {
1242 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1243 VDEV_AUX_CORRUPT_DATA);
1244 nvlist_free(label);
1245 return (0);
1246 }
1247
1248 nvlist_free(label);
1249
45d1cae3
BB
1250 /*
1251 * If spa->spa_load_verbatim is true, no need to check the
1252 * state of the pool.
1253 */
1254 if (!spa->spa_load_verbatim &&
1255 spa->spa_load_state == SPA_LOAD_OPEN &&
34dc7c2f
BB
1256 state != POOL_STATE_ACTIVE)
1257 return (EBADF);
34dc7c2f 1258
b128c09f
BB
1259 /*
1260 * If we were able to open and validate a vdev that was
1261 * previously marked permanently unavailable, clear that state
1262 * now.
1263 */
1264 if (vd->vdev_not_present)
1265 vd->vdev_not_present = 0;
1266 }
34dc7c2f
BB
1267
1268 return (0);
1269}
1270
1271/*
1272 * Close a virtual device.
1273 */
1274void
1275vdev_close(vdev_t *vd)
1276{
fb5f0bc8
BB
1277 spa_t *spa = vd->vdev_spa;
1278
1279 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1280
34dc7c2f
BB
1281 vd->vdev_ops->vdev_op_close(vd);
1282
1283 vdev_cache_purge(vd);
1284
1285 /*
9babb374 1286 * We record the previous state before we close it, so that if we are
34dc7c2f
BB
1287 * doing a reopen(), we don't generate FMA ereports if we notice that
1288 * it's still faulted.
1289 */
1290 vd->vdev_prevstate = vd->vdev_state;
1291
1292 if (vd->vdev_offline)
1293 vd->vdev_state = VDEV_STATE_OFFLINE;
1294 else
1295 vd->vdev_state = VDEV_STATE_CLOSED;
1296 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1297}
1298
1299void
1300vdev_reopen(vdev_t *vd)
1301{
1302 spa_t *spa = vd->vdev_spa;
1303
b128c09f 1304 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
34dc7c2f
BB
1305
1306 vdev_close(vd);
1307 (void) vdev_open(vd);
1308
1309 /*
1310 * Call vdev_validate() here to make sure we have the same device.
1311 * Otherwise, a device with an invalid label could be successfully
1312 * opened in response to vdev_reopen().
1313 */
b128c09f
BB
1314 if (vd->vdev_aux) {
1315 (void) vdev_validate_aux(vd);
1316 if (vdev_readable(vd) && vdev_writeable(vd) &&
9babb374
BB
1317 vd->vdev_aux == &spa->spa_l2cache &&
1318 !l2arc_vdev_present(vd))
1319 l2arc_add_vdev(spa, vd);
b128c09f
BB
1320 } else {
1321 (void) vdev_validate(vd);
1322 }
34dc7c2f
BB
1323
1324 /*
1325 * Reassess parent vdev's health.
1326 */
1327 vdev_propagate_state(vd);
1328}
1329
1330int
1331vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1332{
1333 int error;
1334
1335 /*
1336 * Normally, partial opens (e.g. of a mirror) are allowed.
1337 * For a create, however, we want to fail the request if
1338 * there are any components we can't open.
1339 */
1340 error = vdev_open(vd);
1341
1342 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1343 vdev_close(vd);
1344 return (error ? error : ENXIO);
1345 }
1346
1347 /*
1348 * Recursively initialize all labels.
1349 */
1350 if ((error = vdev_label_init(vd, txg, isreplacing ?
1351 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1352 vdev_close(vd);
1353 return (error);
1354 }
1355
1356 return (0);
1357}
1358
34dc7c2f 1359void
9babb374 1360vdev_metaslab_set_size(vdev_t *vd)
34dc7c2f
BB
1361{
1362 /*
1363 * Aim for roughly 200 metaslabs per vdev.
1364 */
1365 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1366 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
34dc7c2f
BB
1367}
1368
1369void
1370vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1371{
1372 ASSERT(vd == vd->vdev_top);
1373 ASSERT(ISP2(flags));
1374
1375 if (flags & VDD_METASLAB)
1376 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1377
1378 if (flags & VDD_DTL)
1379 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1380
1381 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1382}
1383
fb5f0bc8
BB
1384/*
1385 * DTLs.
1386 *
1387 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1388 * the vdev has less than perfect replication. There are three kinds of DTL:
1389 *
1390 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1391 *
1392 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1393 *
1394 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1395 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1396 * txgs that was scrubbed.
1397 *
1398 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1399 * persistent errors or just some device being offline.
1400 * Unlike the other three, the DTL_OUTAGE map is not generally
1401 * maintained; it's only computed when needed, typically to
1402 * determine whether a device can be detached.
1403 *
1404 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1405 * either has the data or it doesn't.
1406 *
1407 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1408 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1409 * if any child is less than fully replicated, then so is its parent.
1410 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1411 * comprising only those txgs which appear in 'maxfaults' or more children;
1412 * those are the txgs we don't have enough replication to read. For example,
1413 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1414 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1415 * two child DTL_MISSING maps.
1416 *
1417 * It should be clear from the above that to compute the DTLs and outage maps
1418 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1419 * Therefore, that is all we keep on disk. When loading the pool, or after
1420 * a configuration change, we generate all other DTLs from first principles.
1421 */
34dc7c2f 1422void
fb5f0bc8 1423vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
34dc7c2f 1424{
fb5f0bc8
BB
1425 space_map_t *sm = &vd->vdev_dtl[t];
1426
1427 ASSERT(t < DTL_TYPES);
1428 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1429
34dc7c2f
BB
1430 mutex_enter(sm->sm_lock);
1431 if (!space_map_contains(sm, txg, size))
1432 space_map_add(sm, txg, size);
1433 mutex_exit(sm->sm_lock);
1434}
1435
fb5f0bc8
BB
1436boolean_t
1437vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
34dc7c2f 1438{
fb5f0bc8
BB
1439 space_map_t *sm = &vd->vdev_dtl[t];
1440 boolean_t dirty = B_FALSE;
34dc7c2f 1441
fb5f0bc8
BB
1442 ASSERT(t < DTL_TYPES);
1443 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
34dc7c2f
BB
1444
1445 mutex_enter(sm->sm_lock);
fb5f0bc8
BB
1446 if (sm->sm_space != 0)
1447 dirty = space_map_contains(sm, txg, size);
34dc7c2f
BB
1448 mutex_exit(sm->sm_lock);
1449
1450 return (dirty);
1451}
1452
fb5f0bc8
BB
1453boolean_t
1454vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1455{
1456 space_map_t *sm = &vd->vdev_dtl[t];
1457 boolean_t empty;
1458
1459 mutex_enter(sm->sm_lock);
1460 empty = (sm->sm_space == 0);
1461 mutex_exit(sm->sm_lock);
1462
1463 return (empty);
1464}
1465
34dc7c2f
BB
1466/*
1467 * Reassess DTLs after a config change or scrub completion.
1468 */
1469void
1470vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1471{
1472 spa_t *spa = vd->vdev_spa;
fb5f0bc8
BB
1473 avl_tree_t reftree;
1474 int minref;
34dc7c2f 1475
fb5f0bc8 1476 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
34dc7c2f 1477
fb5f0bc8
BB
1478 for (int c = 0; c < vd->vdev_children; c++)
1479 vdev_dtl_reassess(vd->vdev_child[c], txg,
1480 scrub_txg, scrub_done);
1481
1482 if (vd == spa->spa_root_vdev)
1483 return;
1484
1485 if (vd->vdev_ops->vdev_op_leaf) {
34dc7c2f 1486 mutex_enter(&vd->vdev_dtl_lock);
b128c09f
BB
1487 if (scrub_txg != 0 &&
1488 (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) {
1489 /* XXX should check scrub_done? */
1490 /*
1491 * We completed a scrub up to scrub_txg. If we
1492 * did it without rebooting, then the scrub dtl
1493 * will be valid, so excise the old region and
1494 * fold in the scrub dtl. Otherwise, leave the
1495 * dtl as-is if there was an error.
fb5f0bc8
BB
1496 *
1497 * There's little trick here: to excise the beginning
1498 * of the DTL_MISSING map, we put it into a reference
1499 * tree and then add a segment with refcnt -1 that
1500 * covers the range [0, scrub_txg). This means
1501 * that each txg in that range has refcnt -1 or 0.
1502 * We then add DTL_SCRUB with a refcnt of 2, so that
1503 * entries in the range [0, scrub_txg) will have a
1504 * positive refcnt -- either 1 or 2. We then convert
1505 * the reference tree into the new DTL_MISSING map.
b128c09f 1506 */
fb5f0bc8
BB
1507 space_map_ref_create(&reftree);
1508 space_map_ref_add_map(&reftree,
1509 &vd->vdev_dtl[DTL_MISSING], 1);
1510 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1511 space_map_ref_add_map(&reftree,
1512 &vd->vdev_dtl[DTL_SCRUB], 2);
1513 space_map_ref_generate_map(&reftree,
1514 &vd->vdev_dtl[DTL_MISSING], 1);
1515 space_map_ref_destroy(&reftree);
34dc7c2f 1516 }
fb5f0bc8
BB
1517 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1518 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1519 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
34dc7c2f 1520 if (scrub_done)
fb5f0bc8
BB
1521 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1522 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1523 if (!vdev_readable(vd))
1524 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1525 else
1526 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1527 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
34dc7c2f 1528 mutex_exit(&vd->vdev_dtl_lock);
b128c09f 1529
34dc7c2f
BB
1530 if (txg != 0)
1531 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1532 return;
1533 }
1534
34dc7c2f 1535 mutex_enter(&vd->vdev_dtl_lock);
fb5f0bc8
BB
1536 for (int t = 0; t < DTL_TYPES; t++) {
1537 if (t == DTL_SCRUB)
1538 continue; /* leaf vdevs only */
1539 if (t == DTL_PARTIAL)
1540 minref = 1; /* i.e. non-zero */
1541 else if (vd->vdev_nparity != 0)
1542 minref = vd->vdev_nparity + 1; /* RAID-Z */
1543 else
1544 minref = vd->vdev_children; /* any kind of mirror */
1545 space_map_ref_create(&reftree);
1546 for (int c = 0; c < vd->vdev_children; c++) {
1547 vdev_t *cvd = vd->vdev_child[c];
1548 mutex_enter(&cvd->vdev_dtl_lock);
1549 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[t], 1);
1550 mutex_exit(&cvd->vdev_dtl_lock);
1551 }
1552 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1553 space_map_ref_destroy(&reftree);
34dc7c2f 1554 }
fb5f0bc8 1555 mutex_exit(&vd->vdev_dtl_lock);
34dc7c2f
BB
1556}
1557
1558static int
1559vdev_dtl_load(vdev_t *vd)
1560{
1561 spa_t *spa = vd->vdev_spa;
fb5f0bc8 1562 space_map_obj_t *smo = &vd->vdev_dtl_smo;
34dc7c2f
BB
1563 objset_t *mos = spa->spa_meta_objset;
1564 dmu_buf_t *db;
1565 int error;
1566
1567 ASSERT(vd->vdev_children == 0);
1568
1569 if (smo->smo_object == 0)
1570 return (0);
1571
1572 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1573 return (error);
1574
1575 ASSERT3U(db->db_size, >=, sizeof (*smo));
1576 bcopy(db->db_data, smo, sizeof (*smo));
1577 dmu_buf_rele(db, FTAG);
1578
1579 mutex_enter(&vd->vdev_dtl_lock);
fb5f0bc8
BB
1580 error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1581 NULL, SM_ALLOC, smo, mos);
34dc7c2f
BB
1582 mutex_exit(&vd->vdev_dtl_lock);
1583
1584 return (error);
1585}
1586
1587void
1588vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1589{
1590 spa_t *spa = vd->vdev_spa;
fb5f0bc8
BB
1591 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1592 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
34dc7c2f
BB
1593 objset_t *mos = spa->spa_meta_objset;
1594 space_map_t smsync;
1595 kmutex_t smlock;
1596 dmu_buf_t *db;
1597 dmu_tx_t *tx;
1598
34dc7c2f
BB
1599 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1600
1601 if (vd->vdev_detached) {
1602 if (smo->smo_object != 0) {
1603 int err = dmu_object_free(mos, smo->smo_object, tx);
1604 ASSERT3U(err, ==, 0);
1605 smo->smo_object = 0;
1606 }
1607 dmu_tx_commit(tx);
34dc7c2f
BB
1608 return;
1609 }
1610
1611 if (smo->smo_object == 0) {
1612 ASSERT(smo->smo_objsize == 0);
1613 ASSERT(smo->smo_alloc == 0);
1614 smo->smo_object = dmu_object_alloc(mos,
1615 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1616 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1617 ASSERT(smo->smo_object != 0);
1618 vdev_config_dirty(vd->vdev_top);
1619 }
1620
1621 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1622
1623 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1624 &smlock);
1625
1626 mutex_enter(&smlock);
1627
1628 mutex_enter(&vd->vdev_dtl_lock);
1629 space_map_walk(sm, space_map_add, &smsync);
1630 mutex_exit(&vd->vdev_dtl_lock);
1631
1632 space_map_truncate(smo, mos, tx);
1633 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1634
1635 space_map_destroy(&smsync);
1636
1637 mutex_exit(&smlock);
1638 mutex_destroy(&smlock);
1639
1640 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1641 dmu_buf_will_dirty(db, tx);
1642 ASSERT3U(db->db_size, >=, sizeof (*smo));
1643 bcopy(smo, db->db_data, sizeof (*smo));
1644 dmu_buf_rele(db, FTAG);
1645
1646 dmu_tx_commit(tx);
1647}
1648
fb5f0bc8
BB
1649/*
1650 * Determine whether the specified vdev can be offlined/detached/removed
1651 * without losing data.
1652 */
1653boolean_t
1654vdev_dtl_required(vdev_t *vd)
1655{
1656 spa_t *spa = vd->vdev_spa;
1657 vdev_t *tvd = vd->vdev_top;
1658 uint8_t cant_read = vd->vdev_cant_read;
1659 boolean_t required;
1660
1661 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1662
1663 if (vd == spa->spa_root_vdev || vd == tvd)
1664 return (B_TRUE);
1665
1666 /*
1667 * Temporarily mark the device as unreadable, and then determine
1668 * whether this results in any DTL outages in the top-level vdev.
1669 * If not, we can safely offline/detach/remove the device.
1670 */
1671 vd->vdev_cant_read = B_TRUE;
1672 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1673 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1674 vd->vdev_cant_read = cant_read;
1675 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1676
1677 return (required);
1678}
1679
b128c09f
BB
1680/*
1681 * Determine if resilver is needed, and if so the txg range.
1682 */
1683boolean_t
1684vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1685{
1686 boolean_t needed = B_FALSE;
1687 uint64_t thismin = UINT64_MAX;
1688 uint64_t thismax = 0;
1689
1690 if (vd->vdev_children == 0) {
1691 mutex_enter(&vd->vdev_dtl_lock);
fb5f0bc8
BB
1692 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1693 vdev_writeable(vd)) {
b128c09f
BB
1694 space_seg_t *ss;
1695
fb5f0bc8 1696 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
b128c09f 1697 thismin = ss->ss_start - 1;
fb5f0bc8 1698 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
b128c09f
BB
1699 thismax = ss->ss_end;
1700 needed = B_TRUE;
1701 }
1702 mutex_exit(&vd->vdev_dtl_lock);
1703 } else {
fb5f0bc8 1704 for (int c = 0; c < vd->vdev_children; c++) {
b128c09f
BB
1705 vdev_t *cvd = vd->vdev_child[c];
1706 uint64_t cmin, cmax;
1707
1708 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1709 thismin = MIN(thismin, cmin);
1710 thismax = MAX(thismax, cmax);
1711 needed = B_TRUE;
1712 }
1713 }
1714 }
1715
1716 if (needed && minp) {
1717 *minp = thismin;
1718 *maxp = thismax;
1719 }
1720 return (needed);
1721}
1722
34dc7c2f
BB
1723void
1724vdev_load(vdev_t *vd)
1725{
34dc7c2f
BB
1726 /*
1727 * Recursively load all children.
1728 */
fb5f0bc8 1729 for (int c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
1730 vdev_load(vd->vdev_child[c]);
1731
1732 /*
1733 * If this is a top-level vdev, initialize its metaslabs.
1734 */
1735 if (vd == vd->vdev_top &&
1736 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1737 vdev_metaslab_init(vd, 0) != 0))
1738 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1739 VDEV_AUX_CORRUPT_DATA);
1740
1741 /*
1742 * If this is a leaf vdev, load its DTL.
1743 */
1744 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1745 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1746 VDEV_AUX_CORRUPT_DATA);
1747}
1748
1749/*
1750 * The special vdev case is used for hot spares and l2cache devices. Its
1751 * sole purpose it to set the vdev state for the associated vdev. To do this,
1752 * we make sure that we can open the underlying device, then try to read the
1753 * label, and make sure that the label is sane and that it hasn't been
1754 * repurposed to another pool.
1755 */
1756int
1757vdev_validate_aux(vdev_t *vd)
1758{
1759 nvlist_t *label;
1760 uint64_t guid, version;
1761 uint64_t state;
1762
b128c09f
BB
1763 if (!vdev_readable(vd))
1764 return (0);
1765
34dc7c2f
BB
1766 if ((label = vdev_label_read_config(vd)) == NULL) {
1767 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1768 VDEV_AUX_CORRUPT_DATA);
1769 return (-1);
1770 }
1771
1772 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1773 version > SPA_VERSION ||
1774 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1775 guid != vd->vdev_guid ||
1776 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1777 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1778 VDEV_AUX_CORRUPT_DATA);
1779 nvlist_free(label);
1780 return (-1);
1781 }
1782
1783 /*
1784 * We don't actually check the pool state here. If it's in fact in
1785 * use by another pool, we update this fact on the fly when requested.
1786 */
1787 nvlist_free(label);
1788 return (0);
1789}
1790
1791void
1792vdev_sync_done(vdev_t *vd, uint64_t txg)
1793{
1794 metaslab_t *msp;
1795
34dc7c2f
BB
1796 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
1797 metaslab_sync_done(msp, txg);
1798}
1799
1800void
1801vdev_sync(vdev_t *vd, uint64_t txg)
1802{
1803 spa_t *spa = vd->vdev_spa;
1804 vdev_t *lvd;
1805 metaslab_t *msp;
1806 dmu_tx_t *tx;
1807
34dc7c2f
BB
1808 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
1809 ASSERT(vd == vd->vdev_top);
1810 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1811 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
1812 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
1813 ASSERT(vd->vdev_ms_array != 0);
1814 vdev_config_dirty(vd);
1815 dmu_tx_commit(tx);
1816 }
1817
1818 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
1819 metaslab_sync(msp, txg);
1820 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
1821 }
1822
1823 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
1824 vdev_dtl_sync(lvd, txg);
1825
1826 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
1827}
1828
1829uint64_t
1830vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
1831{
1832 return (vd->vdev_ops->vdev_op_asize(vd, psize));
1833}
1834
34dc7c2f
BB
1835/*
1836 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
1837 * not be opened, and no I/O is attempted.
1838 */
1839int
1840vdev_fault(spa_t *spa, uint64_t guid)
1841{
b128c09f 1842 vdev_t *vd;
34dc7c2f 1843
b128c09f 1844 spa_vdev_state_enter(spa);
34dc7c2f 1845
b128c09f
BB
1846 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1847 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f 1848
34dc7c2f 1849 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 1850 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f
BB
1851
1852 /*
1853 * Faulted state takes precedence over degraded.
1854 */
1855 vd->vdev_faulted = 1ULL;
1856 vd->vdev_degraded = 0ULL;
b128c09f 1857 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED);
34dc7c2f
BB
1858
1859 /*
b128c09f 1860 * If marking the vdev as faulted cause the top-level vdev to become
34dc7c2f
BB
1861 * unavailable, then back off and simply mark the vdev as degraded
1862 * instead.
1863 */
b128c09f 1864 if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
34dc7c2f
BB
1865 vd->vdev_degraded = 1ULL;
1866 vd->vdev_faulted = 0ULL;
1867
1868 /*
1869 * If we reopen the device and it's not dead, only then do we
1870 * mark it degraded.
1871 */
1872 vdev_reopen(vd);
1873
1874 if (vdev_readable(vd)) {
1875 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1876 VDEV_AUX_ERR_EXCEEDED);
1877 }
1878 }
1879
b128c09f 1880 return (spa_vdev_state_exit(spa, vd, 0));
34dc7c2f
BB
1881}
1882
1883/*
1884 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
1885 * user that something is wrong. The vdev continues to operate as normal as far
1886 * as I/O is concerned.
1887 */
1888int
1889vdev_degrade(spa_t *spa, uint64_t guid)
1890{
b128c09f 1891 vdev_t *vd;
34dc7c2f 1892
b128c09f 1893 spa_vdev_state_enter(spa);
34dc7c2f 1894
b128c09f
BB
1895 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1896 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f 1897
34dc7c2f 1898 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 1899 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f
BB
1900
1901 /*
1902 * If the vdev is already faulted, then don't do anything.
1903 */
b128c09f
BB
1904 if (vd->vdev_faulted || vd->vdev_degraded)
1905 return (spa_vdev_state_exit(spa, NULL, 0));
34dc7c2f
BB
1906
1907 vd->vdev_degraded = 1ULL;
1908 if (!vdev_is_dead(vd))
1909 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1910 VDEV_AUX_ERR_EXCEEDED);
34dc7c2f 1911
b128c09f 1912 return (spa_vdev_state_exit(spa, vd, 0));
34dc7c2f
BB
1913}
1914
1915/*
1916 * Online the given vdev. If 'unspare' is set, it implies two things. First,
1917 * any attached spare device should be detached when the device finishes
1918 * resilvering. Second, the online should be treated like a 'test' online case,
1919 * so no FMA events are generated if the device fails to open.
1920 */
1921int
b128c09f 1922vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
34dc7c2f 1923{
9babb374 1924 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
34dc7c2f 1925
b128c09f 1926 spa_vdev_state_enter(spa);
34dc7c2f 1927
b128c09f
BB
1928 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1929 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f
BB
1930
1931 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 1932 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f 1933
9babb374 1934 tvd = vd->vdev_top;
34dc7c2f
BB
1935 vd->vdev_offline = B_FALSE;
1936 vd->vdev_tmpoffline = B_FALSE;
b128c09f
BB
1937 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
1938 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
9babb374
BB
1939
1940 /* XXX - L2ARC 1.0 does not support expansion */
1941 if (!vd->vdev_aux) {
1942 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
1943 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
1944 }
1945
1946 vdev_reopen(tvd);
34dc7c2f
BB
1947 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
1948
9babb374
BB
1949 if (!vd->vdev_aux) {
1950 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
1951 pvd->vdev_expanding = B_FALSE;
1952 }
1953
34dc7c2f
BB
1954 if (newstate)
1955 *newstate = vd->vdev_state;
1956 if ((flags & ZFS_ONLINE_UNSPARE) &&
1957 !vdev_is_dead(vd) && vd->vdev_parent &&
1958 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
1959 vd->vdev_parent->vdev_child[0] == vd)
1960 vd->vdev_unspare = B_TRUE;
1961
9babb374
BB
1962 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
1963
1964 /* XXX - L2ARC 1.0 does not support expansion */
1965 if (vd->vdev_aux)
1966 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
1967 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
1968 }
fb5f0bc8 1969 return (spa_vdev_state_exit(spa, vd, 0));
34dc7c2f
BB
1970}
1971
1972int
1973vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
1974{
9babb374
BB
1975 vdev_t *vd, *tvd;
1976 int error;
34dc7c2f 1977
b128c09f 1978 spa_vdev_state_enter(spa);
34dc7c2f 1979
b128c09f
BB
1980 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1981 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f
BB
1982
1983 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 1984 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f 1985
9babb374
BB
1986 tvd = vd->vdev_top;
1987
34dc7c2f
BB
1988 /*
1989 * If the device isn't already offline, try to offline it.
1990 */
1991 if (!vd->vdev_offline) {
1992 /*
fb5f0bc8 1993 * If this device has the only valid copy of some data,
9babb374
BB
1994 * don't allow it to be offlined. Log devices are always
1995 * expendable.
34dc7c2f 1996 */
9babb374
BB
1997 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
1998 vdev_dtl_required(vd))
b128c09f 1999 return (spa_vdev_state_exit(spa, NULL, EBUSY));
34dc7c2f
BB
2000
2001 /*
2002 * Offline this device and reopen its top-level vdev.
9babb374
BB
2003 * If the top-level vdev is a log device then just offline
2004 * it. Otherwise, if this action results in the top-level
2005 * vdev becoming unusable, undo it and fail the request.
34dc7c2f
BB
2006 */
2007 vd->vdev_offline = B_TRUE;
9babb374
BB
2008 vdev_reopen(tvd);
2009
2010 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2011 vdev_is_dead(tvd)) {
34dc7c2f 2012 vd->vdev_offline = B_FALSE;
9babb374 2013 vdev_reopen(tvd);
b128c09f 2014 return (spa_vdev_state_exit(spa, NULL, EBUSY));
34dc7c2f
BB
2015 }
2016 }
2017
b128c09f 2018 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
34dc7c2f 2019
9babb374
BB
2020 if (!tvd->vdev_islog || !vdev_is_dead(tvd))
2021 return (spa_vdev_state_exit(spa, vd, 0));
2022
2023 (void) spa_vdev_state_exit(spa, vd, 0);
2024
2025 error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
2026 NULL, DS_FIND_CHILDREN);
2027 if (error) {
2028 (void) vdev_online(spa, guid, 0, NULL);
2029 return (error);
2030 }
2031 /*
2032 * If we successfully offlined the log device then we need to
2033 * sync out the current txg so that the "stubby" block can be
2034 * removed by zil_sync().
2035 */
2036 txg_wait_synced(spa->spa_dsl_pool, 0);
2037 return (0);
34dc7c2f
BB
2038}
2039
2040/*
2041 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2042 * vdev_offline(), we assume the spa config is locked. We also clear all
2043 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
34dc7c2f
BB
2044 */
2045void
b128c09f 2046vdev_clear(spa_t *spa, vdev_t *vd)
34dc7c2f 2047{
b128c09f
BB
2048 vdev_t *rvd = spa->spa_root_vdev;
2049
2050 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
34dc7c2f
BB
2051
2052 if (vd == NULL)
b128c09f 2053 vd = rvd;
34dc7c2f
BB
2054
2055 vd->vdev_stat.vs_read_errors = 0;
2056 vd->vdev_stat.vs_write_errors = 0;
2057 vd->vdev_stat.vs_checksum_errors = 0;
34dc7c2f 2058
b128c09f
BB
2059 for (int c = 0; c < vd->vdev_children; c++)
2060 vdev_clear(spa, vd->vdev_child[c]);
34dc7c2f
BB
2061
2062 /*
b128c09f
BB
2063 * If we're in the FAULTED state or have experienced failed I/O, then
2064 * clear the persistent state and attempt to reopen the device. We
2065 * also mark the vdev config dirty, so that the new faulted state is
2066 * written out to disk.
34dc7c2f 2067 */
b128c09f
BB
2068 if (vd->vdev_faulted || vd->vdev_degraded ||
2069 !vdev_readable(vd) || !vdev_writeable(vd)) {
2070
34dc7c2f 2071 vd->vdev_faulted = vd->vdev_degraded = 0;
b128c09f
BB
2072 vd->vdev_cant_read = B_FALSE;
2073 vd->vdev_cant_write = B_FALSE;
2074
34dc7c2f 2075 vdev_reopen(vd);
34dc7c2f 2076
b128c09f
BB
2077 if (vd != rvd)
2078 vdev_state_dirty(vd->vdev_top);
2079
2080 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
34dc7c2f
BB
2081 spa_async_request(spa, SPA_ASYNC_RESILVER);
2082
2083 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2084 }
2085}
2086
b128c09f
BB
2087boolean_t
2088vdev_is_dead(vdev_t *vd)
2089{
2090 return (vd->vdev_state < VDEV_STATE_DEGRADED);
2091}
2092
2093boolean_t
34dc7c2f
BB
2094vdev_readable(vdev_t *vd)
2095{
b128c09f 2096 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
34dc7c2f
BB
2097}
2098
b128c09f 2099boolean_t
34dc7c2f
BB
2100vdev_writeable(vdev_t *vd)
2101{
b128c09f 2102 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
34dc7c2f
BB
2103}
2104
b128c09f
BB
2105boolean_t
2106vdev_allocatable(vdev_t *vd)
34dc7c2f 2107{
fb5f0bc8
BB
2108 uint64_t state = vd->vdev_state;
2109
b128c09f 2110 /*
fb5f0bc8 2111 * We currently allow allocations from vdevs which may be in the
b128c09f
BB
2112 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2113 * fails to reopen then we'll catch it later when we're holding
fb5f0bc8
BB
2114 * the proper locks. Note that we have to get the vdev state
2115 * in a local variable because although it changes atomically,
2116 * we're asking two separate questions about it.
b128c09f 2117 */
fb5f0bc8 2118 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
b128c09f 2119 !vd->vdev_cant_write);
34dc7c2f
BB
2120}
2121
b128c09f
BB
2122boolean_t
2123vdev_accessible(vdev_t *vd, zio_t *zio)
34dc7c2f 2124{
b128c09f 2125 ASSERT(zio->io_vd == vd);
34dc7c2f 2126
b128c09f
BB
2127 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2128 return (B_FALSE);
34dc7c2f 2129
b128c09f
BB
2130 if (zio->io_type == ZIO_TYPE_READ)
2131 return (!vd->vdev_cant_read);
34dc7c2f 2132
b128c09f
BB
2133 if (zio->io_type == ZIO_TYPE_WRITE)
2134 return (!vd->vdev_cant_write);
34dc7c2f 2135
b128c09f 2136 return (B_TRUE);
34dc7c2f
BB
2137}
2138
2139/*
2140 * Get statistics for the given vdev.
2141 */
2142void
2143vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2144{
2145 vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
34dc7c2f
BB
2146
2147 mutex_enter(&vd->vdev_stat_lock);
2148 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
b128c09f 2149 vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors;
34dc7c2f
BB
2150 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2151 vs->vs_state = vd->vdev_state;
9babb374
BB
2152 vs->vs_rsize = vdev_get_min_asize(vd);
2153 if (vd->vdev_ops->vdev_op_leaf)
2154 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
34dc7c2f
BB
2155 mutex_exit(&vd->vdev_stat_lock);
2156
2157 /*
2158 * If we're getting stats on the root vdev, aggregate the I/O counts
2159 * over all top-level vdevs (i.e. the direct children of the root).
2160 */
2161 if (vd == rvd) {
b128c09f 2162 for (int c = 0; c < rvd->vdev_children; c++) {
34dc7c2f
BB
2163 vdev_t *cvd = rvd->vdev_child[c];
2164 vdev_stat_t *cvs = &cvd->vdev_stat;
2165
2166 mutex_enter(&vd->vdev_stat_lock);
b128c09f 2167 for (int t = 0; t < ZIO_TYPES; t++) {
34dc7c2f
BB
2168 vs->vs_ops[t] += cvs->vs_ops[t];
2169 vs->vs_bytes[t] += cvs->vs_bytes[t];
2170 }
34dc7c2f 2171 vs->vs_scrub_examined += cvs->vs_scrub_examined;
34dc7c2f
BB
2172 mutex_exit(&vd->vdev_stat_lock);
2173 }
2174 }
2175}
2176
2177void
2178vdev_clear_stats(vdev_t *vd)
2179{
2180 mutex_enter(&vd->vdev_stat_lock);
2181 vd->vdev_stat.vs_space = 0;
2182 vd->vdev_stat.vs_dspace = 0;
2183 vd->vdev_stat.vs_alloc = 0;
2184 mutex_exit(&vd->vdev_stat_lock);
2185}
2186
2187void
b128c09f 2188vdev_stat_update(zio_t *zio, uint64_t psize)
34dc7c2f 2189{
fb5f0bc8
BB
2190 spa_t *spa = zio->io_spa;
2191 vdev_t *rvd = spa->spa_root_vdev;
b128c09f 2192 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
34dc7c2f
BB
2193 vdev_t *pvd;
2194 uint64_t txg = zio->io_txg;
2195 vdev_stat_t *vs = &vd->vdev_stat;
2196 zio_type_t type = zio->io_type;
2197 int flags = zio->io_flags;
2198
b128c09f
BB
2199 /*
2200 * If this i/o is a gang leader, it didn't do any actual work.
2201 */
2202 if (zio->io_gang_tree)
2203 return;
2204
34dc7c2f 2205 if (zio->io_error == 0) {
b128c09f
BB
2206 /*
2207 * If this is a root i/o, don't count it -- we've already
2208 * counted the top-level vdevs, and vdev_get_stats() will
2209 * aggregate them when asked. This reduces contention on
2210 * the root vdev_stat_lock and implicitly handles blocks
2211 * that compress away to holes, for which there is no i/o.
2212 * (Holes never create vdev children, so all the counters
2213 * remain zero, which is what we want.)
2214 *
2215 * Note: this only applies to successful i/o (io_error == 0)
2216 * because unlike i/o counts, errors are not additive.
2217 * When reading a ditto block, for example, failure of
2218 * one top-level vdev does not imply a root-level error.
2219 */
2220 if (vd == rvd)
2221 return;
2222
2223 ASSERT(vd == zio->io_vd);
fb5f0bc8
BB
2224
2225 if (flags & ZIO_FLAG_IO_BYPASS)
2226 return;
2227
2228 mutex_enter(&vd->vdev_stat_lock);
2229
b128c09f 2230 if (flags & ZIO_FLAG_IO_REPAIR) {
34dc7c2f 2231 if (flags & ZIO_FLAG_SCRUB_THREAD)
b128c09f 2232 vs->vs_scrub_repaired += psize;
fb5f0bc8 2233 if (flags & ZIO_FLAG_SELF_HEAL)
b128c09f 2234 vs->vs_self_healed += psize;
34dc7c2f 2235 }
fb5f0bc8
BB
2236
2237 vs->vs_ops[type]++;
2238 vs->vs_bytes[type] += psize;
2239
2240 mutex_exit(&vd->vdev_stat_lock);
34dc7c2f
BB
2241 return;
2242 }
2243
2244 if (flags & ZIO_FLAG_SPECULATIVE)
2245 return;
2246
9babb374
BB
2247 /*
2248 * If this is an I/O error that is going to be retried, then ignore the
2249 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
2250 * hard errors, when in reality they can happen for any number of
2251 * innocuous reasons (bus resets, MPxIO link failure, etc).
2252 */
2253 if (zio->io_error == EIO &&
2254 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2255 return;
2256
b128c09f 2257 mutex_enter(&vd->vdev_stat_lock);
9babb374 2258 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
b128c09f
BB
2259 if (zio->io_error == ECKSUM)
2260 vs->vs_checksum_errors++;
2261 else
2262 vs->vs_read_errors++;
34dc7c2f 2263 }
9babb374 2264 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
b128c09f
BB
2265 vs->vs_write_errors++;
2266 mutex_exit(&vd->vdev_stat_lock);
34dc7c2f 2267
fb5f0bc8
BB
2268 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2269 (!(flags & ZIO_FLAG_IO_REPAIR) ||
2270 (flags & ZIO_FLAG_SCRUB_THREAD))) {
2271 /*
2272 * This is either a normal write (not a repair), or it's a
2273 * repair induced by the scrub thread. In the normal case,
2274 * we commit the DTL change in the same txg as the block
2275 * was born. In the scrub-induced repair case, we know that
2276 * scrubs run in first-pass syncing context, so we commit
2277 * the DTL change in spa->spa_syncing_txg.
2278 *
2279 * We currently do not make DTL entries for failed spontaneous
2280 * self-healing writes triggered by normal (non-scrubbing)
2281 * reads, because we have no transactional context in which to
2282 * do so -- and it's not clear that it'd be desirable anyway.
2283 */
2284 if (vd->vdev_ops->vdev_op_leaf) {
2285 uint64_t commit_txg = txg;
2286 if (flags & ZIO_FLAG_SCRUB_THREAD) {
2287 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2288 ASSERT(spa_sync_pass(spa) == 1);
2289 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2290 commit_txg = spa->spa_syncing_txg;
2291 }
2292 ASSERT(commit_txg >= spa->spa_syncing_txg);
2293 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
34dc7c2f 2294 return;
fb5f0bc8
BB
2295 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2296 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2297 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
34dc7c2f 2298 }
fb5f0bc8
BB
2299 if (vd != rvd)
2300 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
34dc7c2f
BB
2301 }
2302}
2303
2304void
2305vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
2306{
34dc7c2f
BB
2307 vdev_stat_t *vs = &vd->vdev_stat;
2308
9babb374 2309 for (int c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
2310 vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
2311
2312 mutex_enter(&vd->vdev_stat_lock);
2313
2314 if (type == POOL_SCRUB_NONE) {
2315 /*
2316 * Update completion and end time. Leave everything else alone
2317 * so we can report what happened during the previous scrub.
2318 */
2319 vs->vs_scrub_complete = complete;
2320 vs->vs_scrub_end = gethrestime_sec();
2321 } else {
2322 vs->vs_scrub_type = type;
2323 vs->vs_scrub_complete = 0;
2324 vs->vs_scrub_examined = 0;
2325 vs->vs_scrub_repaired = 0;
34dc7c2f
BB
2326 vs->vs_scrub_start = gethrestime_sec();
2327 vs->vs_scrub_end = 0;
2328 }
2329
2330 mutex_exit(&vd->vdev_stat_lock);
2331}
2332
2333/*
2334 * Update the in-core space usage stats for this vdev and the root vdev.
2335 */
2336void
2337vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta,
2338 boolean_t update_root)
2339{
2340 int64_t dspace_delta = space_delta;
2341 spa_t *spa = vd->vdev_spa;
2342 vdev_t *rvd = spa->spa_root_vdev;
2343
2344 ASSERT(vd == vd->vdev_top);
2345
2346 /*
2347 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2348 * factor. We must calculate this here and not at the root vdev
2349 * because the root vdev's psize-to-asize is simply the max of its
2350 * childrens', thus not accurate enough for us.
2351 */
2352 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
9babb374 2353 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
34dc7c2f
BB
2354 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2355 vd->vdev_deflate_ratio;
2356
2357 mutex_enter(&vd->vdev_stat_lock);
2358 vd->vdev_stat.vs_space += space_delta;
2359 vd->vdev_stat.vs_alloc += alloc_delta;
2360 vd->vdev_stat.vs_dspace += dspace_delta;
2361 mutex_exit(&vd->vdev_stat_lock);
2362
2363 if (update_root) {
2364 ASSERT(rvd == vd->vdev_parent);
2365 ASSERT(vd->vdev_ms_count != 0);
2366
2367 /*
2368 * Don't count non-normal (e.g. intent log) space as part of
2369 * the pool's capacity.
2370 */
2371 if (vd->vdev_mg->mg_class != spa->spa_normal_class)
2372 return;
2373
2374 mutex_enter(&rvd->vdev_stat_lock);
2375 rvd->vdev_stat.vs_space += space_delta;
2376 rvd->vdev_stat.vs_alloc += alloc_delta;
2377 rvd->vdev_stat.vs_dspace += dspace_delta;
2378 mutex_exit(&rvd->vdev_stat_lock);
2379 }
2380}
2381
2382/*
2383 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2384 * so that it will be written out next time the vdev configuration is synced.
2385 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2386 */
2387void
2388vdev_config_dirty(vdev_t *vd)
2389{
2390 spa_t *spa = vd->vdev_spa;
2391 vdev_t *rvd = spa->spa_root_vdev;
2392 int c;
2393
2394 /*
9babb374
BB
2395 * If this is an aux vdev (as with l2cache and spare devices), then we
2396 * update the vdev config manually and set the sync flag.
b128c09f
BB
2397 */
2398 if (vd->vdev_aux != NULL) {
2399 spa_aux_vdev_t *sav = vd->vdev_aux;
2400 nvlist_t **aux;
2401 uint_t naux;
2402
2403 for (c = 0; c < sav->sav_count; c++) {
2404 if (sav->sav_vdevs[c] == vd)
2405 break;
2406 }
2407
2408 if (c == sav->sav_count) {
2409 /*
2410 * We're being removed. There's nothing more to do.
2411 */
2412 ASSERT(sav->sav_sync == B_TRUE);
2413 return;
2414 }
2415
2416 sav->sav_sync = B_TRUE;
2417
9babb374
BB
2418 if (nvlist_lookup_nvlist_array(sav->sav_config,
2419 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2420 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2421 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2422 }
b128c09f
BB
2423
2424 ASSERT(c < naux);
2425
2426 /*
2427 * Setting the nvlist in the middle if the array is a little
2428 * sketchy, but it will work.
2429 */
2430 nvlist_free(aux[c]);
2431 aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE);
2432
2433 return;
2434 }
2435
2436 /*
2437 * The dirty list is protected by the SCL_CONFIG lock. The caller
2438 * must either hold SCL_CONFIG as writer, or must be the sync thread
2439 * (which holds SCL_CONFIG as reader). There's only one sync thread,
34dc7c2f
BB
2440 * so this is sufficient to ensure mutual exclusion.
2441 */
b128c09f
BB
2442 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2443 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2444 spa_config_held(spa, SCL_CONFIG, RW_READER)));
34dc7c2f
BB
2445
2446 if (vd == rvd) {
2447 for (c = 0; c < rvd->vdev_children; c++)
2448 vdev_config_dirty(rvd->vdev_child[c]);
2449 } else {
2450 ASSERT(vd == vd->vdev_top);
2451
b128c09f
BB
2452 if (!list_link_active(&vd->vdev_config_dirty_node))
2453 list_insert_head(&spa->spa_config_dirty_list, vd);
34dc7c2f
BB
2454 }
2455}
2456
2457void
2458vdev_config_clean(vdev_t *vd)
2459{
2460 spa_t *spa = vd->vdev_spa;
2461
b128c09f
BB
2462 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2463 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2464 spa_config_held(spa, SCL_CONFIG, RW_READER)));
34dc7c2f 2465
b128c09f
BB
2466 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2467 list_remove(&spa->spa_config_dirty_list, vd);
34dc7c2f
BB
2468}
2469
b128c09f
BB
2470/*
2471 * Mark a top-level vdev's state as dirty, so that the next pass of
2472 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
2473 * the state changes from larger config changes because they require
2474 * much less locking, and are often needed for administrative actions.
2475 */
2476void
2477vdev_state_dirty(vdev_t *vd)
2478{
2479 spa_t *spa = vd->vdev_spa;
2480
2481 ASSERT(vd == vd->vdev_top);
2482
2483 /*
2484 * The state list is protected by the SCL_STATE lock. The caller
2485 * must either hold SCL_STATE as writer, or must be the sync thread
2486 * (which holds SCL_STATE as reader). There's only one sync thread,
2487 * so this is sufficient to ensure mutual exclusion.
2488 */
2489 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2490 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2491 spa_config_held(spa, SCL_STATE, RW_READER)));
2492
2493 if (!list_link_active(&vd->vdev_state_dirty_node))
2494 list_insert_head(&spa->spa_state_dirty_list, vd);
2495}
2496
2497void
2498vdev_state_clean(vdev_t *vd)
2499{
2500 spa_t *spa = vd->vdev_spa;
2501
2502 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2503 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2504 spa_config_held(spa, SCL_STATE, RW_READER)));
2505
2506 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2507 list_remove(&spa->spa_state_dirty_list, vd);
2508}
2509
2510/*
2511 * Propagate vdev state up from children to parent.
2512 */
34dc7c2f
BB
2513void
2514vdev_propagate_state(vdev_t *vd)
2515{
fb5f0bc8
BB
2516 spa_t *spa = vd->vdev_spa;
2517 vdev_t *rvd = spa->spa_root_vdev;
34dc7c2f
BB
2518 int degraded = 0, faulted = 0;
2519 int corrupted = 0;
34dc7c2f
BB
2520 vdev_t *child;
2521
2522 if (vd->vdev_children > 0) {
9babb374 2523 for (int c = 0; c < vd->vdev_children; c++) {
34dc7c2f 2524 child = vd->vdev_child[c];
b128c09f
BB
2525
2526 if (!vdev_readable(child) ||
fb5f0bc8 2527 (!vdev_writeable(child) && spa_writeable(spa))) {
b128c09f
BB
2528 /*
2529 * Root special: if there is a top-level log
2530 * device, treat the root vdev as if it were
2531 * degraded.
2532 */
2533 if (child->vdev_islog && vd == rvd)
2534 degraded++;
2535 else
2536 faulted++;
2537 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
34dc7c2f 2538 degraded++;
b128c09f 2539 }
34dc7c2f
BB
2540
2541 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2542 corrupted++;
2543 }
2544
2545 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2546
2547 /*
b128c09f 2548 * Root special: if there is a top-level vdev that cannot be
34dc7c2f
BB
2549 * opened due to corrupted metadata, then propagate the root
2550 * vdev's aux state as 'corrupt' rather than 'insufficient
2551 * replicas'.
2552 */
2553 if (corrupted && vd == rvd &&
2554 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2555 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2556 VDEV_AUX_CORRUPT_DATA);
2557 }
2558
b128c09f 2559 if (vd->vdev_parent)
34dc7c2f
BB
2560 vdev_propagate_state(vd->vdev_parent);
2561}
2562
2563/*
2564 * Set a vdev's state. If this is during an open, we don't update the parent
2565 * state, because we're in the process of opening children depth-first.
2566 * Otherwise, we propagate the change to the parent.
2567 *
2568 * If this routine places a device in a faulted state, an appropriate ereport is
2569 * generated.
2570 */
2571void
2572vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2573{
2574 uint64_t save_state;
b128c09f 2575 spa_t *spa = vd->vdev_spa;
34dc7c2f
BB
2576
2577 if (state == vd->vdev_state) {
2578 vd->vdev_stat.vs_aux = aux;
2579 return;
2580 }
2581
2582 save_state = vd->vdev_state;
2583
2584 vd->vdev_state = state;
2585 vd->vdev_stat.vs_aux = aux;
2586
2587 /*
2588 * If we are setting the vdev state to anything but an open state, then
2589 * always close the underlying device. Otherwise, we keep accessible
2590 * but invalid devices open forever. We don't call vdev_close() itself,
2591 * because that implies some extra checks (offline, etc) that we don't
2592 * want here. This is limited to leaf devices, because otherwise
2593 * closing the device will affect other children.
2594 */
b128c09f 2595 if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf)
34dc7c2f
BB
2596 vd->vdev_ops->vdev_op_close(vd);
2597
2598 if (vd->vdev_removed &&
2599 state == VDEV_STATE_CANT_OPEN &&
2600 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2601 /*
2602 * If the previous state is set to VDEV_STATE_REMOVED, then this
2603 * device was previously marked removed and someone attempted to
2604 * reopen it. If this failed due to a nonexistent device, then
2605 * keep the device in the REMOVED state. We also let this be if
2606 * it is one of our special test online cases, which is only
2607 * attempting to online the device and shouldn't generate an FMA
2608 * fault.
2609 */
2610 vd->vdev_state = VDEV_STATE_REMOVED;
2611 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2612 } else if (state == VDEV_STATE_REMOVED) {
2613 /*
2614 * Indicate to the ZFS DE that this device has been removed, and
2615 * any recent errors should be ignored.
2616 */
b128c09f 2617 zfs_post_remove(spa, vd);
34dc7c2f
BB
2618 vd->vdev_removed = B_TRUE;
2619 } else if (state == VDEV_STATE_CANT_OPEN) {
2620 /*
2621 * If we fail to open a vdev during an import, we mark it as
2622 * "not available", which signifies that it was never there to
2623 * begin with. Failure to open such a device is not considered
2624 * an error.
2625 */
b128c09f 2626 if (spa->spa_load_state == SPA_LOAD_IMPORT &&
34dc7c2f
BB
2627 vd->vdev_ops->vdev_op_leaf)
2628 vd->vdev_not_present = 1;
2629
2630 /*
2631 * Post the appropriate ereport. If the 'prevstate' field is
2632 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2633 * that this is part of a vdev_reopen(). In this case, we don't
2634 * want to post the ereport if the device was already in the
2635 * CANT_OPEN state beforehand.
2636 *
2637 * If the 'checkremove' flag is set, then this is an attempt to
2638 * online the device in response to an insertion event. If we
2639 * hit this case, then we have detected an insertion event for a
2640 * faulted or offline device that wasn't in the removed state.
2641 * In this scenario, we don't post an ereport because we are
2642 * about to replace the device, or attempt an online with
2643 * vdev_forcefault, which will generate the fault for us.
2644 */
2645 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2646 !vd->vdev_not_present && !vd->vdev_checkremove &&
b128c09f 2647 vd != spa->spa_root_vdev) {
34dc7c2f
BB
2648 const char *class;
2649
2650 switch (aux) {
2651 case VDEV_AUX_OPEN_FAILED:
2652 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2653 break;
2654 case VDEV_AUX_CORRUPT_DATA:
2655 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2656 break;
2657 case VDEV_AUX_NO_REPLICAS:
2658 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2659 break;
2660 case VDEV_AUX_BAD_GUID_SUM:
2661 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2662 break;
2663 case VDEV_AUX_TOO_SMALL:
2664 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2665 break;
2666 case VDEV_AUX_BAD_LABEL:
2667 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
2668 break;
b128c09f
BB
2669 case VDEV_AUX_IO_FAILURE:
2670 class = FM_EREPORT_ZFS_IO_FAILURE;
2671 break;
34dc7c2f
BB
2672 default:
2673 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
2674 }
2675
b128c09f 2676 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
34dc7c2f
BB
2677 }
2678
2679 /* Erase any notion of persistent removed state */
2680 vd->vdev_removed = B_FALSE;
2681 } else {
2682 vd->vdev_removed = B_FALSE;
2683 }
2684
9babb374
BB
2685 if (!isopen && vd->vdev_parent)
2686 vdev_propagate_state(vd->vdev_parent);
34dc7c2f 2687}
b128c09f
BB
2688
2689/*
2690 * Check the vdev configuration to ensure that it's capable of supporting
2691 * a root pool. Currently, we do not support RAID-Z or partial configuration.
2692 * In addition, only a single top-level vdev is allowed and none of the leaves
2693 * can be wholedisks.
2694 */
2695boolean_t
2696vdev_is_bootable(vdev_t *vd)
2697{
b128c09f
BB
2698 if (!vd->vdev_ops->vdev_op_leaf) {
2699 char *vdev_type = vd->vdev_ops->vdev_op_type;
2700
2701 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
2702 vd->vdev_children > 1) {
2703 return (B_FALSE);
2704 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
2705 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
2706 return (B_FALSE);
2707 }
2708 } else if (vd->vdev_wholedisk == 1) {
2709 return (B_FALSE);
2710 }
2711
9babb374 2712 for (int c = 0; c < vd->vdev_children; c++) {
b128c09f
BB
2713 if (!vdev_is_bootable(vd->vdev_child[c]))
2714 return (B_FALSE);
2715 }
2716 return (B_TRUE);
2717}
9babb374
BB
2718
2719void
2720vdev_load_log_state(vdev_t *vd, nvlist_t *nv)
2721{
2722 uint_t children;
2723 nvlist_t **child;
2724 uint64_t val;
2725 spa_t *spa = vd->vdev_spa;
2726
2727 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2728 &child, &children) == 0) {
2729 for (int c = 0; c < children; c++)
2730 vdev_load_log_state(vd->vdev_child[c], child[c]);
2731 }
2732
2733 if (vd->vdev_ops->vdev_op_leaf && nvlist_lookup_uint64(nv,
2734 ZPOOL_CONFIG_OFFLINE, &val) == 0 && val) {
2735
2736 /*
2737 * It would be nice to call vdev_offline()
2738 * directly but the pool isn't fully loaded and
2739 * the txg threads have not been started yet.
2740 */
2741 spa_config_enter(spa, SCL_STATE_ALL, FTAG, RW_WRITER);
2742 vd->vdev_offline = val;
2743 vdev_reopen(vd->vdev_top);
2744 spa_config_exit(spa, SCL_STATE_ALL, FTAG);
2745 }
2746}
2747
2748/*
2749 * Expand a vdev if possible.
2750 */
2751void
2752vdev_expand(vdev_t *vd, uint64_t txg)
2753{
2754 ASSERT(vd->vdev_top == vd);
2755 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2756
2757 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
2758 VERIFY(vdev_metaslab_init(vd, txg) == 0);
2759 vdev_config_dirty(vd);
2760 }
2761}