]> git.proxmox.com Git - mirror_zfs-debian.git/blame - module/zfs/vdev.c
Fix gcc missing parenthesis warnings
[mirror_zfs-debian.git] / module / zfs / vdev.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
428870ff 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
34dc7c2f
BB
24 */
25
34dc7c2f
BB
26#include <sys/zfs_context.h>
27#include <sys/fm/fs/zfs.h>
28#include <sys/spa.h>
29#include <sys/spa_impl.h>
30#include <sys/dmu.h>
31#include <sys/dmu_tx.h>
32#include <sys/vdev_impl.h>
33#include <sys/uberblock_impl.h>
34#include <sys/metaslab.h>
35#include <sys/metaslab_impl.h>
36#include <sys/space_map.h>
37#include <sys/zio.h>
38#include <sys/zap.h>
39#include <sys/fs/zfs.h>
b128c09f 40#include <sys/arc.h>
9babb374 41#include <sys/zil.h>
428870ff 42#include <sys/dsl_scan.h>
34dc7c2f
BB
43
44/*
45 * Virtual device management.
46 */
47
48static vdev_ops_t *vdev_ops_table[] = {
49 &vdev_root_ops,
50 &vdev_raidz_ops,
51 &vdev_mirror_ops,
52 &vdev_replacing_ops,
53 &vdev_spare_ops,
54 &vdev_disk_ops,
55 &vdev_file_ops,
56 &vdev_missing_ops,
428870ff 57 &vdev_hole_ops,
34dc7c2f
BB
58 NULL
59};
60
b128c09f
BB
61/* maximum scrub/resilver I/O queue per leaf vdev */
62int zfs_scrub_limit = 10;
34dc7c2f
BB
63
64/*
65 * Given a vdev type, return the appropriate ops vector.
66 */
67static vdev_ops_t *
68vdev_getops(const char *type)
69{
70 vdev_ops_t *ops, **opspp;
71
72 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
73 if (strcmp(ops->vdev_op_type, type) == 0)
74 break;
75
76 return (ops);
77}
78
79/*
80 * Default asize function: return the MAX of psize with the asize of
81 * all children. This is what's used by anything other than RAID-Z.
82 */
83uint64_t
84vdev_default_asize(vdev_t *vd, uint64_t psize)
85{
86 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
87 uint64_t csize;
d6320ddb 88 int c;
34dc7c2f 89
d6320ddb 90 for (c = 0; c < vd->vdev_children; c++) {
34dc7c2f
BB
91 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
92 asize = MAX(asize, csize);
93 }
94
95 return (asize);
96}
97
98/*
9babb374
BB
99 * Get the minimum allocatable size. We define the allocatable size as
100 * the vdev's asize rounded to the nearest metaslab. This allows us to
101 * replace or attach devices which don't have the same physical size but
102 * can still satisfy the same number of allocations.
34dc7c2f
BB
103 */
104uint64_t
9babb374 105vdev_get_min_asize(vdev_t *vd)
34dc7c2f 106{
9babb374 107 vdev_t *pvd = vd->vdev_parent;
34dc7c2f 108
9babb374
BB
109 /*
110 * The our parent is NULL (inactive spare or cache) or is the root,
111 * just return our own asize.
112 */
113 if (pvd == NULL)
114 return (vd->vdev_asize);
34dc7c2f
BB
115
116 /*
9babb374
BB
117 * The top-level vdev just returns the allocatable size rounded
118 * to the nearest metaslab.
34dc7c2f 119 */
9babb374
BB
120 if (vd == vd->vdev_top)
121 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
34dc7c2f 122
9babb374
BB
123 /*
124 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
125 * so each child must provide at least 1/Nth of its asize.
126 */
127 if (pvd->vdev_ops == &vdev_raidz_ops)
128 return (pvd->vdev_min_asize / pvd->vdev_children);
34dc7c2f 129
9babb374
BB
130 return (pvd->vdev_min_asize);
131}
132
133void
134vdev_set_min_asize(vdev_t *vd)
135{
d6320ddb 136 int c;
9babb374 137 vd->vdev_min_asize = vdev_get_min_asize(vd);
34dc7c2f 138
d6320ddb 139 for (c = 0; c < vd->vdev_children; c++)
9babb374 140 vdev_set_min_asize(vd->vdev_child[c]);
34dc7c2f
BB
141}
142
143vdev_t *
144vdev_lookup_top(spa_t *spa, uint64_t vdev)
145{
146 vdev_t *rvd = spa->spa_root_vdev;
147
b128c09f 148 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
34dc7c2f 149
b128c09f
BB
150 if (vdev < rvd->vdev_children) {
151 ASSERT(rvd->vdev_child[vdev] != NULL);
34dc7c2f 152 return (rvd->vdev_child[vdev]);
b128c09f 153 }
34dc7c2f
BB
154
155 return (NULL);
156}
157
158vdev_t *
159vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
160{
34dc7c2f 161 vdev_t *mvd;
d6320ddb 162 int c;
34dc7c2f
BB
163
164 if (vd->vdev_guid == guid)
165 return (vd);
166
d6320ddb 167 for (c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
168 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
169 NULL)
170 return (mvd);
171
172 return (NULL);
173}
174
175void
176vdev_add_child(vdev_t *pvd, vdev_t *cvd)
177{
178 size_t oldsize, newsize;
179 uint64_t id = cvd->vdev_id;
180 vdev_t **newchild;
181
b128c09f 182 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
183 ASSERT(cvd->vdev_parent == NULL);
184
185 cvd->vdev_parent = pvd;
186
187 if (pvd == NULL)
188 return;
189
190 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
191
192 oldsize = pvd->vdev_children * sizeof (vdev_t *);
193 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
194 newsize = pvd->vdev_children * sizeof (vdev_t *);
195
196 newchild = kmem_zalloc(newsize, KM_SLEEP);
197 if (pvd->vdev_child != NULL) {
198 bcopy(pvd->vdev_child, newchild, oldsize);
199 kmem_free(pvd->vdev_child, oldsize);
200 }
201
202 pvd->vdev_child = newchild;
203 pvd->vdev_child[id] = cvd;
204
205 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
206 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
207
208 /*
209 * Walk up all ancestors to update guid sum.
210 */
211 for (; pvd != NULL; pvd = pvd->vdev_parent)
212 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
34dc7c2f
BB
213}
214
215void
216vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
217{
218 int c;
219 uint_t id = cvd->vdev_id;
220
221 ASSERT(cvd->vdev_parent == pvd);
222
223 if (pvd == NULL)
224 return;
225
226 ASSERT(id < pvd->vdev_children);
227 ASSERT(pvd->vdev_child[id] == cvd);
228
229 pvd->vdev_child[id] = NULL;
230 cvd->vdev_parent = NULL;
231
232 for (c = 0; c < pvd->vdev_children; c++)
233 if (pvd->vdev_child[c])
234 break;
235
236 if (c == pvd->vdev_children) {
237 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
238 pvd->vdev_child = NULL;
239 pvd->vdev_children = 0;
240 }
241
242 /*
243 * Walk up all ancestors to update guid sum.
244 */
245 for (; pvd != NULL; pvd = pvd->vdev_parent)
246 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
34dc7c2f
BB
247}
248
249/*
250 * Remove any holes in the child array.
251 */
252void
253vdev_compact_children(vdev_t *pvd)
254{
255 vdev_t **newchild, *cvd;
256 int oldc = pvd->vdev_children;
9babb374 257 int newc;
d6320ddb 258 int c;
34dc7c2f 259
b128c09f 260 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f 261
d6320ddb 262 for (c = newc = 0; c < oldc; c++)
34dc7c2f
BB
263 if (pvd->vdev_child[c])
264 newc++;
265
266 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
267
d6320ddb 268 for (c = newc = 0; c < oldc; c++) {
34dc7c2f
BB
269 if ((cvd = pvd->vdev_child[c]) != NULL) {
270 newchild[newc] = cvd;
271 cvd->vdev_id = newc++;
272 }
273 }
274
275 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
276 pvd->vdev_child = newchild;
277 pvd->vdev_children = newc;
278}
279
280/*
281 * Allocate and minimally initialize a vdev_t.
282 */
428870ff 283vdev_t *
34dc7c2f
BB
284vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
285{
286 vdev_t *vd;
d6320ddb 287 int t;
34dc7c2f
BB
288
289 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
290
291 if (spa->spa_root_vdev == NULL) {
292 ASSERT(ops == &vdev_root_ops);
293 spa->spa_root_vdev = vd;
294 }
295
428870ff 296 if (guid == 0 && ops != &vdev_hole_ops) {
34dc7c2f
BB
297 if (spa->spa_root_vdev == vd) {
298 /*
299 * The root vdev's guid will also be the pool guid,
300 * which must be unique among all pools.
301 */
428870ff 302 guid = spa_generate_guid(NULL);
34dc7c2f
BB
303 } else {
304 /*
305 * Any other vdev's guid must be unique within the pool.
306 */
428870ff 307 guid = spa_generate_guid(spa);
34dc7c2f
BB
308 }
309 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
310 }
311
312 vd->vdev_spa = spa;
313 vd->vdev_id = id;
314 vd->vdev_guid = guid;
315 vd->vdev_guid_sum = guid;
316 vd->vdev_ops = ops;
317 vd->vdev_state = VDEV_STATE_CLOSED;
428870ff 318 vd->vdev_ishole = (ops == &vdev_hole_ops);
34dc7c2f
BB
319
320 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
321 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
b128c09f 322 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
d6320ddb 323 for (t = 0; t < DTL_TYPES; t++) {
fb5f0bc8
BB
324 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
325 &vd->vdev_dtl_lock);
326 }
34dc7c2f
BB
327 txg_list_create(&vd->vdev_ms_list,
328 offsetof(struct metaslab, ms_txg_node));
329 txg_list_create(&vd->vdev_dtl_list,
330 offsetof(struct vdev, vdev_dtl_node));
331 vd->vdev_stat.vs_timestamp = gethrtime();
332 vdev_queue_init(vd);
333 vdev_cache_init(vd);
334
335 return (vd);
336}
337
338/*
339 * Allocate a new vdev. The 'alloctype' is used to control whether we are
340 * creating a new vdev or loading an existing one - the behavior is slightly
341 * different for each case.
342 */
343int
344vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
345 int alloctype)
346{
347 vdev_ops_t *ops;
348 char *type;
349 uint64_t guid = 0, islog, nparity;
350 vdev_t *vd;
351
b128c09f 352 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
353
354 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
355 return (EINVAL);
356
357 if ((ops = vdev_getops(type)) == NULL)
358 return (EINVAL);
359
360 /*
361 * If this is a load, get the vdev guid from the nvlist.
362 * Otherwise, vdev_alloc_common() will generate one for us.
363 */
364 if (alloctype == VDEV_ALLOC_LOAD) {
365 uint64_t label_id;
366
367 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
368 label_id != id)
369 return (EINVAL);
370
371 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
372 return (EINVAL);
373 } else if (alloctype == VDEV_ALLOC_SPARE) {
374 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
375 return (EINVAL);
376 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
377 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
378 return (EINVAL);
9babb374
BB
379 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
380 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
381 return (EINVAL);
34dc7c2f
BB
382 }
383
384 /*
385 * The first allocated vdev must be of type 'root'.
386 */
387 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
388 return (EINVAL);
389
390 /*
391 * Determine whether we're a log vdev.
392 */
393 islog = 0;
394 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
395 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
396 return (ENOTSUP);
397
428870ff
BB
398 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
399 return (ENOTSUP);
400
34dc7c2f
BB
401 /*
402 * Set the nparity property for RAID-Z vdevs.
403 */
404 nparity = -1ULL;
405 if (ops == &vdev_raidz_ops) {
406 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
407 &nparity) == 0) {
428870ff 408 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
34dc7c2f
BB
409 return (EINVAL);
410 /*
45d1cae3
BB
411 * Previous versions could only support 1 or 2 parity
412 * device.
34dc7c2f 413 */
45d1cae3
BB
414 if (nparity > 1 &&
415 spa_version(spa) < SPA_VERSION_RAIDZ2)
416 return (ENOTSUP);
417 if (nparity > 2 &&
418 spa_version(spa) < SPA_VERSION_RAIDZ3)
34dc7c2f
BB
419 return (ENOTSUP);
420 } else {
421 /*
422 * We require the parity to be specified for SPAs that
423 * support multiple parity levels.
424 */
45d1cae3 425 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
34dc7c2f
BB
426 return (EINVAL);
427 /*
428 * Otherwise, we default to 1 parity device for RAID-Z.
429 */
430 nparity = 1;
431 }
432 } else {
433 nparity = 0;
434 }
435 ASSERT(nparity != -1ULL);
436
437 vd = vdev_alloc_common(spa, id, guid, ops);
438
439 vd->vdev_islog = islog;
440 vd->vdev_nparity = nparity;
441
442 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
443 vd->vdev_path = spa_strdup(vd->vdev_path);
444 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
445 vd->vdev_devid = spa_strdup(vd->vdev_devid);
446 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
447 &vd->vdev_physpath) == 0)
448 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
9babb374
BB
449 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
450 vd->vdev_fru = spa_strdup(vd->vdev_fru);
34dc7c2f
BB
451
452 /*
453 * Set the whole_disk property. If it's not specified, leave the value
454 * as -1.
455 */
456 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
457 &vd->vdev_wholedisk) != 0)
458 vd->vdev_wholedisk = -1ULL;
459
460 /*
461 * Look for the 'not present' flag. This will only be set if the device
462 * was not present at the time of import.
463 */
9babb374
BB
464 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
465 &vd->vdev_not_present);
34dc7c2f
BB
466
467 /*
468 * Get the alignment requirement.
469 */
470 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
471
428870ff
BB
472 /*
473 * Retrieve the vdev creation time.
474 */
475 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
476 &vd->vdev_crtxg);
477
34dc7c2f
BB
478 /*
479 * If we're a top-level vdev, try to load the allocation parameters.
480 */
428870ff
BB
481 if (parent && !parent->vdev_parent &&
482 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
34dc7c2f
BB
483 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
484 &vd->vdev_ms_array);
485 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
486 &vd->vdev_ms_shift);
487 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
488 &vd->vdev_asize);
428870ff
BB
489 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
490 &vd->vdev_removing);
491 }
492
493 if (parent && !parent->vdev_parent) {
494 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
495 alloctype == VDEV_ALLOC_ADD ||
496 alloctype == VDEV_ALLOC_SPLIT ||
497 alloctype == VDEV_ALLOC_ROOTPOOL);
498 vd->vdev_mg = metaslab_group_create(islog ?
499 spa_log_class(spa) : spa_normal_class(spa), vd);
34dc7c2f
BB
500 }
501
502 /*
503 * If we're a leaf vdev, try to load the DTL object and other state.
504 */
b128c09f 505 if (vd->vdev_ops->vdev_op_leaf &&
9babb374
BB
506 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
507 alloctype == VDEV_ALLOC_ROOTPOOL)) {
b128c09f
BB
508 if (alloctype == VDEV_ALLOC_LOAD) {
509 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
fb5f0bc8 510 &vd->vdev_dtl_smo.smo_object);
b128c09f
BB
511 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
512 &vd->vdev_unspare);
513 }
9babb374
BB
514
515 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
516 uint64_t spare = 0;
517
518 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
519 &spare) == 0 && spare)
520 spa_spare_add(vd);
521 }
522
34dc7c2f
BB
523 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
524 &vd->vdev_offline);
b128c09f 525
572e2857
BB
526 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
527 &vd->vdev_resilvering);
528
34dc7c2f
BB
529 /*
530 * When importing a pool, we want to ignore the persistent fault
531 * state, as the diagnosis made on another system may not be
428870ff
BB
532 * valid in the current context. Local vdevs will
533 * remain in the faulted state.
34dc7c2f 534 */
428870ff 535 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
34dc7c2f
BB
536 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
537 &vd->vdev_faulted);
538 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
539 &vd->vdev_degraded);
540 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
541 &vd->vdev_removed);
428870ff
BB
542
543 if (vd->vdev_faulted || vd->vdev_degraded) {
544 char *aux;
545
546 vd->vdev_label_aux =
547 VDEV_AUX_ERR_EXCEEDED;
548 if (nvlist_lookup_string(nv,
549 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
550 strcmp(aux, "external") == 0)
551 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
552 }
34dc7c2f
BB
553 }
554 }
555
556 /*
557 * Add ourselves to the parent's list of children.
558 */
559 vdev_add_child(parent, vd);
560
561 *vdp = vd;
562
563 return (0);
564}
565
566void
567vdev_free(vdev_t *vd)
568{
d6320ddb 569 int c, t;
34dc7c2f
BB
570 spa_t *spa = vd->vdev_spa;
571
572 /*
573 * vdev_free() implies closing the vdev first. This is simpler than
574 * trying to ensure complicated semantics for all callers.
575 */
576 vdev_close(vd);
577
b128c09f 578 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
428870ff 579 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
34dc7c2f
BB
580
581 /*
582 * Free all children.
583 */
d6320ddb 584 for (c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
585 vdev_free(vd->vdev_child[c]);
586
587 ASSERT(vd->vdev_child == NULL);
588 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
589
590 /*
591 * Discard allocation state.
592 */
428870ff 593 if (vd->vdev_mg != NULL) {
34dc7c2f 594 vdev_metaslab_fini(vd);
428870ff
BB
595 metaslab_group_destroy(vd->vdev_mg);
596 }
34dc7c2f
BB
597
598 ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
599 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
600 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
601
602 /*
603 * Remove this vdev from its parent's child list.
604 */
605 vdev_remove_child(vd->vdev_parent, vd);
606
607 ASSERT(vd->vdev_parent == NULL);
608
609 /*
610 * Clean up vdev structure.
611 */
612 vdev_queue_fini(vd);
613 vdev_cache_fini(vd);
614
615 if (vd->vdev_path)
616 spa_strfree(vd->vdev_path);
617 if (vd->vdev_devid)
618 spa_strfree(vd->vdev_devid);
619 if (vd->vdev_physpath)
620 spa_strfree(vd->vdev_physpath);
9babb374
BB
621 if (vd->vdev_fru)
622 spa_strfree(vd->vdev_fru);
34dc7c2f
BB
623
624 if (vd->vdev_isspare)
625 spa_spare_remove(vd);
626 if (vd->vdev_isl2cache)
627 spa_l2cache_remove(vd);
628
629 txg_list_destroy(&vd->vdev_ms_list);
630 txg_list_destroy(&vd->vdev_dtl_list);
fb5f0bc8 631
34dc7c2f 632 mutex_enter(&vd->vdev_dtl_lock);
d6320ddb 633 for (t = 0; t < DTL_TYPES; t++) {
fb5f0bc8
BB
634 space_map_unload(&vd->vdev_dtl[t]);
635 space_map_destroy(&vd->vdev_dtl[t]);
636 }
34dc7c2f 637 mutex_exit(&vd->vdev_dtl_lock);
fb5f0bc8 638
34dc7c2f
BB
639 mutex_destroy(&vd->vdev_dtl_lock);
640 mutex_destroy(&vd->vdev_stat_lock);
b128c09f 641 mutex_destroy(&vd->vdev_probe_lock);
34dc7c2f
BB
642
643 if (vd == spa->spa_root_vdev)
644 spa->spa_root_vdev = NULL;
645
646 kmem_free(vd, sizeof (vdev_t));
647}
648
649/*
650 * Transfer top-level vdev state from svd to tvd.
651 */
652static void
653vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
654{
655 spa_t *spa = svd->vdev_spa;
656 metaslab_t *msp;
657 vdev_t *vd;
658 int t;
659
660 ASSERT(tvd == tvd->vdev_top);
661
662 tvd->vdev_ms_array = svd->vdev_ms_array;
663 tvd->vdev_ms_shift = svd->vdev_ms_shift;
664 tvd->vdev_ms_count = svd->vdev_ms_count;
665
666 svd->vdev_ms_array = 0;
667 svd->vdev_ms_shift = 0;
668 svd->vdev_ms_count = 0;
669
670 tvd->vdev_mg = svd->vdev_mg;
671 tvd->vdev_ms = svd->vdev_ms;
672
673 svd->vdev_mg = NULL;
674 svd->vdev_ms = NULL;
675
676 if (tvd->vdev_mg != NULL)
677 tvd->vdev_mg->mg_vd = tvd;
678
679 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
680 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
681 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
682
683 svd->vdev_stat.vs_alloc = 0;
684 svd->vdev_stat.vs_space = 0;
685 svd->vdev_stat.vs_dspace = 0;
686
687 for (t = 0; t < TXG_SIZE; t++) {
688 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
689 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
690 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
691 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
692 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
693 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
694 }
695
b128c09f 696 if (list_link_active(&svd->vdev_config_dirty_node)) {
34dc7c2f
BB
697 vdev_config_clean(svd);
698 vdev_config_dirty(tvd);
699 }
700
b128c09f
BB
701 if (list_link_active(&svd->vdev_state_dirty_node)) {
702 vdev_state_clean(svd);
703 vdev_state_dirty(tvd);
704 }
705
34dc7c2f
BB
706 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
707 svd->vdev_deflate_ratio = 0;
708
709 tvd->vdev_islog = svd->vdev_islog;
710 svd->vdev_islog = 0;
711}
712
713static void
714vdev_top_update(vdev_t *tvd, vdev_t *vd)
715{
d6320ddb
BB
716 int c;
717
34dc7c2f
BB
718 if (vd == NULL)
719 return;
720
721 vd->vdev_top = tvd;
722
d6320ddb 723 for (c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
724 vdev_top_update(tvd, vd->vdev_child[c]);
725}
726
727/*
728 * Add a mirror/replacing vdev above an existing vdev.
729 */
730vdev_t *
731vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
732{
733 spa_t *spa = cvd->vdev_spa;
734 vdev_t *pvd = cvd->vdev_parent;
735 vdev_t *mvd;
736
b128c09f 737 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
738
739 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
740
741 mvd->vdev_asize = cvd->vdev_asize;
9babb374 742 mvd->vdev_min_asize = cvd->vdev_min_asize;
34dc7c2f
BB
743 mvd->vdev_ashift = cvd->vdev_ashift;
744 mvd->vdev_state = cvd->vdev_state;
428870ff 745 mvd->vdev_crtxg = cvd->vdev_crtxg;
34dc7c2f
BB
746
747 vdev_remove_child(pvd, cvd);
748 vdev_add_child(pvd, mvd);
749 cvd->vdev_id = mvd->vdev_children;
750 vdev_add_child(mvd, cvd);
751 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
752
753 if (mvd == mvd->vdev_top)
754 vdev_top_transfer(cvd, mvd);
755
756 return (mvd);
757}
758
759/*
760 * Remove a 1-way mirror/replacing vdev from the tree.
761 */
762void
763vdev_remove_parent(vdev_t *cvd)
764{
765 vdev_t *mvd = cvd->vdev_parent;
766 vdev_t *pvd = mvd->vdev_parent;
767
b128c09f 768 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
769
770 ASSERT(mvd->vdev_children == 1);
771 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
772 mvd->vdev_ops == &vdev_replacing_ops ||
773 mvd->vdev_ops == &vdev_spare_ops);
774 cvd->vdev_ashift = mvd->vdev_ashift;
775
776 vdev_remove_child(mvd, cvd);
777 vdev_remove_child(pvd, mvd);
fb5f0bc8 778
34dc7c2f 779 /*
b128c09f
BB
780 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
781 * Otherwise, we could have detached an offline device, and when we
782 * go to import the pool we'll think we have two top-level vdevs,
783 * instead of a different version of the same top-level vdev.
34dc7c2f 784 */
fb5f0bc8
BB
785 if (mvd->vdev_top == mvd) {
786 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
428870ff 787 cvd->vdev_orig_guid = cvd->vdev_guid;
fb5f0bc8
BB
788 cvd->vdev_guid += guid_delta;
789 cvd->vdev_guid_sum += guid_delta;
790 }
b128c09f
BB
791 cvd->vdev_id = mvd->vdev_id;
792 vdev_add_child(pvd, cvd);
34dc7c2f
BB
793 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
794
795 if (cvd == cvd->vdev_top)
796 vdev_top_transfer(mvd, cvd);
797
798 ASSERT(mvd->vdev_children == 0);
799 vdev_free(mvd);
800}
801
802int
803vdev_metaslab_init(vdev_t *vd, uint64_t txg)
804{
805 spa_t *spa = vd->vdev_spa;
806 objset_t *mos = spa->spa_meta_objset;
34dc7c2f
BB
807 uint64_t m;
808 uint64_t oldc = vd->vdev_ms_count;
809 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
810 metaslab_t **mspp;
811 int error;
812
428870ff
BB
813 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
814
815 /*
816 * This vdev is not being allocated from yet or is a hole.
817 */
818 if (vd->vdev_ms_shift == 0)
34dc7c2f
BB
819 return (0);
820
428870ff
BB
821 ASSERT(!vd->vdev_ishole);
822
9babb374
BB
823 /*
824 * Compute the raidz-deflation ratio. Note, we hard-code
825 * in 128k (1 << 17) because it is the current "typical" blocksize.
826 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
827 * or we will inconsistently account for existing bp's.
828 */
829 vd->vdev_deflate_ratio = (1 << 17) /
830 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
831
34dc7c2f
BB
832 ASSERT(oldc <= newc);
833
34dc7c2f
BB
834 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
835
836 if (oldc != 0) {
837 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
838 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
839 }
840
841 vd->vdev_ms = mspp;
842 vd->vdev_ms_count = newc;
843
844 for (m = oldc; m < newc; m++) {
845 space_map_obj_t smo = { 0, 0, 0 };
846 if (txg == 0) {
847 uint64_t object = 0;
848 error = dmu_read(mos, vd->vdev_ms_array,
9babb374
BB
849 m * sizeof (uint64_t), sizeof (uint64_t), &object,
850 DMU_READ_PREFETCH);
34dc7c2f
BB
851 if (error)
852 return (error);
853 if (object != 0) {
854 dmu_buf_t *db;
855 error = dmu_bonus_hold(mos, object, FTAG, &db);
856 if (error)
857 return (error);
858 ASSERT3U(db->db_size, >=, sizeof (smo));
859 bcopy(db->db_data, &smo, sizeof (smo));
860 ASSERT3U(smo.smo_object, ==, object);
861 dmu_buf_rele(db, FTAG);
862 }
863 }
864 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
865 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
866 }
867
428870ff
BB
868 if (txg == 0)
869 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
870
871 /*
872 * If the vdev is being removed we don't activate
873 * the metaslabs since we want to ensure that no new
874 * allocations are performed on this device.
875 */
876 if (oldc == 0 && !vd->vdev_removing)
877 metaslab_group_activate(vd->vdev_mg);
878
879 if (txg == 0)
880 spa_config_exit(spa, SCL_ALLOC, FTAG);
881
34dc7c2f
BB
882 return (0);
883}
884
885void
886vdev_metaslab_fini(vdev_t *vd)
887{
888 uint64_t m;
889 uint64_t count = vd->vdev_ms_count;
890
891 if (vd->vdev_ms != NULL) {
428870ff 892 metaslab_group_passivate(vd->vdev_mg);
34dc7c2f
BB
893 for (m = 0; m < count; m++)
894 if (vd->vdev_ms[m] != NULL)
895 metaslab_fini(vd->vdev_ms[m]);
896 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
897 vd->vdev_ms = NULL;
898 }
899}
900
b128c09f
BB
901typedef struct vdev_probe_stats {
902 boolean_t vps_readable;
903 boolean_t vps_writeable;
904 int vps_flags;
b128c09f
BB
905} vdev_probe_stats_t;
906
907static void
908vdev_probe_done(zio_t *zio)
34dc7c2f 909{
fb5f0bc8 910 spa_t *spa = zio->io_spa;
d164b209 911 vdev_t *vd = zio->io_vd;
b128c09f 912 vdev_probe_stats_t *vps = zio->io_private;
d164b209
BB
913
914 ASSERT(vd->vdev_probe_zio != NULL);
b128c09f
BB
915
916 if (zio->io_type == ZIO_TYPE_READ) {
b128c09f
BB
917 if (zio->io_error == 0)
918 vps->vps_readable = 1;
fb5f0bc8 919 if (zio->io_error == 0 && spa_writeable(spa)) {
d164b209 920 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
b128c09f
BB
921 zio->io_offset, zio->io_size, zio->io_data,
922 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
923 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
924 } else {
925 zio_buf_free(zio->io_data, zio->io_size);
926 }
927 } else if (zio->io_type == ZIO_TYPE_WRITE) {
b128c09f
BB
928 if (zio->io_error == 0)
929 vps->vps_writeable = 1;
930 zio_buf_free(zio->io_data, zio->io_size);
931 } else if (zio->io_type == ZIO_TYPE_NULL) {
d164b209 932 zio_t *pio;
b128c09f
BB
933
934 vd->vdev_cant_read |= !vps->vps_readable;
935 vd->vdev_cant_write |= !vps->vps_writeable;
936
937 if (vdev_readable(vd) &&
fb5f0bc8 938 (vdev_writeable(vd) || !spa_writeable(spa))) {
b128c09f
BB
939 zio->io_error = 0;
940 } else {
941 ASSERT(zio->io_error != 0);
942 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
fb5f0bc8 943 spa, vd, NULL, 0, 0);
b128c09f
BB
944 zio->io_error = ENXIO;
945 }
d164b209
BB
946
947 mutex_enter(&vd->vdev_probe_lock);
948 ASSERT(vd->vdev_probe_zio == zio);
949 vd->vdev_probe_zio = NULL;
950 mutex_exit(&vd->vdev_probe_lock);
951
952 while ((pio = zio_walk_parents(zio)) != NULL)
953 if (!vdev_accessible(vd, pio))
954 pio->io_error = ENXIO;
955
b128c09f
BB
956 kmem_free(vps, sizeof (*vps));
957 }
958}
34dc7c2f 959
b128c09f
BB
960/*
961 * Determine whether this device is accessible by reading and writing
962 * to several known locations: the pad regions of each vdev label
963 * but the first (which we leave alone in case it contains a VTOC).
964 */
965zio_t *
d164b209 966vdev_probe(vdev_t *vd, zio_t *zio)
b128c09f
BB
967{
968 spa_t *spa = vd->vdev_spa;
d164b209
BB
969 vdev_probe_stats_t *vps = NULL;
970 zio_t *pio;
d6320ddb 971 int l;
d164b209
BB
972
973 ASSERT(vd->vdev_ops->vdev_op_leaf);
34dc7c2f 974
d164b209
BB
975 /*
976 * Don't probe the probe.
977 */
978 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
979 return (NULL);
b128c09f 980
d164b209
BB
981 /*
982 * To prevent 'probe storms' when a device fails, we create
983 * just one probe i/o at a time. All zios that want to probe
984 * this vdev will become parents of the probe io.
985 */
986 mutex_enter(&vd->vdev_probe_lock);
b128c09f 987
d164b209
BB
988 if ((pio = vd->vdev_probe_zio) == NULL) {
989 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
990
991 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
992 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
9babb374 993 ZIO_FLAG_TRYHARD;
d164b209
BB
994
995 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
996 /*
997 * vdev_cant_read and vdev_cant_write can only
998 * transition from TRUE to FALSE when we have the
999 * SCL_ZIO lock as writer; otherwise they can only
1000 * transition from FALSE to TRUE. This ensures that
1001 * any zio looking at these values can assume that
1002 * failures persist for the life of the I/O. That's
1003 * important because when a device has intermittent
1004 * connectivity problems, we want to ensure that
1005 * they're ascribed to the device (ENXIO) and not
1006 * the zio (EIO).
1007 *
1008 * Since we hold SCL_ZIO as writer here, clear both
1009 * values so the probe can reevaluate from first
1010 * principles.
1011 */
1012 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1013 vd->vdev_cant_read = B_FALSE;
1014 vd->vdev_cant_write = B_FALSE;
1015 }
1016
1017 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1018 vdev_probe_done, vps,
1019 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1020
428870ff
BB
1021 /*
1022 * We can't change the vdev state in this context, so we
1023 * kick off an async task to do it on our behalf.
1024 */
d164b209
BB
1025 if (zio != NULL) {
1026 vd->vdev_probe_wanted = B_TRUE;
1027 spa_async_request(spa, SPA_ASYNC_PROBE);
1028 }
b128c09f
BB
1029 }
1030
d164b209
BB
1031 if (zio != NULL)
1032 zio_add_child(zio, pio);
b128c09f 1033
d164b209 1034 mutex_exit(&vd->vdev_probe_lock);
b128c09f 1035
d164b209
BB
1036 if (vps == NULL) {
1037 ASSERT(zio != NULL);
1038 return (NULL);
1039 }
b128c09f 1040
d6320ddb 1041 for (l = 1; l < VDEV_LABELS; l++) {
d164b209 1042 zio_nowait(zio_read_phys(pio, vd,
b128c09f 1043 vdev_label_offset(vd->vdev_psize, l,
9babb374
BB
1044 offsetof(vdev_label_t, vl_pad2)),
1045 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
b128c09f
BB
1046 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1047 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1048 }
1049
d164b209
BB
1050 if (zio == NULL)
1051 return (pio);
1052
1053 zio_nowait(pio);
1054 return (NULL);
34dc7c2f
BB
1055}
1056
45d1cae3
BB
1057static void
1058vdev_open_child(void *arg)
1059{
1060 vdev_t *vd = arg;
1061
1062 vd->vdev_open_thread = curthread;
1063 vd->vdev_open_error = vdev_open(vd);
1064 vd->vdev_open_thread = NULL;
1065}
1066
428870ff
BB
1067boolean_t
1068vdev_uses_zvols(vdev_t *vd)
1069{
d6320ddb
BB
1070 int c;
1071
428870ff
BB
1072 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1073 strlen(ZVOL_DIR)) == 0)
1074 return (B_TRUE);
d6320ddb 1075 for (c = 0; c < vd->vdev_children; c++)
428870ff
BB
1076 if (vdev_uses_zvols(vd->vdev_child[c]))
1077 return (B_TRUE);
1078 return (B_FALSE);
1079}
1080
45d1cae3
BB
1081void
1082vdev_open_children(vdev_t *vd)
1083{
1084 taskq_t *tq;
1085 int children = vd->vdev_children;
d6320ddb 1086 int c;
45d1cae3 1087
428870ff
BB
1088 /*
1089 * in order to handle pools on top of zvols, do the opens
1090 * in a single thread so that the same thread holds the
1091 * spa_namespace_lock
1092 */
1093 if (vdev_uses_zvols(vd)) {
d6320ddb 1094 for (c = 0; c < children; c++)
428870ff
BB
1095 vd->vdev_child[c]->vdev_open_error =
1096 vdev_open(vd->vdev_child[c]);
1097 return;
1098 }
45d1cae3
BB
1099 tq = taskq_create("vdev_open", children, minclsyspri,
1100 children, children, TASKQ_PREPOPULATE);
1101
d6320ddb 1102 for (c = 0; c < children; c++)
45d1cae3 1103 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
d6320ddb 1104 TQ_SLEEP) != 0);
45d1cae3
BB
1105
1106 taskq_destroy(tq);
1107}
1108
34dc7c2f
BB
1109/*
1110 * Prepare a virtual device for access.
1111 */
1112int
1113vdev_open(vdev_t *vd)
1114{
fb5f0bc8 1115 spa_t *spa = vd->vdev_spa;
34dc7c2f 1116 int error;
34dc7c2f
BB
1117 uint64_t osize = 0;
1118 uint64_t asize, psize;
1119 uint64_t ashift = 0;
d6320ddb 1120 int c;
34dc7c2f 1121
45d1cae3
BB
1122 ASSERT(vd->vdev_open_thread == curthread ||
1123 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
34dc7c2f
BB
1124 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1125 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1126 vd->vdev_state == VDEV_STATE_OFFLINE);
1127
34dc7c2f 1128 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
9babb374
BB
1129 vd->vdev_cant_read = B_FALSE;
1130 vd->vdev_cant_write = B_FALSE;
1131 vd->vdev_min_asize = vdev_get_min_asize(vd);
34dc7c2f 1132
428870ff
BB
1133 /*
1134 * If this vdev is not removed, check its fault status. If it's
1135 * faulted, bail out of the open.
1136 */
34dc7c2f
BB
1137 if (!vd->vdev_removed && vd->vdev_faulted) {
1138 ASSERT(vd->vdev_children == 0);
428870ff
BB
1139 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1140 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
34dc7c2f 1141 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
428870ff 1142 vd->vdev_label_aux);
34dc7c2f
BB
1143 return (ENXIO);
1144 } else if (vd->vdev_offline) {
1145 ASSERT(vd->vdev_children == 0);
1146 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1147 return (ENXIO);
1148 }
1149
1150 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1151
428870ff
BB
1152 /*
1153 * Reset the vdev_reopening flag so that we actually close
1154 * the vdev on error.
1155 */
1156 vd->vdev_reopening = B_FALSE;
34dc7c2f 1157 if (zio_injection_enabled && error == 0)
9babb374 1158 error = zio_handle_device_injection(vd, NULL, ENXIO);
34dc7c2f
BB
1159
1160 if (error) {
1161 if (vd->vdev_removed &&
1162 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1163 vd->vdev_removed = B_FALSE;
1164
1165 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1166 vd->vdev_stat.vs_aux);
1167 return (error);
1168 }
1169
1170 vd->vdev_removed = B_FALSE;
1171
428870ff
BB
1172 /*
1173 * Recheck the faulted flag now that we have confirmed that
1174 * the vdev is accessible. If we're faulted, bail.
1175 */
1176 if (vd->vdev_faulted) {
1177 ASSERT(vd->vdev_children == 0);
1178 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1179 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1180 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1181 vd->vdev_label_aux);
1182 return (ENXIO);
1183 }
1184
34dc7c2f
BB
1185 if (vd->vdev_degraded) {
1186 ASSERT(vd->vdev_children == 0);
1187 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1188 VDEV_AUX_ERR_EXCEEDED);
1189 } else {
428870ff 1190 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
34dc7c2f
BB
1191 }
1192
428870ff
BB
1193 /*
1194 * For hole or missing vdevs we just return success.
1195 */
1196 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1197 return (0);
1198
d6320ddb 1199 for (c = 0; c < vd->vdev_children; c++) {
34dc7c2f
BB
1200 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1201 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1202 VDEV_AUX_NONE);
1203 break;
1204 }
9babb374 1205 }
34dc7c2f
BB
1206
1207 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1208
1209 if (vd->vdev_children == 0) {
1210 if (osize < SPA_MINDEVSIZE) {
1211 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1212 VDEV_AUX_TOO_SMALL);
1213 return (EOVERFLOW);
1214 }
1215 psize = osize;
1216 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1217 } else {
1218 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1219 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1220 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1221 VDEV_AUX_TOO_SMALL);
1222 return (EOVERFLOW);
1223 }
1224 psize = 0;
1225 asize = osize;
1226 }
1227
1228 vd->vdev_psize = psize;
1229
9babb374
BB
1230 /*
1231 * Make sure the allocatable size hasn't shrunk.
1232 */
1233 if (asize < vd->vdev_min_asize) {
1234 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1235 VDEV_AUX_BAD_LABEL);
1236 return (EINVAL);
1237 }
1238
34dc7c2f
BB
1239 if (vd->vdev_asize == 0) {
1240 /*
1241 * This is the first-ever open, so use the computed values.
1242 * For testing purposes, a higher ashift can be requested.
1243 */
1244 vd->vdev_asize = asize;
1245 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1246 } else {
1247 /*
1248 * Make sure the alignment requirement hasn't increased.
1249 */
1250 if (ashift > vd->vdev_top->vdev_ashift) {
1251 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1252 VDEV_AUX_BAD_LABEL);
1253 return (EINVAL);
1254 }
9babb374 1255 }
34dc7c2f 1256
9babb374
BB
1257 /*
1258 * If all children are healthy and the asize has increased,
1259 * then we've experienced dynamic LUN growth. If automatic
1260 * expansion is enabled then use the additional space.
1261 */
1262 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1263 (vd->vdev_expanding || spa->spa_autoexpand))
1264 vd->vdev_asize = asize;
34dc7c2f 1265
9babb374 1266 vdev_set_min_asize(vd);
34dc7c2f
BB
1267
1268 /*
1269 * Ensure we can issue some IO before declaring the
1270 * vdev open for business.
1271 */
b128c09f
BB
1272 if (vd->vdev_ops->vdev_op_leaf &&
1273 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
428870ff
BB
1274 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1275 VDEV_AUX_ERR_EXCEEDED);
34dc7c2f
BB
1276 return (error);
1277 }
1278
34dc7c2f 1279 /*
b128c09f 1280 * If a leaf vdev has a DTL, and seems healthy, then kick off a
fb5f0bc8
BB
1281 * resilver. But don't do this if we are doing a reopen for a scrub,
1282 * since this would just restart the scrub we are already doing.
34dc7c2f 1283 */
fb5f0bc8
BB
1284 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1285 vdev_resilver_needed(vd, NULL, NULL))
1286 spa_async_request(spa, SPA_ASYNC_RESILVER);
34dc7c2f
BB
1287
1288 return (0);
1289}
1290
1291/*
1292 * Called once the vdevs are all opened, this routine validates the label
1293 * contents. This needs to be done before vdev_load() so that we don't
1294 * inadvertently do repair I/Os to the wrong device.
1295 *
1296 * This function will only return failure if one of the vdevs indicates that it
1297 * has since been destroyed or exported. This is only possible if
1298 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1299 * will be updated but the function will return 0.
1300 */
1301int
1302vdev_validate(vdev_t *vd)
1303{
1304 spa_t *spa = vd->vdev_spa;
34dc7c2f 1305 nvlist_t *label;
428870ff 1306 uint64_t guid = 0, top_guid;
34dc7c2f 1307 uint64_t state;
d6320ddb 1308 int c;
34dc7c2f 1309
d6320ddb 1310 for (c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
1311 if (vdev_validate(vd->vdev_child[c]) != 0)
1312 return (EBADF);
1313
1314 /*
1315 * If the device has already failed, or was marked offline, don't do
1316 * any further validation. Otherwise, label I/O will fail and we will
1317 * overwrite the previous state.
1318 */
b128c09f 1319 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
428870ff
BB
1320 uint64_t aux_guid = 0;
1321 nvlist_t *nvl;
34dc7c2f
BB
1322
1323 if ((label = vdev_label_read_config(vd)) == NULL) {
1324 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1325 VDEV_AUX_BAD_LABEL);
1326 return (0);
1327 }
1328
428870ff
BB
1329 /*
1330 * Determine if this vdev has been split off into another
1331 * pool. If so, then refuse to open it.
1332 */
1333 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1334 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1335 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1336 VDEV_AUX_SPLIT_POOL);
1337 nvlist_free(label);
1338 return (0);
1339 }
1340
34dc7c2f
BB
1341 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1342 &guid) != 0 || guid != spa_guid(spa)) {
1343 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1344 VDEV_AUX_CORRUPT_DATA);
1345 nvlist_free(label);
1346 return (0);
1347 }
1348
428870ff
BB
1349 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1350 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1351 &aux_guid) != 0)
1352 aux_guid = 0;
1353
b128c09f
BB
1354 /*
1355 * If this vdev just became a top-level vdev because its
1356 * sibling was detached, it will have adopted the parent's
1357 * vdev guid -- but the label may or may not be on disk yet.
1358 * Fortunately, either version of the label will have the
1359 * same top guid, so if we're a top-level vdev, we can
1360 * safely compare to that instead.
428870ff
BB
1361 *
1362 * If we split this vdev off instead, then we also check the
1363 * original pool's guid. We don't want to consider the vdev
1364 * corrupt if it is partway through a split operation.
b128c09f 1365 */
34dc7c2f 1366 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
b128c09f
BB
1367 &guid) != 0 ||
1368 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1369 &top_guid) != 0 ||
428870ff 1370 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
b128c09f 1371 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
34dc7c2f
BB
1372 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1373 VDEV_AUX_CORRUPT_DATA);
1374 nvlist_free(label);
1375 return (0);
1376 }
1377
1378 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1379 &state) != 0) {
1380 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1381 VDEV_AUX_CORRUPT_DATA);
1382 nvlist_free(label);
1383 return (0);
1384 }
1385
1386 nvlist_free(label);
1387
45d1cae3 1388 /*
572e2857 1389 * If this is a verbatim import, no need to check the
45d1cae3
BB
1390 * state of the pool.
1391 */
572e2857 1392 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
428870ff 1393 spa_load_state(spa) == SPA_LOAD_OPEN &&
34dc7c2f
BB
1394 state != POOL_STATE_ACTIVE)
1395 return (EBADF);
34dc7c2f 1396
b128c09f
BB
1397 /*
1398 * If we were able to open and validate a vdev that was
1399 * previously marked permanently unavailable, clear that state
1400 * now.
1401 */
1402 if (vd->vdev_not_present)
1403 vd->vdev_not_present = 0;
1404 }
34dc7c2f
BB
1405
1406 return (0);
1407}
1408
1409/*
1410 * Close a virtual device.
1411 */
1412void
1413vdev_close(vdev_t *vd)
1414{
fb5f0bc8 1415 spa_t *spa = vd->vdev_spa;
428870ff 1416 vdev_t *pvd = vd->vdev_parent;
fb5f0bc8
BB
1417
1418 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1419
428870ff
BB
1420 /*
1421 * If our parent is reopening, then we are as well, unless we are
1422 * going offline.
1423 */
1424 if (pvd != NULL && pvd->vdev_reopening)
1425 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1426
34dc7c2f
BB
1427 vd->vdev_ops->vdev_op_close(vd);
1428
1429 vdev_cache_purge(vd);
1430
1431 /*
9babb374 1432 * We record the previous state before we close it, so that if we are
34dc7c2f
BB
1433 * doing a reopen(), we don't generate FMA ereports if we notice that
1434 * it's still faulted.
1435 */
1436 vd->vdev_prevstate = vd->vdev_state;
1437
1438 if (vd->vdev_offline)
1439 vd->vdev_state = VDEV_STATE_OFFLINE;
1440 else
1441 vd->vdev_state = VDEV_STATE_CLOSED;
1442 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1443}
1444
428870ff
BB
1445void
1446vdev_hold(vdev_t *vd)
1447{
1448 spa_t *spa = vd->vdev_spa;
d6320ddb 1449 int c;
428870ff
BB
1450
1451 ASSERT(spa_is_root(spa));
1452 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1453 return;
1454
d6320ddb 1455 for (c = 0; c < vd->vdev_children; c++)
428870ff
BB
1456 vdev_hold(vd->vdev_child[c]);
1457
1458 if (vd->vdev_ops->vdev_op_leaf)
1459 vd->vdev_ops->vdev_op_hold(vd);
1460}
1461
1462void
1463vdev_rele(vdev_t *vd)
1464{
d6320ddb 1465 int c;
428870ff 1466
d6320ddb
BB
1467 ASSERT(spa_is_root(vd->vdev_spa));
1468 for (c = 0; c < vd->vdev_children; c++)
428870ff
BB
1469 vdev_rele(vd->vdev_child[c]);
1470
1471 if (vd->vdev_ops->vdev_op_leaf)
1472 vd->vdev_ops->vdev_op_rele(vd);
1473}
1474
1475/*
1476 * Reopen all interior vdevs and any unopened leaves. We don't actually
1477 * reopen leaf vdevs which had previously been opened as they might deadlock
1478 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1479 * If the leaf has never been opened then open it, as usual.
1480 */
34dc7c2f
BB
1481void
1482vdev_reopen(vdev_t *vd)
1483{
1484 spa_t *spa = vd->vdev_spa;
1485
b128c09f 1486 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
34dc7c2f 1487
428870ff
BB
1488 /* set the reopening flag unless we're taking the vdev offline */
1489 vd->vdev_reopening = !vd->vdev_offline;
34dc7c2f
BB
1490 vdev_close(vd);
1491 (void) vdev_open(vd);
1492
1493 /*
1494 * Call vdev_validate() here to make sure we have the same device.
1495 * Otherwise, a device with an invalid label could be successfully
1496 * opened in response to vdev_reopen().
1497 */
b128c09f
BB
1498 if (vd->vdev_aux) {
1499 (void) vdev_validate_aux(vd);
1500 if (vdev_readable(vd) && vdev_writeable(vd) &&
9babb374
BB
1501 vd->vdev_aux == &spa->spa_l2cache &&
1502 !l2arc_vdev_present(vd))
1503 l2arc_add_vdev(spa, vd);
b128c09f
BB
1504 } else {
1505 (void) vdev_validate(vd);
1506 }
34dc7c2f
BB
1507
1508 /*
1509 * Reassess parent vdev's health.
1510 */
1511 vdev_propagate_state(vd);
1512}
1513
1514int
1515vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1516{
1517 int error;
1518
1519 /*
1520 * Normally, partial opens (e.g. of a mirror) are allowed.
1521 * For a create, however, we want to fail the request if
1522 * there are any components we can't open.
1523 */
1524 error = vdev_open(vd);
1525
1526 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1527 vdev_close(vd);
1528 return (error ? error : ENXIO);
1529 }
1530
1531 /*
1532 * Recursively initialize all labels.
1533 */
1534 if ((error = vdev_label_init(vd, txg, isreplacing ?
1535 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1536 vdev_close(vd);
1537 return (error);
1538 }
1539
1540 return (0);
1541}
1542
34dc7c2f 1543void
9babb374 1544vdev_metaslab_set_size(vdev_t *vd)
34dc7c2f
BB
1545{
1546 /*
1547 * Aim for roughly 200 metaslabs per vdev.
1548 */
1549 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1550 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
34dc7c2f
BB
1551}
1552
1553void
1554vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1555{
1556 ASSERT(vd == vd->vdev_top);
428870ff 1557 ASSERT(!vd->vdev_ishole);
34dc7c2f 1558 ASSERT(ISP2(flags));
572e2857 1559 ASSERT(spa_writeable(vd->vdev_spa));
34dc7c2f
BB
1560
1561 if (flags & VDD_METASLAB)
1562 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1563
1564 if (flags & VDD_DTL)
1565 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1566
1567 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1568}
1569
fb5f0bc8
BB
1570/*
1571 * DTLs.
1572 *
1573 * A vdev's DTL (dirty time log) is the set of transaction groups for which
428870ff 1574 * the vdev has less than perfect replication. There are four kinds of DTL:
fb5f0bc8
BB
1575 *
1576 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1577 *
1578 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1579 *
1580 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1581 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1582 * txgs that was scrubbed.
1583 *
1584 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1585 * persistent errors or just some device being offline.
1586 * Unlike the other three, the DTL_OUTAGE map is not generally
1587 * maintained; it's only computed when needed, typically to
1588 * determine whether a device can be detached.
1589 *
1590 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1591 * either has the data or it doesn't.
1592 *
1593 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1594 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1595 * if any child is less than fully replicated, then so is its parent.
1596 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1597 * comprising only those txgs which appear in 'maxfaults' or more children;
1598 * those are the txgs we don't have enough replication to read. For example,
1599 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1600 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1601 * two child DTL_MISSING maps.
1602 *
1603 * It should be clear from the above that to compute the DTLs and outage maps
1604 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1605 * Therefore, that is all we keep on disk. When loading the pool, or after
1606 * a configuration change, we generate all other DTLs from first principles.
1607 */
34dc7c2f 1608void
fb5f0bc8 1609vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
34dc7c2f 1610{
fb5f0bc8
BB
1611 space_map_t *sm = &vd->vdev_dtl[t];
1612
1613 ASSERT(t < DTL_TYPES);
1614 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
572e2857 1615 ASSERT(spa_writeable(vd->vdev_spa));
fb5f0bc8 1616
34dc7c2f
BB
1617 mutex_enter(sm->sm_lock);
1618 if (!space_map_contains(sm, txg, size))
1619 space_map_add(sm, txg, size);
1620 mutex_exit(sm->sm_lock);
1621}
1622
fb5f0bc8
BB
1623boolean_t
1624vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
34dc7c2f 1625{
fb5f0bc8
BB
1626 space_map_t *sm = &vd->vdev_dtl[t];
1627 boolean_t dirty = B_FALSE;
34dc7c2f 1628
fb5f0bc8
BB
1629 ASSERT(t < DTL_TYPES);
1630 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
34dc7c2f
BB
1631
1632 mutex_enter(sm->sm_lock);
fb5f0bc8
BB
1633 if (sm->sm_space != 0)
1634 dirty = space_map_contains(sm, txg, size);
34dc7c2f
BB
1635 mutex_exit(sm->sm_lock);
1636
1637 return (dirty);
1638}
1639
fb5f0bc8
BB
1640boolean_t
1641vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1642{
1643 space_map_t *sm = &vd->vdev_dtl[t];
1644 boolean_t empty;
1645
1646 mutex_enter(sm->sm_lock);
1647 empty = (sm->sm_space == 0);
1648 mutex_exit(sm->sm_lock);
1649
1650 return (empty);
1651}
1652
34dc7c2f
BB
1653/*
1654 * Reassess DTLs after a config change or scrub completion.
1655 */
1656void
1657vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1658{
1659 spa_t *spa = vd->vdev_spa;
fb5f0bc8 1660 avl_tree_t reftree;
d6320ddb 1661 int c, t, minref;
34dc7c2f 1662
fb5f0bc8 1663 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
34dc7c2f 1664
d6320ddb 1665 for (c = 0; c < vd->vdev_children; c++)
fb5f0bc8
BB
1666 vdev_dtl_reassess(vd->vdev_child[c], txg,
1667 scrub_txg, scrub_done);
1668
428870ff 1669 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
fb5f0bc8
BB
1670 return;
1671
1672 if (vd->vdev_ops->vdev_op_leaf) {
428870ff
BB
1673 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1674
34dc7c2f 1675 mutex_enter(&vd->vdev_dtl_lock);
b128c09f 1676 if (scrub_txg != 0 &&
428870ff
BB
1677 (spa->spa_scrub_started ||
1678 (scn && scn->scn_phys.scn_errors == 0))) {
b128c09f
BB
1679 /*
1680 * We completed a scrub up to scrub_txg. If we
1681 * did it without rebooting, then the scrub dtl
1682 * will be valid, so excise the old region and
1683 * fold in the scrub dtl. Otherwise, leave the
1684 * dtl as-is if there was an error.
fb5f0bc8
BB
1685 *
1686 * There's little trick here: to excise the beginning
1687 * of the DTL_MISSING map, we put it into a reference
1688 * tree and then add a segment with refcnt -1 that
1689 * covers the range [0, scrub_txg). This means
1690 * that each txg in that range has refcnt -1 or 0.
1691 * We then add DTL_SCRUB with a refcnt of 2, so that
1692 * entries in the range [0, scrub_txg) will have a
1693 * positive refcnt -- either 1 or 2. We then convert
1694 * the reference tree into the new DTL_MISSING map.
b128c09f 1695 */
fb5f0bc8
BB
1696 space_map_ref_create(&reftree);
1697 space_map_ref_add_map(&reftree,
1698 &vd->vdev_dtl[DTL_MISSING], 1);
1699 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1700 space_map_ref_add_map(&reftree,
1701 &vd->vdev_dtl[DTL_SCRUB], 2);
1702 space_map_ref_generate_map(&reftree,
1703 &vd->vdev_dtl[DTL_MISSING], 1);
1704 space_map_ref_destroy(&reftree);
34dc7c2f 1705 }
fb5f0bc8
BB
1706 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1707 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1708 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
34dc7c2f 1709 if (scrub_done)
fb5f0bc8
BB
1710 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1711 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1712 if (!vdev_readable(vd))
1713 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1714 else
1715 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1716 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
34dc7c2f 1717 mutex_exit(&vd->vdev_dtl_lock);
b128c09f 1718
34dc7c2f
BB
1719 if (txg != 0)
1720 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1721 return;
1722 }
1723
34dc7c2f 1724 mutex_enter(&vd->vdev_dtl_lock);
d6320ddb 1725 for (t = 0; t < DTL_TYPES; t++) {
428870ff
BB
1726 /* account for child's outage in parent's missing map */
1727 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
fb5f0bc8
BB
1728 if (t == DTL_SCRUB)
1729 continue; /* leaf vdevs only */
1730 if (t == DTL_PARTIAL)
1731 minref = 1; /* i.e. non-zero */
1732 else if (vd->vdev_nparity != 0)
1733 minref = vd->vdev_nparity + 1; /* RAID-Z */
1734 else
1735 minref = vd->vdev_children; /* any kind of mirror */
1736 space_map_ref_create(&reftree);
d6320ddb 1737 for (c = 0; c < vd->vdev_children; c++) {
fb5f0bc8
BB
1738 vdev_t *cvd = vd->vdev_child[c];
1739 mutex_enter(&cvd->vdev_dtl_lock);
428870ff 1740 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
fb5f0bc8
BB
1741 mutex_exit(&cvd->vdev_dtl_lock);
1742 }
1743 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1744 space_map_ref_destroy(&reftree);
34dc7c2f 1745 }
fb5f0bc8 1746 mutex_exit(&vd->vdev_dtl_lock);
34dc7c2f
BB
1747}
1748
1749static int
1750vdev_dtl_load(vdev_t *vd)
1751{
1752 spa_t *spa = vd->vdev_spa;
fb5f0bc8 1753 space_map_obj_t *smo = &vd->vdev_dtl_smo;
34dc7c2f
BB
1754 objset_t *mos = spa->spa_meta_objset;
1755 dmu_buf_t *db;
1756 int error;
1757
1758 ASSERT(vd->vdev_children == 0);
1759
1760 if (smo->smo_object == 0)
1761 return (0);
1762
428870ff
BB
1763 ASSERT(!vd->vdev_ishole);
1764
34dc7c2f
BB
1765 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1766 return (error);
1767
1768 ASSERT3U(db->db_size, >=, sizeof (*smo));
1769 bcopy(db->db_data, smo, sizeof (*smo));
1770 dmu_buf_rele(db, FTAG);
1771
1772 mutex_enter(&vd->vdev_dtl_lock);
fb5f0bc8
BB
1773 error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1774 NULL, SM_ALLOC, smo, mos);
34dc7c2f
BB
1775 mutex_exit(&vd->vdev_dtl_lock);
1776
1777 return (error);
1778}
1779
1780void
1781vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1782{
1783 spa_t *spa = vd->vdev_spa;
fb5f0bc8
BB
1784 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1785 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
34dc7c2f
BB
1786 objset_t *mos = spa->spa_meta_objset;
1787 space_map_t smsync;
1788 kmutex_t smlock;
1789 dmu_buf_t *db;
1790 dmu_tx_t *tx;
1791
428870ff
BB
1792 ASSERT(!vd->vdev_ishole);
1793
34dc7c2f
BB
1794 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1795
1796 if (vd->vdev_detached) {
1797 if (smo->smo_object != 0) {
1798 int err = dmu_object_free(mos, smo->smo_object, tx);
1799 ASSERT3U(err, ==, 0);
1800 smo->smo_object = 0;
1801 }
1802 dmu_tx_commit(tx);
34dc7c2f
BB
1803 return;
1804 }
1805
1806 if (smo->smo_object == 0) {
1807 ASSERT(smo->smo_objsize == 0);
1808 ASSERT(smo->smo_alloc == 0);
1809 smo->smo_object = dmu_object_alloc(mos,
1810 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1811 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1812 ASSERT(smo->smo_object != 0);
1813 vdev_config_dirty(vd->vdev_top);
1814 }
1815
1816 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1817
1818 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1819 &smlock);
1820
1821 mutex_enter(&smlock);
1822
1823 mutex_enter(&vd->vdev_dtl_lock);
1824 space_map_walk(sm, space_map_add, &smsync);
1825 mutex_exit(&vd->vdev_dtl_lock);
1826
1827 space_map_truncate(smo, mos, tx);
1828 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1829
1830 space_map_destroy(&smsync);
1831
1832 mutex_exit(&smlock);
1833 mutex_destroy(&smlock);
1834
1835 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1836 dmu_buf_will_dirty(db, tx);
1837 ASSERT3U(db->db_size, >=, sizeof (*smo));
1838 bcopy(smo, db->db_data, sizeof (*smo));
1839 dmu_buf_rele(db, FTAG);
1840
1841 dmu_tx_commit(tx);
1842}
1843
fb5f0bc8
BB
1844/*
1845 * Determine whether the specified vdev can be offlined/detached/removed
1846 * without losing data.
1847 */
1848boolean_t
1849vdev_dtl_required(vdev_t *vd)
1850{
1851 spa_t *spa = vd->vdev_spa;
1852 vdev_t *tvd = vd->vdev_top;
1853 uint8_t cant_read = vd->vdev_cant_read;
1854 boolean_t required;
1855
1856 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1857
1858 if (vd == spa->spa_root_vdev || vd == tvd)
1859 return (B_TRUE);
1860
1861 /*
1862 * Temporarily mark the device as unreadable, and then determine
1863 * whether this results in any DTL outages in the top-level vdev.
1864 * If not, we can safely offline/detach/remove the device.
1865 */
1866 vd->vdev_cant_read = B_TRUE;
1867 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1868 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1869 vd->vdev_cant_read = cant_read;
1870 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1871
572e2857
BB
1872 if (!required && zio_injection_enabled)
1873 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1874
fb5f0bc8
BB
1875 return (required);
1876}
1877
b128c09f
BB
1878/*
1879 * Determine if resilver is needed, and if so the txg range.
1880 */
1881boolean_t
1882vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1883{
1884 boolean_t needed = B_FALSE;
1885 uint64_t thismin = UINT64_MAX;
1886 uint64_t thismax = 0;
d6320ddb 1887 int c;
b128c09f
BB
1888
1889 if (vd->vdev_children == 0) {
1890 mutex_enter(&vd->vdev_dtl_lock);
fb5f0bc8
BB
1891 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1892 vdev_writeable(vd)) {
b128c09f
BB
1893 space_seg_t *ss;
1894
fb5f0bc8 1895 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
b128c09f 1896 thismin = ss->ss_start - 1;
fb5f0bc8 1897 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
b128c09f
BB
1898 thismax = ss->ss_end;
1899 needed = B_TRUE;
1900 }
1901 mutex_exit(&vd->vdev_dtl_lock);
1902 } else {
d6320ddb 1903 for (c = 0; c < vd->vdev_children; c++) {
b128c09f
BB
1904 vdev_t *cvd = vd->vdev_child[c];
1905 uint64_t cmin, cmax;
1906
1907 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1908 thismin = MIN(thismin, cmin);
1909 thismax = MAX(thismax, cmax);
1910 needed = B_TRUE;
1911 }
1912 }
1913 }
1914
1915 if (needed && minp) {
1916 *minp = thismin;
1917 *maxp = thismax;
1918 }
1919 return (needed);
1920}
1921
34dc7c2f
BB
1922void
1923vdev_load(vdev_t *vd)
1924{
d6320ddb
BB
1925 int c;
1926
34dc7c2f
BB
1927 /*
1928 * Recursively load all children.
1929 */
d6320ddb 1930 for (c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
1931 vdev_load(vd->vdev_child[c]);
1932
1933 /*
1934 * If this is a top-level vdev, initialize its metaslabs.
1935 */
428870ff 1936 if (vd == vd->vdev_top && !vd->vdev_ishole &&
34dc7c2f
BB
1937 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1938 vdev_metaslab_init(vd, 0) != 0))
1939 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1940 VDEV_AUX_CORRUPT_DATA);
1941
1942 /*
1943 * If this is a leaf vdev, load its DTL.
1944 */
1945 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1946 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1947 VDEV_AUX_CORRUPT_DATA);
1948}
1949
1950/*
1951 * The special vdev case is used for hot spares and l2cache devices. Its
1952 * sole purpose it to set the vdev state for the associated vdev. To do this,
1953 * we make sure that we can open the underlying device, then try to read the
1954 * label, and make sure that the label is sane and that it hasn't been
1955 * repurposed to another pool.
1956 */
1957int
1958vdev_validate_aux(vdev_t *vd)
1959{
1960 nvlist_t *label;
1961 uint64_t guid, version;
1962 uint64_t state;
1963
b128c09f
BB
1964 if (!vdev_readable(vd))
1965 return (0);
1966
34dc7c2f
BB
1967 if ((label = vdev_label_read_config(vd)) == NULL) {
1968 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1969 VDEV_AUX_CORRUPT_DATA);
1970 return (-1);
1971 }
1972
1973 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1974 version > SPA_VERSION ||
1975 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1976 guid != vd->vdev_guid ||
1977 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1978 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1979 VDEV_AUX_CORRUPT_DATA);
1980 nvlist_free(label);
1981 return (-1);
1982 }
1983
1984 /*
1985 * We don't actually check the pool state here. If it's in fact in
1986 * use by another pool, we update this fact on the fly when requested.
1987 */
1988 nvlist_free(label);
1989 return (0);
1990}
1991
428870ff
BB
1992void
1993vdev_remove(vdev_t *vd, uint64_t txg)
1994{
1995 spa_t *spa = vd->vdev_spa;
1996 objset_t *mos = spa->spa_meta_objset;
1997 dmu_tx_t *tx;
d6320ddb 1998 int m;
428870ff
BB
1999
2000 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2001
2002 if (vd->vdev_dtl_smo.smo_object) {
2003 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
2004 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2005 vd->vdev_dtl_smo.smo_object = 0;
2006 }
2007
2008 if (vd->vdev_ms != NULL) {
d6320ddb 2009 for (m = 0; m < vd->vdev_ms_count; m++) {
428870ff
BB
2010 metaslab_t *msp = vd->vdev_ms[m];
2011
2012 if (msp == NULL || msp->ms_smo.smo_object == 0)
2013 continue;
2014
2015 ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
2016 (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2017 msp->ms_smo.smo_object = 0;
2018 }
2019 }
2020
2021 if (vd->vdev_ms_array) {
2022 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2023 vd->vdev_ms_array = 0;
2024 vd->vdev_ms_shift = 0;
2025 }
2026 dmu_tx_commit(tx);
2027}
2028
34dc7c2f
BB
2029void
2030vdev_sync_done(vdev_t *vd, uint64_t txg)
2031{
2032 metaslab_t *msp;
428870ff
BB
2033 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2034
2035 ASSERT(!vd->vdev_ishole);
34dc7c2f 2036
c65aa5b2 2037 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
34dc7c2f 2038 metaslab_sync_done(msp, txg);
428870ff
BB
2039
2040 if (reassess)
2041 metaslab_sync_reassess(vd->vdev_mg);
34dc7c2f
BB
2042}
2043
2044void
2045vdev_sync(vdev_t *vd, uint64_t txg)
2046{
2047 spa_t *spa = vd->vdev_spa;
2048 vdev_t *lvd;
2049 metaslab_t *msp;
2050 dmu_tx_t *tx;
2051
428870ff
BB
2052 ASSERT(!vd->vdev_ishole);
2053
34dc7c2f
BB
2054 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2055 ASSERT(vd == vd->vdev_top);
2056 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2057 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2058 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2059 ASSERT(vd->vdev_ms_array != 0);
2060 vdev_config_dirty(vd);
2061 dmu_tx_commit(tx);
2062 }
2063
428870ff
BB
2064 /*
2065 * Remove the metadata associated with this vdev once it's empty.
2066 */
2067 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2068 vdev_remove(vd, txg);
2069
34dc7c2f
BB
2070 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2071 metaslab_sync(msp, txg);
2072 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2073 }
2074
2075 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2076 vdev_dtl_sync(lvd, txg);
2077
2078 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2079}
2080
2081uint64_t
2082vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2083{
2084 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2085}
2086
34dc7c2f
BB
2087/*
2088 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2089 * not be opened, and no I/O is attempted.
2090 */
2091int
428870ff 2092vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
34dc7c2f 2093{
572e2857 2094 vdev_t *vd, *tvd;
34dc7c2f 2095
428870ff 2096 spa_vdev_state_enter(spa, SCL_NONE);
34dc7c2f 2097
b128c09f
BB
2098 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2099 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f 2100
34dc7c2f 2101 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 2102 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f 2103
572e2857
BB
2104 tvd = vd->vdev_top;
2105
428870ff
BB
2106 /*
2107 * We don't directly use the aux state here, but if we do a
2108 * vdev_reopen(), we need this value to be present to remember why we
2109 * were faulted.
2110 */
2111 vd->vdev_label_aux = aux;
2112
34dc7c2f
BB
2113 /*
2114 * Faulted state takes precedence over degraded.
2115 */
428870ff 2116 vd->vdev_delayed_close = B_FALSE;
34dc7c2f
BB
2117 vd->vdev_faulted = 1ULL;
2118 vd->vdev_degraded = 0ULL;
428870ff 2119 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
34dc7c2f
BB
2120
2121 /*
428870ff
BB
2122 * If this device has the only valid copy of the data, then
2123 * back off and simply mark the vdev as degraded instead.
34dc7c2f 2124 */
572e2857 2125 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
34dc7c2f
BB
2126 vd->vdev_degraded = 1ULL;
2127 vd->vdev_faulted = 0ULL;
2128
2129 /*
2130 * If we reopen the device and it's not dead, only then do we
2131 * mark it degraded.
2132 */
572e2857 2133 vdev_reopen(tvd);
34dc7c2f 2134
428870ff
BB
2135 if (vdev_readable(vd))
2136 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
34dc7c2f
BB
2137 }
2138
b128c09f 2139 return (spa_vdev_state_exit(spa, vd, 0));
34dc7c2f
BB
2140}
2141
2142/*
2143 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2144 * user that something is wrong. The vdev continues to operate as normal as far
2145 * as I/O is concerned.
2146 */
2147int
428870ff 2148vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
34dc7c2f 2149{
b128c09f 2150 vdev_t *vd;
34dc7c2f 2151
428870ff 2152 spa_vdev_state_enter(spa, SCL_NONE);
34dc7c2f 2153
b128c09f
BB
2154 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2155 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f 2156
34dc7c2f 2157 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 2158 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f
BB
2159
2160 /*
2161 * If the vdev is already faulted, then don't do anything.
2162 */
b128c09f
BB
2163 if (vd->vdev_faulted || vd->vdev_degraded)
2164 return (spa_vdev_state_exit(spa, NULL, 0));
34dc7c2f
BB
2165
2166 vd->vdev_degraded = 1ULL;
2167 if (!vdev_is_dead(vd))
2168 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
428870ff 2169 aux);
34dc7c2f 2170
b128c09f 2171 return (spa_vdev_state_exit(spa, vd, 0));
34dc7c2f
BB
2172}
2173
2174/*
2175 * Online the given vdev. If 'unspare' is set, it implies two things. First,
2176 * any attached spare device should be detached when the device finishes
2177 * resilvering. Second, the online should be treated like a 'test' online case,
2178 * so no FMA events are generated if the device fails to open.
2179 */
2180int
b128c09f 2181vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
34dc7c2f 2182{
9babb374 2183 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
34dc7c2f 2184
428870ff 2185 spa_vdev_state_enter(spa, SCL_NONE);
34dc7c2f 2186
b128c09f
BB
2187 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2188 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f
BB
2189
2190 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 2191 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f 2192
9babb374 2193 tvd = vd->vdev_top;
34dc7c2f
BB
2194 vd->vdev_offline = B_FALSE;
2195 vd->vdev_tmpoffline = B_FALSE;
b128c09f
BB
2196 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2197 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
9babb374
BB
2198
2199 /* XXX - L2ARC 1.0 does not support expansion */
2200 if (!vd->vdev_aux) {
2201 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2202 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2203 }
2204
2205 vdev_reopen(tvd);
34dc7c2f
BB
2206 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2207
9babb374
BB
2208 if (!vd->vdev_aux) {
2209 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2210 pvd->vdev_expanding = B_FALSE;
2211 }
2212
34dc7c2f
BB
2213 if (newstate)
2214 *newstate = vd->vdev_state;
2215 if ((flags & ZFS_ONLINE_UNSPARE) &&
2216 !vdev_is_dead(vd) && vd->vdev_parent &&
2217 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2218 vd->vdev_parent->vdev_child[0] == vd)
2219 vd->vdev_unspare = B_TRUE;
2220
9babb374
BB
2221 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2222
2223 /* XXX - L2ARC 1.0 does not support expansion */
2224 if (vd->vdev_aux)
2225 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2226 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2227 }
fb5f0bc8 2228 return (spa_vdev_state_exit(spa, vd, 0));
34dc7c2f
BB
2229}
2230
428870ff
BB
2231static int
2232vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
34dc7c2f 2233{
9babb374 2234 vdev_t *vd, *tvd;
428870ff
BB
2235 int error = 0;
2236 uint64_t generation;
2237 metaslab_group_t *mg;
34dc7c2f 2238
428870ff
BB
2239top:
2240 spa_vdev_state_enter(spa, SCL_ALLOC);
34dc7c2f 2241
b128c09f
BB
2242 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2243 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f
BB
2244
2245 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 2246 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f 2247
9babb374 2248 tvd = vd->vdev_top;
428870ff
BB
2249 mg = tvd->vdev_mg;
2250 generation = spa->spa_config_generation + 1;
9babb374 2251
34dc7c2f
BB
2252 /*
2253 * If the device isn't already offline, try to offline it.
2254 */
2255 if (!vd->vdev_offline) {
2256 /*
fb5f0bc8 2257 * If this device has the only valid copy of some data,
9babb374
BB
2258 * don't allow it to be offlined. Log devices are always
2259 * expendable.
34dc7c2f 2260 */
9babb374
BB
2261 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2262 vdev_dtl_required(vd))
b128c09f 2263 return (spa_vdev_state_exit(spa, NULL, EBUSY));
34dc7c2f 2264
428870ff
BB
2265 /*
2266 * If the top-level is a slog and it has had allocations
2267 * then proceed. We check that the vdev's metaslab group
2268 * is not NULL since it's possible that we may have just
2269 * added this vdev but not yet initialized its metaslabs.
2270 */
2271 if (tvd->vdev_islog && mg != NULL) {
2272 /*
2273 * Prevent any future allocations.
2274 */
2275 metaslab_group_passivate(mg);
2276 (void) spa_vdev_state_exit(spa, vd, 0);
2277
2278 error = spa_offline_log(spa);
2279
2280 spa_vdev_state_enter(spa, SCL_ALLOC);
2281
2282 /*
2283 * Check to see if the config has changed.
2284 */
2285 if (error || generation != spa->spa_config_generation) {
2286 metaslab_group_activate(mg);
2287 if (error)
2288 return (spa_vdev_state_exit(spa,
2289 vd, error));
2290 (void) spa_vdev_state_exit(spa, vd, 0);
2291 goto top;
2292 }
2293 ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2294 }
2295
34dc7c2f
BB
2296 /*
2297 * Offline this device and reopen its top-level vdev.
9babb374
BB
2298 * If the top-level vdev is a log device then just offline
2299 * it. Otherwise, if this action results in the top-level
2300 * vdev becoming unusable, undo it and fail the request.
34dc7c2f
BB
2301 */
2302 vd->vdev_offline = B_TRUE;
9babb374
BB
2303 vdev_reopen(tvd);
2304
2305 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2306 vdev_is_dead(tvd)) {
34dc7c2f 2307 vd->vdev_offline = B_FALSE;
9babb374 2308 vdev_reopen(tvd);
b128c09f 2309 return (spa_vdev_state_exit(spa, NULL, EBUSY));
34dc7c2f 2310 }
428870ff
BB
2311
2312 /*
2313 * Add the device back into the metaslab rotor so that
2314 * once we online the device it's open for business.
2315 */
2316 if (tvd->vdev_islog && mg != NULL)
2317 metaslab_group_activate(mg);
34dc7c2f
BB
2318 }
2319
b128c09f 2320 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
34dc7c2f 2321
428870ff
BB
2322 return (spa_vdev_state_exit(spa, vd, 0));
2323}
9babb374 2324
428870ff
BB
2325int
2326vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2327{
2328 int error;
9babb374 2329
428870ff
BB
2330 mutex_enter(&spa->spa_vdev_top_lock);
2331 error = vdev_offline_locked(spa, guid, flags);
2332 mutex_exit(&spa->spa_vdev_top_lock);
2333
2334 return (error);
34dc7c2f
BB
2335}
2336
2337/*
2338 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2339 * vdev_offline(), we assume the spa config is locked. We also clear all
2340 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
34dc7c2f
BB
2341 */
2342void
b128c09f 2343vdev_clear(spa_t *spa, vdev_t *vd)
34dc7c2f 2344{
b128c09f 2345 vdev_t *rvd = spa->spa_root_vdev;
d6320ddb 2346 int c;
b128c09f
BB
2347
2348 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
34dc7c2f
BB
2349
2350 if (vd == NULL)
b128c09f 2351 vd = rvd;
34dc7c2f
BB
2352
2353 vd->vdev_stat.vs_read_errors = 0;
2354 vd->vdev_stat.vs_write_errors = 0;
2355 vd->vdev_stat.vs_checksum_errors = 0;
34dc7c2f 2356
d6320ddb 2357 for (c = 0; c < vd->vdev_children; c++)
b128c09f 2358 vdev_clear(spa, vd->vdev_child[c]);
34dc7c2f
BB
2359
2360 /*
b128c09f
BB
2361 * If we're in the FAULTED state or have experienced failed I/O, then
2362 * clear the persistent state and attempt to reopen the device. We
2363 * also mark the vdev config dirty, so that the new faulted state is
2364 * written out to disk.
34dc7c2f 2365 */
b128c09f
BB
2366 if (vd->vdev_faulted || vd->vdev_degraded ||
2367 !vdev_readable(vd) || !vdev_writeable(vd)) {
2368
428870ff
BB
2369 /*
2370 * When reopening in reponse to a clear event, it may be due to
2371 * a fmadm repair request. In this case, if the device is
2372 * still broken, we want to still post the ereport again.
2373 */
2374 vd->vdev_forcefault = B_TRUE;
2375
572e2857 2376 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
b128c09f
BB
2377 vd->vdev_cant_read = B_FALSE;
2378 vd->vdev_cant_write = B_FALSE;
2379
572e2857 2380 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
34dc7c2f 2381
428870ff
BB
2382 vd->vdev_forcefault = B_FALSE;
2383
572e2857 2384 if (vd != rvd && vdev_writeable(vd->vdev_top))
b128c09f
BB
2385 vdev_state_dirty(vd->vdev_top);
2386
2387 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
34dc7c2f
BB
2388 spa_async_request(spa, SPA_ASYNC_RESILVER);
2389
2390 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2391 }
428870ff
BB
2392
2393 /*
2394 * When clearing a FMA-diagnosed fault, we always want to
2395 * unspare the device, as we assume that the original spare was
2396 * done in response to the FMA fault.
2397 */
2398 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2399 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2400 vd->vdev_parent->vdev_child[0] == vd)
2401 vd->vdev_unspare = B_TRUE;
34dc7c2f
BB
2402}
2403
b128c09f
BB
2404boolean_t
2405vdev_is_dead(vdev_t *vd)
2406{
428870ff
BB
2407 /*
2408 * Holes and missing devices are always considered "dead".
2409 * This simplifies the code since we don't have to check for
2410 * these types of devices in the various code paths.
2411 * Instead we rely on the fact that we skip over dead devices
2412 * before issuing I/O to them.
2413 */
2414 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2415 vd->vdev_ops == &vdev_missing_ops);
b128c09f
BB
2416}
2417
2418boolean_t
34dc7c2f
BB
2419vdev_readable(vdev_t *vd)
2420{
b128c09f 2421 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
34dc7c2f
BB
2422}
2423
b128c09f 2424boolean_t
34dc7c2f
BB
2425vdev_writeable(vdev_t *vd)
2426{
b128c09f 2427 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
34dc7c2f
BB
2428}
2429
b128c09f
BB
2430boolean_t
2431vdev_allocatable(vdev_t *vd)
34dc7c2f 2432{
fb5f0bc8
BB
2433 uint64_t state = vd->vdev_state;
2434
b128c09f 2435 /*
fb5f0bc8 2436 * We currently allow allocations from vdevs which may be in the
b128c09f
BB
2437 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2438 * fails to reopen then we'll catch it later when we're holding
fb5f0bc8
BB
2439 * the proper locks. Note that we have to get the vdev state
2440 * in a local variable because although it changes atomically,
2441 * we're asking two separate questions about it.
b128c09f 2442 */
fb5f0bc8 2443 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
428870ff 2444 !vd->vdev_cant_write && !vd->vdev_ishole);
34dc7c2f
BB
2445}
2446
b128c09f
BB
2447boolean_t
2448vdev_accessible(vdev_t *vd, zio_t *zio)
34dc7c2f 2449{
b128c09f 2450 ASSERT(zio->io_vd == vd);
34dc7c2f 2451
b128c09f
BB
2452 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2453 return (B_FALSE);
34dc7c2f 2454
b128c09f
BB
2455 if (zio->io_type == ZIO_TYPE_READ)
2456 return (!vd->vdev_cant_read);
34dc7c2f 2457
b128c09f
BB
2458 if (zio->io_type == ZIO_TYPE_WRITE)
2459 return (!vd->vdev_cant_write);
34dc7c2f 2460
b128c09f 2461 return (B_TRUE);
34dc7c2f
BB
2462}
2463
2464/*
2465 * Get statistics for the given vdev.
2466 */
2467void
2468vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2469{
2470 vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
d6320ddb 2471 int c, t;
34dc7c2f
BB
2472
2473 mutex_enter(&vd->vdev_stat_lock);
2474 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2475 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2476 vs->vs_state = vd->vdev_state;
9babb374
BB
2477 vs->vs_rsize = vdev_get_min_asize(vd);
2478 if (vd->vdev_ops->vdev_op_leaf)
2479 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
34dc7c2f
BB
2480 mutex_exit(&vd->vdev_stat_lock);
2481
2482 /*
2483 * If we're getting stats on the root vdev, aggregate the I/O counts
2484 * over all top-level vdevs (i.e. the direct children of the root).
2485 */
2486 if (vd == rvd) {
d6320ddb 2487 for (c = 0; c < rvd->vdev_children; c++) {
34dc7c2f
BB
2488 vdev_t *cvd = rvd->vdev_child[c];
2489 vdev_stat_t *cvs = &cvd->vdev_stat;
2490
2491 mutex_enter(&vd->vdev_stat_lock);
d6320ddb 2492 for (t = 0; t < ZIO_TYPES; t++) {
34dc7c2f
BB
2493 vs->vs_ops[t] += cvs->vs_ops[t];
2494 vs->vs_bytes[t] += cvs->vs_bytes[t];
2495 }
428870ff 2496 cvs->vs_scan_removing = cvd->vdev_removing;
34dc7c2f
BB
2497 mutex_exit(&vd->vdev_stat_lock);
2498 }
2499 }
2500}
2501
2502void
2503vdev_clear_stats(vdev_t *vd)
2504{
2505 mutex_enter(&vd->vdev_stat_lock);
2506 vd->vdev_stat.vs_space = 0;
2507 vd->vdev_stat.vs_dspace = 0;
2508 vd->vdev_stat.vs_alloc = 0;
2509 mutex_exit(&vd->vdev_stat_lock);
2510}
2511
428870ff
BB
2512void
2513vdev_scan_stat_init(vdev_t *vd)
2514{
2515 vdev_stat_t *vs = &vd->vdev_stat;
d6320ddb 2516 int c;
428870ff 2517
d6320ddb 2518 for (c = 0; c < vd->vdev_children; c++)
428870ff
BB
2519 vdev_scan_stat_init(vd->vdev_child[c]);
2520
2521 mutex_enter(&vd->vdev_stat_lock);
2522 vs->vs_scan_processed = 0;
2523 mutex_exit(&vd->vdev_stat_lock);
2524}
2525
34dc7c2f 2526void
b128c09f 2527vdev_stat_update(zio_t *zio, uint64_t psize)
34dc7c2f 2528{
fb5f0bc8
BB
2529 spa_t *spa = zio->io_spa;
2530 vdev_t *rvd = spa->spa_root_vdev;
b128c09f 2531 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
34dc7c2f
BB
2532 vdev_t *pvd;
2533 uint64_t txg = zio->io_txg;
2534 vdev_stat_t *vs = &vd->vdev_stat;
2535 zio_type_t type = zio->io_type;
2536 int flags = zio->io_flags;
2537
b128c09f
BB
2538 /*
2539 * If this i/o is a gang leader, it didn't do any actual work.
2540 */
2541 if (zio->io_gang_tree)
2542 return;
2543
34dc7c2f 2544 if (zio->io_error == 0) {
b128c09f
BB
2545 /*
2546 * If this is a root i/o, don't count it -- we've already
2547 * counted the top-level vdevs, and vdev_get_stats() will
2548 * aggregate them when asked. This reduces contention on
2549 * the root vdev_stat_lock and implicitly handles blocks
2550 * that compress away to holes, for which there is no i/o.
2551 * (Holes never create vdev children, so all the counters
2552 * remain zero, which is what we want.)
2553 *
2554 * Note: this only applies to successful i/o (io_error == 0)
2555 * because unlike i/o counts, errors are not additive.
2556 * When reading a ditto block, for example, failure of
2557 * one top-level vdev does not imply a root-level error.
2558 */
2559 if (vd == rvd)
2560 return;
2561
2562 ASSERT(vd == zio->io_vd);
fb5f0bc8
BB
2563
2564 if (flags & ZIO_FLAG_IO_BYPASS)
2565 return;
2566
2567 mutex_enter(&vd->vdev_stat_lock);
2568
b128c09f 2569 if (flags & ZIO_FLAG_IO_REPAIR) {
572e2857 2570 if (flags & ZIO_FLAG_SCAN_THREAD) {
428870ff
BB
2571 dsl_scan_phys_t *scn_phys =
2572 &spa->spa_dsl_pool->dp_scan->scn_phys;
2573 uint64_t *processed = &scn_phys->scn_processed;
2574
2575 /* XXX cleanup? */
2576 if (vd->vdev_ops->vdev_op_leaf)
2577 atomic_add_64(processed, psize);
2578 vs->vs_scan_processed += psize;
2579 }
2580
fb5f0bc8 2581 if (flags & ZIO_FLAG_SELF_HEAL)
b128c09f 2582 vs->vs_self_healed += psize;
34dc7c2f 2583 }
fb5f0bc8
BB
2584
2585 vs->vs_ops[type]++;
2586 vs->vs_bytes[type] += psize;
2587
2588 mutex_exit(&vd->vdev_stat_lock);
34dc7c2f
BB
2589 return;
2590 }
2591
2592 if (flags & ZIO_FLAG_SPECULATIVE)
2593 return;
2594
9babb374
BB
2595 /*
2596 * If this is an I/O error that is going to be retried, then ignore the
2597 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
2598 * hard errors, when in reality they can happen for any number of
2599 * innocuous reasons (bus resets, MPxIO link failure, etc).
2600 */
2601 if (zio->io_error == EIO &&
2602 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2603 return;
2604
428870ff
BB
2605 /*
2606 * Intent logs writes won't propagate their error to the root
2607 * I/O so don't mark these types of failures as pool-level
2608 * errors.
2609 */
2610 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2611 return;
2612
b128c09f 2613 mutex_enter(&vd->vdev_stat_lock);
9babb374 2614 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
b128c09f
BB
2615 if (zio->io_error == ECKSUM)
2616 vs->vs_checksum_errors++;
2617 else
2618 vs->vs_read_errors++;
34dc7c2f 2619 }
9babb374 2620 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
b128c09f
BB
2621 vs->vs_write_errors++;
2622 mutex_exit(&vd->vdev_stat_lock);
34dc7c2f 2623
fb5f0bc8
BB
2624 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2625 (!(flags & ZIO_FLAG_IO_REPAIR) ||
572e2857 2626 (flags & ZIO_FLAG_SCAN_THREAD) ||
428870ff 2627 spa->spa_claiming)) {
fb5f0bc8 2628 /*
428870ff
BB
2629 * This is either a normal write (not a repair), or it's
2630 * a repair induced by the scrub thread, or it's a repair
2631 * made by zil_claim() during spa_load() in the first txg.
2632 * In the normal case, we commit the DTL change in the same
2633 * txg as the block was born. In the scrub-induced repair
2634 * case, we know that scrubs run in first-pass syncing context,
2635 * so we commit the DTL change in spa_syncing_txg(spa).
2636 * In the zil_claim() case, we commit in spa_first_txg(spa).
fb5f0bc8
BB
2637 *
2638 * We currently do not make DTL entries for failed spontaneous
2639 * self-healing writes triggered by normal (non-scrubbing)
2640 * reads, because we have no transactional context in which to
2641 * do so -- and it's not clear that it'd be desirable anyway.
2642 */
2643 if (vd->vdev_ops->vdev_op_leaf) {
2644 uint64_t commit_txg = txg;
572e2857 2645 if (flags & ZIO_FLAG_SCAN_THREAD) {
fb5f0bc8
BB
2646 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2647 ASSERT(spa_sync_pass(spa) == 1);
2648 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
428870ff
BB
2649 commit_txg = spa_syncing_txg(spa);
2650 } else if (spa->spa_claiming) {
2651 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2652 commit_txg = spa_first_txg(spa);
fb5f0bc8 2653 }
428870ff 2654 ASSERT(commit_txg >= spa_syncing_txg(spa));
fb5f0bc8 2655 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
34dc7c2f 2656 return;
fb5f0bc8
BB
2657 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2658 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2659 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
34dc7c2f 2660 }
fb5f0bc8
BB
2661 if (vd != rvd)
2662 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
34dc7c2f
BB
2663 }
2664}
2665
34dc7c2f 2666/*
428870ff
BB
2667 * Update the in-core space usage stats for this vdev, its metaslab class,
2668 * and the root vdev.
34dc7c2f
BB
2669 */
2670void
428870ff
BB
2671vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2672 int64_t space_delta)
34dc7c2f
BB
2673{
2674 int64_t dspace_delta = space_delta;
2675 spa_t *spa = vd->vdev_spa;
2676 vdev_t *rvd = spa->spa_root_vdev;
428870ff
BB
2677 metaslab_group_t *mg = vd->vdev_mg;
2678 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
34dc7c2f
BB
2679
2680 ASSERT(vd == vd->vdev_top);
2681
2682 /*
2683 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2684 * factor. We must calculate this here and not at the root vdev
2685 * because the root vdev's psize-to-asize is simply the max of its
2686 * childrens', thus not accurate enough for us.
2687 */
2688 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
9babb374 2689 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
34dc7c2f
BB
2690 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2691 vd->vdev_deflate_ratio;
2692
2693 mutex_enter(&vd->vdev_stat_lock);
34dc7c2f 2694 vd->vdev_stat.vs_alloc += alloc_delta;
428870ff 2695 vd->vdev_stat.vs_space += space_delta;
34dc7c2f
BB
2696 vd->vdev_stat.vs_dspace += dspace_delta;
2697 mutex_exit(&vd->vdev_stat_lock);
2698
428870ff 2699 if (mc == spa_normal_class(spa)) {
34dc7c2f 2700 mutex_enter(&rvd->vdev_stat_lock);
34dc7c2f 2701 rvd->vdev_stat.vs_alloc += alloc_delta;
428870ff 2702 rvd->vdev_stat.vs_space += space_delta;
34dc7c2f
BB
2703 rvd->vdev_stat.vs_dspace += dspace_delta;
2704 mutex_exit(&rvd->vdev_stat_lock);
2705 }
428870ff
BB
2706
2707 if (mc != NULL) {
2708 ASSERT(rvd == vd->vdev_parent);
2709 ASSERT(vd->vdev_ms_count != 0);
2710
2711 metaslab_class_space_update(mc,
2712 alloc_delta, defer_delta, space_delta, dspace_delta);
2713 }
34dc7c2f
BB
2714}
2715
2716/*
2717 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2718 * so that it will be written out next time the vdev configuration is synced.
2719 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2720 */
2721void
2722vdev_config_dirty(vdev_t *vd)
2723{
2724 spa_t *spa = vd->vdev_spa;
2725 vdev_t *rvd = spa->spa_root_vdev;
2726 int c;
2727
572e2857
BB
2728 ASSERT(spa_writeable(spa));
2729
34dc7c2f 2730 /*
9babb374
BB
2731 * If this is an aux vdev (as with l2cache and spare devices), then we
2732 * update the vdev config manually and set the sync flag.
b128c09f
BB
2733 */
2734 if (vd->vdev_aux != NULL) {
2735 spa_aux_vdev_t *sav = vd->vdev_aux;
2736 nvlist_t **aux;
2737 uint_t naux;
2738
2739 for (c = 0; c < sav->sav_count; c++) {
2740 if (sav->sav_vdevs[c] == vd)
2741 break;
2742 }
2743
2744 if (c == sav->sav_count) {
2745 /*
2746 * We're being removed. There's nothing more to do.
2747 */
2748 ASSERT(sav->sav_sync == B_TRUE);
2749 return;
2750 }
2751
2752 sav->sav_sync = B_TRUE;
2753
9babb374
BB
2754 if (nvlist_lookup_nvlist_array(sav->sav_config,
2755 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2756 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2757 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2758 }
b128c09f
BB
2759
2760 ASSERT(c < naux);
2761
2762 /*
2763 * Setting the nvlist in the middle if the array is a little
2764 * sketchy, but it will work.
2765 */
2766 nvlist_free(aux[c]);
428870ff 2767 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
b128c09f
BB
2768
2769 return;
2770 }
2771
2772 /*
2773 * The dirty list is protected by the SCL_CONFIG lock. The caller
2774 * must either hold SCL_CONFIG as writer, or must be the sync thread
2775 * (which holds SCL_CONFIG as reader). There's only one sync thread,
34dc7c2f
BB
2776 * so this is sufficient to ensure mutual exclusion.
2777 */
b128c09f
BB
2778 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2779 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2780 spa_config_held(spa, SCL_CONFIG, RW_READER)));
34dc7c2f
BB
2781
2782 if (vd == rvd) {
2783 for (c = 0; c < rvd->vdev_children; c++)
2784 vdev_config_dirty(rvd->vdev_child[c]);
2785 } else {
2786 ASSERT(vd == vd->vdev_top);
2787
428870ff
BB
2788 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2789 !vd->vdev_ishole)
b128c09f 2790 list_insert_head(&spa->spa_config_dirty_list, vd);
34dc7c2f
BB
2791 }
2792}
2793
2794void
2795vdev_config_clean(vdev_t *vd)
2796{
2797 spa_t *spa = vd->vdev_spa;
2798
b128c09f
BB
2799 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2800 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2801 spa_config_held(spa, SCL_CONFIG, RW_READER)));
34dc7c2f 2802
b128c09f
BB
2803 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2804 list_remove(&spa->spa_config_dirty_list, vd);
34dc7c2f
BB
2805}
2806
b128c09f
BB
2807/*
2808 * Mark a top-level vdev's state as dirty, so that the next pass of
2809 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
2810 * the state changes from larger config changes because they require
2811 * much less locking, and are often needed for administrative actions.
2812 */
2813void
2814vdev_state_dirty(vdev_t *vd)
2815{
2816 spa_t *spa = vd->vdev_spa;
2817
572e2857 2818 ASSERT(spa_writeable(spa));
b128c09f
BB
2819 ASSERT(vd == vd->vdev_top);
2820
2821 /*
2822 * The state list is protected by the SCL_STATE lock. The caller
2823 * must either hold SCL_STATE as writer, or must be the sync thread
2824 * (which holds SCL_STATE as reader). There's only one sync thread,
2825 * so this is sufficient to ensure mutual exclusion.
2826 */
2827 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2828 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2829 spa_config_held(spa, SCL_STATE, RW_READER)));
2830
428870ff 2831 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
b128c09f
BB
2832 list_insert_head(&spa->spa_state_dirty_list, vd);
2833}
2834
2835void
2836vdev_state_clean(vdev_t *vd)
2837{
2838 spa_t *spa = vd->vdev_spa;
2839
2840 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2841 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2842 spa_config_held(spa, SCL_STATE, RW_READER)));
2843
2844 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2845 list_remove(&spa->spa_state_dirty_list, vd);
2846}
2847
2848/*
2849 * Propagate vdev state up from children to parent.
2850 */
34dc7c2f
BB
2851void
2852vdev_propagate_state(vdev_t *vd)
2853{
fb5f0bc8
BB
2854 spa_t *spa = vd->vdev_spa;
2855 vdev_t *rvd = spa->spa_root_vdev;
34dc7c2f
BB
2856 int degraded = 0, faulted = 0;
2857 int corrupted = 0;
34dc7c2f 2858 vdev_t *child;
d6320ddb 2859 int c;
34dc7c2f
BB
2860
2861 if (vd->vdev_children > 0) {
d6320ddb 2862 for (c = 0; c < vd->vdev_children; c++) {
34dc7c2f 2863 child = vd->vdev_child[c];
b128c09f 2864
428870ff
BB
2865 /*
2866 * Don't factor holes into the decision.
2867 */
2868 if (child->vdev_ishole)
2869 continue;
2870
b128c09f 2871 if (!vdev_readable(child) ||
fb5f0bc8 2872 (!vdev_writeable(child) && spa_writeable(spa))) {
b128c09f
BB
2873 /*
2874 * Root special: if there is a top-level log
2875 * device, treat the root vdev as if it were
2876 * degraded.
2877 */
2878 if (child->vdev_islog && vd == rvd)
2879 degraded++;
2880 else
2881 faulted++;
2882 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
34dc7c2f 2883 degraded++;
b128c09f 2884 }
34dc7c2f
BB
2885
2886 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2887 corrupted++;
2888 }
2889
2890 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2891
2892 /*
b128c09f 2893 * Root special: if there is a top-level vdev that cannot be
34dc7c2f
BB
2894 * opened due to corrupted metadata, then propagate the root
2895 * vdev's aux state as 'corrupt' rather than 'insufficient
2896 * replicas'.
2897 */
2898 if (corrupted && vd == rvd &&
2899 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2900 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2901 VDEV_AUX_CORRUPT_DATA);
2902 }
2903
b128c09f 2904 if (vd->vdev_parent)
34dc7c2f
BB
2905 vdev_propagate_state(vd->vdev_parent);
2906}
2907
2908/*
2909 * Set a vdev's state. If this is during an open, we don't update the parent
2910 * state, because we're in the process of opening children depth-first.
2911 * Otherwise, we propagate the change to the parent.
2912 *
2913 * If this routine places a device in a faulted state, an appropriate ereport is
2914 * generated.
2915 */
2916void
2917vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2918{
2919 uint64_t save_state;
b128c09f 2920 spa_t *spa = vd->vdev_spa;
34dc7c2f
BB
2921
2922 if (state == vd->vdev_state) {
2923 vd->vdev_stat.vs_aux = aux;
2924 return;
2925 }
2926
2927 save_state = vd->vdev_state;
2928
2929 vd->vdev_state = state;
2930 vd->vdev_stat.vs_aux = aux;
2931
2932 /*
2933 * If we are setting the vdev state to anything but an open state, then
428870ff
BB
2934 * always close the underlying device unless the device has requested
2935 * a delayed close (i.e. we're about to remove or fault the device).
2936 * Otherwise, we keep accessible but invalid devices open forever.
2937 * We don't call vdev_close() itself, because that implies some extra
2938 * checks (offline, etc) that we don't want here. This is limited to
2939 * leaf devices, because otherwise closing the device will affect other
2940 * children.
34dc7c2f 2941 */
428870ff
BB
2942 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2943 vd->vdev_ops->vdev_op_leaf)
34dc7c2f
BB
2944 vd->vdev_ops->vdev_op_close(vd);
2945
428870ff
BB
2946 /*
2947 * If we have brought this vdev back into service, we need
2948 * to notify fmd so that it can gracefully repair any outstanding
2949 * cases due to a missing device. We do this in all cases, even those
2950 * that probably don't correlate to a repaired fault. This is sure to
2951 * catch all cases, and we let the zfs-retire agent sort it out. If
2952 * this is a transient state it's OK, as the retire agent will
2953 * double-check the state of the vdev before repairing it.
2954 */
2955 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2956 vd->vdev_prevstate != state)
2957 zfs_post_state_change(spa, vd);
2958
34dc7c2f
BB
2959 if (vd->vdev_removed &&
2960 state == VDEV_STATE_CANT_OPEN &&
2961 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2962 /*
2963 * If the previous state is set to VDEV_STATE_REMOVED, then this
2964 * device was previously marked removed and someone attempted to
2965 * reopen it. If this failed due to a nonexistent device, then
2966 * keep the device in the REMOVED state. We also let this be if
2967 * it is one of our special test online cases, which is only
2968 * attempting to online the device and shouldn't generate an FMA
2969 * fault.
2970 */
2971 vd->vdev_state = VDEV_STATE_REMOVED;
2972 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2973 } else if (state == VDEV_STATE_REMOVED) {
34dc7c2f
BB
2974 vd->vdev_removed = B_TRUE;
2975 } else if (state == VDEV_STATE_CANT_OPEN) {
2976 /*
572e2857
BB
2977 * If we fail to open a vdev during an import or recovery, we
2978 * mark it as "not available", which signifies that it was
2979 * never there to begin with. Failure to open such a device
2980 * is not considered an error.
34dc7c2f 2981 */
572e2857
BB
2982 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
2983 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
34dc7c2f
BB
2984 vd->vdev_ops->vdev_op_leaf)
2985 vd->vdev_not_present = 1;
2986
2987 /*
2988 * Post the appropriate ereport. If the 'prevstate' field is
2989 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2990 * that this is part of a vdev_reopen(). In this case, we don't
2991 * want to post the ereport if the device was already in the
2992 * CANT_OPEN state beforehand.
2993 *
2994 * If the 'checkremove' flag is set, then this is an attempt to
2995 * online the device in response to an insertion event. If we
2996 * hit this case, then we have detected an insertion event for a
2997 * faulted or offline device that wasn't in the removed state.
2998 * In this scenario, we don't post an ereport because we are
2999 * about to replace the device, or attempt an online with
3000 * vdev_forcefault, which will generate the fault for us.
3001 */
3002 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3003 !vd->vdev_not_present && !vd->vdev_checkremove &&
b128c09f 3004 vd != spa->spa_root_vdev) {
34dc7c2f
BB
3005 const char *class;
3006
3007 switch (aux) {
3008 case VDEV_AUX_OPEN_FAILED:
3009 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3010 break;
3011 case VDEV_AUX_CORRUPT_DATA:
3012 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3013 break;
3014 case VDEV_AUX_NO_REPLICAS:
3015 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3016 break;
3017 case VDEV_AUX_BAD_GUID_SUM:
3018 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3019 break;
3020 case VDEV_AUX_TOO_SMALL:
3021 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3022 break;
3023 case VDEV_AUX_BAD_LABEL:
3024 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3025 break;
3026 default:
3027 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3028 }
3029
b128c09f 3030 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
34dc7c2f
BB
3031 }
3032
3033 /* Erase any notion of persistent removed state */
3034 vd->vdev_removed = B_FALSE;
3035 } else {
3036 vd->vdev_removed = B_FALSE;
3037 }
3038
9babb374
BB
3039 if (!isopen && vd->vdev_parent)
3040 vdev_propagate_state(vd->vdev_parent);
34dc7c2f 3041}
b128c09f
BB
3042
3043/*
3044 * Check the vdev configuration to ensure that it's capable of supporting
3045 * a root pool. Currently, we do not support RAID-Z or partial configuration.
3046 * In addition, only a single top-level vdev is allowed and none of the leaves
3047 * can be wholedisks.
3048 */
3049boolean_t
3050vdev_is_bootable(vdev_t *vd)
3051{
d6320ddb
BB
3052 int c;
3053
b128c09f
BB
3054 if (!vd->vdev_ops->vdev_op_leaf) {
3055 char *vdev_type = vd->vdev_ops->vdev_op_type;
3056
3057 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3058 vd->vdev_children > 1) {
3059 return (B_FALSE);
3060 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3061 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3062 return (B_FALSE);
3063 }
3064 } else if (vd->vdev_wholedisk == 1) {
3065 return (B_FALSE);
3066 }
3067
d6320ddb 3068 for (c = 0; c < vd->vdev_children; c++) {
b128c09f
BB
3069 if (!vdev_is_bootable(vd->vdev_child[c]))
3070 return (B_FALSE);
3071 }
3072 return (B_TRUE);
3073}
9babb374 3074
428870ff
BB
3075/*
3076 * Load the state from the original vdev tree (ovd) which
3077 * we've retrieved from the MOS config object. If the original
572e2857
BB
3078 * vdev was offline or faulted then we transfer that state to the
3079 * device in the current vdev tree (nvd).
428870ff 3080 */
9babb374 3081void
428870ff 3082vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
9babb374 3083{
d6320ddb 3084 int c;
9babb374 3085
572e2857 3086 ASSERT(nvd->vdev_top->vdev_islog);
428870ff
BB
3087 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3088 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
9babb374 3089
d6320ddb 3090 for (c = 0; c < nvd->vdev_children; c++)
428870ff 3091 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
9babb374 3092
572e2857 3093 if (nvd->vdev_ops->vdev_op_leaf) {
9babb374 3094 /*
572e2857 3095 * Restore the persistent vdev state
9babb374 3096 */
428870ff 3097 nvd->vdev_offline = ovd->vdev_offline;
572e2857
BB
3098 nvd->vdev_faulted = ovd->vdev_faulted;
3099 nvd->vdev_degraded = ovd->vdev_degraded;
3100 nvd->vdev_removed = ovd->vdev_removed;
9babb374
BB
3101 }
3102}
3103
572e2857
BB
3104/*
3105 * Determine if a log device has valid content. If the vdev was
3106 * removed or faulted in the MOS config then we know that
3107 * the content on the log device has already been written to the pool.
3108 */
3109boolean_t
3110vdev_log_state_valid(vdev_t *vd)
3111{
d6320ddb
BB
3112 int c;
3113
572e2857
BB
3114 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3115 !vd->vdev_removed)
3116 return (B_TRUE);
3117
d6320ddb 3118 for (c = 0; c < vd->vdev_children; c++)
572e2857
BB
3119 if (vdev_log_state_valid(vd->vdev_child[c]))
3120 return (B_TRUE);
3121
3122 return (B_FALSE);
3123}
3124
9babb374
BB
3125/*
3126 * Expand a vdev if possible.
3127 */
3128void
3129vdev_expand(vdev_t *vd, uint64_t txg)
3130{
3131 ASSERT(vd->vdev_top == vd);
3132 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3133
3134 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3135 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3136 vdev_config_dirty(vd);
3137 }
3138}
428870ff
BB
3139
3140/*
3141 * Split a vdev.
3142 */
3143void
3144vdev_split(vdev_t *vd)
3145{
3146 vdev_t *cvd, *pvd = vd->vdev_parent;
3147
3148 vdev_remove_child(pvd, vd);
3149 vdev_compact_children(pvd);
3150
3151 cvd = pvd->vdev_child[0];
3152 if (pvd->vdev_children == 1) {
3153 vdev_remove_parent(cvd);
3154 cvd->vdev_splitting = B_TRUE;
3155 }
3156 vdev_propagate_state(cvd);
3157}