]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/vdev.c
Illumos #3949, #3950, #3952, #3953
[mirror_zfs.git] / module / zfs / vdev.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
428870ff 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
3541dc6d 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
2e528b49 25 * Copyright (c) 2013 by Delphix. All rights reserved.
34dc7c2f
BB
26 */
27
34dc7c2f
BB
28#include <sys/zfs_context.h>
29#include <sys/fm/fs/zfs.h>
30#include <sys/spa.h>
31#include <sys/spa_impl.h>
32#include <sys/dmu.h>
33#include <sys/dmu_tx.h>
34#include <sys/vdev_impl.h>
35#include <sys/uberblock_impl.h>
36#include <sys/metaslab.h>
37#include <sys/metaslab_impl.h>
38#include <sys/space_map.h>
39#include <sys/zio.h>
40#include <sys/zap.h>
41#include <sys/fs/zfs.h>
b128c09f 42#include <sys/arc.h>
9babb374 43#include <sys/zil.h>
428870ff 44#include <sys/dsl_scan.h>
6c285672 45#include <sys/zvol.h>
34dc7c2f
BB
46
47/*
48 * Virtual device management.
49 */
50
51static vdev_ops_t *vdev_ops_table[] = {
52 &vdev_root_ops,
53 &vdev_raidz_ops,
54 &vdev_mirror_ops,
55 &vdev_replacing_ops,
56 &vdev_spare_ops,
57 &vdev_disk_ops,
58 &vdev_file_ops,
59 &vdev_missing_ops,
428870ff 60 &vdev_hole_ops,
34dc7c2f
BB
61 NULL
62};
63
34dc7c2f
BB
64/*
65 * Given a vdev type, return the appropriate ops vector.
66 */
67static vdev_ops_t *
68vdev_getops(const char *type)
69{
70 vdev_ops_t *ops, **opspp;
71
72 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
73 if (strcmp(ops->vdev_op_type, type) == 0)
74 break;
75
76 return (ops);
77}
78
79/*
80 * Default asize function: return the MAX of psize with the asize of
81 * all children. This is what's used by anything other than RAID-Z.
82 */
83uint64_t
84vdev_default_asize(vdev_t *vd, uint64_t psize)
85{
86 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
87 uint64_t csize;
d6320ddb 88 int c;
34dc7c2f 89
d6320ddb 90 for (c = 0; c < vd->vdev_children; c++) {
34dc7c2f
BB
91 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
92 asize = MAX(asize, csize);
93 }
94
95 return (asize);
96}
97
98/*
9babb374
BB
99 * Get the minimum allocatable size. We define the allocatable size as
100 * the vdev's asize rounded to the nearest metaslab. This allows us to
101 * replace or attach devices which don't have the same physical size but
102 * can still satisfy the same number of allocations.
34dc7c2f
BB
103 */
104uint64_t
9babb374 105vdev_get_min_asize(vdev_t *vd)
34dc7c2f 106{
9babb374 107 vdev_t *pvd = vd->vdev_parent;
34dc7c2f 108
9babb374 109 /*
1bd201e7 110 * If our parent is NULL (inactive spare or cache) or is the root,
9babb374
BB
111 * just return our own asize.
112 */
113 if (pvd == NULL)
114 return (vd->vdev_asize);
34dc7c2f
BB
115
116 /*
9babb374
BB
117 * The top-level vdev just returns the allocatable size rounded
118 * to the nearest metaslab.
34dc7c2f 119 */
9babb374
BB
120 if (vd == vd->vdev_top)
121 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
34dc7c2f 122
9babb374
BB
123 /*
124 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
125 * so each child must provide at least 1/Nth of its asize.
126 */
127 if (pvd->vdev_ops == &vdev_raidz_ops)
128 return (pvd->vdev_min_asize / pvd->vdev_children);
34dc7c2f 129
9babb374
BB
130 return (pvd->vdev_min_asize);
131}
132
133void
134vdev_set_min_asize(vdev_t *vd)
135{
d6320ddb 136 int c;
9babb374 137 vd->vdev_min_asize = vdev_get_min_asize(vd);
34dc7c2f 138
d6320ddb 139 for (c = 0; c < vd->vdev_children; c++)
9babb374 140 vdev_set_min_asize(vd->vdev_child[c]);
34dc7c2f
BB
141}
142
143vdev_t *
144vdev_lookup_top(spa_t *spa, uint64_t vdev)
145{
146 vdev_t *rvd = spa->spa_root_vdev;
147
b128c09f 148 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
34dc7c2f 149
b128c09f
BB
150 if (vdev < rvd->vdev_children) {
151 ASSERT(rvd->vdev_child[vdev] != NULL);
34dc7c2f 152 return (rvd->vdev_child[vdev]);
b128c09f 153 }
34dc7c2f
BB
154
155 return (NULL);
156}
157
158vdev_t *
159vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
160{
34dc7c2f 161 vdev_t *mvd;
d6320ddb 162 int c;
34dc7c2f
BB
163
164 if (vd->vdev_guid == guid)
165 return (vd);
166
d6320ddb 167 for (c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
168 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
169 NULL)
170 return (mvd);
171
172 return (NULL);
173}
174
175void
176vdev_add_child(vdev_t *pvd, vdev_t *cvd)
177{
178 size_t oldsize, newsize;
179 uint64_t id = cvd->vdev_id;
180 vdev_t **newchild;
181
b128c09f 182 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
183 ASSERT(cvd->vdev_parent == NULL);
184
185 cvd->vdev_parent = pvd;
186
187 if (pvd == NULL)
188 return;
189
190 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
191
192 oldsize = pvd->vdev_children * sizeof (vdev_t *);
193 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
194 newsize = pvd->vdev_children * sizeof (vdev_t *);
195
b8d06fca 196 newchild = kmem_zalloc(newsize, KM_PUSHPAGE);
34dc7c2f
BB
197 if (pvd->vdev_child != NULL) {
198 bcopy(pvd->vdev_child, newchild, oldsize);
199 kmem_free(pvd->vdev_child, oldsize);
200 }
201
202 pvd->vdev_child = newchild;
203 pvd->vdev_child[id] = cvd;
204
205 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
206 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
207
208 /*
209 * Walk up all ancestors to update guid sum.
210 */
211 for (; pvd != NULL; pvd = pvd->vdev_parent)
212 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
34dc7c2f
BB
213}
214
215void
216vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
217{
218 int c;
219 uint_t id = cvd->vdev_id;
220
221 ASSERT(cvd->vdev_parent == pvd);
222
223 if (pvd == NULL)
224 return;
225
226 ASSERT(id < pvd->vdev_children);
227 ASSERT(pvd->vdev_child[id] == cvd);
228
229 pvd->vdev_child[id] = NULL;
230 cvd->vdev_parent = NULL;
231
232 for (c = 0; c < pvd->vdev_children; c++)
233 if (pvd->vdev_child[c])
234 break;
235
236 if (c == pvd->vdev_children) {
237 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
238 pvd->vdev_child = NULL;
239 pvd->vdev_children = 0;
240 }
241
242 /*
243 * Walk up all ancestors to update guid sum.
244 */
245 for (; pvd != NULL; pvd = pvd->vdev_parent)
246 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
34dc7c2f
BB
247}
248
249/*
250 * Remove any holes in the child array.
251 */
252void
253vdev_compact_children(vdev_t *pvd)
254{
255 vdev_t **newchild, *cvd;
256 int oldc = pvd->vdev_children;
9babb374 257 int newc;
d6320ddb 258 int c;
34dc7c2f 259
b128c09f 260 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f 261
d6320ddb 262 for (c = newc = 0; c < oldc; c++)
34dc7c2f
BB
263 if (pvd->vdev_child[c])
264 newc++;
265
b8d06fca 266 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_PUSHPAGE);
34dc7c2f 267
d6320ddb 268 for (c = newc = 0; c < oldc; c++) {
34dc7c2f
BB
269 if ((cvd = pvd->vdev_child[c]) != NULL) {
270 newchild[newc] = cvd;
271 cvd->vdev_id = newc++;
272 }
273 }
274
275 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
276 pvd->vdev_child = newchild;
277 pvd->vdev_children = newc;
278}
279
280/*
281 * Allocate and minimally initialize a vdev_t.
282 */
428870ff 283vdev_t *
34dc7c2f
BB
284vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
285{
286 vdev_t *vd;
d6320ddb 287 int t;
34dc7c2f 288
b8d06fca 289 vd = kmem_zalloc(sizeof (vdev_t), KM_PUSHPAGE);
34dc7c2f
BB
290
291 if (spa->spa_root_vdev == NULL) {
292 ASSERT(ops == &vdev_root_ops);
293 spa->spa_root_vdev = vd;
3541dc6d 294 spa->spa_load_guid = spa_generate_guid(NULL);
34dc7c2f
BB
295 }
296
428870ff 297 if (guid == 0 && ops != &vdev_hole_ops) {
34dc7c2f
BB
298 if (spa->spa_root_vdev == vd) {
299 /*
300 * The root vdev's guid will also be the pool guid,
301 * which must be unique among all pools.
302 */
428870ff 303 guid = spa_generate_guid(NULL);
34dc7c2f
BB
304 } else {
305 /*
306 * Any other vdev's guid must be unique within the pool.
307 */
428870ff 308 guid = spa_generate_guid(spa);
34dc7c2f
BB
309 }
310 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
311 }
312
313 vd->vdev_spa = spa;
314 vd->vdev_id = id;
315 vd->vdev_guid = guid;
316 vd->vdev_guid_sum = guid;
317 vd->vdev_ops = ops;
318 vd->vdev_state = VDEV_STATE_CLOSED;
428870ff 319 vd->vdev_ishole = (ops == &vdev_hole_ops);
34dc7c2f 320
98f72a53
BB
321 list_link_init(&vd->vdev_config_dirty_node);
322 list_link_init(&vd->vdev_state_dirty_node);
34dc7c2f
BB
323 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
324 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
b128c09f 325 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
d6320ddb 326 for (t = 0; t < DTL_TYPES; t++) {
fb5f0bc8
BB
327 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
328 &vd->vdev_dtl_lock);
329 }
34dc7c2f
BB
330 txg_list_create(&vd->vdev_ms_list,
331 offsetof(struct metaslab, ms_txg_node));
332 txg_list_create(&vd->vdev_dtl_list,
333 offsetof(struct vdev, vdev_dtl_node));
334 vd->vdev_stat.vs_timestamp = gethrtime();
335 vdev_queue_init(vd);
336 vdev_cache_init(vd);
337
338 return (vd);
339}
340
341/*
342 * Allocate a new vdev. The 'alloctype' is used to control whether we are
343 * creating a new vdev or loading an existing one - the behavior is slightly
344 * different for each case.
345 */
346int
347vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
348 int alloctype)
349{
350 vdev_ops_t *ops;
351 char *type;
352 uint64_t guid = 0, islog, nparity;
353 vdev_t *vd;
354
b128c09f 355 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
356
357 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
2e528b49 358 return (SET_ERROR(EINVAL));
34dc7c2f
BB
359
360 if ((ops = vdev_getops(type)) == NULL)
2e528b49 361 return (SET_ERROR(EINVAL));
34dc7c2f
BB
362
363 /*
364 * If this is a load, get the vdev guid from the nvlist.
365 * Otherwise, vdev_alloc_common() will generate one for us.
366 */
367 if (alloctype == VDEV_ALLOC_LOAD) {
368 uint64_t label_id;
369
370 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
371 label_id != id)
2e528b49 372 return (SET_ERROR(EINVAL));
34dc7c2f
BB
373
374 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
2e528b49 375 return (SET_ERROR(EINVAL));
34dc7c2f
BB
376 } else if (alloctype == VDEV_ALLOC_SPARE) {
377 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
2e528b49 378 return (SET_ERROR(EINVAL));
34dc7c2f
BB
379 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
380 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
2e528b49 381 return (SET_ERROR(EINVAL));
9babb374
BB
382 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
383 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
2e528b49 384 return (SET_ERROR(EINVAL));
34dc7c2f
BB
385 }
386
387 /*
388 * The first allocated vdev must be of type 'root'.
389 */
390 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
2e528b49 391 return (SET_ERROR(EINVAL));
34dc7c2f
BB
392
393 /*
394 * Determine whether we're a log vdev.
395 */
396 islog = 0;
397 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
398 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
2e528b49 399 return (SET_ERROR(ENOTSUP));
34dc7c2f 400
428870ff 401 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
2e528b49 402 return (SET_ERROR(ENOTSUP));
428870ff 403
34dc7c2f
BB
404 /*
405 * Set the nparity property for RAID-Z vdevs.
406 */
407 nparity = -1ULL;
408 if (ops == &vdev_raidz_ops) {
409 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
410 &nparity) == 0) {
428870ff 411 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
2e528b49 412 return (SET_ERROR(EINVAL));
34dc7c2f 413 /*
45d1cae3
BB
414 * Previous versions could only support 1 or 2 parity
415 * device.
34dc7c2f 416 */
45d1cae3
BB
417 if (nparity > 1 &&
418 spa_version(spa) < SPA_VERSION_RAIDZ2)
2e528b49 419 return (SET_ERROR(ENOTSUP));
45d1cae3
BB
420 if (nparity > 2 &&
421 spa_version(spa) < SPA_VERSION_RAIDZ3)
2e528b49 422 return (SET_ERROR(ENOTSUP));
34dc7c2f
BB
423 } else {
424 /*
425 * We require the parity to be specified for SPAs that
426 * support multiple parity levels.
427 */
45d1cae3 428 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
2e528b49 429 return (SET_ERROR(EINVAL));
34dc7c2f
BB
430 /*
431 * Otherwise, we default to 1 parity device for RAID-Z.
432 */
433 nparity = 1;
434 }
435 } else {
436 nparity = 0;
437 }
438 ASSERT(nparity != -1ULL);
439
440 vd = vdev_alloc_common(spa, id, guid, ops);
441
442 vd->vdev_islog = islog;
443 vd->vdev_nparity = nparity;
444
445 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
446 vd->vdev_path = spa_strdup(vd->vdev_path);
447 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
448 vd->vdev_devid = spa_strdup(vd->vdev_devid);
449 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
450 &vd->vdev_physpath) == 0)
451 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
9babb374
BB
452 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
453 vd->vdev_fru = spa_strdup(vd->vdev_fru);
34dc7c2f
BB
454
455 /*
456 * Set the whole_disk property. If it's not specified, leave the value
457 * as -1.
458 */
459 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
460 &vd->vdev_wholedisk) != 0)
461 vd->vdev_wholedisk = -1ULL;
462
463 /*
464 * Look for the 'not present' flag. This will only be set if the device
465 * was not present at the time of import.
466 */
9babb374
BB
467 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
468 &vd->vdev_not_present);
34dc7c2f
BB
469
470 /*
471 * Get the alignment requirement.
472 */
473 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
474
428870ff
BB
475 /*
476 * Retrieve the vdev creation time.
477 */
478 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
479 &vd->vdev_crtxg);
480
34dc7c2f
BB
481 /*
482 * If we're a top-level vdev, try to load the allocation parameters.
483 */
428870ff
BB
484 if (parent && !parent->vdev_parent &&
485 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
34dc7c2f
BB
486 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
487 &vd->vdev_ms_array);
488 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
489 &vd->vdev_ms_shift);
490 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
491 &vd->vdev_asize);
428870ff
BB
492 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
493 &vd->vdev_removing);
494 }
495
5ffb9d1d 496 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
428870ff
BB
497 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
498 alloctype == VDEV_ALLOC_ADD ||
499 alloctype == VDEV_ALLOC_SPLIT ||
500 alloctype == VDEV_ALLOC_ROOTPOOL);
501 vd->vdev_mg = metaslab_group_create(islog ?
502 spa_log_class(spa) : spa_normal_class(spa), vd);
34dc7c2f
BB
503 }
504
505 /*
506 * If we're a leaf vdev, try to load the DTL object and other state.
507 */
b128c09f 508 if (vd->vdev_ops->vdev_op_leaf &&
9babb374
BB
509 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
510 alloctype == VDEV_ALLOC_ROOTPOOL)) {
b128c09f
BB
511 if (alloctype == VDEV_ALLOC_LOAD) {
512 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
fb5f0bc8 513 &vd->vdev_dtl_smo.smo_object);
b128c09f
BB
514 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
515 &vd->vdev_unspare);
516 }
9babb374
BB
517
518 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
519 uint64_t spare = 0;
520
521 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
522 &spare) == 0 && spare)
523 spa_spare_add(vd);
524 }
525
34dc7c2f
BB
526 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
527 &vd->vdev_offline);
b128c09f 528
572e2857
BB
529 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
530 &vd->vdev_resilvering);
531
34dc7c2f
BB
532 /*
533 * When importing a pool, we want to ignore the persistent fault
534 * state, as the diagnosis made on another system may not be
428870ff
BB
535 * valid in the current context. Local vdevs will
536 * remain in the faulted state.
34dc7c2f 537 */
428870ff 538 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
34dc7c2f
BB
539 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
540 &vd->vdev_faulted);
541 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
542 &vd->vdev_degraded);
543 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
544 &vd->vdev_removed);
428870ff
BB
545
546 if (vd->vdev_faulted || vd->vdev_degraded) {
547 char *aux;
548
549 vd->vdev_label_aux =
550 VDEV_AUX_ERR_EXCEEDED;
551 if (nvlist_lookup_string(nv,
552 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
553 strcmp(aux, "external") == 0)
554 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
555 }
34dc7c2f
BB
556 }
557 }
558
559 /*
560 * Add ourselves to the parent's list of children.
561 */
562 vdev_add_child(parent, vd);
563
564 *vdp = vd;
565
566 return (0);
567}
568
569void
570vdev_free(vdev_t *vd)
571{
d6320ddb 572 int c, t;
34dc7c2f
BB
573 spa_t *spa = vd->vdev_spa;
574
575 /*
576 * vdev_free() implies closing the vdev first. This is simpler than
577 * trying to ensure complicated semantics for all callers.
578 */
579 vdev_close(vd);
580
b128c09f 581 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
428870ff 582 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
34dc7c2f
BB
583
584 /*
585 * Free all children.
586 */
d6320ddb 587 for (c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
588 vdev_free(vd->vdev_child[c]);
589
590 ASSERT(vd->vdev_child == NULL);
591 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
592
593 /*
594 * Discard allocation state.
595 */
428870ff 596 if (vd->vdev_mg != NULL) {
34dc7c2f 597 vdev_metaslab_fini(vd);
428870ff
BB
598 metaslab_group_destroy(vd->vdev_mg);
599 }
34dc7c2f 600
c99c9001
MS
601 ASSERT0(vd->vdev_stat.vs_space);
602 ASSERT0(vd->vdev_stat.vs_dspace);
603 ASSERT0(vd->vdev_stat.vs_alloc);
34dc7c2f
BB
604
605 /*
606 * Remove this vdev from its parent's child list.
607 */
608 vdev_remove_child(vd->vdev_parent, vd);
609
610 ASSERT(vd->vdev_parent == NULL);
611
612 /*
613 * Clean up vdev structure.
614 */
615 vdev_queue_fini(vd);
616 vdev_cache_fini(vd);
617
618 if (vd->vdev_path)
619 spa_strfree(vd->vdev_path);
620 if (vd->vdev_devid)
621 spa_strfree(vd->vdev_devid);
622 if (vd->vdev_physpath)
623 spa_strfree(vd->vdev_physpath);
9babb374
BB
624 if (vd->vdev_fru)
625 spa_strfree(vd->vdev_fru);
34dc7c2f
BB
626
627 if (vd->vdev_isspare)
628 spa_spare_remove(vd);
629 if (vd->vdev_isl2cache)
630 spa_l2cache_remove(vd);
631
632 txg_list_destroy(&vd->vdev_ms_list);
633 txg_list_destroy(&vd->vdev_dtl_list);
fb5f0bc8 634
34dc7c2f 635 mutex_enter(&vd->vdev_dtl_lock);
d6320ddb 636 for (t = 0; t < DTL_TYPES; t++) {
fb5f0bc8
BB
637 space_map_unload(&vd->vdev_dtl[t]);
638 space_map_destroy(&vd->vdev_dtl[t]);
639 }
34dc7c2f 640 mutex_exit(&vd->vdev_dtl_lock);
fb5f0bc8 641
34dc7c2f
BB
642 mutex_destroy(&vd->vdev_dtl_lock);
643 mutex_destroy(&vd->vdev_stat_lock);
b128c09f 644 mutex_destroy(&vd->vdev_probe_lock);
34dc7c2f
BB
645
646 if (vd == spa->spa_root_vdev)
647 spa->spa_root_vdev = NULL;
648
649 kmem_free(vd, sizeof (vdev_t));
650}
651
652/*
653 * Transfer top-level vdev state from svd to tvd.
654 */
655static void
656vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
657{
658 spa_t *spa = svd->vdev_spa;
659 metaslab_t *msp;
660 vdev_t *vd;
661 int t;
662
663 ASSERT(tvd == tvd->vdev_top);
664
665 tvd->vdev_ms_array = svd->vdev_ms_array;
666 tvd->vdev_ms_shift = svd->vdev_ms_shift;
667 tvd->vdev_ms_count = svd->vdev_ms_count;
668
669 svd->vdev_ms_array = 0;
670 svd->vdev_ms_shift = 0;
671 svd->vdev_ms_count = 0;
672
5ffb9d1d
GW
673 if (tvd->vdev_mg)
674 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
34dc7c2f
BB
675 tvd->vdev_mg = svd->vdev_mg;
676 tvd->vdev_ms = svd->vdev_ms;
677
678 svd->vdev_mg = NULL;
679 svd->vdev_ms = NULL;
680
681 if (tvd->vdev_mg != NULL)
682 tvd->vdev_mg->mg_vd = tvd;
683
684 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
685 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
686 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
687
688 svd->vdev_stat.vs_alloc = 0;
689 svd->vdev_stat.vs_space = 0;
690 svd->vdev_stat.vs_dspace = 0;
691
692 for (t = 0; t < TXG_SIZE; t++) {
693 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
694 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
695 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
696 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
697 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
698 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
699 }
700
b128c09f 701 if (list_link_active(&svd->vdev_config_dirty_node)) {
34dc7c2f
BB
702 vdev_config_clean(svd);
703 vdev_config_dirty(tvd);
704 }
705
b128c09f
BB
706 if (list_link_active(&svd->vdev_state_dirty_node)) {
707 vdev_state_clean(svd);
708 vdev_state_dirty(tvd);
709 }
710
34dc7c2f
BB
711 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
712 svd->vdev_deflate_ratio = 0;
713
714 tvd->vdev_islog = svd->vdev_islog;
715 svd->vdev_islog = 0;
716}
717
718static void
719vdev_top_update(vdev_t *tvd, vdev_t *vd)
720{
d6320ddb
BB
721 int c;
722
34dc7c2f
BB
723 if (vd == NULL)
724 return;
725
726 vd->vdev_top = tvd;
727
d6320ddb 728 for (c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
729 vdev_top_update(tvd, vd->vdev_child[c]);
730}
731
732/*
733 * Add a mirror/replacing vdev above an existing vdev.
734 */
735vdev_t *
736vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
737{
738 spa_t *spa = cvd->vdev_spa;
739 vdev_t *pvd = cvd->vdev_parent;
740 vdev_t *mvd;
741
b128c09f 742 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
743
744 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
745
746 mvd->vdev_asize = cvd->vdev_asize;
9babb374 747 mvd->vdev_min_asize = cvd->vdev_min_asize;
1bd201e7 748 mvd->vdev_max_asize = cvd->vdev_max_asize;
34dc7c2f
BB
749 mvd->vdev_ashift = cvd->vdev_ashift;
750 mvd->vdev_state = cvd->vdev_state;
428870ff 751 mvd->vdev_crtxg = cvd->vdev_crtxg;
34dc7c2f
BB
752
753 vdev_remove_child(pvd, cvd);
754 vdev_add_child(pvd, mvd);
755 cvd->vdev_id = mvd->vdev_children;
756 vdev_add_child(mvd, cvd);
757 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
758
759 if (mvd == mvd->vdev_top)
760 vdev_top_transfer(cvd, mvd);
761
762 return (mvd);
763}
764
765/*
766 * Remove a 1-way mirror/replacing vdev from the tree.
767 */
768void
769vdev_remove_parent(vdev_t *cvd)
770{
771 vdev_t *mvd = cvd->vdev_parent;
772 vdev_t *pvd = mvd->vdev_parent;
773
b128c09f 774 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
775
776 ASSERT(mvd->vdev_children == 1);
777 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
778 mvd->vdev_ops == &vdev_replacing_ops ||
779 mvd->vdev_ops == &vdev_spare_ops);
780 cvd->vdev_ashift = mvd->vdev_ashift;
781
782 vdev_remove_child(mvd, cvd);
783 vdev_remove_child(pvd, mvd);
fb5f0bc8 784
34dc7c2f 785 /*
b128c09f
BB
786 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
787 * Otherwise, we could have detached an offline device, and when we
788 * go to import the pool we'll think we have two top-level vdevs,
789 * instead of a different version of the same top-level vdev.
34dc7c2f 790 */
fb5f0bc8
BB
791 if (mvd->vdev_top == mvd) {
792 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
428870ff 793 cvd->vdev_orig_guid = cvd->vdev_guid;
fb5f0bc8
BB
794 cvd->vdev_guid += guid_delta;
795 cvd->vdev_guid_sum += guid_delta;
796 }
b128c09f
BB
797 cvd->vdev_id = mvd->vdev_id;
798 vdev_add_child(pvd, cvd);
34dc7c2f
BB
799 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
800
801 if (cvd == cvd->vdev_top)
802 vdev_top_transfer(mvd, cvd);
803
804 ASSERT(mvd->vdev_children == 0);
805 vdev_free(mvd);
806}
807
808int
809vdev_metaslab_init(vdev_t *vd, uint64_t txg)
810{
811 spa_t *spa = vd->vdev_spa;
812 objset_t *mos = spa->spa_meta_objset;
34dc7c2f
BB
813 uint64_t m;
814 uint64_t oldc = vd->vdev_ms_count;
815 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
816 metaslab_t **mspp;
817 int error;
818
428870ff
BB
819 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
820
821 /*
822 * This vdev is not being allocated from yet or is a hole.
823 */
824 if (vd->vdev_ms_shift == 0)
34dc7c2f
BB
825 return (0);
826
428870ff
BB
827 ASSERT(!vd->vdev_ishole);
828
9babb374
BB
829 /*
830 * Compute the raidz-deflation ratio. Note, we hard-code
831 * in 128k (1 << 17) because it is the current "typical" blocksize.
832 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
833 * or we will inconsistently account for existing bp's.
834 */
835 vd->vdev_deflate_ratio = (1 << 17) /
836 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
837
34dc7c2f
BB
838 ASSERT(oldc <= newc);
839
b8d06fca 840 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_PUSHPAGE | KM_NODEBUG);
34dc7c2f
BB
841
842 if (oldc != 0) {
843 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
844 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
845 }
846
847 vd->vdev_ms = mspp;
848 vd->vdev_ms_count = newc;
849
850 for (m = oldc; m < newc; m++) {
851 space_map_obj_t smo = { 0, 0, 0 };
852 if (txg == 0) {
853 uint64_t object = 0;
854 error = dmu_read(mos, vd->vdev_ms_array,
9babb374
BB
855 m * sizeof (uint64_t), sizeof (uint64_t), &object,
856 DMU_READ_PREFETCH);
34dc7c2f
BB
857 if (error)
858 return (error);
859 if (object != 0) {
860 dmu_buf_t *db;
861 error = dmu_bonus_hold(mos, object, FTAG, &db);
862 if (error)
863 return (error);
864 ASSERT3U(db->db_size, >=, sizeof (smo));
865 bcopy(db->db_data, &smo, sizeof (smo));
866 ASSERT3U(smo.smo_object, ==, object);
867 dmu_buf_rele(db, FTAG);
868 }
869 }
870 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
871 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
872 }
873
428870ff
BB
874 if (txg == 0)
875 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
876
877 /*
878 * If the vdev is being removed we don't activate
879 * the metaslabs since we want to ensure that no new
880 * allocations are performed on this device.
881 */
882 if (oldc == 0 && !vd->vdev_removing)
883 metaslab_group_activate(vd->vdev_mg);
884
885 if (txg == 0)
886 spa_config_exit(spa, SCL_ALLOC, FTAG);
887
34dc7c2f
BB
888 return (0);
889}
890
891void
892vdev_metaslab_fini(vdev_t *vd)
893{
894 uint64_t m;
895 uint64_t count = vd->vdev_ms_count;
896
897 if (vd->vdev_ms != NULL) {
428870ff 898 metaslab_group_passivate(vd->vdev_mg);
34dc7c2f
BB
899 for (m = 0; m < count; m++)
900 if (vd->vdev_ms[m] != NULL)
901 metaslab_fini(vd->vdev_ms[m]);
902 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
903 vd->vdev_ms = NULL;
904 }
920dd524
ED
905
906 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
34dc7c2f
BB
907}
908
b128c09f
BB
909typedef struct vdev_probe_stats {
910 boolean_t vps_readable;
911 boolean_t vps_writeable;
912 int vps_flags;
b128c09f
BB
913} vdev_probe_stats_t;
914
915static void
916vdev_probe_done(zio_t *zio)
34dc7c2f 917{
fb5f0bc8 918 spa_t *spa = zio->io_spa;
d164b209 919 vdev_t *vd = zio->io_vd;
b128c09f 920 vdev_probe_stats_t *vps = zio->io_private;
d164b209
BB
921
922 ASSERT(vd->vdev_probe_zio != NULL);
b128c09f
BB
923
924 if (zio->io_type == ZIO_TYPE_READ) {
b128c09f
BB
925 if (zio->io_error == 0)
926 vps->vps_readable = 1;
fb5f0bc8 927 if (zio->io_error == 0 && spa_writeable(spa)) {
d164b209 928 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
b128c09f
BB
929 zio->io_offset, zio->io_size, zio->io_data,
930 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
931 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
932 } else {
933 zio_buf_free(zio->io_data, zio->io_size);
934 }
935 } else if (zio->io_type == ZIO_TYPE_WRITE) {
b128c09f
BB
936 if (zio->io_error == 0)
937 vps->vps_writeable = 1;
938 zio_buf_free(zio->io_data, zio->io_size);
939 } else if (zio->io_type == ZIO_TYPE_NULL) {
d164b209 940 zio_t *pio;
b128c09f
BB
941
942 vd->vdev_cant_read |= !vps->vps_readable;
943 vd->vdev_cant_write |= !vps->vps_writeable;
944
945 if (vdev_readable(vd) &&
fb5f0bc8 946 (vdev_writeable(vd) || !spa_writeable(spa))) {
b128c09f
BB
947 zio->io_error = 0;
948 } else {
949 ASSERT(zio->io_error != 0);
950 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
fb5f0bc8 951 spa, vd, NULL, 0, 0);
2e528b49 952 zio->io_error = SET_ERROR(ENXIO);
b128c09f 953 }
d164b209
BB
954
955 mutex_enter(&vd->vdev_probe_lock);
956 ASSERT(vd->vdev_probe_zio == zio);
957 vd->vdev_probe_zio = NULL;
958 mutex_exit(&vd->vdev_probe_lock);
959
960 while ((pio = zio_walk_parents(zio)) != NULL)
961 if (!vdev_accessible(vd, pio))
2e528b49 962 pio->io_error = SET_ERROR(ENXIO);
d164b209 963
b128c09f
BB
964 kmem_free(vps, sizeof (*vps));
965 }
966}
34dc7c2f 967
b128c09f 968/*
d3cc8b15
WA
969 * Determine whether this device is accessible.
970 *
971 * Read and write to several known locations: the pad regions of each
972 * vdev label but the first, which we leave alone in case it contains
973 * a VTOC.
b128c09f
BB
974 */
975zio_t *
d164b209 976vdev_probe(vdev_t *vd, zio_t *zio)
b128c09f
BB
977{
978 spa_t *spa = vd->vdev_spa;
d164b209
BB
979 vdev_probe_stats_t *vps = NULL;
980 zio_t *pio;
d6320ddb 981 int l;
d164b209
BB
982
983 ASSERT(vd->vdev_ops->vdev_op_leaf);
34dc7c2f 984
d164b209
BB
985 /*
986 * Don't probe the probe.
987 */
988 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
989 return (NULL);
b128c09f 990
d164b209
BB
991 /*
992 * To prevent 'probe storms' when a device fails, we create
993 * just one probe i/o at a time. All zios that want to probe
994 * this vdev will become parents of the probe io.
995 */
996 mutex_enter(&vd->vdev_probe_lock);
b128c09f 997
d164b209 998 if ((pio = vd->vdev_probe_zio) == NULL) {
b8d06fca 999 vps = kmem_zalloc(sizeof (*vps), KM_PUSHPAGE);
d164b209
BB
1000
1001 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1002 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
9babb374 1003 ZIO_FLAG_TRYHARD;
d164b209
BB
1004
1005 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1006 /*
1007 * vdev_cant_read and vdev_cant_write can only
1008 * transition from TRUE to FALSE when we have the
1009 * SCL_ZIO lock as writer; otherwise they can only
1010 * transition from FALSE to TRUE. This ensures that
1011 * any zio looking at these values can assume that
1012 * failures persist for the life of the I/O. That's
1013 * important because when a device has intermittent
1014 * connectivity problems, we want to ensure that
1015 * they're ascribed to the device (ENXIO) and not
1016 * the zio (EIO).
1017 *
1018 * Since we hold SCL_ZIO as writer here, clear both
1019 * values so the probe can reevaluate from first
1020 * principles.
1021 */
1022 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1023 vd->vdev_cant_read = B_FALSE;
1024 vd->vdev_cant_write = B_FALSE;
1025 }
1026
1027 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1028 vdev_probe_done, vps,
1029 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1030
428870ff
BB
1031 /*
1032 * We can't change the vdev state in this context, so we
1033 * kick off an async task to do it on our behalf.
1034 */
d164b209
BB
1035 if (zio != NULL) {
1036 vd->vdev_probe_wanted = B_TRUE;
1037 spa_async_request(spa, SPA_ASYNC_PROBE);
1038 }
b128c09f
BB
1039 }
1040
d164b209
BB
1041 if (zio != NULL)
1042 zio_add_child(zio, pio);
b128c09f 1043
d164b209 1044 mutex_exit(&vd->vdev_probe_lock);
b128c09f 1045
d164b209
BB
1046 if (vps == NULL) {
1047 ASSERT(zio != NULL);
1048 return (NULL);
1049 }
b128c09f 1050
d6320ddb 1051 for (l = 1; l < VDEV_LABELS; l++) {
d164b209 1052 zio_nowait(zio_read_phys(pio, vd,
b128c09f 1053 vdev_label_offset(vd->vdev_psize, l,
9babb374
BB
1054 offsetof(vdev_label_t, vl_pad2)),
1055 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
b128c09f
BB
1056 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1057 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1058 }
1059
d164b209
BB
1060 if (zio == NULL)
1061 return (pio);
1062
1063 zio_nowait(pio);
1064 return (NULL);
34dc7c2f
BB
1065}
1066
45d1cae3
BB
1067static void
1068vdev_open_child(void *arg)
1069{
1070 vdev_t *vd = arg;
1071
1072 vd->vdev_open_thread = curthread;
1073 vd->vdev_open_error = vdev_open(vd);
1074 vd->vdev_open_thread = NULL;
1075}
1076
6c285672 1077static boolean_t
428870ff
BB
1078vdev_uses_zvols(vdev_t *vd)
1079{
d6320ddb
BB
1080 int c;
1081
6c285672
JL
1082#ifdef _KERNEL
1083 if (zvol_is_zvol(vd->vdev_path))
428870ff 1084 return (B_TRUE);
6c285672
JL
1085#endif
1086
d6320ddb 1087 for (c = 0; c < vd->vdev_children; c++)
428870ff
BB
1088 if (vdev_uses_zvols(vd->vdev_child[c]))
1089 return (B_TRUE);
6c285672 1090
428870ff
BB
1091 return (B_FALSE);
1092}
1093
45d1cae3
BB
1094void
1095vdev_open_children(vdev_t *vd)
1096{
1097 taskq_t *tq;
1098 int children = vd->vdev_children;
d6320ddb 1099 int c;
45d1cae3 1100
428870ff
BB
1101 /*
1102 * in order to handle pools on top of zvols, do the opens
1103 * in a single thread so that the same thread holds the
1104 * spa_namespace_lock
1105 */
1106 if (vdev_uses_zvols(vd)) {
d6320ddb 1107 for (c = 0; c < children; c++)
428870ff
BB
1108 vd->vdev_child[c]->vdev_open_error =
1109 vdev_open(vd->vdev_child[c]);
1110 return;
1111 }
45d1cae3
BB
1112 tq = taskq_create("vdev_open", children, minclsyspri,
1113 children, children, TASKQ_PREPOPULATE);
1114
d6320ddb 1115 for (c = 0; c < children; c++)
45d1cae3 1116 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
d6320ddb 1117 TQ_SLEEP) != 0);
45d1cae3
BB
1118
1119 taskq_destroy(tq);
1120}
1121
34dc7c2f
BB
1122/*
1123 * Prepare a virtual device for access.
1124 */
1125int
1126vdev_open(vdev_t *vd)
1127{
fb5f0bc8 1128 spa_t *spa = vd->vdev_spa;
34dc7c2f 1129 int error;
34dc7c2f 1130 uint64_t osize = 0;
1bd201e7
CS
1131 uint64_t max_osize = 0;
1132 uint64_t asize, max_asize, psize;
34dc7c2f 1133 uint64_t ashift = 0;
d6320ddb 1134 int c;
34dc7c2f 1135
45d1cae3
BB
1136 ASSERT(vd->vdev_open_thread == curthread ||
1137 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
34dc7c2f
BB
1138 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1139 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1140 vd->vdev_state == VDEV_STATE_OFFLINE);
1141
34dc7c2f 1142 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
9babb374
BB
1143 vd->vdev_cant_read = B_FALSE;
1144 vd->vdev_cant_write = B_FALSE;
1145 vd->vdev_min_asize = vdev_get_min_asize(vd);
34dc7c2f 1146
428870ff
BB
1147 /*
1148 * If this vdev is not removed, check its fault status. If it's
1149 * faulted, bail out of the open.
1150 */
34dc7c2f
BB
1151 if (!vd->vdev_removed && vd->vdev_faulted) {
1152 ASSERT(vd->vdev_children == 0);
428870ff
BB
1153 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1154 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
34dc7c2f 1155 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
428870ff 1156 vd->vdev_label_aux);
2e528b49 1157 return (SET_ERROR(ENXIO));
34dc7c2f
BB
1158 } else if (vd->vdev_offline) {
1159 ASSERT(vd->vdev_children == 0);
1160 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
2e528b49 1161 return (SET_ERROR(ENXIO));
34dc7c2f
BB
1162 }
1163
1bd201e7 1164 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
34dc7c2f 1165
428870ff
BB
1166 /*
1167 * Reset the vdev_reopening flag so that we actually close
1168 * the vdev on error.
1169 */
1170 vd->vdev_reopening = B_FALSE;
34dc7c2f 1171 if (zio_injection_enabled && error == 0)
9babb374 1172 error = zio_handle_device_injection(vd, NULL, ENXIO);
34dc7c2f
BB
1173
1174 if (error) {
1175 if (vd->vdev_removed &&
1176 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1177 vd->vdev_removed = B_FALSE;
1178
1179 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1180 vd->vdev_stat.vs_aux);
1181 return (error);
1182 }
1183
1184 vd->vdev_removed = B_FALSE;
1185
428870ff
BB
1186 /*
1187 * Recheck the faulted flag now that we have confirmed that
1188 * the vdev is accessible. If we're faulted, bail.
1189 */
1190 if (vd->vdev_faulted) {
1191 ASSERT(vd->vdev_children == 0);
1192 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1193 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1194 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1195 vd->vdev_label_aux);
2e528b49 1196 return (SET_ERROR(ENXIO));
428870ff
BB
1197 }
1198
34dc7c2f
BB
1199 if (vd->vdev_degraded) {
1200 ASSERT(vd->vdev_children == 0);
1201 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1202 VDEV_AUX_ERR_EXCEEDED);
1203 } else {
428870ff 1204 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
34dc7c2f
BB
1205 }
1206
428870ff
BB
1207 /*
1208 * For hole or missing vdevs we just return success.
1209 */
1210 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1211 return (0);
1212
d6320ddb 1213 for (c = 0; c < vd->vdev_children; c++) {
34dc7c2f
BB
1214 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1215 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1216 VDEV_AUX_NONE);
1217 break;
1218 }
9babb374 1219 }
34dc7c2f
BB
1220
1221 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1bd201e7 1222 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
34dc7c2f
BB
1223
1224 if (vd->vdev_children == 0) {
1225 if (osize < SPA_MINDEVSIZE) {
1226 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1227 VDEV_AUX_TOO_SMALL);
2e528b49 1228 return (SET_ERROR(EOVERFLOW));
34dc7c2f
BB
1229 }
1230 psize = osize;
1231 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1bd201e7
CS
1232 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1233 VDEV_LABEL_END_SIZE);
34dc7c2f
BB
1234 } else {
1235 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1236 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1237 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1238 VDEV_AUX_TOO_SMALL);
2e528b49 1239 return (SET_ERROR(EOVERFLOW));
34dc7c2f
BB
1240 }
1241 psize = 0;
1242 asize = osize;
1bd201e7 1243 max_asize = max_osize;
34dc7c2f
BB
1244 }
1245
1246 vd->vdev_psize = psize;
1247
9babb374
BB
1248 /*
1249 * Make sure the allocatable size hasn't shrunk.
1250 */
1251 if (asize < vd->vdev_min_asize) {
1252 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1253 VDEV_AUX_BAD_LABEL);
2e528b49 1254 return (SET_ERROR(EINVAL));
9babb374
BB
1255 }
1256
34dc7c2f
BB
1257 if (vd->vdev_asize == 0) {
1258 /*
1259 * This is the first-ever open, so use the computed values.
b28e57cb 1260 * For compatibility, a different ashift can be requested.
34dc7c2f
BB
1261 */
1262 vd->vdev_asize = asize;
1bd201e7 1263 vd->vdev_max_asize = max_asize;
b28e57cb
MM
1264 if (vd->vdev_ashift == 0)
1265 vd->vdev_ashift = ashift;
34dc7c2f
BB
1266 } else {
1267 /*
32a9872b
GW
1268 * Detect if the alignment requirement has increased.
1269 * We don't want to make the pool unavailable, just
1270 * post an event instead.
34dc7c2f 1271 */
32a9872b
GW
1272 if (ashift > vd->vdev_top->vdev_ashift &&
1273 vd->vdev_ops->vdev_op_leaf) {
1274 zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1275 spa, vd, NULL, 0, 0);
34dc7c2f 1276 }
32a9872b 1277
1bd201e7 1278 vd->vdev_max_asize = max_asize;
9babb374 1279 }
34dc7c2f 1280
9babb374
BB
1281 /*
1282 * If all children are healthy and the asize has increased,
1283 * then we've experienced dynamic LUN growth. If automatic
1284 * expansion is enabled then use the additional space.
1285 */
1286 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1287 (vd->vdev_expanding || spa->spa_autoexpand))
1288 vd->vdev_asize = asize;
34dc7c2f 1289
9babb374 1290 vdev_set_min_asize(vd);
34dc7c2f
BB
1291
1292 /*
1293 * Ensure we can issue some IO before declaring the
1294 * vdev open for business.
1295 */
b128c09f
BB
1296 if (vd->vdev_ops->vdev_op_leaf &&
1297 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
428870ff
BB
1298 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1299 VDEV_AUX_ERR_EXCEEDED);
34dc7c2f
BB
1300 return (error);
1301 }
1302
34dc7c2f 1303 /*
b128c09f 1304 * If a leaf vdev has a DTL, and seems healthy, then kick off a
fb5f0bc8
BB
1305 * resilver. But don't do this if we are doing a reopen for a scrub,
1306 * since this would just restart the scrub we are already doing.
34dc7c2f 1307 */
fb5f0bc8
BB
1308 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1309 vdev_resilver_needed(vd, NULL, NULL))
1310 spa_async_request(spa, SPA_ASYNC_RESILVER);
34dc7c2f
BB
1311
1312 return (0);
1313}
1314
1315/*
1316 * Called once the vdevs are all opened, this routine validates the label
1317 * contents. This needs to be done before vdev_load() so that we don't
1318 * inadvertently do repair I/Os to the wrong device.
1319 *
c7f2d69d
GW
1320 * If 'strict' is false ignore the spa guid check. This is necessary because
1321 * if the machine crashed during a re-guid the new guid might have been written
1322 * to all of the vdev labels, but not the cached config. The strict check
1323 * will be performed when the pool is opened again using the mos config.
1324 *
34dc7c2f
BB
1325 * This function will only return failure if one of the vdevs indicates that it
1326 * has since been destroyed or exported. This is only possible if
1327 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1328 * will be updated but the function will return 0.
1329 */
1330int
c7f2d69d 1331vdev_validate(vdev_t *vd, boolean_t strict)
34dc7c2f
BB
1332{
1333 spa_t *spa = vd->vdev_spa;
34dc7c2f 1334 nvlist_t *label;
428870ff 1335 uint64_t guid = 0, top_guid;
34dc7c2f 1336 uint64_t state;
d6320ddb 1337 int c;
34dc7c2f 1338
d6320ddb 1339 for (c = 0; c < vd->vdev_children; c++)
c7f2d69d 1340 if (vdev_validate(vd->vdev_child[c], strict) != 0)
2e528b49 1341 return (SET_ERROR(EBADF));
34dc7c2f
BB
1342
1343 /*
1344 * If the device has already failed, or was marked offline, don't do
1345 * any further validation. Otherwise, label I/O will fail and we will
1346 * overwrite the previous state.
1347 */
b128c09f 1348 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
428870ff
BB
1349 uint64_t aux_guid = 0;
1350 nvlist_t *nvl;
295304be
GW
1351 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1352 spa_last_synced_txg(spa) : -1ULL;
34dc7c2f 1353
3bc7e0fb 1354 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
34dc7c2f
BB
1355 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1356 VDEV_AUX_BAD_LABEL);
1357 return (0);
1358 }
1359
428870ff
BB
1360 /*
1361 * Determine if this vdev has been split off into another
1362 * pool. If so, then refuse to open it.
1363 */
1364 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1365 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1366 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1367 VDEV_AUX_SPLIT_POOL);
1368 nvlist_free(label);
1369 return (0);
1370 }
1371
c7f2d69d
GW
1372 if (strict && (nvlist_lookup_uint64(label,
1373 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1374 guid != spa_guid(spa))) {
34dc7c2f
BB
1375 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1376 VDEV_AUX_CORRUPT_DATA);
1377 nvlist_free(label);
1378 return (0);
1379 }
1380
428870ff
BB
1381 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1382 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1383 &aux_guid) != 0)
1384 aux_guid = 0;
1385
b128c09f
BB
1386 /*
1387 * If this vdev just became a top-level vdev because its
1388 * sibling was detached, it will have adopted the parent's
1389 * vdev guid -- but the label may or may not be on disk yet.
1390 * Fortunately, either version of the label will have the
1391 * same top guid, so if we're a top-level vdev, we can
1392 * safely compare to that instead.
428870ff
BB
1393 *
1394 * If we split this vdev off instead, then we also check the
1395 * original pool's guid. We don't want to consider the vdev
1396 * corrupt if it is partway through a split operation.
b128c09f 1397 */
34dc7c2f 1398 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
b128c09f
BB
1399 &guid) != 0 ||
1400 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1401 &top_guid) != 0 ||
428870ff 1402 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
b128c09f 1403 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
34dc7c2f
BB
1404 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1405 VDEV_AUX_CORRUPT_DATA);
1406 nvlist_free(label);
1407 return (0);
1408 }
1409
1410 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1411 &state) != 0) {
1412 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1413 VDEV_AUX_CORRUPT_DATA);
1414 nvlist_free(label);
1415 return (0);
1416 }
1417
1418 nvlist_free(label);
1419
45d1cae3 1420 /*
572e2857 1421 * If this is a verbatim import, no need to check the
45d1cae3
BB
1422 * state of the pool.
1423 */
572e2857 1424 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
428870ff 1425 spa_load_state(spa) == SPA_LOAD_OPEN &&
34dc7c2f 1426 state != POOL_STATE_ACTIVE)
2e528b49 1427 return (SET_ERROR(EBADF));
34dc7c2f 1428
b128c09f
BB
1429 /*
1430 * If we were able to open and validate a vdev that was
1431 * previously marked permanently unavailable, clear that state
1432 * now.
1433 */
1434 if (vd->vdev_not_present)
1435 vd->vdev_not_present = 0;
1436 }
34dc7c2f
BB
1437
1438 return (0);
1439}
1440
1441/*
1442 * Close a virtual device.
1443 */
1444void
1445vdev_close(vdev_t *vd)
1446{
428870ff 1447 vdev_t *pvd = vd->vdev_parent;
1fde1e37 1448 ASSERTV(spa_t *spa = vd->vdev_spa);
fb5f0bc8
BB
1449
1450 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1451
428870ff
BB
1452 /*
1453 * If our parent is reopening, then we are as well, unless we are
1454 * going offline.
1455 */
1456 if (pvd != NULL && pvd->vdev_reopening)
1457 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1458
34dc7c2f
BB
1459 vd->vdev_ops->vdev_op_close(vd);
1460
1461 vdev_cache_purge(vd);
1462
1463 /*
9babb374 1464 * We record the previous state before we close it, so that if we are
34dc7c2f
BB
1465 * doing a reopen(), we don't generate FMA ereports if we notice that
1466 * it's still faulted.
1467 */
1468 vd->vdev_prevstate = vd->vdev_state;
1469
1470 if (vd->vdev_offline)
1471 vd->vdev_state = VDEV_STATE_OFFLINE;
1472 else
1473 vd->vdev_state = VDEV_STATE_CLOSED;
1474 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1475}
1476
428870ff
BB
1477void
1478vdev_hold(vdev_t *vd)
1479{
1480 spa_t *spa = vd->vdev_spa;
d6320ddb 1481 int c;
428870ff
BB
1482
1483 ASSERT(spa_is_root(spa));
1484 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1485 return;
1486
d6320ddb 1487 for (c = 0; c < vd->vdev_children; c++)
428870ff
BB
1488 vdev_hold(vd->vdev_child[c]);
1489
1490 if (vd->vdev_ops->vdev_op_leaf)
1491 vd->vdev_ops->vdev_op_hold(vd);
1492}
1493
1494void
1495vdev_rele(vdev_t *vd)
1496{
d6320ddb 1497 int c;
428870ff 1498
d6320ddb
BB
1499 ASSERT(spa_is_root(vd->vdev_spa));
1500 for (c = 0; c < vd->vdev_children; c++)
428870ff
BB
1501 vdev_rele(vd->vdev_child[c]);
1502
1503 if (vd->vdev_ops->vdev_op_leaf)
1504 vd->vdev_ops->vdev_op_rele(vd);
1505}
1506
1507/*
1508 * Reopen all interior vdevs and any unopened leaves. We don't actually
1509 * reopen leaf vdevs which had previously been opened as they might deadlock
1510 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1511 * If the leaf has never been opened then open it, as usual.
1512 */
34dc7c2f
BB
1513void
1514vdev_reopen(vdev_t *vd)
1515{
1516 spa_t *spa = vd->vdev_spa;
1517
b128c09f 1518 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
34dc7c2f 1519
428870ff
BB
1520 /* set the reopening flag unless we're taking the vdev offline */
1521 vd->vdev_reopening = !vd->vdev_offline;
34dc7c2f
BB
1522 vdev_close(vd);
1523 (void) vdev_open(vd);
1524
1525 /*
1526 * Call vdev_validate() here to make sure we have the same device.
1527 * Otherwise, a device with an invalid label could be successfully
1528 * opened in response to vdev_reopen().
1529 */
b128c09f
BB
1530 if (vd->vdev_aux) {
1531 (void) vdev_validate_aux(vd);
1532 if (vdev_readable(vd) && vdev_writeable(vd) &&
9babb374
BB
1533 vd->vdev_aux == &spa->spa_l2cache &&
1534 !l2arc_vdev_present(vd))
1535 l2arc_add_vdev(spa, vd);
b128c09f 1536 } else {
295304be 1537 (void) vdev_validate(vd, B_TRUE);
b128c09f 1538 }
34dc7c2f
BB
1539
1540 /*
1541 * Reassess parent vdev's health.
1542 */
1543 vdev_propagate_state(vd);
1544}
1545
1546int
1547vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1548{
1549 int error;
1550
1551 /*
1552 * Normally, partial opens (e.g. of a mirror) are allowed.
1553 * For a create, however, we want to fail the request if
1554 * there are any components we can't open.
1555 */
1556 error = vdev_open(vd);
1557
1558 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1559 vdev_close(vd);
1560 return (error ? error : ENXIO);
1561 }
1562
1563 /*
1564 * Recursively initialize all labels.
1565 */
1566 if ((error = vdev_label_init(vd, txg, isreplacing ?
1567 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1568 vdev_close(vd);
1569 return (error);
1570 }
1571
1572 return (0);
1573}
1574
34dc7c2f 1575void
9babb374 1576vdev_metaslab_set_size(vdev_t *vd)
34dc7c2f
BB
1577{
1578 /*
1579 * Aim for roughly 200 metaslabs per vdev.
1580 */
1581 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1582 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
34dc7c2f
BB
1583}
1584
1585void
1586vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1587{
1588 ASSERT(vd == vd->vdev_top);
428870ff 1589 ASSERT(!vd->vdev_ishole);
34dc7c2f 1590 ASSERT(ISP2(flags));
572e2857 1591 ASSERT(spa_writeable(vd->vdev_spa));
34dc7c2f
BB
1592
1593 if (flags & VDD_METASLAB)
1594 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1595
1596 if (flags & VDD_DTL)
1597 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1598
1599 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1600}
1601
fb5f0bc8
BB
1602/*
1603 * DTLs.
1604 *
1605 * A vdev's DTL (dirty time log) is the set of transaction groups for which
428870ff 1606 * the vdev has less than perfect replication. There are four kinds of DTL:
fb5f0bc8
BB
1607 *
1608 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1609 *
1610 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1611 *
1612 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1613 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1614 * txgs that was scrubbed.
1615 *
1616 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1617 * persistent errors or just some device being offline.
1618 * Unlike the other three, the DTL_OUTAGE map is not generally
1619 * maintained; it's only computed when needed, typically to
1620 * determine whether a device can be detached.
1621 *
1622 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1623 * either has the data or it doesn't.
1624 *
1625 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1626 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1627 * if any child is less than fully replicated, then so is its parent.
1628 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1629 * comprising only those txgs which appear in 'maxfaults' or more children;
1630 * those are the txgs we don't have enough replication to read. For example,
1631 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1632 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1633 * two child DTL_MISSING maps.
1634 *
1635 * It should be clear from the above that to compute the DTLs and outage maps
1636 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1637 * Therefore, that is all we keep on disk. When loading the pool, or after
1638 * a configuration change, we generate all other DTLs from first principles.
1639 */
34dc7c2f 1640void
fb5f0bc8 1641vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
34dc7c2f 1642{
fb5f0bc8
BB
1643 space_map_t *sm = &vd->vdev_dtl[t];
1644
1645 ASSERT(t < DTL_TYPES);
1646 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
572e2857 1647 ASSERT(spa_writeable(vd->vdev_spa));
fb5f0bc8 1648
34dc7c2f
BB
1649 mutex_enter(sm->sm_lock);
1650 if (!space_map_contains(sm, txg, size))
1651 space_map_add(sm, txg, size);
1652 mutex_exit(sm->sm_lock);
1653}
1654
fb5f0bc8
BB
1655boolean_t
1656vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
34dc7c2f 1657{
fb5f0bc8
BB
1658 space_map_t *sm = &vd->vdev_dtl[t];
1659 boolean_t dirty = B_FALSE;
34dc7c2f 1660
fb5f0bc8
BB
1661 ASSERT(t < DTL_TYPES);
1662 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
34dc7c2f
BB
1663
1664 mutex_enter(sm->sm_lock);
fb5f0bc8
BB
1665 if (sm->sm_space != 0)
1666 dirty = space_map_contains(sm, txg, size);
34dc7c2f
BB
1667 mutex_exit(sm->sm_lock);
1668
1669 return (dirty);
1670}
1671
fb5f0bc8
BB
1672boolean_t
1673vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1674{
1675 space_map_t *sm = &vd->vdev_dtl[t];
1676 boolean_t empty;
1677
1678 mutex_enter(sm->sm_lock);
1679 empty = (sm->sm_space == 0);
1680 mutex_exit(sm->sm_lock);
1681
1682 return (empty);
1683}
1684
34dc7c2f
BB
1685/*
1686 * Reassess DTLs after a config change or scrub completion.
1687 */
1688void
1689vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1690{
1691 spa_t *spa = vd->vdev_spa;
fb5f0bc8 1692 avl_tree_t reftree;
d6320ddb 1693 int c, t, minref;
34dc7c2f 1694
fb5f0bc8 1695 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
34dc7c2f 1696
d6320ddb 1697 for (c = 0; c < vd->vdev_children; c++)
fb5f0bc8
BB
1698 vdev_dtl_reassess(vd->vdev_child[c], txg,
1699 scrub_txg, scrub_done);
1700
428870ff 1701 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
fb5f0bc8
BB
1702 return;
1703
1704 if (vd->vdev_ops->vdev_op_leaf) {
428870ff
BB
1705 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1706
34dc7c2f 1707 mutex_enter(&vd->vdev_dtl_lock);
b128c09f 1708 if (scrub_txg != 0 &&
428870ff
BB
1709 (spa->spa_scrub_started ||
1710 (scn && scn->scn_phys.scn_errors == 0))) {
b128c09f
BB
1711 /*
1712 * We completed a scrub up to scrub_txg. If we
1713 * did it without rebooting, then the scrub dtl
1714 * will be valid, so excise the old region and
1715 * fold in the scrub dtl. Otherwise, leave the
1716 * dtl as-is if there was an error.
fb5f0bc8
BB
1717 *
1718 * There's little trick here: to excise the beginning
1719 * of the DTL_MISSING map, we put it into a reference
1720 * tree and then add a segment with refcnt -1 that
1721 * covers the range [0, scrub_txg). This means
1722 * that each txg in that range has refcnt -1 or 0.
1723 * We then add DTL_SCRUB with a refcnt of 2, so that
1724 * entries in the range [0, scrub_txg) will have a
1725 * positive refcnt -- either 1 or 2. We then convert
1726 * the reference tree into the new DTL_MISSING map.
b128c09f 1727 */
fb5f0bc8
BB
1728 space_map_ref_create(&reftree);
1729 space_map_ref_add_map(&reftree,
1730 &vd->vdev_dtl[DTL_MISSING], 1);
1731 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1732 space_map_ref_add_map(&reftree,
1733 &vd->vdev_dtl[DTL_SCRUB], 2);
1734 space_map_ref_generate_map(&reftree,
1735 &vd->vdev_dtl[DTL_MISSING], 1);
1736 space_map_ref_destroy(&reftree);
34dc7c2f 1737 }
fb5f0bc8
BB
1738 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1739 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1740 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
34dc7c2f 1741 if (scrub_done)
fb5f0bc8
BB
1742 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1743 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1744 if (!vdev_readable(vd))
1745 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1746 else
1747 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1748 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
34dc7c2f 1749 mutex_exit(&vd->vdev_dtl_lock);
b128c09f 1750
34dc7c2f
BB
1751 if (txg != 0)
1752 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1753 return;
1754 }
1755
34dc7c2f 1756 mutex_enter(&vd->vdev_dtl_lock);
d6320ddb 1757 for (t = 0; t < DTL_TYPES; t++) {
428870ff
BB
1758 /* account for child's outage in parent's missing map */
1759 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
fb5f0bc8
BB
1760 if (t == DTL_SCRUB)
1761 continue; /* leaf vdevs only */
1762 if (t == DTL_PARTIAL)
1763 minref = 1; /* i.e. non-zero */
1764 else if (vd->vdev_nparity != 0)
1765 minref = vd->vdev_nparity + 1; /* RAID-Z */
1766 else
1767 minref = vd->vdev_children; /* any kind of mirror */
1768 space_map_ref_create(&reftree);
d6320ddb 1769 for (c = 0; c < vd->vdev_children; c++) {
fb5f0bc8
BB
1770 vdev_t *cvd = vd->vdev_child[c];
1771 mutex_enter(&cvd->vdev_dtl_lock);
428870ff 1772 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
fb5f0bc8
BB
1773 mutex_exit(&cvd->vdev_dtl_lock);
1774 }
1775 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1776 space_map_ref_destroy(&reftree);
34dc7c2f 1777 }
fb5f0bc8 1778 mutex_exit(&vd->vdev_dtl_lock);
34dc7c2f
BB
1779}
1780
1781static int
1782vdev_dtl_load(vdev_t *vd)
1783{
1784 spa_t *spa = vd->vdev_spa;
fb5f0bc8 1785 space_map_obj_t *smo = &vd->vdev_dtl_smo;
34dc7c2f
BB
1786 objset_t *mos = spa->spa_meta_objset;
1787 dmu_buf_t *db;
1788 int error;
1789
1790 ASSERT(vd->vdev_children == 0);
1791
1792 if (smo->smo_object == 0)
1793 return (0);
1794
428870ff
BB
1795 ASSERT(!vd->vdev_ishole);
1796
34dc7c2f
BB
1797 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1798 return (error);
1799
1800 ASSERT3U(db->db_size, >=, sizeof (*smo));
1801 bcopy(db->db_data, smo, sizeof (*smo));
1802 dmu_buf_rele(db, FTAG);
1803
1804 mutex_enter(&vd->vdev_dtl_lock);
fb5f0bc8
BB
1805 error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1806 NULL, SM_ALLOC, smo, mos);
34dc7c2f
BB
1807 mutex_exit(&vd->vdev_dtl_lock);
1808
1809 return (error);
1810}
1811
1812void
1813vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1814{
1815 spa_t *spa = vd->vdev_spa;
fb5f0bc8
BB
1816 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1817 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
34dc7c2f
BB
1818 objset_t *mos = spa->spa_meta_objset;
1819 space_map_t smsync;
1820 kmutex_t smlock;
1821 dmu_buf_t *db;
1822 dmu_tx_t *tx;
1823
428870ff
BB
1824 ASSERT(!vd->vdev_ishole);
1825
34dc7c2f
BB
1826 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1827
1828 if (vd->vdev_detached) {
1829 if (smo->smo_object != 0) {
c99c9001 1830 VERIFY0(dmu_object_free(mos, smo->smo_object, tx));
34dc7c2f
BB
1831 smo->smo_object = 0;
1832 }
1833 dmu_tx_commit(tx);
34dc7c2f
BB
1834 return;
1835 }
1836
1837 if (smo->smo_object == 0) {
1838 ASSERT(smo->smo_objsize == 0);
1839 ASSERT(smo->smo_alloc == 0);
1840 smo->smo_object = dmu_object_alloc(mos,
1841 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1842 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1843 ASSERT(smo->smo_object != 0);
1844 vdev_config_dirty(vd->vdev_top);
1845 }
1846
1847 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1848
1849 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1850 &smlock);
1851
1852 mutex_enter(&smlock);
1853
1854 mutex_enter(&vd->vdev_dtl_lock);
1855 space_map_walk(sm, space_map_add, &smsync);
1856 mutex_exit(&vd->vdev_dtl_lock);
1857
1858 space_map_truncate(smo, mos, tx);
1859 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
e51be066 1860 space_map_vacate(&smsync, NULL, NULL);
34dc7c2f
BB
1861
1862 space_map_destroy(&smsync);
1863
1864 mutex_exit(&smlock);
1865 mutex_destroy(&smlock);
1866
1867 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1868 dmu_buf_will_dirty(db, tx);
1869 ASSERT3U(db->db_size, >=, sizeof (*smo));
1870 bcopy(smo, db->db_data, sizeof (*smo));
1871 dmu_buf_rele(db, FTAG);
1872
1873 dmu_tx_commit(tx);
1874}
1875
fb5f0bc8
BB
1876/*
1877 * Determine whether the specified vdev can be offlined/detached/removed
1878 * without losing data.
1879 */
1880boolean_t
1881vdev_dtl_required(vdev_t *vd)
1882{
1883 spa_t *spa = vd->vdev_spa;
1884 vdev_t *tvd = vd->vdev_top;
1885 uint8_t cant_read = vd->vdev_cant_read;
1886 boolean_t required;
1887
1888 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1889
1890 if (vd == spa->spa_root_vdev || vd == tvd)
1891 return (B_TRUE);
1892
1893 /*
1894 * Temporarily mark the device as unreadable, and then determine
1895 * whether this results in any DTL outages in the top-level vdev.
1896 * If not, we can safely offline/detach/remove the device.
1897 */
1898 vd->vdev_cant_read = B_TRUE;
1899 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1900 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1901 vd->vdev_cant_read = cant_read;
1902 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1903
572e2857
BB
1904 if (!required && zio_injection_enabled)
1905 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1906
fb5f0bc8
BB
1907 return (required);
1908}
1909
b128c09f
BB
1910/*
1911 * Determine if resilver is needed, and if so the txg range.
1912 */
1913boolean_t
1914vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1915{
1916 boolean_t needed = B_FALSE;
1917 uint64_t thismin = UINT64_MAX;
1918 uint64_t thismax = 0;
d6320ddb 1919 int c;
b128c09f
BB
1920
1921 if (vd->vdev_children == 0) {
1922 mutex_enter(&vd->vdev_dtl_lock);
fb5f0bc8
BB
1923 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1924 vdev_writeable(vd)) {
b128c09f
BB
1925 space_seg_t *ss;
1926
fb5f0bc8 1927 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
b128c09f 1928 thismin = ss->ss_start - 1;
fb5f0bc8 1929 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
b128c09f
BB
1930 thismax = ss->ss_end;
1931 needed = B_TRUE;
1932 }
1933 mutex_exit(&vd->vdev_dtl_lock);
1934 } else {
d6320ddb 1935 for (c = 0; c < vd->vdev_children; c++) {
b128c09f
BB
1936 vdev_t *cvd = vd->vdev_child[c];
1937 uint64_t cmin, cmax;
1938
1939 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1940 thismin = MIN(thismin, cmin);
1941 thismax = MAX(thismax, cmax);
1942 needed = B_TRUE;
1943 }
1944 }
1945 }
1946
1947 if (needed && minp) {
1948 *minp = thismin;
1949 *maxp = thismax;
1950 }
1951 return (needed);
1952}
1953
34dc7c2f
BB
1954void
1955vdev_load(vdev_t *vd)
1956{
d6320ddb
BB
1957 int c;
1958
34dc7c2f
BB
1959 /*
1960 * Recursively load all children.
1961 */
d6320ddb 1962 for (c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
1963 vdev_load(vd->vdev_child[c]);
1964
1965 /*
1966 * If this is a top-level vdev, initialize its metaslabs.
1967 */
428870ff 1968 if (vd == vd->vdev_top && !vd->vdev_ishole &&
34dc7c2f
BB
1969 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1970 vdev_metaslab_init(vd, 0) != 0))
1971 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1972 VDEV_AUX_CORRUPT_DATA);
1973
1974 /*
1975 * If this is a leaf vdev, load its DTL.
1976 */
1977 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1978 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1979 VDEV_AUX_CORRUPT_DATA);
1980}
1981
1982/*
1983 * The special vdev case is used for hot spares and l2cache devices. Its
1984 * sole purpose it to set the vdev state for the associated vdev. To do this,
1985 * we make sure that we can open the underlying device, then try to read the
1986 * label, and make sure that the label is sane and that it hasn't been
1987 * repurposed to another pool.
1988 */
1989int
1990vdev_validate_aux(vdev_t *vd)
1991{
1992 nvlist_t *label;
1993 uint64_t guid, version;
1994 uint64_t state;
1995
b128c09f
BB
1996 if (!vdev_readable(vd))
1997 return (0);
1998
3bc7e0fb 1999 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
34dc7c2f
BB
2000 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2001 VDEV_AUX_CORRUPT_DATA);
2002 return (-1);
2003 }
2004
2005 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
9ae529ec 2006 !SPA_VERSION_IS_SUPPORTED(version) ||
34dc7c2f
BB
2007 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2008 guid != vd->vdev_guid ||
2009 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2010 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2011 VDEV_AUX_CORRUPT_DATA);
2012 nvlist_free(label);
2013 return (-1);
2014 }
2015
2016 /*
2017 * We don't actually check the pool state here. If it's in fact in
2018 * use by another pool, we update this fact on the fly when requested.
2019 */
2020 nvlist_free(label);
2021 return (0);
2022}
2023
428870ff
BB
2024void
2025vdev_remove(vdev_t *vd, uint64_t txg)
2026{
2027 spa_t *spa = vd->vdev_spa;
2028 objset_t *mos = spa->spa_meta_objset;
2029 dmu_tx_t *tx;
d6320ddb 2030 int m;
428870ff
BB
2031
2032 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2033
2034 if (vd->vdev_dtl_smo.smo_object) {
c99c9001 2035 ASSERT0(vd->vdev_dtl_smo.smo_alloc);
428870ff
BB
2036 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2037 vd->vdev_dtl_smo.smo_object = 0;
2038 }
2039
2040 if (vd->vdev_ms != NULL) {
d6320ddb 2041 for (m = 0; m < vd->vdev_ms_count; m++) {
428870ff
BB
2042 metaslab_t *msp = vd->vdev_ms[m];
2043
2044 if (msp == NULL || msp->ms_smo.smo_object == 0)
2045 continue;
2046
c99c9001 2047 ASSERT0(msp->ms_smo.smo_alloc);
428870ff
BB
2048 (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2049 msp->ms_smo.smo_object = 0;
2050 }
2051 }
2052
2053 if (vd->vdev_ms_array) {
2054 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2055 vd->vdev_ms_array = 0;
2056 vd->vdev_ms_shift = 0;
2057 }
2058 dmu_tx_commit(tx);
2059}
2060
34dc7c2f
BB
2061void
2062vdev_sync_done(vdev_t *vd, uint64_t txg)
2063{
2064 metaslab_t *msp;
428870ff
BB
2065 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2066
2067 ASSERT(!vd->vdev_ishole);
34dc7c2f 2068
c65aa5b2 2069 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
34dc7c2f 2070 metaslab_sync_done(msp, txg);
428870ff
BB
2071
2072 if (reassess)
2073 metaslab_sync_reassess(vd->vdev_mg);
34dc7c2f
BB
2074}
2075
2076void
2077vdev_sync(vdev_t *vd, uint64_t txg)
2078{
2079 spa_t *spa = vd->vdev_spa;
2080 vdev_t *lvd;
2081 metaslab_t *msp;
2082 dmu_tx_t *tx;
2083
428870ff
BB
2084 ASSERT(!vd->vdev_ishole);
2085
34dc7c2f
BB
2086 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2087 ASSERT(vd == vd->vdev_top);
2088 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2089 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2090 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2091 ASSERT(vd->vdev_ms_array != 0);
2092 vdev_config_dirty(vd);
2093 dmu_tx_commit(tx);
2094 }
2095
428870ff
BB
2096 /*
2097 * Remove the metadata associated with this vdev once it's empty.
2098 */
2099 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2100 vdev_remove(vd, txg);
2101
34dc7c2f
BB
2102 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2103 metaslab_sync(msp, txg);
2104 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2105 }
2106
2107 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2108 vdev_dtl_sync(lvd, txg);
2109
2110 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2111}
2112
2113uint64_t
2114vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2115{
2116 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2117}
2118
34dc7c2f
BB
2119/*
2120 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2121 * not be opened, and no I/O is attempted.
2122 */
2123int
428870ff 2124vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
34dc7c2f 2125{
572e2857 2126 vdev_t *vd, *tvd;
34dc7c2f 2127
428870ff 2128 spa_vdev_state_enter(spa, SCL_NONE);
34dc7c2f 2129
b128c09f
BB
2130 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2131 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f 2132
34dc7c2f 2133 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 2134 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f 2135
572e2857
BB
2136 tvd = vd->vdev_top;
2137
428870ff
BB
2138 /*
2139 * We don't directly use the aux state here, but if we do a
2140 * vdev_reopen(), we need this value to be present to remember why we
2141 * were faulted.
2142 */
2143 vd->vdev_label_aux = aux;
2144
34dc7c2f
BB
2145 /*
2146 * Faulted state takes precedence over degraded.
2147 */
428870ff 2148 vd->vdev_delayed_close = B_FALSE;
34dc7c2f
BB
2149 vd->vdev_faulted = 1ULL;
2150 vd->vdev_degraded = 0ULL;
428870ff 2151 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
34dc7c2f
BB
2152
2153 /*
428870ff
BB
2154 * If this device has the only valid copy of the data, then
2155 * back off and simply mark the vdev as degraded instead.
34dc7c2f 2156 */
572e2857 2157 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
34dc7c2f
BB
2158 vd->vdev_degraded = 1ULL;
2159 vd->vdev_faulted = 0ULL;
2160
2161 /*
2162 * If we reopen the device and it's not dead, only then do we
2163 * mark it degraded.
2164 */
572e2857 2165 vdev_reopen(tvd);
34dc7c2f 2166
428870ff
BB
2167 if (vdev_readable(vd))
2168 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
34dc7c2f
BB
2169 }
2170
b128c09f 2171 return (spa_vdev_state_exit(spa, vd, 0));
34dc7c2f
BB
2172}
2173
2174/*
2175 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2176 * user that something is wrong. The vdev continues to operate as normal as far
2177 * as I/O is concerned.
2178 */
2179int
428870ff 2180vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
34dc7c2f 2181{
b128c09f 2182 vdev_t *vd;
34dc7c2f 2183
428870ff 2184 spa_vdev_state_enter(spa, SCL_NONE);
34dc7c2f 2185
b128c09f
BB
2186 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2187 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f 2188
34dc7c2f 2189 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 2190 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f
BB
2191
2192 /*
2193 * If the vdev is already faulted, then don't do anything.
2194 */
b128c09f
BB
2195 if (vd->vdev_faulted || vd->vdev_degraded)
2196 return (spa_vdev_state_exit(spa, NULL, 0));
34dc7c2f
BB
2197
2198 vd->vdev_degraded = 1ULL;
2199 if (!vdev_is_dead(vd))
2200 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
428870ff 2201 aux);
34dc7c2f 2202
b128c09f 2203 return (spa_vdev_state_exit(spa, vd, 0));
34dc7c2f
BB
2204}
2205
2206/*
d3cc8b15
WA
2207 * Online the given vdev.
2208 *
2209 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
2210 * spare device should be detached when the device finishes resilvering.
2211 * Second, the online should be treated like a 'test' online case, so no FMA
2212 * events are generated if the device fails to open.
34dc7c2f
BB
2213 */
2214int
b128c09f 2215vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
34dc7c2f 2216{
9babb374 2217 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
34dc7c2f 2218
428870ff 2219 spa_vdev_state_enter(spa, SCL_NONE);
34dc7c2f 2220
b128c09f
BB
2221 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2222 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f
BB
2223
2224 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 2225 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f 2226
9babb374 2227 tvd = vd->vdev_top;
34dc7c2f
BB
2228 vd->vdev_offline = B_FALSE;
2229 vd->vdev_tmpoffline = B_FALSE;
b128c09f
BB
2230 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2231 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
9babb374
BB
2232
2233 /* XXX - L2ARC 1.0 does not support expansion */
2234 if (!vd->vdev_aux) {
2235 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2236 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2237 }
2238
2239 vdev_reopen(tvd);
34dc7c2f
BB
2240 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2241
9babb374
BB
2242 if (!vd->vdev_aux) {
2243 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2244 pvd->vdev_expanding = B_FALSE;
2245 }
2246
34dc7c2f
BB
2247 if (newstate)
2248 *newstate = vd->vdev_state;
2249 if ((flags & ZFS_ONLINE_UNSPARE) &&
2250 !vdev_is_dead(vd) && vd->vdev_parent &&
2251 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2252 vd->vdev_parent->vdev_child[0] == vd)
2253 vd->vdev_unspare = B_TRUE;
2254
9babb374
BB
2255 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2256
2257 /* XXX - L2ARC 1.0 does not support expansion */
2258 if (vd->vdev_aux)
2259 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2260 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2261 }
fb5f0bc8 2262 return (spa_vdev_state_exit(spa, vd, 0));
34dc7c2f
BB
2263}
2264
428870ff
BB
2265static int
2266vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
34dc7c2f 2267{
9babb374 2268 vdev_t *vd, *tvd;
428870ff
BB
2269 int error = 0;
2270 uint64_t generation;
2271 metaslab_group_t *mg;
34dc7c2f 2272
428870ff
BB
2273top:
2274 spa_vdev_state_enter(spa, SCL_ALLOC);
34dc7c2f 2275
b128c09f
BB
2276 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2277 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f
BB
2278
2279 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 2280 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f 2281
9babb374 2282 tvd = vd->vdev_top;
428870ff
BB
2283 mg = tvd->vdev_mg;
2284 generation = spa->spa_config_generation + 1;
9babb374 2285
34dc7c2f
BB
2286 /*
2287 * If the device isn't already offline, try to offline it.
2288 */
2289 if (!vd->vdev_offline) {
2290 /*
fb5f0bc8 2291 * If this device has the only valid copy of some data,
9babb374
BB
2292 * don't allow it to be offlined. Log devices are always
2293 * expendable.
34dc7c2f 2294 */
9babb374
BB
2295 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2296 vdev_dtl_required(vd))
b128c09f 2297 return (spa_vdev_state_exit(spa, NULL, EBUSY));
34dc7c2f 2298
428870ff
BB
2299 /*
2300 * If the top-level is a slog and it has had allocations
2301 * then proceed. We check that the vdev's metaslab group
2302 * is not NULL since it's possible that we may have just
2303 * added this vdev but not yet initialized its metaslabs.
2304 */
2305 if (tvd->vdev_islog && mg != NULL) {
2306 /*
2307 * Prevent any future allocations.
2308 */
2309 metaslab_group_passivate(mg);
2310 (void) spa_vdev_state_exit(spa, vd, 0);
2311
2312 error = spa_offline_log(spa);
2313
2314 spa_vdev_state_enter(spa, SCL_ALLOC);
2315
2316 /*
2317 * Check to see if the config has changed.
2318 */
2319 if (error || generation != spa->spa_config_generation) {
2320 metaslab_group_activate(mg);
2321 if (error)
2322 return (spa_vdev_state_exit(spa,
2323 vd, error));
2324 (void) spa_vdev_state_exit(spa, vd, 0);
2325 goto top;
2326 }
c99c9001 2327 ASSERT0(tvd->vdev_stat.vs_alloc);
428870ff
BB
2328 }
2329
34dc7c2f
BB
2330 /*
2331 * Offline this device and reopen its top-level vdev.
9babb374
BB
2332 * If the top-level vdev is a log device then just offline
2333 * it. Otherwise, if this action results in the top-level
2334 * vdev becoming unusable, undo it and fail the request.
34dc7c2f
BB
2335 */
2336 vd->vdev_offline = B_TRUE;
9babb374
BB
2337 vdev_reopen(tvd);
2338
2339 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2340 vdev_is_dead(tvd)) {
34dc7c2f 2341 vd->vdev_offline = B_FALSE;
9babb374 2342 vdev_reopen(tvd);
b128c09f 2343 return (spa_vdev_state_exit(spa, NULL, EBUSY));
34dc7c2f 2344 }
428870ff
BB
2345
2346 /*
2347 * Add the device back into the metaslab rotor so that
2348 * once we online the device it's open for business.
2349 */
2350 if (tvd->vdev_islog && mg != NULL)
2351 metaslab_group_activate(mg);
34dc7c2f
BB
2352 }
2353
b128c09f 2354 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
34dc7c2f 2355
428870ff
BB
2356 return (spa_vdev_state_exit(spa, vd, 0));
2357}
9babb374 2358
428870ff
BB
2359int
2360vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2361{
2362 int error;
9babb374 2363
428870ff
BB
2364 mutex_enter(&spa->spa_vdev_top_lock);
2365 error = vdev_offline_locked(spa, guid, flags);
2366 mutex_exit(&spa->spa_vdev_top_lock);
2367
2368 return (error);
34dc7c2f
BB
2369}
2370
2371/*
2372 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2373 * vdev_offline(), we assume the spa config is locked. We also clear all
2374 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
34dc7c2f
BB
2375 */
2376void
b128c09f 2377vdev_clear(spa_t *spa, vdev_t *vd)
34dc7c2f 2378{
b128c09f 2379 vdev_t *rvd = spa->spa_root_vdev;
d6320ddb 2380 int c;
b128c09f
BB
2381
2382 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
34dc7c2f
BB
2383
2384 if (vd == NULL)
b128c09f 2385 vd = rvd;
34dc7c2f
BB
2386
2387 vd->vdev_stat.vs_read_errors = 0;
2388 vd->vdev_stat.vs_write_errors = 0;
2389 vd->vdev_stat.vs_checksum_errors = 0;
34dc7c2f 2390
d6320ddb 2391 for (c = 0; c < vd->vdev_children; c++)
b128c09f 2392 vdev_clear(spa, vd->vdev_child[c]);
34dc7c2f
BB
2393
2394 /*
b128c09f
BB
2395 * If we're in the FAULTED state or have experienced failed I/O, then
2396 * clear the persistent state and attempt to reopen the device. We
2397 * also mark the vdev config dirty, so that the new faulted state is
2398 * written out to disk.
34dc7c2f 2399 */
b128c09f
BB
2400 if (vd->vdev_faulted || vd->vdev_degraded ||
2401 !vdev_readable(vd) || !vdev_writeable(vd)) {
2402
428870ff
BB
2403 /*
2404 * When reopening in reponse to a clear event, it may be due to
2405 * a fmadm repair request. In this case, if the device is
2406 * still broken, we want to still post the ereport again.
2407 */
2408 vd->vdev_forcefault = B_TRUE;
2409
572e2857 2410 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
b128c09f
BB
2411 vd->vdev_cant_read = B_FALSE;
2412 vd->vdev_cant_write = B_FALSE;
2413
572e2857 2414 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
34dc7c2f 2415
428870ff
BB
2416 vd->vdev_forcefault = B_FALSE;
2417
572e2857 2418 if (vd != rvd && vdev_writeable(vd->vdev_top))
b128c09f
BB
2419 vdev_state_dirty(vd->vdev_top);
2420
2421 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
34dc7c2f
BB
2422 spa_async_request(spa, SPA_ASYNC_RESILVER);
2423
26685276 2424 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_CLEAR);
34dc7c2f 2425 }
428870ff
BB
2426
2427 /*
2428 * When clearing a FMA-diagnosed fault, we always want to
2429 * unspare the device, as we assume that the original spare was
2430 * done in response to the FMA fault.
2431 */
2432 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2433 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2434 vd->vdev_parent->vdev_child[0] == vd)
2435 vd->vdev_unspare = B_TRUE;
34dc7c2f
BB
2436}
2437
b128c09f
BB
2438boolean_t
2439vdev_is_dead(vdev_t *vd)
2440{
428870ff
BB
2441 /*
2442 * Holes and missing devices are always considered "dead".
2443 * This simplifies the code since we don't have to check for
2444 * these types of devices in the various code paths.
2445 * Instead we rely on the fact that we skip over dead devices
2446 * before issuing I/O to them.
2447 */
2448 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2449 vd->vdev_ops == &vdev_missing_ops);
b128c09f
BB
2450}
2451
2452boolean_t
34dc7c2f
BB
2453vdev_readable(vdev_t *vd)
2454{
b128c09f 2455 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
34dc7c2f
BB
2456}
2457
b128c09f 2458boolean_t
34dc7c2f
BB
2459vdev_writeable(vdev_t *vd)
2460{
b128c09f 2461 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
34dc7c2f
BB
2462}
2463
b128c09f
BB
2464boolean_t
2465vdev_allocatable(vdev_t *vd)
34dc7c2f 2466{
fb5f0bc8
BB
2467 uint64_t state = vd->vdev_state;
2468
b128c09f 2469 /*
fb5f0bc8 2470 * We currently allow allocations from vdevs which may be in the
b128c09f
BB
2471 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2472 * fails to reopen then we'll catch it later when we're holding
fb5f0bc8
BB
2473 * the proper locks. Note that we have to get the vdev state
2474 * in a local variable because although it changes atomically,
2475 * we're asking two separate questions about it.
b128c09f 2476 */
fb5f0bc8 2477 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
428870ff 2478 !vd->vdev_cant_write && !vd->vdev_ishole);
34dc7c2f
BB
2479}
2480
b128c09f
BB
2481boolean_t
2482vdev_accessible(vdev_t *vd, zio_t *zio)
34dc7c2f 2483{
b128c09f 2484 ASSERT(zio->io_vd == vd);
34dc7c2f 2485
b128c09f
BB
2486 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2487 return (B_FALSE);
34dc7c2f 2488
b128c09f
BB
2489 if (zio->io_type == ZIO_TYPE_READ)
2490 return (!vd->vdev_cant_read);
34dc7c2f 2491
b128c09f
BB
2492 if (zio->io_type == ZIO_TYPE_WRITE)
2493 return (!vd->vdev_cant_write);
34dc7c2f 2494
b128c09f 2495 return (B_TRUE);
34dc7c2f
BB
2496}
2497
2498/*
2499 * Get statistics for the given vdev.
2500 */
2501void
2502vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2503{
2504 vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
d6320ddb 2505 int c, t;
34dc7c2f
BB
2506
2507 mutex_enter(&vd->vdev_stat_lock);
2508 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2509 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2510 vs->vs_state = vd->vdev_state;
9babb374
BB
2511 vs->vs_rsize = vdev_get_min_asize(vd);
2512 if (vd->vdev_ops->vdev_op_leaf)
2513 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
1bd201e7 2514 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
34dc7c2f
BB
2515 mutex_exit(&vd->vdev_stat_lock);
2516
2517 /*
2518 * If we're getting stats on the root vdev, aggregate the I/O counts
2519 * over all top-level vdevs (i.e. the direct children of the root).
2520 */
2521 if (vd == rvd) {
d6320ddb 2522 for (c = 0; c < rvd->vdev_children; c++) {
34dc7c2f
BB
2523 vdev_t *cvd = rvd->vdev_child[c];
2524 vdev_stat_t *cvs = &cvd->vdev_stat;
2525
2526 mutex_enter(&vd->vdev_stat_lock);
d6320ddb 2527 for (t = 0; t < ZIO_TYPES; t++) {
34dc7c2f
BB
2528 vs->vs_ops[t] += cvs->vs_ops[t];
2529 vs->vs_bytes[t] += cvs->vs_bytes[t];
2530 }
428870ff 2531 cvs->vs_scan_removing = cvd->vdev_removing;
34dc7c2f
BB
2532 mutex_exit(&vd->vdev_stat_lock);
2533 }
2534 }
2535}
2536
2537void
2538vdev_clear_stats(vdev_t *vd)
2539{
2540 mutex_enter(&vd->vdev_stat_lock);
2541 vd->vdev_stat.vs_space = 0;
2542 vd->vdev_stat.vs_dspace = 0;
2543 vd->vdev_stat.vs_alloc = 0;
2544 mutex_exit(&vd->vdev_stat_lock);
2545}
2546
428870ff
BB
2547void
2548vdev_scan_stat_init(vdev_t *vd)
2549{
2550 vdev_stat_t *vs = &vd->vdev_stat;
d6320ddb 2551 int c;
428870ff 2552
d6320ddb 2553 for (c = 0; c < vd->vdev_children; c++)
428870ff
BB
2554 vdev_scan_stat_init(vd->vdev_child[c]);
2555
2556 mutex_enter(&vd->vdev_stat_lock);
2557 vs->vs_scan_processed = 0;
2558 mutex_exit(&vd->vdev_stat_lock);
2559}
2560
34dc7c2f 2561void
b128c09f 2562vdev_stat_update(zio_t *zio, uint64_t psize)
34dc7c2f 2563{
fb5f0bc8
BB
2564 spa_t *spa = zio->io_spa;
2565 vdev_t *rvd = spa->spa_root_vdev;
b128c09f 2566 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
34dc7c2f
BB
2567 vdev_t *pvd;
2568 uint64_t txg = zio->io_txg;
2569 vdev_stat_t *vs = &vd->vdev_stat;
2570 zio_type_t type = zio->io_type;
2571 int flags = zio->io_flags;
2572
b128c09f
BB
2573 /*
2574 * If this i/o is a gang leader, it didn't do any actual work.
2575 */
2576 if (zio->io_gang_tree)
2577 return;
2578
34dc7c2f 2579 if (zio->io_error == 0) {
b128c09f
BB
2580 /*
2581 * If this is a root i/o, don't count it -- we've already
2582 * counted the top-level vdevs, and vdev_get_stats() will
2583 * aggregate them when asked. This reduces contention on
2584 * the root vdev_stat_lock and implicitly handles blocks
2585 * that compress away to holes, for which there is no i/o.
2586 * (Holes never create vdev children, so all the counters
2587 * remain zero, which is what we want.)
2588 *
2589 * Note: this only applies to successful i/o (io_error == 0)
2590 * because unlike i/o counts, errors are not additive.
2591 * When reading a ditto block, for example, failure of
2592 * one top-level vdev does not imply a root-level error.
2593 */
2594 if (vd == rvd)
2595 return;
2596
2597 ASSERT(vd == zio->io_vd);
fb5f0bc8
BB
2598
2599 if (flags & ZIO_FLAG_IO_BYPASS)
2600 return;
2601
2602 mutex_enter(&vd->vdev_stat_lock);
2603
b128c09f 2604 if (flags & ZIO_FLAG_IO_REPAIR) {
572e2857 2605 if (flags & ZIO_FLAG_SCAN_THREAD) {
428870ff
BB
2606 dsl_scan_phys_t *scn_phys =
2607 &spa->spa_dsl_pool->dp_scan->scn_phys;
2608 uint64_t *processed = &scn_phys->scn_processed;
2609
2610 /* XXX cleanup? */
2611 if (vd->vdev_ops->vdev_op_leaf)
2612 atomic_add_64(processed, psize);
2613 vs->vs_scan_processed += psize;
2614 }
2615
fb5f0bc8 2616 if (flags & ZIO_FLAG_SELF_HEAL)
b128c09f 2617 vs->vs_self_healed += psize;
34dc7c2f 2618 }
fb5f0bc8
BB
2619
2620 vs->vs_ops[type]++;
2621 vs->vs_bytes[type] += psize;
2622
2623 mutex_exit(&vd->vdev_stat_lock);
34dc7c2f
BB
2624 return;
2625 }
2626
2627 if (flags & ZIO_FLAG_SPECULATIVE)
2628 return;
2629
9babb374
BB
2630 /*
2631 * If this is an I/O error that is going to be retried, then ignore the
2632 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
2633 * hard errors, when in reality they can happen for any number of
2634 * innocuous reasons (bus resets, MPxIO link failure, etc).
2635 */
2636 if (zio->io_error == EIO &&
2637 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2638 return;
2639
428870ff
BB
2640 /*
2641 * Intent logs writes won't propagate their error to the root
2642 * I/O so don't mark these types of failures as pool-level
2643 * errors.
2644 */
2645 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2646 return;
2647
b128c09f 2648 mutex_enter(&vd->vdev_stat_lock);
9babb374 2649 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
b128c09f
BB
2650 if (zio->io_error == ECKSUM)
2651 vs->vs_checksum_errors++;
2652 else
2653 vs->vs_read_errors++;
34dc7c2f 2654 }
9babb374 2655 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
b128c09f
BB
2656 vs->vs_write_errors++;
2657 mutex_exit(&vd->vdev_stat_lock);
34dc7c2f 2658
fb5f0bc8
BB
2659 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2660 (!(flags & ZIO_FLAG_IO_REPAIR) ||
572e2857 2661 (flags & ZIO_FLAG_SCAN_THREAD) ||
428870ff 2662 spa->spa_claiming)) {
fb5f0bc8 2663 /*
428870ff
BB
2664 * This is either a normal write (not a repair), or it's
2665 * a repair induced by the scrub thread, or it's a repair
2666 * made by zil_claim() during spa_load() in the first txg.
2667 * In the normal case, we commit the DTL change in the same
2668 * txg as the block was born. In the scrub-induced repair
2669 * case, we know that scrubs run in first-pass syncing context,
2670 * so we commit the DTL change in spa_syncing_txg(spa).
2671 * In the zil_claim() case, we commit in spa_first_txg(spa).
fb5f0bc8
BB
2672 *
2673 * We currently do not make DTL entries for failed spontaneous
2674 * self-healing writes triggered by normal (non-scrubbing)
2675 * reads, because we have no transactional context in which to
2676 * do so -- and it's not clear that it'd be desirable anyway.
2677 */
2678 if (vd->vdev_ops->vdev_op_leaf) {
2679 uint64_t commit_txg = txg;
572e2857 2680 if (flags & ZIO_FLAG_SCAN_THREAD) {
fb5f0bc8
BB
2681 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2682 ASSERT(spa_sync_pass(spa) == 1);
2683 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
428870ff
BB
2684 commit_txg = spa_syncing_txg(spa);
2685 } else if (spa->spa_claiming) {
2686 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2687 commit_txg = spa_first_txg(spa);
fb5f0bc8 2688 }
428870ff 2689 ASSERT(commit_txg >= spa_syncing_txg(spa));
fb5f0bc8 2690 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
34dc7c2f 2691 return;
fb5f0bc8
BB
2692 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2693 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2694 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
34dc7c2f 2695 }
fb5f0bc8
BB
2696 if (vd != rvd)
2697 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
34dc7c2f
BB
2698 }
2699}
2700
34dc7c2f 2701/*
428870ff
BB
2702 * Update the in-core space usage stats for this vdev, its metaslab class,
2703 * and the root vdev.
34dc7c2f
BB
2704 */
2705void
428870ff
BB
2706vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2707 int64_t space_delta)
34dc7c2f
BB
2708{
2709 int64_t dspace_delta = space_delta;
2710 spa_t *spa = vd->vdev_spa;
2711 vdev_t *rvd = spa->spa_root_vdev;
428870ff
BB
2712 metaslab_group_t *mg = vd->vdev_mg;
2713 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
34dc7c2f
BB
2714
2715 ASSERT(vd == vd->vdev_top);
2716
2717 /*
2718 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2719 * factor. We must calculate this here and not at the root vdev
2720 * because the root vdev's psize-to-asize is simply the max of its
2721 * childrens', thus not accurate enough for us.
2722 */
2723 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
9babb374 2724 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
34dc7c2f
BB
2725 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2726 vd->vdev_deflate_ratio;
2727
2728 mutex_enter(&vd->vdev_stat_lock);
34dc7c2f 2729 vd->vdev_stat.vs_alloc += alloc_delta;
428870ff 2730 vd->vdev_stat.vs_space += space_delta;
34dc7c2f
BB
2731 vd->vdev_stat.vs_dspace += dspace_delta;
2732 mutex_exit(&vd->vdev_stat_lock);
2733
428870ff 2734 if (mc == spa_normal_class(spa)) {
34dc7c2f 2735 mutex_enter(&rvd->vdev_stat_lock);
34dc7c2f 2736 rvd->vdev_stat.vs_alloc += alloc_delta;
428870ff 2737 rvd->vdev_stat.vs_space += space_delta;
34dc7c2f
BB
2738 rvd->vdev_stat.vs_dspace += dspace_delta;
2739 mutex_exit(&rvd->vdev_stat_lock);
2740 }
428870ff
BB
2741
2742 if (mc != NULL) {
2743 ASSERT(rvd == vd->vdev_parent);
2744 ASSERT(vd->vdev_ms_count != 0);
2745
2746 metaslab_class_space_update(mc,
2747 alloc_delta, defer_delta, space_delta, dspace_delta);
2748 }
34dc7c2f
BB
2749}
2750
2751/*
2752 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2753 * so that it will be written out next time the vdev configuration is synced.
2754 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2755 */
2756void
2757vdev_config_dirty(vdev_t *vd)
2758{
2759 spa_t *spa = vd->vdev_spa;
2760 vdev_t *rvd = spa->spa_root_vdev;
2761 int c;
2762
572e2857
BB
2763 ASSERT(spa_writeable(spa));
2764
34dc7c2f 2765 /*
9babb374
BB
2766 * If this is an aux vdev (as with l2cache and spare devices), then we
2767 * update the vdev config manually and set the sync flag.
b128c09f
BB
2768 */
2769 if (vd->vdev_aux != NULL) {
2770 spa_aux_vdev_t *sav = vd->vdev_aux;
2771 nvlist_t **aux;
2772 uint_t naux;
2773
2774 for (c = 0; c < sav->sav_count; c++) {
2775 if (sav->sav_vdevs[c] == vd)
2776 break;
2777 }
2778
2779 if (c == sav->sav_count) {
2780 /*
2781 * We're being removed. There's nothing more to do.
2782 */
2783 ASSERT(sav->sav_sync == B_TRUE);
2784 return;
2785 }
2786
2787 sav->sav_sync = B_TRUE;
2788
9babb374
BB
2789 if (nvlist_lookup_nvlist_array(sav->sav_config,
2790 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2791 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2792 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2793 }
b128c09f
BB
2794
2795 ASSERT(c < naux);
2796
2797 /*
2798 * Setting the nvlist in the middle if the array is a little
2799 * sketchy, but it will work.
2800 */
2801 nvlist_free(aux[c]);
428870ff 2802 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
b128c09f
BB
2803
2804 return;
2805 }
2806
2807 /*
2808 * The dirty list is protected by the SCL_CONFIG lock. The caller
2809 * must either hold SCL_CONFIG as writer, or must be the sync thread
2810 * (which holds SCL_CONFIG as reader). There's only one sync thread,
34dc7c2f
BB
2811 * so this is sufficient to ensure mutual exclusion.
2812 */
b128c09f
BB
2813 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2814 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2815 spa_config_held(spa, SCL_CONFIG, RW_READER)));
34dc7c2f
BB
2816
2817 if (vd == rvd) {
2818 for (c = 0; c < rvd->vdev_children; c++)
2819 vdev_config_dirty(rvd->vdev_child[c]);
2820 } else {
2821 ASSERT(vd == vd->vdev_top);
2822
428870ff
BB
2823 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2824 !vd->vdev_ishole)
b128c09f 2825 list_insert_head(&spa->spa_config_dirty_list, vd);
34dc7c2f
BB
2826 }
2827}
2828
2829void
2830vdev_config_clean(vdev_t *vd)
2831{
2832 spa_t *spa = vd->vdev_spa;
2833
b128c09f
BB
2834 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2835 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2836 spa_config_held(spa, SCL_CONFIG, RW_READER)));
34dc7c2f 2837
b128c09f
BB
2838 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2839 list_remove(&spa->spa_config_dirty_list, vd);
34dc7c2f
BB
2840}
2841
b128c09f
BB
2842/*
2843 * Mark a top-level vdev's state as dirty, so that the next pass of
2844 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
2845 * the state changes from larger config changes because they require
2846 * much less locking, and are often needed for administrative actions.
2847 */
2848void
2849vdev_state_dirty(vdev_t *vd)
2850{
2851 spa_t *spa = vd->vdev_spa;
2852
572e2857 2853 ASSERT(spa_writeable(spa));
b128c09f
BB
2854 ASSERT(vd == vd->vdev_top);
2855
2856 /*
2857 * The state list is protected by the SCL_STATE lock. The caller
2858 * must either hold SCL_STATE as writer, or must be the sync thread
2859 * (which holds SCL_STATE as reader). There's only one sync thread,
2860 * so this is sufficient to ensure mutual exclusion.
2861 */
2862 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2863 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2864 spa_config_held(spa, SCL_STATE, RW_READER)));
2865
428870ff 2866 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
b128c09f
BB
2867 list_insert_head(&spa->spa_state_dirty_list, vd);
2868}
2869
2870void
2871vdev_state_clean(vdev_t *vd)
2872{
2873 spa_t *spa = vd->vdev_spa;
2874
2875 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2876 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2877 spa_config_held(spa, SCL_STATE, RW_READER)));
2878
2879 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2880 list_remove(&spa->spa_state_dirty_list, vd);
2881}
2882
2883/*
2884 * Propagate vdev state up from children to parent.
2885 */
34dc7c2f
BB
2886void
2887vdev_propagate_state(vdev_t *vd)
2888{
fb5f0bc8
BB
2889 spa_t *spa = vd->vdev_spa;
2890 vdev_t *rvd = spa->spa_root_vdev;
34dc7c2f
BB
2891 int degraded = 0, faulted = 0;
2892 int corrupted = 0;
34dc7c2f 2893 vdev_t *child;
d6320ddb 2894 int c;
34dc7c2f
BB
2895
2896 if (vd->vdev_children > 0) {
d6320ddb 2897 for (c = 0; c < vd->vdev_children; c++) {
34dc7c2f 2898 child = vd->vdev_child[c];
b128c09f 2899
428870ff
BB
2900 /*
2901 * Don't factor holes into the decision.
2902 */
2903 if (child->vdev_ishole)
2904 continue;
2905
b128c09f 2906 if (!vdev_readable(child) ||
fb5f0bc8 2907 (!vdev_writeable(child) && spa_writeable(spa))) {
b128c09f
BB
2908 /*
2909 * Root special: if there is a top-level log
2910 * device, treat the root vdev as if it were
2911 * degraded.
2912 */
2913 if (child->vdev_islog && vd == rvd)
2914 degraded++;
2915 else
2916 faulted++;
2917 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
34dc7c2f 2918 degraded++;
b128c09f 2919 }
34dc7c2f
BB
2920
2921 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2922 corrupted++;
2923 }
2924
2925 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2926
2927 /*
b128c09f 2928 * Root special: if there is a top-level vdev that cannot be
34dc7c2f
BB
2929 * opened due to corrupted metadata, then propagate the root
2930 * vdev's aux state as 'corrupt' rather than 'insufficient
2931 * replicas'.
2932 */
2933 if (corrupted && vd == rvd &&
2934 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2935 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2936 VDEV_AUX_CORRUPT_DATA);
2937 }
2938
b128c09f 2939 if (vd->vdev_parent)
34dc7c2f
BB
2940 vdev_propagate_state(vd->vdev_parent);
2941}
2942
2943/*
2944 * Set a vdev's state. If this is during an open, we don't update the parent
2945 * state, because we're in the process of opening children depth-first.
2946 * Otherwise, we propagate the change to the parent.
2947 *
2948 * If this routine places a device in a faulted state, an appropriate ereport is
2949 * generated.
2950 */
2951void
2952vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2953{
2954 uint64_t save_state;
b128c09f 2955 spa_t *spa = vd->vdev_spa;
34dc7c2f
BB
2956
2957 if (state == vd->vdev_state) {
2958 vd->vdev_stat.vs_aux = aux;
2959 return;
2960 }
2961
2962 save_state = vd->vdev_state;
2963
2964 vd->vdev_state = state;
2965 vd->vdev_stat.vs_aux = aux;
2966
2967 /*
2968 * If we are setting the vdev state to anything but an open state, then
428870ff
BB
2969 * always close the underlying device unless the device has requested
2970 * a delayed close (i.e. we're about to remove or fault the device).
2971 * Otherwise, we keep accessible but invalid devices open forever.
2972 * We don't call vdev_close() itself, because that implies some extra
2973 * checks (offline, etc) that we don't want here. This is limited to
2974 * leaf devices, because otherwise closing the device will affect other
2975 * children.
34dc7c2f 2976 */
428870ff
BB
2977 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2978 vd->vdev_ops->vdev_op_leaf)
34dc7c2f
BB
2979 vd->vdev_ops->vdev_op_close(vd);
2980
428870ff
BB
2981 /*
2982 * If we have brought this vdev back into service, we need
2983 * to notify fmd so that it can gracefully repair any outstanding
2984 * cases due to a missing device. We do this in all cases, even those
2985 * that probably don't correlate to a repaired fault. This is sure to
2986 * catch all cases, and we let the zfs-retire agent sort it out. If
2987 * this is a transient state it's OK, as the retire agent will
2988 * double-check the state of the vdev before repairing it.
2989 */
2990 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2991 vd->vdev_prevstate != state)
2992 zfs_post_state_change(spa, vd);
2993
34dc7c2f
BB
2994 if (vd->vdev_removed &&
2995 state == VDEV_STATE_CANT_OPEN &&
2996 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2997 /*
2998 * If the previous state is set to VDEV_STATE_REMOVED, then this
2999 * device was previously marked removed and someone attempted to
3000 * reopen it. If this failed due to a nonexistent device, then
3001 * keep the device in the REMOVED state. We also let this be if
3002 * it is one of our special test online cases, which is only
3003 * attempting to online the device and shouldn't generate an FMA
3004 * fault.
3005 */
3006 vd->vdev_state = VDEV_STATE_REMOVED;
3007 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3008 } else if (state == VDEV_STATE_REMOVED) {
34dc7c2f
BB
3009 vd->vdev_removed = B_TRUE;
3010 } else if (state == VDEV_STATE_CANT_OPEN) {
3011 /*
572e2857
BB
3012 * If we fail to open a vdev during an import or recovery, we
3013 * mark it as "not available", which signifies that it was
3014 * never there to begin with. Failure to open such a device
3015 * is not considered an error.
34dc7c2f 3016 */
572e2857
BB
3017 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3018 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
34dc7c2f
BB
3019 vd->vdev_ops->vdev_op_leaf)
3020 vd->vdev_not_present = 1;
3021
3022 /*
3023 * Post the appropriate ereport. If the 'prevstate' field is
3024 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3025 * that this is part of a vdev_reopen(). In this case, we don't
3026 * want to post the ereport if the device was already in the
3027 * CANT_OPEN state beforehand.
3028 *
3029 * If the 'checkremove' flag is set, then this is an attempt to
3030 * online the device in response to an insertion event. If we
3031 * hit this case, then we have detected an insertion event for a
3032 * faulted or offline device that wasn't in the removed state.
3033 * In this scenario, we don't post an ereport because we are
3034 * about to replace the device, or attempt an online with
3035 * vdev_forcefault, which will generate the fault for us.
3036 */
3037 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3038 !vd->vdev_not_present && !vd->vdev_checkremove &&
b128c09f 3039 vd != spa->spa_root_vdev) {
34dc7c2f
BB
3040 const char *class;
3041
3042 switch (aux) {
3043 case VDEV_AUX_OPEN_FAILED:
3044 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3045 break;
3046 case VDEV_AUX_CORRUPT_DATA:
3047 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3048 break;
3049 case VDEV_AUX_NO_REPLICAS:
3050 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3051 break;
3052 case VDEV_AUX_BAD_GUID_SUM:
3053 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3054 break;
3055 case VDEV_AUX_TOO_SMALL:
3056 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3057 break;
3058 case VDEV_AUX_BAD_LABEL:
3059 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3060 break;
3061 default:
3062 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3063 }
3064
b128c09f 3065 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
34dc7c2f
BB
3066 }
3067
3068 /* Erase any notion of persistent removed state */
3069 vd->vdev_removed = B_FALSE;
3070 } else {
3071 vd->vdev_removed = B_FALSE;
3072 }
3073
9babb374
BB
3074 if (!isopen && vd->vdev_parent)
3075 vdev_propagate_state(vd->vdev_parent);
34dc7c2f 3076}
b128c09f
BB
3077
3078/*
3079 * Check the vdev configuration to ensure that it's capable of supporting
57a4eddc 3080 * a root pool.
b128c09f
BB
3081 */
3082boolean_t
3083vdev_is_bootable(vdev_t *vd)
3084{
57a4eddc
RL
3085#if defined(__sun__) || defined(__sun)
3086 /*
3087 * Currently, we do not support RAID-Z or partial configuration.
3088 * In addition, only a single top-level vdev is allowed and none of the
3089 * leaves can be wholedisks.
3090 */
d6320ddb
BB
3091 int c;
3092
b128c09f
BB
3093 if (!vd->vdev_ops->vdev_op_leaf) {
3094 char *vdev_type = vd->vdev_ops->vdev_op_type;
3095
3096 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3097 vd->vdev_children > 1) {
3098 return (B_FALSE);
3099 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3100 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3101 return (B_FALSE);
3102 }
3103 } else if (vd->vdev_wholedisk == 1) {
3104 return (B_FALSE);
3105 }
3106
d6320ddb 3107 for (c = 0; c < vd->vdev_children; c++) {
b128c09f
BB
3108 if (!vdev_is_bootable(vd->vdev_child[c]))
3109 return (B_FALSE);
3110 }
57a4eddc 3111#endif /* __sun__ || __sun */
b128c09f
BB
3112 return (B_TRUE);
3113}
9babb374 3114
428870ff
BB
3115/*
3116 * Load the state from the original vdev tree (ovd) which
3117 * we've retrieved from the MOS config object. If the original
572e2857
BB
3118 * vdev was offline or faulted then we transfer that state to the
3119 * device in the current vdev tree (nvd).
428870ff 3120 */
9babb374 3121void
428870ff 3122vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
9babb374 3123{
d6320ddb 3124 int c;
9babb374 3125
572e2857 3126 ASSERT(nvd->vdev_top->vdev_islog);
1fde1e37
BB
3127 ASSERT(spa_config_held(nvd->vdev_spa,
3128 SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
428870ff 3129 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
9babb374 3130
d6320ddb 3131 for (c = 0; c < nvd->vdev_children; c++)
428870ff 3132 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
9babb374 3133
572e2857 3134 if (nvd->vdev_ops->vdev_op_leaf) {
9babb374 3135 /*
572e2857 3136 * Restore the persistent vdev state
9babb374 3137 */
428870ff 3138 nvd->vdev_offline = ovd->vdev_offline;
572e2857
BB
3139 nvd->vdev_faulted = ovd->vdev_faulted;
3140 nvd->vdev_degraded = ovd->vdev_degraded;
3141 nvd->vdev_removed = ovd->vdev_removed;
9babb374
BB
3142 }
3143}
3144
572e2857
BB
3145/*
3146 * Determine if a log device has valid content. If the vdev was
3147 * removed or faulted in the MOS config then we know that
3148 * the content on the log device has already been written to the pool.
3149 */
3150boolean_t
3151vdev_log_state_valid(vdev_t *vd)
3152{
d6320ddb
BB
3153 int c;
3154
572e2857
BB
3155 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3156 !vd->vdev_removed)
3157 return (B_TRUE);
3158
d6320ddb 3159 for (c = 0; c < vd->vdev_children; c++)
572e2857
BB
3160 if (vdev_log_state_valid(vd->vdev_child[c]))
3161 return (B_TRUE);
3162
3163 return (B_FALSE);
3164}
3165
9babb374
BB
3166/*
3167 * Expand a vdev if possible.
3168 */
3169void
3170vdev_expand(vdev_t *vd, uint64_t txg)
3171{
3172 ASSERT(vd->vdev_top == vd);
3173 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3174
3175 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3176 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3177 vdev_config_dirty(vd);
3178 }
3179}
428870ff
BB
3180
3181/*
3182 * Split a vdev.
3183 */
3184void
3185vdev_split(vdev_t *vd)
3186{
3187 vdev_t *cvd, *pvd = vd->vdev_parent;
3188
3189 vdev_remove_child(pvd, vd);
3190 vdev_compact_children(pvd);
3191
3192 cvd = pvd->vdev_child[0];
3193 if (pvd->vdev_children == 1) {
3194 vdev_remove_parent(cvd);
3195 cvd->vdev_splitting = B_TRUE;
3196 }
3197 vdev_propagate_state(cvd);
3198}
c28b2279 3199
cc92e9d0
GW
3200void
3201vdev_deadman(vdev_t *vd)
3202{
3203 int c;
3204
3205 for (c = 0; c < vd->vdev_children; c++) {
3206 vdev_t *cvd = vd->vdev_child[c];
3207
3208 vdev_deadman(cvd);
3209 }
3210
3211 if (vd->vdev_ops->vdev_op_leaf) {
3212 vdev_queue_t *vq = &vd->vdev_queue;
3213
3214 mutex_enter(&vq->vq_lock);
3215 if (avl_numnodes(&vq->vq_pending_tree) > 0) {
3216 spa_t *spa = vd->vdev_spa;
3217 zio_t *fio;
3218 uint64_t delta;
3219
3220 /*
3221 * Look at the head of all the pending queues,
3222 * if any I/O has been outstanding for longer than
3223 * the spa_deadman_synctime we log a zevent.
3224 */
3225 fio = avl_first(&vq->vq_pending_tree);
cb682a17
MA
3226 delta = gethrtime() - fio->io_timestamp;
3227 if (delta > spa_deadman_synctime(spa)) {
3228 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3229 "delta %lluns, last io %lluns",
cc92e9d0
GW
3230 fio->io_timestamp, delta,
3231 vq->vq_io_complete_ts);
3232 zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
3233 spa, vd, fio, 0, 0);
3234 }
3235 }
3236 mutex_exit(&vq->vq_lock);
3237 }
3238}
3239
c28b2279
BB
3240#if defined(_KERNEL) && defined(HAVE_SPL)
3241EXPORT_SYMBOL(vdev_fault);
3242EXPORT_SYMBOL(vdev_degrade);
3243EXPORT_SYMBOL(vdev_online);
3244EXPORT_SYMBOL(vdev_offline);
3245EXPORT_SYMBOL(vdev_clear);
3246#endif