]> git.proxmox.com Git - mirror_zfs-debian.git/blame - module/zfs/vdev_disk.c
call_usermodehelper() should wait for process
[mirror_zfs-debian.git] / module / zfs / vdev_disk.c
CommitLineData
60101509
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25 * LLNL-CODE-403049.
26 */
27
28#include <sys/zfs_context.h>
29#include <sys/spa.h>
30#include <sys/vdev_disk.h>
31#include <sys/vdev_impl.h>
32#include <sys/fs/zfs.h>
33#include <sys/zio.h>
34#include <sys/sunldi.h>
35
6839eed2
BB
36char *zfs_vdev_scheduler = VDEV_SCHEDULER;
37
60101509
BB
38/*
39 * Virtual device vector for disks.
40 */
41typedef struct dio_request {
42 struct completion dr_comp; /* Completion for sync IO */
43 atomic_t dr_ref; /* References */
44 zio_t *dr_zio; /* Parent ZIO */
45 int dr_rw; /* Read/Write */
46 int dr_error; /* Bio error */
47 int dr_bio_count; /* Count of bio's */
48 struct bio *dr_bio[0]; /* Attached bio's */
49} dio_request_t;
50
51
52#ifdef HAVE_OPEN_BDEV_EXCLUSIVE
53static fmode_t
54vdev_bdev_mode(int smode)
55{
56 fmode_t mode = 0;
57
58 ASSERT3S(smode & (FREAD | FWRITE), !=, 0);
59
60 if (smode & FREAD)
61 mode |= FMODE_READ;
62
63 if (smode & FWRITE)
64 mode |= FMODE_WRITE;
65
66 return mode;
67}
68#else
69static int
70vdev_bdev_mode(int smode)
71{
72 int mode = 0;
73
74 ASSERT3S(smode & (FREAD | FWRITE), !=, 0);
75
76 if ((smode & FREAD) && !(smode & FWRITE))
77 mode = MS_RDONLY;
78
79 return mode;
80}
81#endif /* HAVE_OPEN_BDEV_EXCLUSIVE */
82
83static uint64_t
84bdev_capacity(struct block_device *bdev)
85{
86 struct hd_struct *part = bdev->bd_part;
87
88 /* The partition capacity referenced by the block device */
89 if (part)
f74fae8b 90 return (part->nr_sects << 9);
60101509
BB
91
92 /* Otherwise assume the full device capacity */
f74fae8b 93 return (get_capacity(bdev->bd_disk) << 9);
60101509
BB
94}
95
d148e951
BB
96static void
97vdev_disk_error(zio_t *zio)
98{
99#ifdef ZFS_DEBUG
a69052be
BB
100 printk("ZFS: zio error=%d type=%d offset=%llu size=%llu "
101 "flags=%x delay=%llu\n", zio->io_error, zio->io_type,
d148e951 102 (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
a69052be 103 zio->io_flags, (u_longlong_t)zio->io_delay);
d148e951
BB
104#endif
105}
106
6839eed2
BB
107/*
108 * Use the Linux 'noop' elevator for zfs managed block devices. This
109 * strikes the ideal balance by allowing the zfs elevator to do all
110 * request ordering and prioritization. While allowing the Linux
111 * elevator to do the maximum front/back merging allowed by the
112 * physical device. This yields the largest possible requests for
113 * the device with the lowest total overhead.
6839eed2
BB
114 */
115static int
fdcd952b 116vdev_elevator_switch(vdev_t *v, char *elevator)
6839eed2 117{
fdcd952b
BB
118 vdev_disk_t *vd = v->vdev_tsd;
119 struct block_device *bdev = vd->vd_bdev;
120 struct request_queue *q = bdev_get_queue(bdev);
121 char *device = bdev->bd_disk->disk_name;
e2448b0e 122 int error;
fdcd952b 123
84daadde
PS
124 /*
125 * Skip devices which are not whole disks (partitions).
126 * Device-mapper devices are excepted since they may be whole
127 * disks despite the vdev_wholedisk flag, in which case we can
128 * and should switch the elevator. If the device-mapper device
129 * does not have an elevator (i.e. dm-raid, dm-crypt, etc.) the
130 * "Skip devices without schedulers" check below will fail.
131 */
132 if (!v->vdev_wholedisk && strncmp(device, "dm-", 3) != 0)
04516a45
BB
133 return (0);
134
fdcd952b
BB
135 /* Skip devices without schedulers (loop, ram, dm, etc) */
136 if (!q->elevator || !blk_queue_stackable(q))
137 return (0);
6839eed2 138
fdcd952b 139 /* Leave existing scheduler when set to "none" */
6839eed2
BB
140 if (!strncmp(elevator, "none", 4) && (strlen(elevator) == 4))
141 return (0);
142
6d1d976b
BB
143#ifdef HAVE_ELEVATOR_CHANGE
144 error = elevator_change(q, elevator);
145#else
146 /* For pre-2.6.36 kernels elevator_change() is not available.
147 * Therefore we fall back to using a usermodehelper to echo the
148 * elevator into sysfs; This requires /bin/echo and sysfs to be
149 * mounted which may not be true early in the boot process.
150 */
151# define SET_SCHEDULER_CMD \
152 "exec 0</dev/null " \
153 " 1>/sys/block/%s/queue/scheduler " \
154 " 2>/dev/null; " \
155 "echo %s"
156
157 {
158 char *argv[] = { "/bin/sh", "-c", NULL, NULL };
159 char *envp[] = { NULL };
160
161 argv[2] = kmem_asprintf(SET_SCHEDULER_CMD, device, elevator);
761394b3 162 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
6d1d976b
BB
163 strfree(argv[2]);
164 }
165#endif /* HAVE_ELEVATOR_CHANGE */
6839eed2
BB
166 if (error)
167 printk("ZFS: Unable to set \"%s\" scheduler for %s (%s): %d\n",
fdcd952b 168 elevator, v->vdev_path, device, error);
6839eed2
BB
169
170 return (error);
171}
172
b5a28807
ED
173/*
174 * Expanding a whole disk vdev involves invoking BLKRRPART on the
175 * whole disk device. This poses a problem, because BLKRRPART will
176 * return EBUSY if one of the disk's partitions is open. That's why
177 * we have to do it here, just before opening the data partition.
178 * Unfortunately, BLKRRPART works by dropping all partitions and
179 * recreating them, which means that for a short time window, all
180 * /dev/sdxN device files disappear (until udev recreates them).
181 * This means two things:
182 * - When we open the data partition just after a BLKRRPART, we
183 * can't do it using the normal device file path because of the
184 * obvious race condition with udev. Instead, we use reliable
185 * kernel APIs to get a handle to the new partition device from
186 * the whole disk device.
187 * - Because vdev_disk_open() initially needs to find the device
188 * using its path, multiple vdev_disk_open() invocations in
189 * short succession on the same disk with BLKRRPARTs in the
190 * middle have a high probability of failure (because of the
191 * race condition with udev). A typical situation where this
192 * might happen is when the zpool userspace tool does a
193 * TRYIMPORT immediately followed by an IMPORT. For this
194 * reason, we only invoke BLKRRPART in the module when strictly
195 * necessary (zpool online -e case), and rely on userspace to
196 * do it when possible.
197 */
198static struct block_device *
199vdev_disk_rrpart(const char *path, int mode, vdev_disk_t *vd)
200{
201#if defined(HAVE_3ARG_BLKDEV_GET) && defined(HAVE_GET_GENDISK)
202 struct block_device *bdev, *result = ERR_PTR(-ENXIO);
203 struct gendisk *disk;
204 int error, partno;
205
206 bdev = vdev_bdev_open(path, vdev_bdev_mode(mode), vd);
207 if (IS_ERR(bdev))
208 return bdev;
209
210 disk = get_gendisk(bdev->bd_dev, &partno);
211 vdev_bdev_close(bdev, vdev_bdev_mode(mode));
212
213 if (disk) {
214 bdev = bdget(disk_devt(disk));
215 if (bdev) {
216 error = blkdev_get(bdev, vdev_bdev_mode(mode), vd);
217 if (error == 0)
218 error = ioctl_by_bdev(bdev, BLKRRPART, 0);
219 vdev_bdev_close(bdev, vdev_bdev_mode(mode));
220 }
221
222 bdev = bdget_disk(disk, partno);
223 if (bdev) {
224 error = blkdev_get(bdev,
225 vdev_bdev_mode(mode) | FMODE_EXCL, vd);
226 if (error == 0)
227 result = bdev;
228 }
229 put_disk(disk);
230 }
231
232 return result;
233#else
234 return ERR_PTR(-EOPNOTSUPP);
235#endif /* defined(HAVE_3ARG_BLKDEV_GET) && defined(HAVE_GET_GENDISK) */
236}
237
60101509 238static int
1bd201e7
CS
239vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
240 uint64_t *ashift)
60101509 241{
b5a28807 242 struct block_device *bdev = ERR_PTR(-ENXIO);
60101509
BB
243 vdev_disk_t *vd;
244 int mode, block_size;
245
246 /* Must have a pathname and it must be absolute. */
247 if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
248 v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
249 return EINVAL;
250 }
251
b8d06fca 252 vd = kmem_zalloc(sizeof(vdev_disk_t), KM_PUSHPAGE);
60101509
BB
253 if (vd == NULL)
254 return ENOMEM;
255
256 /*
257 * Devices are always opened by the path provided at configuration
258 * time. This means that if the provided path is a udev by-id path
259 * then drives may be recabled without an issue. If the provided
260 * path is a udev by-path path then the physical location information
261 * will be preserved. This can be critical for more complicated
262 * configurations where drives are located in specific physical
263 * locations to maximize the systems tolerence to component failure.
264 * Alternately you can provide your own udev rule to flexibly map
265 * the drives as you see fit. It is not advised that you use the
266 * /dev/[hd]d devices which may be reorder due to probing order.
267 * Devices in the wrong locations will be detected by the higher
268 * level vdev validation.
269 */
270 mode = spa_mode(v->vdev_spa);
b5a28807
ED
271 if (v->vdev_wholedisk && v->vdev_expanding)
272 bdev = vdev_disk_rrpart(v->vdev_path, mode, vd);
273 if (IS_ERR(bdev))
274 bdev = vdev_bdev_open(v->vdev_path, vdev_bdev_mode(mode), vd);
60101509
BB
275 if (IS_ERR(bdev)) {
276 kmem_free(vd, sizeof(vdev_disk_t));
277 return -PTR_ERR(bdev);
278 }
279
280 v->vdev_tsd = vd;
281 vd->vd_bdev = bdev;
282 block_size = vdev_bdev_block_size(bdev);
283
3a7381e5
NB
284 /* We think the wholedisk property should always be set when this
285 * function is called. ASSERT here so if any legitimate cases exist
286 * where it's not set, we'll find them during debugging. If we never
287 * hit the ASSERT, this and the following conditional statement can be
288 * removed. */
289 ASSERT3S(v->vdev_wholedisk, !=, -1ULL);
290
291 /* The wholedisk property was initialized to -1 in vdev_alloc() if it
292 * was unspecified. In that case, check if this is a whole device.
293 * When bdev->bd_contains == bdev we have a whole device and not simply
294 * a partition. */
295 if (v->vdev_wholedisk == -1ULL)
296 v->vdev_wholedisk = (bdev->bd_contains == bdev);
60101509
BB
297
298 /* Clear the nowritecache bit, causes vdev_reopen() to try again. */
299 v->vdev_nowritecache = B_FALSE;
300
301 /* Physical volume size in bytes */
f74fae8b 302 *psize = bdev_capacity(bdev);
60101509 303
1bd201e7
CS
304 /* TODO: report possible expansion size */
305 *max_psize = *psize;
306
60101509
BB
307 /* Based on the minimum sector size set the block size */
308 *ashift = highbit(MAX(block_size, SPA_MINBLOCKSIZE)) - 1;
309
6839eed2 310 /* Try to set the io scheduler elevator algorithm */
fdcd952b 311 (void) vdev_elevator_switch(v, zfs_vdev_scheduler);
6839eed2 312
60101509
BB
313 return 0;
314}
315
316static void
317vdev_disk_close(vdev_t *v)
318{
319 vdev_disk_t *vd = v->vdev_tsd;
320
321 if (vd == NULL)
322 return;
323
324 if (vd->vd_bdev != NULL)
325 vdev_bdev_close(vd->vd_bdev,
326 vdev_bdev_mode(spa_mode(v->vdev_spa)));
327
328 kmem_free(vd, sizeof(vdev_disk_t));
329 v->vdev_tsd = NULL;
330}
331
332static dio_request_t *
333vdev_disk_dio_alloc(int bio_count)
334{
335 dio_request_t *dr;
336 int i;
337
338 dr = kmem_zalloc(sizeof(dio_request_t) +
b8d06fca 339 sizeof(struct bio *) * bio_count, KM_PUSHPAGE);
60101509
BB
340 if (dr) {
341 init_completion(&dr->dr_comp);
342 atomic_set(&dr->dr_ref, 0);
343 dr->dr_bio_count = bio_count;
344 dr->dr_error = 0;
345
346 for (i = 0; i < dr->dr_bio_count; i++)
347 dr->dr_bio[i] = NULL;
348 }
349
350 return dr;
351}
352
353static void
354vdev_disk_dio_free(dio_request_t *dr)
355{
356 int i;
357
358 for (i = 0; i < dr->dr_bio_count; i++)
359 if (dr->dr_bio[i])
360 bio_put(dr->dr_bio[i]);
361
362 kmem_free(dr, sizeof(dio_request_t) +
363 sizeof(struct bio *) * dr->dr_bio_count);
364}
365
675de5aa
BB
366static int
367vdev_disk_dio_is_sync(dio_request_t *dr)
368{
369#ifdef HAVE_BIO_RW_SYNC
370 /* BIO_RW_SYNC preferred interface from 2.6.12-2.6.29 */
371 return (dr->dr_rw & (1 << BIO_RW_SYNC));
372#else
373# ifdef HAVE_BIO_RW_SYNCIO
374 /* BIO_RW_SYNCIO preferred interface from 2.6.30-2.6.35 */
375 return (dr->dr_rw & (1 << BIO_RW_SYNCIO));
376# else
377# ifdef HAVE_REQ_SYNC
378 /* REQ_SYNC preferred interface from 2.6.36-2.6.xx */
379 return (dr->dr_rw & REQ_SYNC);
380# else
381# error "Unable to determine bio sync flag"
382# endif /* HAVE_REQ_SYNC */
383# endif /* HAVE_BIO_RW_SYNC */
384#endif /* HAVE_BIO_RW_SYNCIO */
385}
386
60101509
BB
387static void
388vdev_disk_dio_get(dio_request_t *dr)
389{
390 atomic_inc(&dr->dr_ref);
391}
392
393static int
394vdev_disk_dio_put(dio_request_t *dr)
395{
396 int rc = atomic_dec_return(&dr->dr_ref);
397
398 /*
399 * Free the dio_request when the last reference is dropped and
400 * ensure zio_interpret is called only once with the correct zio
401 */
402 if (rc == 0) {
403 zio_t *zio = dr->dr_zio;
404 int error = dr->dr_error;
405
406 vdev_disk_dio_free(dr);
407
408 if (zio) {
a69052be
BB
409 zio->io_delay = jiffies_to_msecs(
410 jiffies_64 - zio->io_delay);
60101509 411 zio->io_error = error;
d148e951
BB
412 ASSERT3S(zio->io_error, >=, 0);
413 if (zio->io_error)
414 vdev_disk_error(zio);
60101509
BB
415 zio_interrupt(zio);
416 }
417 }
418
419 return rc;
420}
421
422BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, size, error)
423{
424 dio_request_t *dr = bio->bi_private;
425 int rc;
426
427 /* Fatal error but print some useful debugging before asserting */
428 if (dr == NULL)
429 PANIC("dr == NULL, bio->bi_private == NULL\n"
430 "bi_next: %p, bi_flags: %lx, bi_rw: %lu, bi_vcnt: %d\n"
431 "bi_idx: %d, bi_size: %d, bi_end_io: %p, bi_cnt: %d\n",
432 bio->bi_next, bio->bi_flags, bio->bi_rw, bio->bi_vcnt,
433 bio->bi_idx, bio->bi_size, bio->bi_end_io,
434 atomic_read(&bio->bi_cnt));
435
436#ifndef HAVE_2ARGS_BIO_END_IO_T
437 if (bio->bi_size)
438 return 1;
439#endif /* HAVE_2ARGS_BIO_END_IO_T */
440
441 if (error == 0 && !test_bit(BIO_UPTODATE, &bio->bi_flags))
d148e951 442 error = -EIO;
60101509
BB
443
444 if (dr->dr_error == 0)
d148e951 445 dr->dr_error = -error;
60101509
BB
446
447 /* Drop reference aquired by __vdev_disk_physio */
448 rc = vdev_disk_dio_put(dr);
449
450 /* Wake up synchronous waiter this is the last outstanding bio */
675de5aa 451 if ((rc == 1) && vdev_disk_dio_is_sync(dr))
60101509
BB
452 complete(&dr->dr_comp);
453
454 BIO_END_IO_RETURN(0);
455}
456
457static inline unsigned long
458bio_nr_pages(void *bio_ptr, unsigned int bio_size)
459{
460 return ((((unsigned long)bio_ptr + bio_size + PAGE_SIZE - 1) >>
461 PAGE_SHIFT) - ((unsigned long)bio_ptr >> PAGE_SHIFT));
462}
463
464static unsigned int
465bio_map(struct bio *bio, void *bio_ptr, unsigned int bio_size)
466{
467 unsigned int offset, size, i;
468 struct page *page;
469
470 offset = offset_in_page(bio_ptr);
471 for (i = 0; i < bio->bi_max_vecs; i++) {
472 size = PAGE_SIZE - offset;
473
474 if (bio_size <= 0)
475 break;
476
477 if (size > bio_size)
478 size = bio_size;
479
480 if (kmem_virt(bio_ptr))
481 page = vmalloc_to_page(bio_ptr);
482 else
483 page = virt_to_page(bio_ptr);
484
485 if (bio_add_page(bio, page, size, offset) != size)
486 break;
487
488 bio_ptr += size;
489 bio_size -= size;
490 offset = 0;
491 }
492
493 return bio_size;
494}
495
496static int
497__vdev_disk_physio(struct block_device *bdev, zio_t *zio, caddr_t kbuf_ptr,
498 size_t kbuf_size, uint64_t kbuf_offset, int flags)
499{
500 dio_request_t *dr;
501 caddr_t bio_ptr;
502 uint64_t bio_offset;
503 int bio_size, bio_count = 16;
f74fae8b 504 int i = 0, error = 0;
60101509 505
e06be586
NB
506 ASSERT3U(kbuf_offset + kbuf_size, <=, bdev->bd_inode->i_size);
507
60101509
BB
508retry:
509 dr = vdev_disk_dio_alloc(bio_count);
510 if (dr == NULL)
511 return ENOMEM;
512
2959d94a
BB
513 if (zio && !(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))
514 bio_set_flags_failfast(bdev, &flags);
515
60101509
BB
516 dr->dr_zio = zio;
517 dr->dr_rw = flags;
60101509 518
60101509
BB
519 /*
520 * When the IO size exceeds the maximum bio size for the request
521 * queue we are forced to break the IO in multiple bio's and wait
522 * for them all to complete. Ideally, all pool users will set
523 * their volume block size to match the maximum request size and
524 * the common case will be one bio per vdev IO request.
525 */
526 bio_ptr = kbuf_ptr;
527 bio_offset = kbuf_offset;
528 bio_size = kbuf_size;
529 for (i = 0; i <= dr->dr_bio_count; i++) {
530
531 /* Finished constructing bio's for given buffer */
532 if (bio_size <= 0)
533 break;
534
535 /*
536 * By default only 'bio_count' bio's per dio are allowed.
537 * However, if we find ourselves in a situation where more
538 * are needed we allocate a larger dio and warn the user.
539 */
540 if (dr->dr_bio_count == i) {
541 vdev_disk_dio_free(dr);
542 bio_count *= 2;
60101509
BB
543 goto retry;
544 }
545
546 dr->dr_bio[i] = bio_alloc(GFP_NOIO,
547 bio_nr_pages(bio_ptr, bio_size));
548 if (dr->dr_bio[i] == NULL) {
549 vdev_disk_dio_free(dr);
550 return ENOMEM;
551 }
552
553 /* Matching put called by vdev_disk_physio_completion */
554 vdev_disk_dio_get(dr);
555
556 dr->dr_bio[i]->bi_bdev = bdev;
f74fae8b 557 dr->dr_bio[i]->bi_sector = bio_offset >> 9;
60101509
BB
558 dr->dr_bio[i]->bi_rw = dr->dr_rw;
559 dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion;
560 dr->dr_bio[i]->bi_private = dr;
561
562 /* Remaining size is returned to become the new size */
563 bio_size = bio_map(dr->dr_bio[i], bio_ptr, bio_size);
564
565 /* Advance in buffer and construct another bio if needed */
566 bio_ptr += dr->dr_bio[i]->bi_size;
567 bio_offset += dr->dr_bio[i]->bi_size;
568 }
569
570 /* Extra reference to protect dio_request during submit_bio */
571 vdev_disk_dio_get(dr);
a69052be
BB
572 if (zio)
573 zio->io_delay = jiffies_64;
60101509
BB
574
575 /* Submit all bio's associated with this dio */
576 for (i = 0; i < dr->dr_bio_count; i++)
577 if (dr->dr_bio[i])
578 submit_bio(dr->dr_rw, dr->dr_bio[i]);
579
580 /*
581 * On synchronous blocking requests we wait for all bio the completion
582 * callbacks to run. We will be woken when the last callback runs
583 * for this dio. We are responsible for putting the last dio_request
584 * reference will in turn put back the last bio references. The
585 * only synchronous consumer is vdev_disk_read_rootlabel() all other
586 * IO originating from vdev_disk_io_start() is asynchronous.
587 */
675de5aa 588 if (vdev_disk_dio_is_sync(dr)) {
60101509
BB
589 wait_for_completion(&dr->dr_comp);
590 error = dr->dr_error;
591 ASSERT3S(atomic_read(&dr->dr_ref), ==, 1);
592 }
593
594 (void)vdev_disk_dio_put(dr);
595
596 return error;
597}
598
599int
600vdev_disk_physio(struct block_device *bdev, caddr_t kbuf,
601 size_t size, uint64_t offset, int flags)
602{
2959d94a 603 bio_set_flags_failfast(bdev, &flags);
60101509
BB
604 return __vdev_disk_physio(bdev, NULL, kbuf, size, offset, flags);
605}
606
607/* 2.6.24 API change */
608#ifdef HAVE_BIO_EMPTY_BARRIER
609BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, size, rc)
610{
611 zio_t *zio = bio->bi_private;
612
a69052be 613 zio->io_delay = jiffies_to_msecs(jiffies_64 - zio->io_delay);
60101509
BB
614 zio->io_error = -rc;
615 if (rc && (rc == -EOPNOTSUPP))
616 zio->io_vd->vdev_nowritecache = B_TRUE;
617
618 bio_put(bio);
d148e951
BB
619 ASSERT3S(zio->io_error, >=, 0);
620 if (zio->io_error)
621 vdev_disk_error(zio);
60101509
BB
622 zio_interrupt(zio);
623
624 BIO_END_IO_RETURN(0);
625}
626
627static int
628vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
629{
630 struct request_queue *q;
631 struct bio *bio;
632
633 q = bdev_get_queue(bdev);
634 if (!q)
635 return ENXIO;
636
637 bio = bio_alloc(GFP_KERNEL, 0);
638 if (!bio)
639 return ENOMEM;
640
641 bio->bi_end_io = vdev_disk_io_flush_completion;
642 bio->bi_private = zio;
643 bio->bi_bdev = bdev;
a69052be 644 zio->io_delay = jiffies_64;
96801d29 645 submit_bio(VDEV_WRITE_FLUSH_FUA, bio);
60101509
BB
646
647 return 0;
648}
649#else
650static int
651vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
652{
653 return ENOTSUP;
654}
655#endif /* HAVE_BIO_EMPTY_BARRIER */
656
657static int
658vdev_disk_io_start(zio_t *zio)
659{
660 vdev_t *v = zio->io_vd;
661 vdev_disk_t *vd = v->vdev_tsd;
662 int flags, error;
663
664 switch (zio->io_type) {
665 case ZIO_TYPE_IOCTL:
666
667 if (!vdev_readable(v)) {
668 zio->io_error = ENXIO;
669 return ZIO_PIPELINE_CONTINUE;
670 }
671
672 switch (zio->io_cmd) {
673 case DKIOCFLUSHWRITECACHE:
674
675 if (zfs_nocacheflush)
676 break;
677
678 if (v->vdev_nowritecache) {
679 zio->io_error = ENOTSUP;
680 break;
681 }
682
683 error = vdev_disk_io_flush(vd->vd_bdev, zio);
684 if (error == 0)
685 return ZIO_PIPELINE_STOP;
686
687 zio->io_error = error;
688 if (error == ENOTSUP)
689 v->vdev_nowritecache = B_TRUE;
690
691 break;
692
693 default:
694 zio->io_error = ENOTSUP;
695 }
696
697 return ZIO_PIPELINE_CONTINUE;
698
699 case ZIO_TYPE_WRITE:
700 flags = WRITE;
701 break;
702
703 case ZIO_TYPE_READ:
704 flags = READ;
705 break;
706
707 default:
708 zio->io_error = ENOTSUP;
709 return ZIO_PIPELINE_CONTINUE;
710 }
711
60101509
BB
712 error = __vdev_disk_physio(vd->vd_bdev, zio, zio->io_data,
713 zio->io_size, zio->io_offset, flags);
714 if (error) {
715 zio->io_error = error;
716 return ZIO_PIPELINE_CONTINUE;
717 }
718
719 return ZIO_PIPELINE_STOP;
720}
721
722static void
723vdev_disk_io_done(zio_t *zio)
724{
725 /*
726 * If the device returned EIO, we revalidate the media. If it is
727 * determined the media has changed this triggers the asynchronous
728 * removal of the device from the configuration.
729 */
730 if (zio->io_error == EIO) {
731 vdev_t *v = zio->io_vd;
732 vdev_disk_t *vd = v->vdev_tsd;
733
734 if (check_disk_change(vd->vd_bdev)) {
735 vdev_bdev_invalidate(vd->vd_bdev);
736 v->vdev_remove_wanted = B_TRUE;
737 spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
738 }
739 }
740}
741
742static void
743vdev_disk_hold(vdev_t *vd)
744{
745 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
746
747 /* We must have a pathname, and it must be absolute. */
748 if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
749 return;
750
751 /*
752 * Only prefetch path and devid info if the device has
753 * never been opened.
754 */
755 if (vd->vdev_tsd != NULL)
756 return;
757
758 /* XXX: Implement me as a vnode lookup for the device */
759 vd->vdev_name_vp = NULL;
760 vd->vdev_devid_vp = NULL;
761}
762
763static void
764vdev_disk_rele(vdev_t *vd)
765{
766 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
767
768 /* XXX: Implement me as a vnode rele for the device */
769}
770
771vdev_ops_t vdev_disk_ops = {
772 vdev_disk_open,
773 vdev_disk_close,
774 vdev_default_asize,
775 vdev_disk_io_start,
776 vdev_disk_io_done,
777 NULL,
778 vdev_disk_hold,
779 vdev_disk_rele,
780 VDEV_TYPE_DISK, /* name of this vdev type */
781 B_TRUE /* leaf vdev */
782};
783
784/*
785 * Given the root disk device devid or pathname, read the label from
786 * the device, and construct a configuration nvlist.
787 */
788int
789vdev_disk_read_rootlabel(char *devpath, char *devid, nvlist_t **config)
790{
791 struct block_device *bdev;
792 vdev_label_t *label;
793 uint64_t s, size;
794 int i;
795
796 bdev = vdev_bdev_open(devpath, vdev_bdev_mode(FREAD), NULL);
797 if (IS_ERR(bdev))
798 return -PTR_ERR(bdev);
799
f74fae8b 800 s = bdev_capacity(bdev);
60101509
BB
801 if (s == 0) {
802 vdev_bdev_close(bdev, vdev_bdev_mode(FREAD));
803 return EIO;
804 }
805
806 size = P2ALIGN_TYPED(s, sizeof(vdev_label_t), uint64_t);
b8d06fca 807 label = vmem_alloc(sizeof(vdev_label_t), KM_PUSHPAGE);
60101509
BB
808
809 for (i = 0; i < VDEV_LABELS; i++) {
810 uint64_t offset, state, txg = 0;
811
812 /* read vdev label */
813 offset = vdev_label_offset(size, i, 0);
814 if (vdev_disk_physio(bdev, (caddr_t)label,
815 VDEV_SKIP_SIZE + VDEV_PHYS_SIZE, offset, READ_SYNC) != 0)
816 continue;
817
818 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
819 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) {
820 *config = NULL;
821 continue;
822 }
823
824 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
825 &state) != 0 || state >= POOL_STATE_DESTROYED) {
826 nvlist_free(*config);
827 *config = NULL;
828 continue;
829 }
830
831 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
832 &txg) != 0 || txg == 0) {
833 nvlist_free(*config);
834 *config = NULL;
835 continue;
836 }
837
838 break;
839 }
840
841 vmem_free(label, sizeof(vdev_label_t));
842 vdev_bdev_close(bdev, vdev_bdev_mode(FREAD));
843
844 return 0;
845}
6839eed2
BB
846
847module_param(zfs_vdev_scheduler, charp, 0644);
c409e464 848MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");