]> git.proxmox.com Git - mirror_zfs-debian.git/blame - module/zfs/vdev_label.c
Revert "Temporarily disable the reguid test."
[mirror_zfs-debian.git] / module / zfs / vdev_label.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
9ae529ec 21
34dc7c2f 22/*
428870ff 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
9ae529ec 24 * Copyright (c) 2012 by Delphix. All rights reserved.
34dc7c2f
BB
25 */
26
34dc7c2f
BB
27/*
28 * Virtual Device Labels
29 * ---------------------
30 *
31 * The vdev label serves several distinct purposes:
32 *
33 * 1. Uniquely identify this device as part of a ZFS pool and confirm its
34 * identity within the pool.
35 *
36 * 2. Verify that all the devices given in a configuration are present
37 * within the pool.
38 *
39 * 3. Determine the uberblock for the pool.
40 *
41 * 4. In case of an import operation, determine the configuration of the
42 * toplevel vdev of which it is a part.
43 *
44 * 5. If an import operation cannot find all the devices in the pool,
45 * provide enough information to the administrator to determine which
46 * devices are missing.
47 *
48 * It is important to note that while the kernel is responsible for writing the
49 * label, it only consumes the information in the first three cases. The
50 * latter information is only consumed in userland when determining the
51 * configuration to import a pool.
52 *
53 *
54 * Label Organization
55 * ------------------
56 *
57 * Before describing the contents of the label, it's important to understand how
58 * the labels are written and updated with respect to the uberblock.
59 *
60 * When the pool configuration is altered, either because it was newly created
61 * or a device was added, we want to update all the labels such that we can deal
62 * with fatal failure at any point. To this end, each disk has two labels which
63 * are updated before and after the uberblock is synced. Assuming we have
64 * labels and an uberblock with the following transaction groups:
65 *
66 * L1 UB L2
67 * +------+ +------+ +------+
68 * | | | | | |
69 * | t10 | | t10 | | t10 |
70 * | | | | | |
71 * +------+ +------+ +------+
72 *
73 * In this stable state, the labels and the uberblock were all updated within
74 * the same transaction group (10). Each label is mirrored and checksummed, so
75 * that we can detect when we fail partway through writing the label.
76 *
77 * In order to identify which labels are valid, the labels are written in the
78 * following manner:
79 *
80 * 1. For each vdev, update 'L1' to the new label
81 * 2. Update the uberblock
82 * 3. For each vdev, update 'L2' to the new label
83 *
84 * Given arbitrary failure, we can determine the correct label to use based on
85 * the transaction group. If we fail after updating L1 but before updating the
86 * UB, we will notice that L1's transaction group is greater than the uberblock,
87 * so L2 must be valid. If we fail after writing the uberblock but before
88 * writing L2, we will notice that L2's transaction group is less than L1, and
89 * therefore L1 is valid.
90 *
91 * Another added complexity is that not every label is updated when the config
92 * is synced. If we add a single device, we do not want to have to re-write
93 * every label for every device in the pool. This means that both L1 and L2 may
94 * be older than the pool uberblock, because the necessary information is stored
95 * on another vdev.
96 *
97 *
98 * On-disk Format
99 * --------------
100 *
101 * The vdev label consists of two distinct parts, and is wrapped within the
102 * vdev_label_t structure. The label includes 8k of padding to permit legacy
103 * VTOC disk labels, but is otherwise ignored.
104 *
105 * The first half of the label is a packed nvlist which contains pool wide
106 * properties, per-vdev properties, and configuration information. It is
107 * described in more detail below.
108 *
109 * The latter half of the label consists of a redundant array of uberblocks.
110 * These uberblocks are updated whenever a transaction group is committed,
111 * or when the configuration is updated. When a pool is loaded, we scan each
112 * vdev for the 'best' uberblock.
113 *
114 *
115 * Configuration Information
116 * -------------------------
117 *
118 * The nvlist describing the pool and vdev contains the following elements:
119 *
120 * version ZFS on-disk version
121 * name Pool name
122 * state Pool state
123 * txg Transaction group in which this label was written
124 * pool_guid Unique identifier for this pool
125 * vdev_tree An nvlist describing vdev tree.
9ae529ec
CS
126 * features_for_read
127 * An nvlist of the features necessary for reading the MOS.
34dc7c2f
BB
128 *
129 * Each leaf device label also contains the following:
130 *
131 * top_guid Unique ID for top-level vdev in which this is contained
132 * guid Unique ID for the leaf vdev
133 *
134 * The 'vs' configuration follows the format described in 'spa_config.c'.
135 */
136
137#include <sys/zfs_context.h>
138#include <sys/spa.h>
139#include <sys/spa_impl.h>
140#include <sys/dmu.h>
141#include <sys/zap.h>
142#include <sys/vdev.h>
143#include <sys/vdev_impl.h>
144#include <sys/uberblock_impl.h>
145#include <sys/metaslab.h>
146#include <sys/zio.h>
428870ff 147#include <sys/dsl_scan.h>
34dc7c2f
BB
148#include <sys/fs/zfs.h>
149
150/*
151 * Basic routines to read and write from a vdev label.
152 * Used throughout the rest of this file.
153 */
154uint64_t
155vdev_label_offset(uint64_t psize, int l, uint64_t offset)
156{
157 ASSERT(offset < sizeof (vdev_label_t));
158 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
159
160 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
161 0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
162}
163
b128c09f
BB
164/*
165 * Returns back the vdev label associated with the passed in offset.
166 */
167int
168vdev_label_number(uint64_t psize, uint64_t offset)
169{
170 int l;
171
172 if (offset >= psize - VDEV_LABEL_END_SIZE) {
173 offset -= psize - VDEV_LABEL_END_SIZE;
174 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
175 }
176 l = offset / sizeof (vdev_label_t);
177 return (l < VDEV_LABELS ? l : -1);
178}
179
34dc7c2f
BB
180static void
181vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
b128c09f 182 uint64_t size, zio_done_func_t *done, void *private, int flags)
34dc7c2f 183{
b128c09f
BB
184 ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
185 SCL_STATE_ALL);
186 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
34dc7c2f
BB
187
188 zio_nowait(zio_read_phys(zio, vd,
189 vdev_label_offset(vd->vdev_psize, l, offset),
190 size, buf, ZIO_CHECKSUM_LABEL, done, private,
b128c09f 191 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
34dc7c2f
BB
192}
193
194static void
195vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
196 uint64_t size, zio_done_func_t *done, void *private, int flags)
197{
b128c09f
BB
198 ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
199 (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
200 (SCL_CONFIG | SCL_STATE) &&
201 dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
202 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
34dc7c2f
BB
203
204 zio_nowait(zio_write_phys(zio, vd,
205 vdev_label_offset(vd->vdev_psize, l, offset),
206 size, buf, ZIO_CHECKSUM_LABEL, done, private,
207 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
208}
209
210/*
211 * Generate the nvlist representing this vdev's config.
212 */
213nvlist_t *
214vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
428870ff 215 vdev_config_flag_t flags)
34dc7c2f
BB
216{
217 nvlist_t *nv = NULL;
218
b8d06fca 219 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
34dc7c2f
BB
220
221 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
222 vd->vdev_ops->vdev_op_type) == 0);
428870ff 223 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
34dc7c2f
BB
224 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id)
225 == 0);
226 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0);
227
228 if (vd->vdev_path != NULL)
229 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH,
230 vd->vdev_path) == 0);
231
232 if (vd->vdev_devid != NULL)
233 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID,
234 vd->vdev_devid) == 0);
235
236 if (vd->vdev_physpath != NULL)
237 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
238 vd->vdev_physpath) == 0);
239
9babb374
BB
240 if (vd->vdev_fru != NULL)
241 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_FRU,
242 vd->vdev_fru) == 0);
243
34dc7c2f
BB
244 if (vd->vdev_nparity != 0) {
245 ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
246 VDEV_TYPE_RAIDZ) == 0);
247
248 /*
249 * Make sure someone hasn't managed to sneak a fancy new vdev
250 * into a crufty old storage pool.
251 */
252 ASSERT(vd->vdev_nparity == 1 ||
45d1cae3
BB
253 (vd->vdev_nparity <= 2 &&
254 spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
255 (vd->vdev_nparity <= 3 &&
256 spa_version(spa) >= SPA_VERSION_RAIDZ3));
34dc7c2f
BB
257
258 /*
259 * Note that we'll add the nparity tag even on storage pools
260 * that only support a single parity device -- older software
261 * will just ignore it.
262 */
263 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY,
264 vd->vdev_nparity) == 0);
265 }
266
267 if (vd->vdev_wholedisk != -1ULL)
268 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
269 vd->vdev_wholedisk) == 0);
270
271 if (vd->vdev_not_present)
272 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0);
273
274 if (vd->vdev_isspare)
275 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0);
276
428870ff
BB
277 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
278 vd == vd->vdev_top) {
34dc7c2f
BB
279 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
280 vd->vdev_ms_array) == 0);
281 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
282 vd->vdev_ms_shift) == 0);
283 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT,
284 vd->vdev_ashift) == 0);
285 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
286 vd->vdev_asize) == 0);
287 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG,
288 vd->vdev_islog) == 0);
428870ff
BB
289 if (vd->vdev_removing)
290 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
291 vd->vdev_removing) == 0);
34dc7c2f
BB
292 }
293
fb5f0bc8 294 if (vd->vdev_dtl_smo.smo_object != 0)
34dc7c2f 295 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
fb5f0bc8 296 vd->vdev_dtl_smo.smo_object) == 0);
34dc7c2f 297
428870ff
BB
298 if (vd->vdev_crtxg)
299 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
300 vd->vdev_crtxg) == 0);
301
34dc7c2f
BB
302 if (getstats) {
303 vdev_stat_t vs;
428870ff
BB
304 pool_scan_stat_t ps;
305
34dc7c2f 306 vdev_get_stats(vd, &vs);
428870ff 307 VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
34dc7c2f 308 (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0);
428870ff
BB
309
310 /* provide either current or previous scan information */
311 if (spa_scan_get_stats(spa, &ps) == 0) {
312 VERIFY(nvlist_add_uint64_array(nv,
313 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
314 sizeof (pool_scan_stat_t) / sizeof (uint64_t))
315 == 0);
316 }
34dc7c2f
BB
317 }
318
319 if (!vd->vdev_ops->vdev_op_leaf) {
320 nvlist_t **child;
428870ff
BB
321 int c, idx;
322
323 ASSERT(!vd->vdev_ishole);
34dc7c2f
BB
324
325 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
b8d06fca 326 KM_PUSHPAGE);
34dc7c2f 327
428870ff
BB
328 for (c = 0, idx = 0; c < vd->vdev_children; c++) {
329 vdev_t *cvd = vd->vdev_child[c];
34dc7c2f 330
428870ff
BB
331 /*
332 * If we're generating an nvlist of removing
333 * vdevs then skip over any device which is
334 * not being removed.
335 */
336 if ((flags & VDEV_CONFIG_REMOVING) &&
337 !cvd->vdev_removing)
338 continue;
34dc7c2f 339
428870ff
BB
340 child[idx++] = vdev_config_generate(spa, cvd,
341 getstats, flags);
342 }
343
344 if (idx) {
345 VERIFY(nvlist_add_nvlist_array(nv,
346 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
347 }
348
349 for (c = 0; c < idx; c++)
34dc7c2f
BB
350 nvlist_free(child[c]);
351
352 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
353
354 } else {
428870ff
BB
355 const char *aux = NULL;
356
34dc7c2f
BB
357 if (vd->vdev_offline && !vd->vdev_tmpoffline)
358 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE,
359 B_TRUE) == 0);
572e2857
BB
360 if (vd->vdev_resilvering)
361 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVERING,
362 B_TRUE) == 0);
34dc7c2f
BB
363 if (vd->vdev_faulted)
364 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED,
365 B_TRUE) == 0);
366 if (vd->vdev_degraded)
367 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED,
368 B_TRUE) == 0);
369 if (vd->vdev_removed)
370 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED,
371 B_TRUE) == 0);
372 if (vd->vdev_unspare)
373 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE,
374 B_TRUE) == 0);
428870ff
BB
375 if (vd->vdev_ishole)
376 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE,
377 B_TRUE) == 0);
378
379 switch (vd->vdev_stat.vs_aux) {
380 case VDEV_AUX_ERR_EXCEEDED:
381 aux = "err_exceeded";
382 break;
383
384 case VDEV_AUX_EXTERNAL:
385 aux = "external";
386 break;
387 }
388
389 if (aux != NULL)
390 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE,
391 aux) == 0);
392
393 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
394 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
395 vd->vdev_orig_guid) == 0);
396 }
34dc7c2f
BB
397 }
398
399 return (nv);
400}
401
428870ff
BB
402/*
403 * Generate a view of the top-level vdevs. If we currently have holes
404 * in the namespace, then generate an array which contains a list of holey
405 * vdevs. Additionally, add the number of top-level children that currently
406 * exist.
407 */
408void
409vdev_top_config_generate(spa_t *spa, nvlist_t *config)
410{
411 vdev_t *rvd = spa->spa_root_vdev;
412 uint64_t *array;
413 uint_t c, idx;
414
b8d06fca 415 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_PUSHPAGE);
428870ff
BB
416
417 for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
418 vdev_t *tvd = rvd->vdev_child[c];
419
420 if (tvd->vdev_ishole)
421 array[idx++] = c;
422 }
423
424 if (idx) {
425 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
426 array, idx) == 0);
427 }
428
429 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
430 rvd->vdev_children) == 0);
431
432 kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
433}
434
9ae529ec
CS
435/*
436 * Returns the configuration from the label of the given vdev. If 'label' is
437 * VDEV_BEST_LABEL, each label of the vdev will be read until a valid
438 * configuration is found; otherwise, only the specified label will be read.
439 */
34dc7c2f 440nvlist_t *
9ae529ec 441vdev_label_read_config(vdev_t *vd, int label)
34dc7c2f
BB
442{
443 spa_t *spa = vd->vdev_spa;
444 nvlist_t *config = NULL;
445 vdev_phys_t *vp;
446 zio_t *zio;
9babb374
BB
447 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
448 ZIO_FLAG_SPECULATIVE;
d6320ddb 449 int l;
34dc7c2f 450
b128c09f 451 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
34dc7c2f
BB
452
453 if (!vdev_readable(vd))
454 return (NULL);
455
456 vp = zio_buf_alloc(sizeof (vdev_phys_t));
457
9babb374 458retry:
d6320ddb 459 for (l = 0; l < VDEV_LABELS; l++) {
9ae529ec
CS
460 if (label >= 0 && label < VDEV_LABELS && label != l)
461 continue;
34dc7c2f 462
b128c09f 463 zio = zio_root(spa, NULL, NULL, flags);
34dc7c2f
BB
464
465 vdev_label_read(zio, vd, l, vp,
466 offsetof(vdev_label_t, vl_vdev_phys),
b128c09f 467 sizeof (vdev_phys_t), NULL, NULL, flags);
34dc7c2f
BB
468
469 if (zio_wait(zio) == 0 &&
470 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
471 &config, 0) == 0)
472 break;
473
474 if (config != NULL) {
475 nvlist_free(config);
476 config = NULL;
477 }
478 }
479
9babb374
BB
480 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
481 flags |= ZIO_FLAG_TRYHARD;
482 goto retry;
483 }
484
34dc7c2f
BB
485 zio_buf_free(vp, sizeof (vdev_phys_t));
486
487 return (config);
488}
489
490/*
491 * Determine if a device is in use. The 'spare_guid' parameter will be filled
492 * in with the device guid if this spare is active elsewhere on the system.
493 */
494static boolean_t
495vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
496 uint64_t *spare_guid, uint64_t *l2cache_guid)
497{
498 spa_t *spa = vd->vdev_spa;
499 uint64_t state, pool_guid, device_guid, txg, spare_pool;
500 uint64_t vdtxg = 0;
501 nvlist_t *label;
502
503 if (spare_guid)
504 *spare_guid = 0ULL;
505 if (l2cache_guid)
506 *l2cache_guid = 0ULL;
507
508 /*
509 * Read the label, if any, and perform some basic sanity checks.
510 */
9ae529ec 511 if ((label = vdev_label_read_config(vd, VDEV_BEST_LABEL)) == NULL)
34dc7c2f
BB
512 return (B_FALSE);
513
514 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
515 &vdtxg);
516
517 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
518 &state) != 0 ||
519 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
520 &device_guid) != 0) {
521 nvlist_free(label);
522 return (B_FALSE);
523 }
524
525 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
526 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
527 &pool_guid) != 0 ||
528 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
529 &txg) != 0)) {
530 nvlist_free(label);
531 return (B_FALSE);
532 }
533
534 nvlist_free(label);
535
536 /*
537 * Check to see if this device indeed belongs to the pool it claims to
538 * be a part of. The only way this is allowed is if the device is a hot
539 * spare (which we check for later on).
540 */
541 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
542 !spa_guid_exists(pool_guid, device_guid) &&
b128c09f 543 !spa_spare_exists(device_guid, NULL, NULL) &&
34dc7c2f
BB
544 !spa_l2cache_exists(device_guid, NULL))
545 return (B_FALSE);
546
547 /*
548 * If the transaction group is zero, then this an initialized (but
549 * unused) label. This is only an error if the create transaction
550 * on-disk is the same as the one we're using now, in which case the
551 * user has attempted to add the same vdev multiple times in the same
552 * transaction.
553 */
554 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
555 txg == 0 && vdtxg == crtxg)
556 return (B_TRUE);
557
558 /*
559 * Check to see if this is a spare device. We do an explicit check for
560 * spa_has_spare() here because it may be on our pending list of spares
561 * to add. We also check if it is an l2cache device.
562 */
b128c09f 563 if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
34dc7c2f
BB
564 spa_has_spare(spa, device_guid)) {
565 if (spare_guid)
566 *spare_guid = device_guid;
567
568 switch (reason) {
569 case VDEV_LABEL_CREATE:
570 case VDEV_LABEL_L2CACHE:
571 return (B_TRUE);
572
573 case VDEV_LABEL_REPLACE:
574 return (!spa_has_spare(spa, device_guid) ||
575 spare_pool != 0ULL);
576
577 case VDEV_LABEL_SPARE:
578 return (spa_has_spare(spa, device_guid));
e75c13c3
BB
579 default:
580 break;
34dc7c2f
BB
581 }
582 }
583
584 /*
585 * Check to see if this is an l2cache device.
586 */
587 if (spa_l2cache_exists(device_guid, NULL))
588 return (B_TRUE);
589
572e2857
BB
590 /*
591 * We can't rely on a pool's state if it's been imported
592 * read-only. Instead we look to see if the pools is marked
593 * read-only in the namespace and set the state to active.
594 */
595 if ((spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
596 spa_mode(spa) == FREAD)
597 state = POOL_STATE_ACTIVE;
598
34dc7c2f
BB
599 /*
600 * If the device is marked ACTIVE, then this device is in use by another
601 * pool on the system.
602 */
603 return (state == POOL_STATE_ACTIVE);
604}
605
606/*
607 * Initialize a vdev label. We check to make sure each leaf device is not in
608 * use, and writable. We put down an initial label which we will later
609 * overwrite with a complete label. Note that it's important to do this
610 * sequentially, not in parallel, so that we catch cases of multiple use of the
611 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
612 * itself.
613 */
614int
615vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
616{
617 spa_t *spa = vd->vdev_spa;
618 nvlist_t *label;
619 vdev_phys_t *vp;
9babb374 620 char *pad2;
34dc7c2f
BB
621 uberblock_t *ub;
622 zio_t *zio;
34dc7c2f
BB
623 char *buf;
624 size_t buflen;
625 int error;
d4ed6673 626 uint64_t spare_guid = 0, l2cache_guid = 0;
b128c09f 627 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
d6320ddb
BB
628 int c, l;
629 vdev_t *pvd;
34dc7c2f 630
b128c09f 631 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f 632
d6320ddb 633 for (c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
634 if ((error = vdev_label_init(vd->vdev_child[c],
635 crtxg, reason)) != 0)
636 return (error);
637
428870ff
BB
638 /* Track the creation time for this vdev */
639 vd->vdev_crtxg = crtxg;
640
34dc7c2f
BB
641 if (!vd->vdev_ops->vdev_op_leaf)
642 return (0);
643
644 /*
645 * Dead vdevs cannot be initialized.
646 */
647 if (vdev_is_dead(vd))
648 return (EIO);
649
650 /*
651 * Determine if the vdev is in use.
652 */
428870ff 653 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
34dc7c2f
BB
654 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
655 return (EBUSY);
656
34dc7c2f
BB
657 /*
658 * If this is a request to add or replace a spare or l2cache device
659 * that is in use elsewhere on the system, then we must update the
660 * guid (which was initialized to a random value) to reflect the
661 * actual GUID (which is shared between multiple pools).
662 */
663 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
664 spare_guid != 0ULL) {
b128c09f 665 uint64_t guid_delta = spare_guid - vd->vdev_guid;
34dc7c2f 666
b128c09f 667 vd->vdev_guid += guid_delta;
34dc7c2f 668
d6320ddb 669 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
b128c09f 670 pvd->vdev_guid_sum += guid_delta;
34dc7c2f
BB
671
672 /*
673 * If this is a replacement, then we want to fallthrough to the
674 * rest of the code. If we're adding a spare, then it's already
675 * labeled appropriately and we can just return.
676 */
677 if (reason == VDEV_LABEL_SPARE)
678 return (0);
428870ff
BB
679 ASSERT(reason == VDEV_LABEL_REPLACE ||
680 reason == VDEV_LABEL_SPLIT);
34dc7c2f
BB
681 }
682
683 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
684 l2cache_guid != 0ULL) {
b128c09f 685 uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
34dc7c2f 686
b128c09f 687 vd->vdev_guid += guid_delta;
34dc7c2f 688
d6320ddb 689 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
b128c09f 690 pvd->vdev_guid_sum += guid_delta;
34dc7c2f
BB
691
692 /*
693 * If this is a replacement, then we want to fallthrough to the
694 * rest of the code. If we're adding an l2cache, then it's
695 * already labeled appropriately and we can just return.
696 */
697 if (reason == VDEV_LABEL_L2CACHE)
698 return (0);
699 ASSERT(reason == VDEV_LABEL_REPLACE);
700 }
701
702 /*
703 * Initialize its label.
704 */
705 vp = zio_buf_alloc(sizeof (vdev_phys_t));
706 bzero(vp, sizeof (vdev_phys_t));
707
708 /*
709 * Generate a label describing the pool and our top-level vdev.
710 * We mark it as being from txg 0 to indicate that it's not
711 * really part of an active pool just yet. The labels will
712 * be written again with a meaningful txg by spa_sync().
713 */
714 if (reason == VDEV_LABEL_SPARE ||
715 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
716 /*
717 * For inactive hot spares, we generate a special label that
718 * identifies as a mutually shared hot spare. We write the
719 * label if we are adding a hot spare, or if we are removing an
720 * active hot spare (in which case we want to revert the
721 * labels).
722 */
b8d06fca 723 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
34dc7c2f
BB
724
725 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
726 spa_version(spa)) == 0);
727 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
728 POOL_STATE_SPARE) == 0);
729 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
730 vd->vdev_guid) == 0);
731 } else if (reason == VDEV_LABEL_L2CACHE ||
732 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
733 /*
734 * For level 2 ARC devices, add a special label.
735 */
b8d06fca 736 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
34dc7c2f
BB
737
738 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
739 spa_version(spa)) == 0);
740 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
741 POOL_STATE_L2CACHE) == 0);
742 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
743 vd->vdev_guid) == 0);
744 } else {
428870ff
BB
745 uint64_t txg = 0ULL;
746
747 if (reason == VDEV_LABEL_SPLIT)
748 txg = spa->spa_uberblock.ub_txg;
749 label = spa_config_generate(spa, vd, txg, B_FALSE);
34dc7c2f
BB
750
751 /*
752 * Add our creation time. This allows us to detect multiple
753 * vdev uses as described above, and automatically expires if we
754 * fail.
755 */
756 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
757 crtxg) == 0);
758 }
759
760 buf = vp->vp_nvlist;
761 buflen = sizeof (vp->vp_nvlist);
762
b8d06fca 763 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_PUSHPAGE);
34dc7c2f
BB
764 if (error != 0) {
765 nvlist_free(label);
766 zio_buf_free(vp, sizeof (vdev_phys_t));
767 /* EFAULT means nvlist_pack ran out of room */
768 return (error == EFAULT ? ENAMETOOLONG : EINVAL);
769 }
770
34dc7c2f
BB
771 /*
772 * Initialize uberblock template.
773 */
45d1cae3
BB
774 ub = zio_buf_alloc(VDEV_UBERBLOCK_RING);
775 bzero(ub, VDEV_UBERBLOCK_RING);
34dc7c2f
BB
776 *ub = spa->spa_uberblock;
777 ub->ub_txg = 0;
778
9babb374
BB
779 /* Initialize the 2nd padding area. */
780 pad2 = zio_buf_alloc(VDEV_PAD_SIZE);
781 bzero(pad2, VDEV_PAD_SIZE);
782
34dc7c2f
BB
783 /*
784 * Write everything in parallel.
785 */
9babb374 786retry:
34dc7c2f
BB
787 zio = zio_root(spa, NULL, NULL, flags);
788
d6320ddb 789 for (l = 0; l < VDEV_LABELS; l++) {
34dc7c2f
BB
790
791 vdev_label_write(zio, vd, l, vp,
792 offsetof(vdev_label_t, vl_vdev_phys),
793 sizeof (vdev_phys_t), NULL, NULL, flags);
794
9babb374
BB
795 /*
796 * Skip the 1st padding area.
797 * Zero out the 2nd padding area where it might have
798 * left over data from previous filesystem format.
799 */
800 vdev_label_write(zio, vd, l, pad2,
801 offsetof(vdev_label_t, vl_pad2),
802 VDEV_PAD_SIZE, NULL, NULL, flags);
34dc7c2f 803
45d1cae3
BB
804 vdev_label_write(zio, vd, l, ub,
805 offsetof(vdev_label_t, vl_uberblock),
806 VDEV_UBERBLOCK_RING, NULL, NULL, flags);
34dc7c2f
BB
807 }
808
809 error = zio_wait(zio);
810
9babb374
BB
811 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
812 flags |= ZIO_FLAG_TRYHARD;
813 goto retry;
814 }
815
34dc7c2f 816 nvlist_free(label);
9babb374 817 zio_buf_free(pad2, VDEV_PAD_SIZE);
45d1cae3 818 zio_buf_free(ub, VDEV_UBERBLOCK_RING);
34dc7c2f
BB
819 zio_buf_free(vp, sizeof (vdev_phys_t));
820
821 /*
822 * If this vdev hasn't been previously identified as a spare, then we
823 * mark it as such only if a) we are labeling it as a spare, or b) it
824 * exists as a spare elsewhere in the system. Do the same for
825 * level 2 ARC devices.
826 */
827 if (error == 0 && !vd->vdev_isspare &&
828 (reason == VDEV_LABEL_SPARE ||
b128c09f 829 spa_spare_exists(vd->vdev_guid, NULL, NULL)))
34dc7c2f
BB
830 spa_spare_add(vd);
831
832 if (error == 0 && !vd->vdev_isl2cache &&
833 (reason == VDEV_LABEL_L2CACHE ||
834 spa_l2cache_exists(vd->vdev_guid, NULL)))
835 spa_l2cache_add(vd);
836
837 return (error);
838}
839
840/*
841 * ==========================================================================
842 * uberblock load/sync
843 * ==========================================================================
844 */
845
846/*
847 * Consider the following situation: txg is safely synced to disk. We've
848 * written the first uberblock for txg + 1, and then we lose power. When we
849 * come back up, we fail to see the uberblock for txg + 1 because, say,
850 * it was on a mirrored device and the replica to which we wrote txg + 1
851 * is now offline. If we then make some changes and sync txg + 1, and then
9ae529ec 852 * the missing replica comes back, then for a few seconds we'll have two
34dc7c2f
BB
853 * conflicting uberblocks on disk with the same txg. The solution is simple:
854 * among uberblocks with equal txg, choose the one with the latest timestamp.
855 */
856static int
857vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
858{
859 if (ub1->ub_txg < ub2->ub_txg)
860 return (-1);
861 if (ub1->ub_txg > ub2->ub_txg)
862 return (1);
863
864 if (ub1->ub_timestamp < ub2->ub_timestamp)
865 return (-1);
866 if (ub1->ub_timestamp > ub2->ub_timestamp)
867 return (1);
868
869 return (0);
870}
871
9ae529ec
CS
872struct ubl_cbdata {
873 uberblock_t *ubl_ubbest; /* Best uberblock */
874 vdev_t *ubl_vd; /* vdev associated with the above */
875 int ubl_label; /* Label associated with the above */
876};
877
34dc7c2f
BB
878static void
879vdev_uberblock_load_done(zio_t *zio)
880{
9ae529ec 881 vdev_t *vd = zio->io_vd;
428870ff 882 spa_t *spa = zio->io_spa;
b128c09f 883 zio_t *rio = zio->io_private;
34dc7c2f 884 uberblock_t *ub = zio->io_data;
9ae529ec 885 struct ubl_cbdata *cbp = rio->io_private;
34dc7c2f 886
9ae529ec 887 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
34dc7c2f
BB
888
889 if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
b128c09f 890 mutex_enter(&rio->io_lock);
428870ff 891 if (ub->ub_txg <= spa->spa_load_max_txg &&
9ae529ec
CS
892 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
893 /*
894 * Keep track of the vdev and label in which this
895 * uberblock was found. We will use this information
896 * later to obtain the config nvlist associated with
897 * this uberblock.
898 */
899 *cbp->ubl_ubbest = *ub;
900 cbp->ubl_vd = vd;
901 cbp->ubl_label = vdev_label_number(vd->vdev_psize,
902 zio->io_offset);
903 }
b128c09f 904 mutex_exit(&rio->io_lock);
34dc7c2f
BB
905 }
906
907 zio_buf_free(zio->io_data, zio->io_size);
908}
909
9ae529ec
CS
910static void
911vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
912 struct ubl_cbdata *cbp)
34dc7c2f 913{
d6320ddb 914 int c, l, n;
b128c09f 915
d6320ddb 916 for (c = 0; c < vd->vdev_children; c++)
9ae529ec 917 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
34dc7c2f 918
b128c09f 919 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
d6320ddb
BB
920 for (l = 0; l < VDEV_LABELS; l++) {
921 for (n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
b128c09f
BB
922 vdev_label_read(zio, vd, l,
923 zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
924 VDEV_UBERBLOCK_OFFSET(vd, n),
925 VDEV_UBERBLOCK_SIZE(vd),
926 vdev_uberblock_load_done, zio, flags);
927 }
34dc7c2f
BB
928 }
929 }
9ae529ec
CS
930}
931
932/*
933 * Reads the 'best' uberblock from disk along with its associated
934 * configuration. First, we read the uberblock array of each label of each
935 * vdev, keeping track of the uberblock with the highest txg in each array.
936 * Then, we read the configuration from the same label as the best uberblock.
937 */
938void
939vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
940{
941 int i;
942 zio_t *zio;
943 spa_t *spa = rvd->vdev_spa;
944 struct ubl_cbdata cb;
945 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
946 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
947
948 ASSERT(ub);
949 ASSERT(config);
b128c09f 950
9ae529ec
CS
951 bzero(ub, sizeof (uberblock_t));
952 *config = NULL;
953
954 cb.ubl_ubbest = ub;
955 cb.ubl_vd = NULL;
956
957 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
958 zio = zio_root(spa, NULL, &cb, flags);
959 vdev_uberblock_load_impl(zio, rvd, flags, &cb);
960 (void) zio_wait(zio);
961 if (cb.ubl_vd != NULL) {
962 for (i = cb.ubl_label % 2; i < VDEV_LABELS; i += 2) {
963 *config = vdev_label_read_config(cb.ubl_vd, i);
964 if (*config != NULL)
965 break;
966 }
b128c09f 967 }
9ae529ec 968 spa_config_exit(spa, SCL_ALL, FTAG);
34dc7c2f
BB
969}
970
971/*
972 * On success, increment root zio's count of good writes.
973 * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
974 */
975static void
976vdev_uberblock_sync_done(zio_t *zio)
977{
978 uint64_t *good_writes = zio->io_private;
979
980 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
981 atomic_add_64(good_writes, 1);
982}
983
984/*
985 * Write the uberblock to all labels of all leaves of the specified vdev.
986 */
987static void
b128c09f 988vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
34dc7c2f 989{
34dc7c2f 990 uberblock_t *ubbuf;
d6320ddb 991 int c, l, n;
34dc7c2f 992
d6320ddb 993 for (c = 0; c < vd->vdev_children; c++)
b128c09f 994 vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
34dc7c2f
BB
995
996 if (!vd->vdev_ops->vdev_op_leaf)
997 return;
998
b128c09f 999 if (!vdev_writeable(vd))
34dc7c2f
BB
1000 return;
1001
1002 n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
1003
1004 ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
1005 bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
1006 *ubbuf = *ub;
1007
d6320ddb 1008 for (l = 0; l < VDEV_LABELS; l++)
34dc7c2f 1009 vdev_label_write(zio, vd, l, ubbuf,
b128c09f 1010 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
34dc7c2f 1011 vdev_uberblock_sync_done, zio->io_private,
b128c09f 1012 flags | ZIO_FLAG_DONT_PROPAGATE);
34dc7c2f
BB
1013
1014 zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
1015}
1016
1017int
1018vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1019{
1020 spa_t *spa = svd[0]->vdev_spa;
34dc7c2f
BB
1021 zio_t *zio;
1022 uint64_t good_writes = 0;
d6320ddb 1023 int v;
34dc7c2f
BB
1024
1025 zio = zio_root(spa, NULL, &good_writes, flags);
1026
d6320ddb 1027 for (v = 0; v < svdcount; v++)
b128c09f 1028 vdev_uberblock_sync(zio, ub, svd[v], flags);
34dc7c2f
BB
1029
1030 (void) zio_wait(zio);
1031
1032 /*
1033 * Flush the uberblocks to disk. This ensures that the odd labels
1034 * are no longer needed (because the new uberblocks and the even
1035 * labels are safely on disk), so it is safe to overwrite them.
1036 */
1037 zio = zio_root(spa, NULL, NULL, flags);
1038
d6320ddb 1039 for (v = 0; v < svdcount; v++)
34dc7c2f
BB
1040 zio_flush(zio, svd[v]);
1041
1042 (void) zio_wait(zio);
1043
1044 return (good_writes >= 1 ? 0 : EIO);
1045}
1046
1047/*
1048 * On success, increment the count of good writes for our top-level vdev.
1049 */
1050static void
1051vdev_label_sync_done(zio_t *zio)
1052{
1053 uint64_t *good_writes = zio->io_private;
1054
1055 if (zio->io_error == 0)
1056 atomic_add_64(good_writes, 1);
1057}
1058
1059/*
1060 * If there weren't enough good writes, indicate failure to the parent.
1061 */
1062static void
1063vdev_label_sync_top_done(zio_t *zio)
1064{
1065 uint64_t *good_writes = zio->io_private;
1066
1067 if (*good_writes == 0)
1068 zio->io_error = EIO;
1069
1070 kmem_free(good_writes, sizeof (uint64_t));
1071}
1072
b128c09f
BB
1073/*
1074 * We ignore errors for log and cache devices, simply free the private data.
1075 */
1076static void
1077vdev_label_sync_ignore_done(zio_t *zio)
1078{
1079 kmem_free(zio->io_private, sizeof (uint64_t));
1080}
1081
34dc7c2f
BB
1082/*
1083 * Write all even or odd labels to all leaves of the specified vdev.
1084 */
1085static void
b128c09f 1086vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
34dc7c2f
BB
1087{
1088 nvlist_t *label;
1089 vdev_phys_t *vp;
1090 char *buf;
1091 size_t buflen;
d6320ddb 1092 int c;
34dc7c2f 1093
d6320ddb 1094 for (c = 0; c < vd->vdev_children; c++)
b128c09f 1095 vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
34dc7c2f
BB
1096
1097 if (!vd->vdev_ops->vdev_op_leaf)
1098 return;
1099
b128c09f 1100 if (!vdev_writeable(vd))
34dc7c2f
BB
1101 return;
1102
1103 /*
1104 * Generate a label describing the top-level config to which we belong.
1105 */
1106 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1107
1108 vp = zio_buf_alloc(sizeof (vdev_phys_t));
1109 bzero(vp, sizeof (vdev_phys_t));
1110
1111 buf = vp->vp_nvlist;
1112 buflen = sizeof (vp->vp_nvlist);
1113
b8d06fca 1114 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_PUSHPAGE) == 0) {
34dc7c2f
BB
1115 for (; l < VDEV_LABELS; l += 2) {
1116 vdev_label_write(zio, vd, l, vp,
1117 offsetof(vdev_label_t, vl_vdev_phys),
1118 sizeof (vdev_phys_t),
1119 vdev_label_sync_done, zio->io_private,
b128c09f 1120 flags | ZIO_FLAG_DONT_PROPAGATE);
34dc7c2f
BB
1121 }
1122 }
1123
1124 zio_buf_free(vp, sizeof (vdev_phys_t));
1125 nvlist_free(label);
1126}
1127
1128int
b128c09f 1129vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
34dc7c2f 1130{
b128c09f 1131 list_t *dl = &spa->spa_config_dirty_list;
34dc7c2f
BB
1132 vdev_t *vd;
1133 zio_t *zio;
1134 int error;
1135
1136 /*
1137 * Write the new labels to disk.
1138 */
1139 zio = zio_root(spa, NULL, NULL, flags);
1140
1141 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
d6320ddb
BB
1142 uint64_t *good_writes;
1143 zio_t *vio;
428870ff
BB
1144
1145 ASSERT(!vd->vdev_ishole);
1146
b8d06fca 1147 good_writes = kmem_zalloc(sizeof (uint64_t), KM_PUSHPAGE);
d6320ddb 1148 vio = zio_null(zio, spa, NULL,
b128c09f
BB
1149 (vd->vdev_islog || vd->vdev_aux != NULL) ?
1150 vdev_label_sync_ignore_done : vdev_label_sync_top_done,
34dc7c2f 1151 good_writes, flags);
b128c09f 1152 vdev_label_sync(vio, vd, l, txg, flags);
34dc7c2f
BB
1153 zio_nowait(vio);
1154 }
1155
1156 error = zio_wait(zio);
1157
1158 /*
1159 * Flush the new labels to disk.
1160 */
1161 zio = zio_root(spa, NULL, NULL, flags);
1162
1163 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1164 zio_flush(zio, vd);
1165
1166 (void) zio_wait(zio);
1167
1168 return (error);
1169}
1170
1171/*
1172 * Sync the uberblock and any changes to the vdev configuration.
1173 *
1174 * The order of operations is carefully crafted to ensure that
1175 * if the system panics or loses power at any time, the state on disk
1176 * is still transactionally consistent. The in-line comments below
1177 * describe the failure semantics at each stage.
1178 *
1179 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1180 * at any time, you can just call it again, and it will resume its work.
1181 */
1182int
9babb374 1183vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard)
34dc7c2f
BB
1184{
1185 spa_t *spa = svd[0]->vdev_spa;
1186 uberblock_t *ub = &spa->spa_uberblock;
1187 vdev_t *vd;
1188 zio_t *zio;
1189 int error;
b128c09f 1190 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
34dc7c2f 1191
9babb374
BB
1192 /*
1193 * Normally, we don't want to try too hard to write every label and
1194 * uberblock. If there is a flaky disk, we don't want the rest of the
1195 * sync process to block while we retry. But if we can't write a
1196 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1197 * bailing out and declaring the pool faulted.
1198 */
1199 if (tryhard)
1200 flags |= ZIO_FLAG_TRYHARD;
1201
34dc7c2f
BB
1202 ASSERT(ub->ub_txg <= txg);
1203
1204 /*
1205 * If this isn't a resync due to I/O errors,
1206 * and nothing changed in this transaction group,
1207 * and the vdev configuration hasn't changed,
1208 * then there's nothing to do.
1209 */
1210 if (ub->ub_txg < txg &&
1211 uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
b128c09f 1212 list_is_empty(&spa->spa_config_dirty_list))
34dc7c2f
BB
1213 return (0);
1214
1215 if (txg > spa_freeze_txg(spa))
1216 return (0);
1217
1218 ASSERT(txg <= spa->spa_final_txg);
1219
1220 /*
1221 * Flush the write cache of every disk that's been written to
1222 * in this transaction group. This ensures that all blocks
1223 * written in this txg will be committed to stable storage
1224 * before any uberblock that references them.
1225 */
1226 zio = zio_root(spa, NULL, NULL, flags);
1227
1228 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
1229 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1230 zio_flush(zio, vd);
1231
1232 (void) zio_wait(zio);
1233
1234 /*
1235 * Sync out the even labels (L0, L2) for every dirty vdev. If the
1236 * system dies in the middle of this process, that's OK: all of the
1237 * even labels that made it to disk will be newer than any uberblock,
1238 * and will therefore be considered invalid. The odd labels (L1, L3),
1239 * which have not yet been touched, will still be valid. We flush
1240 * the new labels to disk to ensure that all even-label updates
1241 * are committed to stable storage before the uberblock update.
1242 */
b128c09f 1243 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
34dc7c2f
BB
1244 return (error);
1245
1246 /*
1247 * Sync the uberblocks to all vdevs in svd[].
1248 * If the system dies in the middle of this step, there are two cases
1249 * to consider, and the on-disk state is consistent either way:
1250 *
1251 * (1) If none of the new uberblocks made it to disk, then the
1252 * previous uberblock will be the newest, and the odd labels
1253 * (which had not yet been touched) will be valid with respect
1254 * to that uberblock.
1255 *
1256 * (2) If one or more new uberblocks made it to disk, then they
1257 * will be the newest, and the even labels (which had all
1258 * been successfully committed) will be valid with respect
1259 * to the new uberblocks.
1260 */
1261 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
1262 return (error);
1263
1264 /*
1265 * Sync out odd labels for every dirty vdev. If the system dies
1266 * in the middle of this process, the even labels and the new
1267 * uberblocks will suffice to open the pool. The next time
1268 * the pool is opened, the first thing we'll do -- before any
1269 * user data is modified -- is mark every vdev dirty so that
1270 * all labels will be brought up to date. We flush the new labels
1271 * to disk to ensure that all odd-label updates are committed to
1272 * stable storage before the next transaction group begins.
1273 */
b128c09f 1274 return (vdev_label_sync_list(spa, 1, txg, flags));
34dc7c2f 1275}