]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/vdev_label.c
Undo c89 workarounds to match with upstream
[mirror_zfs.git] / module / zfs / vdev_label.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
9ae529ec 21
34dc7c2f 22/*
428870ff 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
e9aa730c 24 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
34dc7c2f
BB
25 */
26
34dc7c2f
BB
27/*
28 * Virtual Device Labels
29 * ---------------------
30 *
31 * The vdev label serves several distinct purposes:
32 *
33 * 1. Uniquely identify this device as part of a ZFS pool and confirm its
34 * identity within the pool.
35 *
36 * 2. Verify that all the devices given in a configuration are present
37 * within the pool.
38 *
39 * 3. Determine the uberblock for the pool.
40 *
41 * 4. In case of an import operation, determine the configuration of the
42 * toplevel vdev of which it is a part.
43 *
44 * 5. If an import operation cannot find all the devices in the pool,
45 * provide enough information to the administrator to determine which
46 * devices are missing.
47 *
48 * It is important to note that while the kernel is responsible for writing the
49 * label, it only consumes the information in the first three cases. The
50 * latter information is only consumed in userland when determining the
51 * configuration to import a pool.
52 *
53 *
54 * Label Organization
55 * ------------------
56 *
57 * Before describing the contents of the label, it's important to understand how
58 * the labels are written and updated with respect to the uberblock.
59 *
60 * When the pool configuration is altered, either because it was newly created
61 * or a device was added, we want to update all the labels such that we can deal
62 * with fatal failure at any point. To this end, each disk has two labels which
63 * are updated before and after the uberblock is synced. Assuming we have
64 * labels and an uberblock with the following transaction groups:
65 *
66 * L1 UB L2
67 * +------+ +------+ +------+
68 * | | | | | |
69 * | t10 | | t10 | | t10 |
70 * | | | | | |
71 * +------+ +------+ +------+
72 *
73 * In this stable state, the labels and the uberblock were all updated within
74 * the same transaction group (10). Each label is mirrored and checksummed, so
75 * that we can detect when we fail partway through writing the label.
76 *
77 * In order to identify which labels are valid, the labels are written in the
78 * following manner:
79 *
80 * 1. For each vdev, update 'L1' to the new label
81 * 2. Update the uberblock
82 * 3. For each vdev, update 'L2' to the new label
83 *
84 * Given arbitrary failure, we can determine the correct label to use based on
85 * the transaction group. If we fail after updating L1 but before updating the
86 * UB, we will notice that L1's transaction group is greater than the uberblock,
87 * so L2 must be valid. If we fail after writing the uberblock but before
88 * writing L2, we will notice that L2's transaction group is less than L1, and
89 * therefore L1 is valid.
90 *
91 * Another added complexity is that not every label is updated when the config
92 * is synced. If we add a single device, we do not want to have to re-write
93 * every label for every device in the pool. This means that both L1 and L2 may
94 * be older than the pool uberblock, because the necessary information is stored
95 * on another vdev.
96 *
97 *
98 * On-disk Format
99 * --------------
100 *
101 * The vdev label consists of two distinct parts, and is wrapped within the
102 * vdev_label_t structure. The label includes 8k of padding to permit legacy
103 * VTOC disk labels, but is otherwise ignored.
104 *
105 * The first half of the label is a packed nvlist which contains pool wide
106 * properties, per-vdev properties, and configuration information. It is
107 * described in more detail below.
108 *
109 * The latter half of the label consists of a redundant array of uberblocks.
110 * These uberblocks are updated whenever a transaction group is committed,
111 * or when the configuration is updated. When a pool is loaded, we scan each
112 * vdev for the 'best' uberblock.
113 *
114 *
115 * Configuration Information
116 * -------------------------
117 *
118 * The nvlist describing the pool and vdev contains the following elements:
119 *
120 * version ZFS on-disk version
121 * name Pool name
122 * state Pool state
123 * txg Transaction group in which this label was written
124 * pool_guid Unique identifier for this pool
125 * vdev_tree An nvlist describing vdev tree.
9ae529ec
CS
126 * features_for_read
127 * An nvlist of the features necessary for reading the MOS.
34dc7c2f
BB
128 *
129 * Each leaf device label also contains the following:
130 *
131 * top_guid Unique ID for top-level vdev in which this is contained
132 * guid Unique ID for the leaf vdev
133 *
134 * The 'vs' configuration follows the format described in 'spa_config.c'.
135 */
136
137#include <sys/zfs_context.h>
138#include <sys/spa.h>
139#include <sys/spa_impl.h>
140#include <sys/dmu.h>
141#include <sys/zap.h>
142#include <sys/vdev.h>
143#include <sys/vdev_impl.h>
144#include <sys/uberblock_impl.h>
145#include <sys/metaslab.h>
146#include <sys/zio.h>
428870ff 147#include <sys/dsl_scan.h>
a6255b7f 148#include <sys/abd.h>
34dc7c2f
BB
149#include <sys/fs/zfs.h>
150
151/*
152 * Basic routines to read and write from a vdev label.
153 * Used throughout the rest of this file.
154 */
155uint64_t
156vdev_label_offset(uint64_t psize, int l, uint64_t offset)
157{
158 ASSERT(offset < sizeof (vdev_label_t));
159 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
160
161 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
162 0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
163}
164
b128c09f
BB
165/*
166 * Returns back the vdev label associated with the passed in offset.
167 */
168int
169vdev_label_number(uint64_t psize, uint64_t offset)
170{
171 int l;
172
173 if (offset >= psize - VDEV_LABEL_END_SIZE) {
174 offset -= psize - VDEV_LABEL_END_SIZE;
175 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
176 }
177 l = offset / sizeof (vdev_label_t);
178 return (l < VDEV_LABELS ? l : -1);
179}
180
34dc7c2f 181static void
a6255b7f 182vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
e9aa730c 183 uint64_t size, zio_done_func_t *done, void *private, int flags)
34dc7c2f 184{
0091d66f
OF
185 ASSERT(
186 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
187 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
b128c09f 188 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
34dc7c2f
BB
189
190 zio_nowait(zio_read_phys(zio, vd,
191 vdev_label_offset(vd->vdev_psize, l, offset),
192 size, buf, ZIO_CHECKSUM_LABEL, done, private,
b128c09f 193 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
34dc7c2f
BB
194}
195
379ca9cf 196void
a6255b7f 197vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
e9aa730c 198 uint64_t size, zio_done_func_t *done, void *private, int flags)
34dc7c2f 199{
0091d66f
OF
200 ASSERT(
201 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
202 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
b128c09f 203 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
34dc7c2f
BB
204
205 zio_nowait(zio_write_phys(zio, vd,
206 vdev_label_offset(vd->vdev_psize, l, offset),
207 size, buf, ZIO_CHECKSUM_LABEL, done, private,
208 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
209}
210
193a37cb
TH
211/*
212 * Generate the nvlist representing this vdev's stats
213 */
214void
215vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv)
216{
217 nvlist_t *nvx;
218 vdev_stat_t *vs;
219 vdev_stat_ex_t *vsx;
220
221 vs = kmem_alloc(sizeof (*vs), KM_SLEEP);
222 vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP);
223
224 vdev_get_stats_ex(vd, vs, vsx);
225 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
226 (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t));
227
228 kmem_free(vs, sizeof (*vs));
229
230 /*
231 * Add extended stats into a special extended stats nvlist. This keeps
232 * all the extended stats nicely grouped together. The extended stats
233 * nvlist is then added to the main nvlist.
234 */
235 nvx = fnvlist_alloc();
236
237 /* ZIOs in flight to disk */
238 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE,
239 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]);
240
241 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE,
242 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]);
243
244 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE,
245 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]);
246
247 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE,
248 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]);
249
250 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE,
251 vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]);
252
253 /* ZIOs pending */
254 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE,
255 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]);
256
257 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE,
258 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]);
259
260 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE,
261 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]);
262
263 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE,
264 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]);
265
266 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE,
267 vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]);
268
269 /* Histograms */
270 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO,
271 vsx->vsx_total_histo[ZIO_TYPE_READ],
272 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ]));
273
274 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO,
275 vsx->vsx_total_histo[ZIO_TYPE_WRITE],
276 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE]));
277
278 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO,
279 vsx->vsx_disk_histo[ZIO_TYPE_READ],
280 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ]));
281
282 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO,
283 vsx->vsx_disk_histo[ZIO_TYPE_WRITE],
284 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE]));
285
286 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO,
287 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ],
288 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ]));
289
290 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO,
291 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE],
292 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE]));
293
294 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO,
295 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ],
296 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ]));
297
298 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO,
299 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE],
300 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE]));
301
302 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO,
303 vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB],
304 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB]));
305
7e945072
TH
306 /* Request sizes */
307 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO,
308 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ],
309 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ]));
310
311 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO,
312 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE],
313 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE]));
314
315 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO,
316 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ],
317 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ]));
318
319 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO,
320 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE],
321 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE]));
322
323 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO,
324 vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB],
325 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB]));
326
327 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO,
328 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ],
329 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ]));
330
331 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO,
332 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE],
333 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE]));
334
335 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO,
336 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ],
337 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ]));
338
339 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO,
340 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE],
341 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE]));
342
343 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO,
344 vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB],
345 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB]));
346
193a37cb
TH
347 /* Add extended stats nvlist to main nvlist */
348 fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx);
349
6a796725 350 fnvlist_free(nvx);
193a37cb
TH
351 kmem_free(vsx, sizeof (*vsx));
352}
353
34dc7c2f
BB
354/*
355 * Generate the nvlist representing this vdev's config.
356 */
357nvlist_t *
358vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
428870ff 359 vdev_config_flag_t flags)
34dc7c2f
BB
360{
361 nvlist_t *nv = NULL;
79c76d5b 362 nv = fnvlist_alloc();
34dc7c2f 363
5d1f7fb6 364 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
428870ff 365 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
5d1f7fb6
GW
366 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
367 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
34dc7c2f
BB
368
369 if (vd->vdev_path != NULL)
5d1f7fb6 370 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
34dc7c2f
BB
371
372 if (vd->vdev_devid != NULL)
5d1f7fb6 373 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
34dc7c2f
BB
374
375 if (vd->vdev_physpath != NULL)
5d1f7fb6
GW
376 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
377 vd->vdev_physpath);
34dc7c2f 378
1bbd8770
TH
379 if (vd->vdev_enc_sysfs_path != NULL)
380 fnvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
381 vd->vdev_enc_sysfs_path);
382
9babb374 383 if (vd->vdev_fru != NULL)
5d1f7fb6 384 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
9babb374 385
34dc7c2f
BB
386 if (vd->vdev_nparity != 0) {
387 ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
388 VDEV_TYPE_RAIDZ) == 0);
389
390 /*
391 * Make sure someone hasn't managed to sneak a fancy new vdev
392 * into a crufty old storage pool.
393 */
394 ASSERT(vd->vdev_nparity == 1 ||
45d1cae3
BB
395 (vd->vdev_nparity <= 2 &&
396 spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
397 (vd->vdev_nparity <= 3 &&
398 spa_version(spa) >= SPA_VERSION_RAIDZ3));
34dc7c2f
BB
399
400 /*
401 * Note that we'll add the nparity tag even on storage pools
402 * that only support a single parity device -- older software
403 * will just ignore it.
404 */
5d1f7fb6 405 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity);
34dc7c2f
BB
406 }
407
408 if (vd->vdev_wholedisk != -1ULL)
5d1f7fb6
GW
409 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
410 vd->vdev_wholedisk);
34dc7c2f
BB
411
412 if (vd->vdev_not_present)
5d1f7fb6 413 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
34dc7c2f
BB
414
415 if (vd->vdev_isspare)
5d1f7fb6 416 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
34dc7c2f 417
428870ff
BB
418 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
419 vd == vd->vdev_top) {
5d1f7fb6
GW
420 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
421 vd->vdev_ms_array);
422 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
423 vd->vdev_ms_shift);
424 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
425 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
426 vd->vdev_asize);
427 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
428870ff 428 if (vd->vdev_removing)
5d1f7fb6
GW
429 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
430 vd->vdev_removing);
34dc7c2f
BB
431 }
432
93cf2076 433 if (vd->vdev_dtl_sm != NULL) {
5d1f7fb6 434 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
93cf2076
GW
435 space_map_object(vd->vdev_dtl_sm));
436 }
34dc7c2f 437
428870ff 438 if (vd->vdev_crtxg)
5d1f7fb6 439 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
428870ff 440
e0ab3ab5
JS
441 if (flags & VDEV_CONFIG_MOS) {
442 if (vd->vdev_leaf_zap != 0) {
443 ASSERT(vd->vdev_ops->vdev_op_leaf);
444 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
445 vd->vdev_leaf_zap);
446 }
447
448 if (vd->vdev_top_zap != 0) {
449 ASSERT(vd == vd->vdev_top);
450 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
451 vd->vdev_top_zap);
452 }
453 }
454
34dc7c2f 455 if (getstats) {
428870ff
BB
456 pool_scan_stat_t ps;
457
193a37cb 458 vdev_config_generate_stats(vd, nv);
428870ff
BB
459
460 /* provide either current or previous scan information */
461 if (spa_scan_get_stats(spa, &ps) == 0) {
5d1f7fb6 462 fnvlist_add_uint64_array(nv,
428870ff 463 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
5d1f7fb6 464 sizeof (pool_scan_stat_t) / sizeof (uint64_t));
428870ff 465 }
34dc7c2f
BB
466 }
467
468 if (!vd->vdev_ops->vdev_op_leaf) {
469 nvlist_t **child;
428870ff
BB
470 int c, idx;
471
472 ASSERT(!vd->vdev_ishole);
34dc7c2f
BB
473
474 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
79c76d5b 475 KM_SLEEP);
34dc7c2f 476
428870ff
BB
477 for (c = 0, idx = 0; c < vd->vdev_children; c++) {
478 vdev_t *cvd = vd->vdev_child[c];
34dc7c2f 479
428870ff
BB
480 /*
481 * If we're generating an nvlist of removing
482 * vdevs then skip over any device which is
483 * not being removed.
484 */
485 if ((flags & VDEV_CONFIG_REMOVING) &&
486 !cvd->vdev_removing)
487 continue;
34dc7c2f 488
428870ff
BB
489 child[idx++] = vdev_config_generate(spa, cvd,
490 getstats, flags);
491 }
492
493 if (idx) {
5d1f7fb6
GW
494 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
495 child, idx);
428870ff
BB
496 }
497
498 for (c = 0; c < idx; c++)
34dc7c2f
BB
499 nvlist_free(child[c]);
500
501 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
502
503 } else {
428870ff
BB
504 const char *aux = NULL;
505
34dc7c2f 506 if (vd->vdev_offline && !vd->vdev_tmpoffline)
5d1f7fb6
GW
507 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
508 if (vd->vdev_resilver_txg != 0)
509 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
510 vd->vdev_resilver_txg);
34dc7c2f 511 if (vd->vdev_faulted)
5d1f7fb6 512 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
34dc7c2f 513 if (vd->vdev_degraded)
5d1f7fb6 514 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
34dc7c2f 515 if (vd->vdev_removed)
5d1f7fb6 516 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
34dc7c2f 517 if (vd->vdev_unspare)
5d1f7fb6 518 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
428870ff 519 if (vd->vdev_ishole)
5d1f7fb6 520 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
428870ff 521
4a283c7f 522 /* Set the reason why we're FAULTED/DEGRADED. */
428870ff
BB
523 switch (vd->vdev_stat.vs_aux) {
524 case VDEV_AUX_ERR_EXCEEDED:
525 aux = "err_exceeded";
526 break;
527
528 case VDEV_AUX_EXTERNAL:
529 aux = "external";
530 break;
531 }
532
4a283c7f 533 if (aux != NULL && !vd->vdev_tmpoffline) {
5d1f7fb6 534 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
4a283c7f
TH
535 } else {
536 /*
537 * We're healthy - clear any previous AUX_STATE values.
538 */
539 if (nvlist_exists(nv, ZPOOL_CONFIG_AUX_STATE))
540 nvlist_remove_all(nv, ZPOOL_CONFIG_AUX_STATE);
541 }
428870ff
BB
542
543 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
5d1f7fb6
GW
544 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
545 vd->vdev_orig_guid);
428870ff 546 }
34dc7c2f
BB
547 }
548
549 return (nv);
550}
551
428870ff
BB
552/*
553 * Generate a view of the top-level vdevs. If we currently have holes
554 * in the namespace, then generate an array which contains a list of holey
555 * vdevs. Additionally, add the number of top-level children that currently
556 * exist.
557 */
558void
559vdev_top_config_generate(spa_t *spa, nvlist_t *config)
560{
561 vdev_t *rvd = spa->spa_root_vdev;
562 uint64_t *array;
563 uint_t c, idx;
564
79c76d5b 565 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
428870ff
BB
566
567 for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
568 vdev_t *tvd = rvd->vdev_child[c];
569
570 if (tvd->vdev_ishole)
571 array[idx++] = c;
572 }
573
574 if (idx) {
575 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
576 array, idx) == 0);
577 }
578
579 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
580 rvd->vdev_children) == 0);
581
582 kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
583}
584
9ae529ec 585/*
3bc7e0fb
GW
586 * Returns the configuration from the label of the given vdev. For vdevs
587 * which don't have a txg value stored on their label (i.e. spares/cache)
588 * or have not been completely initialized (txg = 0) just return
589 * the configuration from the first valid label we find. Otherwise,
590 * find the most up-to-date label that does not exceed the specified
591 * 'txg' value.
9ae529ec 592 */
34dc7c2f 593nvlist_t *
3bc7e0fb 594vdev_label_read_config(vdev_t *vd, uint64_t txg)
34dc7c2f
BB
595{
596 spa_t *spa = vd->vdev_spa;
597 nvlist_t *config = NULL;
598 vdev_phys_t *vp;
a6255b7f 599 abd_t *vp_abd;
34dc7c2f 600 zio_t *zio;
3bc7e0fb
GW
601 uint64_t best_txg = 0;
602 int error = 0;
9babb374
BB
603 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
604 ZIO_FLAG_SPECULATIVE;
34dc7c2f 605
b128c09f 606 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
34dc7c2f
BB
607
608 if (!vdev_readable(vd))
609 return (NULL);
610
a6255b7f
DQ
611 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
612 vp = abd_to_buf(vp_abd);
34dc7c2f 613
9babb374 614retry:
1c27024e 615 for (int l = 0; l < VDEV_LABELS; l++) {
3bc7e0fb 616 nvlist_t *label = NULL;
34dc7c2f 617
b128c09f 618 zio = zio_root(spa, NULL, NULL, flags);
34dc7c2f 619
a6255b7f 620 vdev_label_read(zio, vd, l, vp_abd,
34dc7c2f 621 offsetof(vdev_label_t, vl_vdev_phys),
b128c09f 622 sizeof (vdev_phys_t), NULL, NULL, flags);
34dc7c2f
BB
623
624 if (zio_wait(zio) == 0 &&
625 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
3bc7e0fb
GW
626 &label, 0) == 0) {
627 uint64_t label_txg = 0;
628
629 /*
630 * Auxiliary vdevs won't have txg values in their
631 * labels and newly added vdevs may not have been
632 * completely initialized so just return the
633 * configuration from the first valid label we
634 * encounter.
635 */
636 error = nvlist_lookup_uint64(label,
637 ZPOOL_CONFIG_POOL_TXG, &label_txg);
638 if ((error || label_txg == 0) && !config) {
639 config = label;
640 break;
641 } else if (label_txg <= txg && label_txg > best_txg) {
642 best_txg = label_txg;
643 nvlist_free(config);
644 config = fnvlist_dup(label);
645 }
646 }
34dc7c2f 647
3bc7e0fb
GW
648 if (label != NULL) {
649 nvlist_free(label);
650 label = NULL;
34dc7c2f
BB
651 }
652 }
653
9babb374
BB
654 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
655 flags |= ZIO_FLAG_TRYHARD;
656 goto retry;
657 }
658
a6255b7f 659 abd_free(vp_abd);
34dc7c2f
BB
660
661 return (config);
662}
663
664/*
665 * Determine if a device is in use. The 'spare_guid' parameter will be filled
666 * in with the device guid if this spare is active elsewhere on the system.
667 */
668static boolean_t
669vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
670 uint64_t *spare_guid, uint64_t *l2cache_guid)
671{
672 spa_t *spa = vd->vdev_spa;
673 uint64_t state, pool_guid, device_guid, txg, spare_pool;
674 uint64_t vdtxg = 0;
675 nvlist_t *label;
676
677 if (spare_guid)
678 *spare_guid = 0ULL;
679 if (l2cache_guid)
680 *l2cache_guid = 0ULL;
681
682 /*
683 * Read the label, if any, and perform some basic sanity checks.
684 */
3bc7e0fb 685 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
34dc7c2f
BB
686 return (B_FALSE);
687
688 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
689 &vdtxg);
690
691 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
692 &state) != 0 ||
693 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
694 &device_guid) != 0) {
695 nvlist_free(label);
696 return (B_FALSE);
697 }
698
699 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
700 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
701 &pool_guid) != 0 ||
702 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
703 &txg) != 0)) {
704 nvlist_free(label);
705 return (B_FALSE);
706 }
707
708 nvlist_free(label);
709
710 /*
711 * Check to see if this device indeed belongs to the pool it claims to
712 * be a part of. The only way this is allowed is if the device is a hot
713 * spare (which we check for later on).
714 */
715 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
716 !spa_guid_exists(pool_guid, device_guid) &&
b128c09f 717 !spa_spare_exists(device_guid, NULL, NULL) &&
34dc7c2f
BB
718 !spa_l2cache_exists(device_guid, NULL))
719 return (B_FALSE);
720
721 /*
722 * If the transaction group is zero, then this an initialized (but
723 * unused) label. This is only an error if the create transaction
724 * on-disk is the same as the one we're using now, in which case the
725 * user has attempted to add the same vdev multiple times in the same
726 * transaction.
727 */
728 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
729 txg == 0 && vdtxg == crtxg)
730 return (B_TRUE);
731
732 /*
733 * Check to see if this is a spare device. We do an explicit check for
734 * spa_has_spare() here because it may be on our pending list of spares
735 * to add. We also check if it is an l2cache device.
736 */
b128c09f 737 if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
34dc7c2f
BB
738 spa_has_spare(spa, device_guid)) {
739 if (spare_guid)
740 *spare_guid = device_guid;
741
742 switch (reason) {
743 case VDEV_LABEL_CREATE:
744 case VDEV_LABEL_L2CACHE:
745 return (B_TRUE);
746
747 case VDEV_LABEL_REPLACE:
748 return (!spa_has_spare(spa, device_guid) ||
749 spare_pool != 0ULL);
750
751 case VDEV_LABEL_SPARE:
752 return (spa_has_spare(spa, device_guid));
e75c13c3
BB
753 default:
754 break;
34dc7c2f
BB
755 }
756 }
757
758 /*
759 * Check to see if this is an l2cache device.
760 */
761 if (spa_l2cache_exists(device_guid, NULL))
762 return (B_TRUE);
763
572e2857
BB
764 /*
765 * We can't rely on a pool's state if it's been imported
766 * read-only. Instead we look to see if the pools is marked
767 * read-only in the namespace and set the state to active.
768 */
485c581c
RY
769 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
770 (spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
572e2857
BB
771 spa_mode(spa) == FREAD)
772 state = POOL_STATE_ACTIVE;
773
34dc7c2f
BB
774 /*
775 * If the device is marked ACTIVE, then this device is in use by another
776 * pool on the system.
777 */
778 return (state == POOL_STATE_ACTIVE);
779}
780
781/*
782 * Initialize a vdev label. We check to make sure each leaf device is not in
783 * use, and writable. We put down an initial label which we will later
784 * overwrite with a complete label. Note that it's important to do this
785 * sequentially, not in parallel, so that we catch cases of multiple use of the
786 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
787 * itself.
788 */
789int
790vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
791{
792 spa_t *spa = vd->vdev_spa;
793 nvlist_t *label;
794 vdev_phys_t *vp;
a6255b7f
DQ
795 abd_t *vp_abd;
796 abd_t *pad2;
34dc7c2f 797 uberblock_t *ub;
a6255b7f 798 abd_t *ub_abd;
34dc7c2f 799 zio_t *zio;
34dc7c2f
BB
800 char *buf;
801 size_t buflen;
802 int error;
d4ed6673 803 uint64_t spare_guid = 0, l2cache_guid = 0;
b128c09f 804 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
34dc7c2f 805
b128c09f 806 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f 807
1c27024e 808 for (int c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
809 if ((error = vdev_label_init(vd->vdev_child[c],
810 crtxg, reason)) != 0)
811 return (error);
812
428870ff
BB
813 /* Track the creation time for this vdev */
814 vd->vdev_crtxg = crtxg;
815
dda12da9 816 if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
34dc7c2f
BB
817 return (0);
818
819 /*
820 * Dead vdevs cannot be initialized.
821 */
822 if (vdev_is_dead(vd))
2e528b49 823 return (SET_ERROR(EIO));
34dc7c2f
BB
824
825 /*
826 * Determine if the vdev is in use.
827 */
428870ff 828 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
34dc7c2f 829 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
2e528b49 830 return (SET_ERROR(EBUSY));
34dc7c2f 831
34dc7c2f
BB
832 /*
833 * If this is a request to add or replace a spare or l2cache device
834 * that is in use elsewhere on the system, then we must update the
835 * guid (which was initialized to a random value) to reflect the
836 * actual GUID (which is shared between multiple pools).
837 */
838 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
839 spare_guid != 0ULL) {
b128c09f 840 uint64_t guid_delta = spare_guid - vd->vdev_guid;
34dc7c2f 841
b128c09f 842 vd->vdev_guid += guid_delta;
34dc7c2f 843
1c27024e 844 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
b128c09f 845 pvd->vdev_guid_sum += guid_delta;
34dc7c2f
BB
846
847 /*
848 * If this is a replacement, then we want to fallthrough to the
849 * rest of the code. If we're adding a spare, then it's already
850 * labeled appropriately and we can just return.
851 */
852 if (reason == VDEV_LABEL_SPARE)
853 return (0);
428870ff
BB
854 ASSERT(reason == VDEV_LABEL_REPLACE ||
855 reason == VDEV_LABEL_SPLIT);
34dc7c2f
BB
856 }
857
858 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
859 l2cache_guid != 0ULL) {
b128c09f 860 uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
34dc7c2f 861
b128c09f 862 vd->vdev_guid += guid_delta;
34dc7c2f 863
1c27024e 864 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
b128c09f 865 pvd->vdev_guid_sum += guid_delta;
34dc7c2f
BB
866
867 /*
868 * If this is a replacement, then we want to fallthrough to the
869 * rest of the code. If we're adding an l2cache, then it's
870 * already labeled appropriately and we can just return.
871 */
872 if (reason == VDEV_LABEL_L2CACHE)
873 return (0);
874 ASSERT(reason == VDEV_LABEL_REPLACE);
875 }
876
877 /*
878 * Initialize its label.
879 */
a6255b7f
DQ
880 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
881 abd_zero(vp_abd, sizeof (vdev_phys_t));
882 vp = abd_to_buf(vp_abd);
34dc7c2f
BB
883
884 /*
885 * Generate a label describing the pool and our top-level vdev.
886 * We mark it as being from txg 0 to indicate that it's not
887 * really part of an active pool just yet. The labels will
888 * be written again with a meaningful txg by spa_sync().
889 */
890 if (reason == VDEV_LABEL_SPARE ||
891 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
892 /*
893 * For inactive hot spares, we generate a special label that
894 * identifies as a mutually shared hot spare. We write the
895 * label if we are adding a hot spare, or if we are removing an
896 * active hot spare (in which case we want to revert the
897 * labels).
898 */
79c76d5b 899 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
34dc7c2f
BB
900
901 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
902 spa_version(spa)) == 0);
903 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
904 POOL_STATE_SPARE) == 0);
905 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
906 vd->vdev_guid) == 0);
907 } else if (reason == VDEV_LABEL_L2CACHE ||
908 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
909 /*
910 * For level 2 ARC devices, add a special label.
911 */
79c76d5b 912 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
34dc7c2f
BB
913
914 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
915 spa_version(spa)) == 0);
916 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
917 POOL_STATE_L2CACHE) == 0);
918 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
919 vd->vdev_guid) == 0);
920 } else {
428870ff
BB
921 uint64_t txg = 0ULL;
922
923 if (reason == VDEV_LABEL_SPLIT)
924 txg = spa->spa_uberblock.ub_txg;
925 label = spa_config_generate(spa, vd, txg, B_FALSE);
34dc7c2f
BB
926
927 /*
928 * Add our creation time. This allows us to detect multiple
929 * vdev uses as described above, and automatically expires if we
930 * fail.
931 */
932 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
933 crtxg) == 0);
934 }
935
936 buf = vp->vp_nvlist;
937 buflen = sizeof (vp->vp_nvlist);
938
79c76d5b 939 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
34dc7c2f
BB
940 if (error != 0) {
941 nvlist_free(label);
a6255b7f 942 abd_free(vp_abd);
34dc7c2f 943 /* EFAULT means nvlist_pack ran out of room */
ecb2b7dc 944 return (SET_ERROR(error == EFAULT ? ENAMETOOLONG : EINVAL));
34dc7c2f
BB
945 }
946
34dc7c2f
BB
947 /*
948 * Initialize uberblock template.
949 */
a6255b7f
DQ
950 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE);
951 abd_zero(ub_abd, VDEV_UBERBLOCK_RING);
952 abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t));
953 ub = abd_to_buf(ub_abd);
34dc7c2f
BB
954 ub->ub_txg = 0;
955
9babb374 956 /* Initialize the 2nd padding area. */
a6255b7f
DQ
957 pad2 = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
958 abd_zero(pad2, VDEV_PAD_SIZE);
9babb374 959
34dc7c2f
BB
960 /*
961 * Write everything in parallel.
962 */
9babb374 963retry:
34dc7c2f
BB
964 zio = zio_root(spa, NULL, NULL, flags);
965
1c27024e 966 for (int l = 0; l < VDEV_LABELS; l++) {
34dc7c2f 967
a6255b7f 968 vdev_label_write(zio, vd, l, vp_abd,
34dc7c2f
BB
969 offsetof(vdev_label_t, vl_vdev_phys),
970 sizeof (vdev_phys_t), NULL, NULL, flags);
971
9babb374
BB
972 /*
973 * Skip the 1st padding area.
974 * Zero out the 2nd padding area where it might have
975 * left over data from previous filesystem format.
976 */
977 vdev_label_write(zio, vd, l, pad2,
978 offsetof(vdev_label_t, vl_pad2),
979 VDEV_PAD_SIZE, NULL, NULL, flags);
34dc7c2f 980
a6255b7f 981 vdev_label_write(zio, vd, l, ub_abd,
45d1cae3
BB
982 offsetof(vdev_label_t, vl_uberblock),
983 VDEV_UBERBLOCK_RING, NULL, NULL, flags);
34dc7c2f
BB
984 }
985
986 error = zio_wait(zio);
987
9babb374
BB
988 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
989 flags |= ZIO_FLAG_TRYHARD;
990 goto retry;
991 }
992
34dc7c2f 993 nvlist_free(label);
a6255b7f
DQ
994 abd_free(pad2);
995 abd_free(ub_abd);
996 abd_free(vp_abd);
34dc7c2f
BB
997
998 /*
999 * If this vdev hasn't been previously identified as a spare, then we
1000 * mark it as such only if a) we are labeling it as a spare, or b) it
1001 * exists as a spare elsewhere in the system. Do the same for
1002 * level 2 ARC devices.
1003 */
1004 if (error == 0 && !vd->vdev_isspare &&
1005 (reason == VDEV_LABEL_SPARE ||
b128c09f 1006 spa_spare_exists(vd->vdev_guid, NULL, NULL)))
34dc7c2f
BB
1007 spa_spare_add(vd);
1008
1009 if (error == 0 && !vd->vdev_isl2cache &&
1010 (reason == VDEV_LABEL_L2CACHE ||
1011 spa_l2cache_exists(vd->vdev_guid, NULL)))
1012 spa_l2cache_add(vd);
1013
1014 return (error);
1015}
1016
1017/*
1018 * ==========================================================================
1019 * uberblock load/sync
1020 * ==========================================================================
1021 */
1022
1023/*
1024 * Consider the following situation: txg is safely synced to disk. We've
1025 * written the first uberblock for txg + 1, and then we lose power. When we
1026 * come back up, we fail to see the uberblock for txg + 1 because, say,
1027 * it was on a mirrored device and the replica to which we wrote txg + 1
1028 * is now offline. If we then make some changes and sync txg + 1, and then
9ae529ec 1029 * the missing replica comes back, then for a few seconds we'll have two
34dc7c2f
BB
1030 * conflicting uberblocks on disk with the same txg. The solution is simple:
1031 * among uberblocks with equal txg, choose the one with the latest timestamp.
1032 */
1033static int
ee36c709 1034vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
34dc7c2f 1035{
ee36c709
GN
1036 int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg);
1037 if (likely(cmp))
1038 return (cmp);
34dc7c2f 1039
ee36c709 1040 return (AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp));
34dc7c2f
BB
1041}
1042
9ae529ec
CS
1043struct ubl_cbdata {
1044 uberblock_t *ubl_ubbest; /* Best uberblock */
1045 vdev_t *ubl_vd; /* vdev associated with the above */
9ae529ec
CS
1046};
1047
34dc7c2f
BB
1048static void
1049vdev_uberblock_load_done(zio_t *zio)
1050{
9ae529ec 1051 vdev_t *vd = zio->io_vd;
428870ff 1052 spa_t *spa = zio->io_spa;
b128c09f 1053 zio_t *rio = zio->io_private;
a6255b7f 1054 uberblock_t *ub = abd_to_buf(zio->io_abd);
9ae529ec 1055 struct ubl_cbdata *cbp = rio->io_private;
34dc7c2f 1056
9ae529ec 1057 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
34dc7c2f
BB
1058
1059 if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
b128c09f 1060 mutex_enter(&rio->io_lock);
428870ff 1061 if (ub->ub_txg <= spa->spa_load_max_txg &&
9ae529ec
CS
1062 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
1063 /*
3bc7e0fb
GW
1064 * Keep track of the vdev in which this uberblock
1065 * was found. We will use this information later
1066 * to obtain the config nvlist associated with
9ae529ec
CS
1067 * this uberblock.
1068 */
1069 *cbp->ubl_ubbest = *ub;
1070 cbp->ubl_vd = vd;
9ae529ec 1071 }
b128c09f 1072 mutex_exit(&rio->io_lock);
34dc7c2f
BB
1073 }
1074
a6255b7f 1075 abd_free(zio->io_abd);
34dc7c2f
BB
1076}
1077
9ae529ec
CS
1078static void
1079vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
1080 struct ubl_cbdata *cbp)
34dc7c2f 1081{
379ca9cf 1082 for (int c = 0; c < vd->vdev_children; c++)
9ae529ec 1083 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
34dc7c2f 1084
b128c09f 1085 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
379ca9cf
OF
1086 for (int l = 0; l < VDEV_LABELS; l++) {
1087 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
b128c09f 1088 vdev_label_read(zio, vd, l,
a6255b7f
DQ
1089 abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd),
1090 B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n),
b128c09f
BB
1091 VDEV_UBERBLOCK_SIZE(vd),
1092 vdev_uberblock_load_done, zio, flags);
1093 }
34dc7c2f
BB
1094 }
1095 }
9ae529ec
CS
1096}
1097
1098/*
1099 * Reads the 'best' uberblock from disk along with its associated
1100 * configuration. First, we read the uberblock array of each label of each
1101 * vdev, keeping track of the uberblock with the highest txg in each array.
3bc7e0fb 1102 * Then, we read the configuration from the same vdev as the best uberblock.
9ae529ec
CS
1103 */
1104void
1105vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
1106{
9ae529ec
CS
1107 zio_t *zio;
1108 spa_t *spa = rvd->vdev_spa;
1109 struct ubl_cbdata cb;
1110 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1111 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1112
1113 ASSERT(ub);
1114 ASSERT(config);
b128c09f 1115
9ae529ec
CS
1116 bzero(ub, sizeof (uberblock_t));
1117 *config = NULL;
1118
1119 cb.ubl_ubbest = ub;
1120 cb.ubl_vd = NULL;
1121
1122 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1123 zio = zio_root(spa, NULL, &cb, flags);
1124 vdev_uberblock_load_impl(zio, rvd, flags, &cb);
1125 (void) zio_wait(zio);
3bc7e0fb
GW
1126
1127 /*
1128 * It's possible that the best uberblock was discovered on a label
1129 * that has a configuration which was written in a future txg.
1130 * Search all labels on this vdev to find the configuration that
1131 * matches the txg for our uberblock.
1132 */
1133 if (cb.ubl_vd != NULL)
1134 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
9ae529ec 1135 spa_config_exit(spa, SCL_ALL, FTAG);
34dc7c2f
BB
1136}
1137
9d3f7b87
OF
1138/*
1139 * For use when a leaf vdev is expanded.
1140 * The location of labels 2 and 3 changed, and at the new location the
1141 * uberblock rings are either empty or contain garbage. The sync will write
1142 * new configs there because the vdev is dirty, but expansion also needs the
1143 * uberblock rings copied. Read them from label 0 which did not move.
1144 *
1145 * Since the point is to populate labels {2,3} with valid uberblocks,
1146 * we zero uberblocks we fail to read or which are not valid.
1147 */
1148
1149static void
1150vdev_copy_uberblocks(vdev_t *vd)
1151{
1152 abd_t *ub_abd;
1153 zio_t *write_zio;
1154 int locks = (SCL_L2ARC | SCL_ZIO);
1155 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1156 ZIO_FLAG_SPECULATIVE;
1157
1158 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_READER) ==
1159 SCL_STATE);
1160 ASSERT(vd->vdev_ops->vdev_op_leaf);
1161
1162 spa_config_enter(vd->vdev_spa, locks, FTAG, RW_READER);
1163
eea2e241 1164 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
9d3f7b87
OF
1165
1166 write_zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1167 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1168 const int src_label = 0;
1169 zio_t *zio;
1170
1171 zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1172 vdev_label_read(zio, vd, src_label, ub_abd,
1173 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1174 NULL, NULL, flags);
1175
1176 if (zio_wait(zio) || uberblock_verify(abd_to_buf(ub_abd)))
1177 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1178
1179 for (int l = 2; l < VDEV_LABELS; l++)
1180 vdev_label_write(write_zio, vd, l, ub_abd,
1181 VDEV_UBERBLOCK_OFFSET(vd, n),
1182 VDEV_UBERBLOCK_SIZE(vd), NULL, NULL,
1183 flags | ZIO_FLAG_DONT_PROPAGATE);
1184 }
1185 (void) zio_wait(write_zio);
1186
1187 spa_config_exit(vd->vdev_spa, locks, FTAG);
1188
1189 abd_free(ub_abd);
1190}
1191
34dc7c2f
BB
1192/*
1193 * On success, increment root zio's count of good writes.
1194 * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
1195 */
1196static void
1197vdev_uberblock_sync_done(zio_t *zio)
1198{
1199 uint64_t *good_writes = zio->io_private;
1200
1201 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
bc89ac84 1202 atomic_inc_64(good_writes);
34dc7c2f
BB
1203}
1204
1205/*
1206 * Write the uberblock to all labels of all leaves of the specified vdev.
1207 */
1208static void
b128c09f 1209vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
34dc7c2f 1210{
379ca9cf 1211 for (int c = 0; c < vd->vdev_children; c++)
b128c09f 1212 vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
34dc7c2f
BB
1213
1214 if (!vd->vdev_ops->vdev_op_leaf)
1215 return;
1216
b128c09f 1217 if (!vdev_writeable(vd))
34dc7c2f
BB
1218 return;
1219
9d3f7b87
OF
1220 /* If the vdev was expanded, need to copy uberblock rings. */
1221 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1222 vd->vdev_copy_uberblocks == B_TRUE) {
1223 vdev_copy_uberblocks(vd);
1224 vd->vdev_copy_uberblocks = B_FALSE;
1225 }
1226
379ca9cf
OF
1227 int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0;
1228 int n = ub->ub_txg % (VDEV_UBERBLOCK_COUNT(vd) - m);
34dc7c2f 1229
a6255b7f 1230 /* Copy the uberblock_t into the ABD */
379ca9cf 1231 abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
a6255b7f
DQ
1232 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1233 abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
34dc7c2f 1234
379ca9cf 1235 for (int l = 0; l < VDEV_LABELS; l++)
a6255b7f 1236 vdev_label_write(zio, vd, l, ub_abd,
b128c09f 1237 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
34dc7c2f 1238 vdev_uberblock_sync_done, zio->io_private,
b128c09f 1239 flags | ZIO_FLAG_DONT_PROPAGATE);
34dc7c2f 1240
a6255b7f 1241 abd_free(ub_abd);
34dc7c2f
BB
1242}
1243
e49f1e20 1244/* Sync the uberblocks to all vdevs in svd[] */
34dc7c2f
BB
1245int
1246vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1247{
1248 spa_t *spa = svd[0]->vdev_spa;
34dc7c2f
BB
1249 zio_t *zio;
1250 uint64_t good_writes = 0;
1251
1252 zio = zio_root(spa, NULL, &good_writes, flags);
1253
1c27024e 1254 for (int v = 0; v < svdcount; v++)
b128c09f 1255 vdev_uberblock_sync(zio, ub, svd[v], flags);
34dc7c2f
BB
1256
1257 (void) zio_wait(zio);
1258
1259 /*
1260 * Flush the uberblocks to disk. This ensures that the odd labels
1261 * are no longer needed (because the new uberblocks and the even
1262 * labels are safely on disk), so it is safe to overwrite them.
1263 */
1264 zio = zio_root(spa, NULL, NULL, flags);
1265
1c27024e 1266 for (int v = 0; v < svdcount; v++)
34dc7c2f
BB
1267 zio_flush(zio, svd[v]);
1268
1269 (void) zio_wait(zio);
1270
1271 return (good_writes >= 1 ? 0 : EIO);
1272}
1273
1274/*
1275 * On success, increment the count of good writes for our top-level vdev.
1276 */
1277static void
1278vdev_label_sync_done(zio_t *zio)
1279{
1280 uint64_t *good_writes = zio->io_private;
1281
1282 if (zio->io_error == 0)
bc89ac84 1283 atomic_inc_64(good_writes);
34dc7c2f
BB
1284}
1285
1286/*
1287 * If there weren't enough good writes, indicate failure to the parent.
1288 */
1289static void
1290vdev_label_sync_top_done(zio_t *zio)
1291{
1292 uint64_t *good_writes = zio->io_private;
1293
1294 if (*good_writes == 0)
2e528b49 1295 zio->io_error = SET_ERROR(EIO);
34dc7c2f
BB
1296
1297 kmem_free(good_writes, sizeof (uint64_t));
1298}
1299
b128c09f
BB
1300/*
1301 * We ignore errors for log and cache devices, simply free the private data.
1302 */
1303static void
1304vdev_label_sync_ignore_done(zio_t *zio)
1305{
1306 kmem_free(zio->io_private, sizeof (uint64_t));
1307}
1308
34dc7c2f
BB
1309/*
1310 * Write all even or odd labels to all leaves of the specified vdev.
1311 */
1312static void
b128c09f 1313vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
34dc7c2f
BB
1314{
1315 nvlist_t *label;
1316 vdev_phys_t *vp;
a6255b7f 1317 abd_t *vp_abd;
34dc7c2f
BB
1318 char *buf;
1319 size_t buflen;
34dc7c2f 1320
1c27024e 1321 for (int c = 0; c < vd->vdev_children; c++)
b128c09f 1322 vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
34dc7c2f
BB
1323
1324 if (!vd->vdev_ops->vdev_op_leaf)
1325 return;
1326
b128c09f 1327 if (!vdev_writeable(vd))
34dc7c2f
BB
1328 return;
1329
1330 /*
1331 * Generate a label describing the top-level config to which we belong.
1332 */
1333 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1334
a6255b7f
DQ
1335 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1336 abd_zero(vp_abd, sizeof (vdev_phys_t));
1337 vp = abd_to_buf(vp_abd);
34dc7c2f
BB
1338
1339 buf = vp->vp_nvlist;
1340 buflen = sizeof (vp->vp_nvlist);
1341
79c76d5b 1342 if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP)) {
34dc7c2f 1343 for (; l < VDEV_LABELS; l += 2) {
a6255b7f 1344 vdev_label_write(zio, vd, l, vp_abd,
34dc7c2f
BB
1345 offsetof(vdev_label_t, vl_vdev_phys),
1346 sizeof (vdev_phys_t),
1347 vdev_label_sync_done, zio->io_private,
b128c09f 1348 flags | ZIO_FLAG_DONT_PROPAGATE);
34dc7c2f
BB
1349 }
1350 }
1351
a6255b7f 1352 abd_free(vp_abd);
34dc7c2f
BB
1353 nvlist_free(label);
1354}
1355
1356int
b128c09f 1357vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
34dc7c2f 1358{
b128c09f 1359 list_t *dl = &spa->spa_config_dirty_list;
34dc7c2f
BB
1360 vdev_t *vd;
1361 zio_t *zio;
1362 int error;
1363
1364 /*
1365 * Write the new labels to disk.
1366 */
1367 zio = zio_root(spa, NULL, NULL, flags);
1368
1369 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
d6320ddb 1370 uint64_t *good_writes;
428870ff
BB
1371
1372 ASSERT(!vd->vdev_ishole);
1373
79c76d5b 1374 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
1c27024e 1375 zio_t *vio = zio_null(zio, spa, NULL,
b128c09f
BB
1376 (vd->vdev_islog || vd->vdev_aux != NULL) ?
1377 vdev_label_sync_ignore_done : vdev_label_sync_top_done,
34dc7c2f 1378 good_writes, flags);
b128c09f 1379 vdev_label_sync(vio, vd, l, txg, flags);
34dc7c2f
BB
1380 zio_nowait(vio);
1381 }
1382
1383 error = zio_wait(zio);
1384
1385 /*
1386 * Flush the new labels to disk.
1387 */
1388 zio = zio_root(spa, NULL, NULL, flags);
1389
1390 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1391 zio_flush(zio, vd);
1392
1393 (void) zio_wait(zio);
1394
1395 return (error);
1396}
1397
1398/*
1399 * Sync the uberblock and any changes to the vdev configuration.
1400 *
1401 * The order of operations is carefully crafted to ensure that
1402 * if the system panics or loses power at any time, the state on disk
1403 * is still transactionally consistent. The in-line comments below
1404 * describe the failure semantics at each stage.
1405 *
1406 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1407 * at any time, you can just call it again, and it will resume its work.
1408 */
1409int
b6fcb792 1410vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
34dc7c2f
BB
1411{
1412 spa_t *spa = svd[0]->vdev_spa;
1413 uberblock_t *ub = &spa->spa_uberblock;
1414 vdev_t *vd;
1415 zio_t *zio;
b6fcb792 1416 int error = 0;
b128c09f 1417 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
34dc7c2f 1418
b6fcb792 1419retry:
9babb374
BB
1420 /*
1421 * Normally, we don't want to try too hard to write every label and
1422 * uberblock. If there is a flaky disk, we don't want the rest of the
1423 * sync process to block while we retry. But if we can't write a
1424 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1425 * bailing out and declaring the pool faulted.
1426 */
b6fcb792
BB
1427 if (error != 0) {
1428 if ((flags & ZIO_FLAG_TRYHARD) != 0)
1429 return (error);
9babb374 1430 flags |= ZIO_FLAG_TRYHARD;
b6fcb792 1431 }
9babb374 1432
34dc7c2f
BB
1433 ASSERT(ub->ub_txg <= txg);
1434
1435 /*
1436 * If this isn't a resync due to I/O errors,
1437 * and nothing changed in this transaction group,
1438 * and the vdev configuration hasn't changed,
1439 * then there's nothing to do.
1440 */
379ca9cf
OF
1441 if (ub->ub_txg < txg) {
1442 boolean_t changed = uberblock_update(ub, spa->spa_root_vdev,
1443 txg, spa->spa_mmp.mmp_delay);
1444
1445 if (!changed && list_is_empty(&spa->spa_config_dirty_list))
1446 return (0);
1447 }
34dc7c2f
BB
1448
1449 if (txg > spa_freeze_txg(spa))
1450 return (0);
1451
1452 ASSERT(txg <= spa->spa_final_txg);
1453
1454 /*
1455 * Flush the write cache of every disk that's been written to
1456 * in this transaction group. This ensures that all blocks
1457 * written in this txg will be committed to stable storage
1458 * before any uberblock that references them.
1459 */
1460 zio = zio_root(spa, NULL, NULL, flags);
1461
1462 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
1463 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1464 zio_flush(zio, vd);
1465
1466 (void) zio_wait(zio);
1467
1468 /*
1469 * Sync out the even labels (L0, L2) for every dirty vdev. If the
1470 * system dies in the middle of this process, that's OK: all of the
1471 * even labels that made it to disk will be newer than any uberblock,
1472 * and will therefore be considered invalid. The odd labels (L1, L3),
1473 * which have not yet been touched, will still be valid. We flush
1474 * the new labels to disk to ensure that all even-label updates
1475 * are committed to stable storage before the uberblock update.
1476 */
b128c09f 1477 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
b6fcb792 1478 goto retry;
34dc7c2f
BB
1479
1480 /*
1481 * Sync the uberblocks to all vdevs in svd[].
1482 * If the system dies in the middle of this step, there are two cases
1483 * to consider, and the on-disk state is consistent either way:
1484 *
1485 * (1) If none of the new uberblocks made it to disk, then the
1486 * previous uberblock will be the newest, and the odd labels
1487 * (which had not yet been touched) will be valid with respect
1488 * to that uberblock.
1489 *
1490 * (2) If one or more new uberblocks made it to disk, then they
1491 * will be the newest, and the even labels (which had all
1492 * been successfully committed) will be valid with respect
1493 * to the new uberblocks.
1494 */
1495 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
b6fcb792 1496 goto retry;
34dc7c2f 1497
379ca9cf
OF
1498
1499 if (spa_multihost(spa))
1500 mmp_update_uberblock(spa, ub);
1501
34dc7c2f
BB
1502 /*
1503 * Sync out odd labels for every dirty vdev. If the system dies
1504 * in the middle of this process, the even labels and the new
1505 * uberblocks will suffice to open the pool. The next time
1506 * the pool is opened, the first thing we'll do -- before any
1507 * user data is modified -- is mark every vdev dirty so that
1508 * all labels will be brought up to date. We flush the new labels
1509 * to disk to ensure that all odd-label updates are committed to
1510 * stable storage before the next transaction group begins.
1511 */
b6fcb792
BB
1512 if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0)
1513 goto retry;
1514
1515 return (0);
34dc7c2f 1516}