]>
Commit | Line | Data |
---|---|---|
34dc7c2f BB |
1 | /* |
2 | * CDDL HEADER START | |
3 | * | |
4 | * The contents of this file are subject to the terms of the | |
5 | * Common Development and Distribution License (the "License"). | |
6 | * You may not use this file except in compliance with the License. | |
7 | * | |
8 | * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE | |
9 | * or http://www.opensolaris.org/os/licensing. | |
10 | * See the License for the specific language governing permissions | |
11 | * and limitations under the License. | |
12 | * | |
13 | * When distributing Covered Code, include this CDDL HEADER in each | |
14 | * file and include the License file at usr/src/OPENSOLARIS.LICENSE. | |
15 | * If applicable, add the following below this CDDL HEADER, with the | |
16 | * fields enclosed by brackets "[]" replaced with your own identifying | |
17 | * information: Portions Copyright [yyyy] [name of copyright owner] | |
18 | * | |
19 | * CDDL HEADER END | |
20 | */ | |
9ae529ec | 21 | |
34dc7c2f | 22 | /* |
428870ff | 23 | * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. |
9ae529ec | 24 | * Copyright (c) 2012 by Delphix. All rights reserved. |
34dc7c2f BB |
25 | */ |
26 | ||
34dc7c2f BB |
27 | /* |
28 | * Virtual Device Labels | |
29 | * --------------------- | |
30 | * | |
31 | * The vdev label serves several distinct purposes: | |
32 | * | |
33 | * 1. Uniquely identify this device as part of a ZFS pool and confirm its | |
34 | * identity within the pool. | |
35 | * | |
36 | * 2. Verify that all the devices given in a configuration are present | |
37 | * within the pool. | |
38 | * | |
39 | * 3. Determine the uberblock for the pool. | |
40 | * | |
41 | * 4. In case of an import operation, determine the configuration of the | |
42 | * toplevel vdev of which it is a part. | |
43 | * | |
44 | * 5. If an import operation cannot find all the devices in the pool, | |
45 | * provide enough information to the administrator to determine which | |
46 | * devices are missing. | |
47 | * | |
48 | * It is important to note that while the kernel is responsible for writing the | |
49 | * label, it only consumes the information in the first three cases. The | |
50 | * latter information is only consumed in userland when determining the | |
51 | * configuration to import a pool. | |
52 | * | |
53 | * | |
54 | * Label Organization | |
55 | * ------------------ | |
56 | * | |
57 | * Before describing the contents of the label, it's important to understand how | |
58 | * the labels are written and updated with respect to the uberblock. | |
59 | * | |
60 | * When the pool configuration is altered, either because it was newly created | |
61 | * or a device was added, we want to update all the labels such that we can deal | |
62 | * with fatal failure at any point. To this end, each disk has two labels which | |
63 | * are updated before and after the uberblock is synced. Assuming we have | |
64 | * labels and an uberblock with the following transaction groups: | |
65 | * | |
66 | * L1 UB L2 | |
67 | * +------+ +------+ +------+ | |
68 | * | | | | | | | |
69 | * | t10 | | t10 | | t10 | | |
70 | * | | | | | | | |
71 | * +------+ +------+ +------+ | |
72 | * | |
73 | * In this stable state, the labels and the uberblock were all updated within | |
74 | * the same transaction group (10). Each label is mirrored and checksummed, so | |
75 | * that we can detect when we fail partway through writing the label. | |
76 | * | |
77 | * In order to identify which labels are valid, the labels are written in the | |
78 | * following manner: | |
79 | * | |
80 | * 1. For each vdev, update 'L1' to the new label | |
81 | * 2. Update the uberblock | |
82 | * 3. For each vdev, update 'L2' to the new label | |
83 | * | |
84 | * Given arbitrary failure, we can determine the correct label to use based on | |
85 | * the transaction group. If we fail after updating L1 but before updating the | |
86 | * UB, we will notice that L1's transaction group is greater than the uberblock, | |
87 | * so L2 must be valid. If we fail after writing the uberblock but before | |
88 | * writing L2, we will notice that L2's transaction group is less than L1, and | |
89 | * therefore L1 is valid. | |
90 | * | |
91 | * Another added complexity is that not every label is updated when the config | |
92 | * is synced. If we add a single device, we do not want to have to re-write | |
93 | * every label for every device in the pool. This means that both L1 and L2 may | |
94 | * be older than the pool uberblock, because the necessary information is stored | |
95 | * on another vdev. | |
96 | * | |
97 | * | |
98 | * On-disk Format | |
99 | * -------------- | |
100 | * | |
101 | * The vdev label consists of two distinct parts, and is wrapped within the | |
102 | * vdev_label_t structure. The label includes 8k of padding to permit legacy | |
103 | * VTOC disk labels, but is otherwise ignored. | |
104 | * | |
105 | * The first half of the label is a packed nvlist which contains pool wide | |
106 | * properties, per-vdev properties, and configuration information. It is | |
107 | * described in more detail below. | |
108 | * | |
109 | * The latter half of the label consists of a redundant array of uberblocks. | |
110 | * These uberblocks are updated whenever a transaction group is committed, | |
111 | * or when the configuration is updated. When a pool is loaded, we scan each | |
112 | * vdev for the 'best' uberblock. | |
113 | * | |
114 | * | |
115 | * Configuration Information | |
116 | * ------------------------- | |
117 | * | |
118 | * The nvlist describing the pool and vdev contains the following elements: | |
119 | * | |
120 | * version ZFS on-disk version | |
121 | * name Pool name | |
122 | * state Pool state | |
123 | * txg Transaction group in which this label was written | |
124 | * pool_guid Unique identifier for this pool | |
125 | * vdev_tree An nvlist describing vdev tree. | |
9ae529ec CS |
126 | * features_for_read |
127 | * An nvlist of the features necessary for reading the MOS. | |
34dc7c2f BB |
128 | * |
129 | * Each leaf device label also contains the following: | |
130 | * | |
131 | * top_guid Unique ID for top-level vdev in which this is contained | |
132 | * guid Unique ID for the leaf vdev | |
133 | * | |
134 | * The 'vs' configuration follows the format described in 'spa_config.c'. | |
135 | */ | |
136 | ||
137 | #include <sys/zfs_context.h> | |
138 | #include <sys/spa.h> | |
139 | #include <sys/spa_impl.h> | |
140 | #include <sys/dmu.h> | |
141 | #include <sys/zap.h> | |
142 | #include <sys/vdev.h> | |
143 | #include <sys/vdev_impl.h> | |
144 | #include <sys/uberblock_impl.h> | |
145 | #include <sys/metaslab.h> | |
146 | #include <sys/zio.h> | |
428870ff | 147 | #include <sys/dsl_scan.h> |
34dc7c2f BB |
148 | #include <sys/fs/zfs.h> |
149 | ||
150 | /* | |
151 | * Basic routines to read and write from a vdev label. | |
152 | * Used throughout the rest of this file. | |
153 | */ | |
154 | uint64_t | |
155 | vdev_label_offset(uint64_t psize, int l, uint64_t offset) | |
156 | { | |
157 | ASSERT(offset < sizeof (vdev_label_t)); | |
158 | ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); | |
159 | ||
160 | return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? | |
161 | 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); | |
162 | } | |
163 | ||
b128c09f BB |
164 | /* |
165 | * Returns back the vdev label associated with the passed in offset. | |
166 | */ | |
167 | int | |
168 | vdev_label_number(uint64_t psize, uint64_t offset) | |
169 | { | |
170 | int l; | |
171 | ||
172 | if (offset >= psize - VDEV_LABEL_END_SIZE) { | |
173 | offset -= psize - VDEV_LABEL_END_SIZE; | |
174 | offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); | |
175 | } | |
176 | l = offset / sizeof (vdev_label_t); | |
177 | return (l < VDEV_LABELS ? l : -1); | |
178 | } | |
179 | ||
34dc7c2f BB |
180 | static void |
181 | vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, | |
b128c09f | 182 | uint64_t size, zio_done_func_t *done, void *private, int flags) |
34dc7c2f | 183 | { |
b128c09f BB |
184 | ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) == |
185 | SCL_STATE_ALL); | |
186 | ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); | |
34dc7c2f BB |
187 | |
188 | zio_nowait(zio_read_phys(zio, vd, | |
189 | vdev_label_offset(vd->vdev_psize, l, offset), | |
190 | size, buf, ZIO_CHECKSUM_LABEL, done, private, | |
b128c09f | 191 | ZIO_PRIORITY_SYNC_READ, flags, B_TRUE)); |
34dc7c2f BB |
192 | } |
193 | ||
194 | static void | |
195 | vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, | |
196 | uint64_t size, zio_done_func_t *done, void *private, int flags) | |
197 | { | |
b128c09f BB |
198 | ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL || |
199 | (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) == | |
200 | (SCL_CONFIG | SCL_STATE) && | |
201 | dsl_pool_sync_context(spa_get_dsl(zio->io_spa)))); | |
202 | ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); | |
34dc7c2f BB |
203 | |
204 | zio_nowait(zio_write_phys(zio, vd, | |
205 | vdev_label_offset(vd->vdev_psize, l, offset), | |
206 | size, buf, ZIO_CHECKSUM_LABEL, done, private, | |
207 | ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); | |
208 | } | |
209 | ||
210 | /* | |
211 | * Generate the nvlist representing this vdev's config. | |
212 | */ | |
213 | nvlist_t * | |
214 | vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, | |
428870ff | 215 | vdev_config_flag_t flags) |
34dc7c2f BB |
216 | { |
217 | nvlist_t *nv = NULL; | |
218 | ||
b8d06fca | 219 | VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_PUSHPAGE) == 0); |
34dc7c2f BB |
220 | |
221 | VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE, | |
222 | vd->vdev_ops->vdev_op_type) == 0); | |
428870ff | 223 | if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE))) |
34dc7c2f BB |
224 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id) |
225 | == 0); | |
226 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0); | |
227 | ||
228 | if (vd->vdev_path != NULL) | |
229 | VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, | |
230 | vd->vdev_path) == 0); | |
231 | ||
232 | if (vd->vdev_devid != NULL) | |
233 | VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, | |
234 | vd->vdev_devid) == 0); | |
235 | ||
236 | if (vd->vdev_physpath != NULL) | |
237 | VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, | |
238 | vd->vdev_physpath) == 0); | |
239 | ||
9babb374 BB |
240 | if (vd->vdev_fru != NULL) |
241 | VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_FRU, | |
242 | vd->vdev_fru) == 0); | |
243 | ||
34dc7c2f BB |
244 | if (vd->vdev_nparity != 0) { |
245 | ASSERT(strcmp(vd->vdev_ops->vdev_op_type, | |
246 | VDEV_TYPE_RAIDZ) == 0); | |
247 | ||
248 | /* | |
249 | * Make sure someone hasn't managed to sneak a fancy new vdev | |
250 | * into a crufty old storage pool. | |
251 | */ | |
252 | ASSERT(vd->vdev_nparity == 1 || | |
45d1cae3 BB |
253 | (vd->vdev_nparity <= 2 && |
254 | spa_version(spa) >= SPA_VERSION_RAIDZ2) || | |
255 | (vd->vdev_nparity <= 3 && | |
256 | spa_version(spa) >= SPA_VERSION_RAIDZ3)); | |
34dc7c2f BB |
257 | |
258 | /* | |
259 | * Note that we'll add the nparity tag even on storage pools | |
260 | * that only support a single parity device -- older software | |
261 | * will just ignore it. | |
262 | */ | |
263 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, | |
264 | vd->vdev_nparity) == 0); | |
265 | } | |
266 | ||
267 | if (vd->vdev_wholedisk != -1ULL) | |
268 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, | |
269 | vd->vdev_wholedisk) == 0); | |
270 | ||
271 | if (vd->vdev_not_present) | |
272 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0); | |
273 | ||
274 | if (vd->vdev_isspare) | |
275 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0); | |
276 | ||
428870ff BB |
277 | if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) && |
278 | vd == vd->vdev_top) { | |
34dc7c2f BB |
279 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, |
280 | vd->vdev_ms_array) == 0); | |
281 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, | |
282 | vd->vdev_ms_shift) == 0); | |
283 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, | |
284 | vd->vdev_ashift) == 0); | |
285 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, | |
286 | vd->vdev_asize) == 0); | |
287 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, | |
288 | vd->vdev_islog) == 0); | |
428870ff BB |
289 | if (vd->vdev_removing) |
290 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING, | |
291 | vd->vdev_removing) == 0); | |
34dc7c2f BB |
292 | } |
293 | ||
fb5f0bc8 | 294 | if (vd->vdev_dtl_smo.smo_object != 0) |
34dc7c2f | 295 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, |
fb5f0bc8 | 296 | vd->vdev_dtl_smo.smo_object) == 0); |
34dc7c2f | 297 | |
428870ff BB |
298 | if (vd->vdev_crtxg) |
299 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, | |
300 | vd->vdev_crtxg) == 0); | |
301 | ||
34dc7c2f BB |
302 | if (getstats) { |
303 | vdev_stat_t vs; | |
428870ff BB |
304 | pool_scan_stat_t ps; |
305 | ||
34dc7c2f | 306 | vdev_get_stats(vd, &vs); |
428870ff | 307 | VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, |
34dc7c2f | 308 | (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0); |
428870ff BB |
309 | |
310 | /* provide either current or previous scan information */ | |
311 | if (spa_scan_get_stats(spa, &ps) == 0) { | |
312 | VERIFY(nvlist_add_uint64_array(nv, | |
313 | ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps, | |
314 | sizeof (pool_scan_stat_t) / sizeof (uint64_t)) | |
315 | == 0); | |
316 | } | |
34dc7c2f BB |
317 | } |
318 | ||
319 | if (!vd->vdev_ops->vdev_op_leaf) { | |
320 | nvlist_t **child; | |
428870ff BB |
321 | int c, idx; |
322 | ||
323 | ASSERT(!vd->vdev_ishole); | |
34dc7c2f BB |
324 | |
325 | child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), | |
b8d06fca | 326 | KM_PUSHPAGE); |
34dc7c2f | 327 | |
428870ff BB |
328 | for (c = 0, idx = 0; c < vd->vdev_children; c++) { |
329 | vdev_t *cvd = vd->vdev_child[c]; | |
34dc7c2f | 330 | |
428870ff BB |
331 | /* |
332 | * If we're generating an nvlist of removing | |
333 | * vdevs then skip over any device which is | |
334 | * not being removed. | |
335 | */ | |
336 | if ((flags & VDEV_CONFIG_REMOVING) && | |
337 | !cvd->vdev_removing) | |
338 | continue; | |
34dc7c2f | 339 | |
428870ff BB |
340 | child[idx++] = vdev_config_generate(spa, cvd, |
341 | getstats, flags); | |
342 | } | |
343 | ||
344 | if (idx) { | |
345 | VERIFY(nvlist_add_nvlist_array(nv, | |
346 | ZPOOL_CONFIG_CHILDREN, child, idx) == 0); | |
347 | } | |
348 | ||
349 | for (c = 0; c < idx; c++) | |
34dc7c2f BB |
350 | nvlist_free(child[c]); |
351 | ||
352 | kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); | |
353 | ||
354 | } else { | |
428870ff BB |
355 | const char *aux = NULL; |
356 | ||
34dc7c2f BB |
357 | if (vd->vdev_offline && !vd->vdev_tmpoffline) |
358 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, | |
359 | B_TRUE) == 0); | |
572e2857 BB |
360 | if (vd->vdev_resilvering) |
361 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVERING, | |
362 | B_TRUE) == 0); | |
34dc7c2f BB |
363 | if (vd->vdev_faulted) |
364 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, | |
365 | B_TRUE) == 0); | |
366 | if (vd->vdev_degraded) | |
367 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, | |
368 | B_TRUE) == 0); | |
369 | if (vd->vdev_removed) | |
370 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, | |
371 | B_TRUE) == 0); | |
372 | if (vd->vdev_unspare) | |
373 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, | |
374 | B_TRUE) == 0); | |
428870ff BB |
375 | if (vd->vdev_ishole) |
376 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, | |
377 | B_TRUE) == 0); | |
378 | ||
379 | switch (vd->vdev_stat.vs_aux) { | |
380 | case VDEV_AUX_ERR_EXCEEDED: | |
381 | aux = "err_exceeded"; | |
382 | break; | |
383 | ||
384 | case VDEV_AUX_EXTERNAL: | |
385 | aux = "external"; | |
386 | break; | |
387 | } | |
388 | ||
389 | if (aux != NULL) | |
390 | VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, | |
391 | aux) == 0); | |
392 | ||
393 | if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) { | |
394 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID, | |
395 | vd->vdev_orig_guid) == 0); | |
396 | } | |
34dc7c2f BB |
397 | } |
398 | ||
399 | return (nv); | |
400 | } | |
401 | ||
428870ff BB |
402 | /* |
403 | * Generate a view of the top-level vdevs. If we currently have holes | |
404 | * in the namespace, then generate an array which contains a list of holey | |
405 | * vdevs. Additionally, add the number of top-level children that currently | |
406 | * exist. | |
407 | */ | |
408 | void | |
409 | vdev_top_config_generate(spa_t *spa, nvlist_t *config) | |
410 | { | |
411 | vdev_t *rvd = spa->spa_root_vdev; | |
412 | uint64_t *array; | |
413 | uint_t c, idx; | |
414 | ||
b8d06fca | 415 | array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_PUSHPAGE); |
428870ff BB |
416 | |
417 | for (c = 0, idx = 0; c < rvd->vdev_children; c++) { | |
418 | vdev_t *tvd = rvd->vdev_child[c]; | |
419 | ||
420 | if (tvd->vdev_ishole) | |
421 | array[idx++] = c; | |
422 | } | |
423 | ||
424 | if (idx) { | |
425 | VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY, | |
426 | array, idx) == 0); | |
427 | } | |
428 | ||
429 | VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, | |
430 | rvd->vdev_children) == 0); | |
431 | ||
432 | kmem_free(array, rvd->vdev_children * sizeof (uint64_t)); | |
433 | } | |
434 | ||
9ae529ec CS |
435 | /* |
436 | * Returns the configuration from the label of the given vdev. If 'label' is | |
437 | * VDEV_BEST_LABEL, each label of the vdev will be read until a valid | |
438 | * configuration is found; otherwise, only the specified label will be read. | |
439 | */ | |
34dc7c2f | 440 | nvlist_t * |
9ae529ec | 441 | vdev_label_read_config(vdev_t *vd, int label) |
34dc7c2f BB |
442 | { |
443 | spa_t *spa = vd->vdev_spa; | |
444 | nvlist_t *config = NULL; | |
445 | vdev_phys_t *vp; | |
446 | zio_t *zio; | |
9babb374 BB |
447 | int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | |
448 | ZIO_FLAG_SPECULATIVE; | |
d6320ddb | 449 | int l; |
34dc7c2f | 450 | |
b128c09f | 451 | ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); |
34dc7c2f BB |
452 | |
453 | if (!vdev_readable(vd)) | |
454 | return (NULL); | |
455 | ||
456 | vp = zio_buf_alloc(sizeof (vdev_phys_t)); | |
457 | ||
9babb374 | 458 | retry: |
d6320ddb | 459 | for (l = 0; l < VDEV_LABELS; l++) { |
9ae529ec CS |
460 | if (label >= 0 && label < VDEV_LABELS && label != l) |
461 | continue; | |
34dc7c2f | 462 | |
b128c09f | 463 | zio = zio_root(spa, NULL, NULL, flags); |
34dc7c2f BB |
464 | |
465 | vdev_label_read(zio, vd, l, vp, | |
466 | offsetof(vdev_label_t, vl_vdev_phys), | |
b128c09f | 467 | sizeof (vdev_phys_t), NULL, NULL, flags); |
34dc7c2f BB |
468 | |
469 | if (zio_wait(zio) == 0 && | |
470 | nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), | |
471 | &config, 0) == 0) | |
472 | break; | |
473 | ||
474 | if (config != NULL) { | |
475 | nvlist_free(config); | |
476 | config = NULL; | |
477 | } | |
478 | } | |
479 | ||
9babb374 BB |
480 | if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) { |
481 | flags |= ZIO_FLAG_TRYHARD; | |
482 | goto retry; | |
483 | } | |
484 | ||
34dc7c2f BB |
485 | zio_buf_free(vp, sizeof (vdev_phys_t)); |
486 | ||
487 | return (config); | |
488 | } | |
489 | ||
490 | /* | |
491 | * Determine if a device is in use. The 'spare_guid' parameter will be filled | |
492 | * in with the device guid if this spare is active elsewhere on the system. | |
493 | */ | |
494 | static boolean_t | |
495 | vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, | |
496 | uint64_t *spare_guid, uint64_t *l2cache_guid) | |
497 | { | |
498 | spa_t *spa = vd->vdev_spa; | |
499 | uint64_t state, pool_guid, device_guid, txg, spare_pool; | |
500 | uint64_t vdtxg = 0; | |
501 | nvlist_t *label; | |
502 | ||
503 | if (spare_guid) | |
504 | *spare_guid = 0ULL; | |
505 | if (l2cache_guid) | |
506 | *l2cache_guid = 0ULL; | |
507 | ||
508 | /* | |
509 | * Read the label, if any, and perform some basic sanity checks. | |
510 | */ | |
9ae529ec | 511 | if ((label = vdev_label_read_config(vd, VDEV_BEST_LABEL)) == NULL) |
34dc7c2f BB |
512 | return (B_FALSE); |
513 | ||
514 | (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, | |
515 | &vdtxg); | |
516 | ||
517 | if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, | |
518 | &state) != 0 || | |
519 | nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, | |
520 | &device_guid) != 0) { | |
521 | nvlist_free(label); | |
522 | return (B_FALSE); | |
523 | } | |
524 | ||
525 | if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && | |
526 | (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, | |
527 | &pool_guid) != 0 || | |
528 | nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, | |
529 | &txg) != 0)) { | |
530 | nvlist_free(label); | |
531 | return (B_FALSE); | |
532 | } | |
533 | ||
534 | nvlist_free(label); | |
535 | ||
536 | /* | |
537 | * Check to see if this device indeed belongs to the pool it claims to | |
538 | * be a part of. The only way this is allowed is if the device is a hot | |
539 | * spare (which we check for later on). | |
540 | */ | |
541 | if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && | |
542 | !spa_guid_exists(pool_guid, device_guid) && | |
b128c09f | 543 | !spa_spare_exists(device_guid, NULL, NULL) && |
34dc7c2f BB |
544 | !spa_l2cache_exists(device_guid, NULL)) |
545 | return (B_FALSE); | |
546 | ||
547 | /* | |
548 | * If the transaction group is zero, then this an initialized (but | |
549 | * unused) label. This is only an error if the create transaction | |
550 | * on-disk is the same as the one we're using now, in which case the | |
551 | * user has attempted to add the same vdev multiple times in the same | |
552 | * transaction. | |
553 | */ | |
554 | if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && | |
555 | txg == 0 && vdtxg == crtxg) | |
556 | return (B_TRUE); | |
557 | ||
558 | /* | |
559 | * Check to see if this is a spare device. We do an explicit check for | |
560 | * spa_has_spare() here because it may be on our pending list of spares | |
561 | * to add. We also check if it is an l2cache device. | |
562 | */ | |
b128c09f | 563 | if (spa_spare_exists(device_guid, &spare_pool, NULL) || |
34dc7c2f BB |
564 | spa_has_spare(spa, device_guid)) { |
565 | if (spare_guid) | |
566 | *spare_guid = device_guid; | |
567 | ||
568 | switch (reason) { | |
569 | case VDEV_LABEL_CREATE: | |
570 | case VDEV_LABEL_L2CACHE: | |
571 | return (B_TRUE); | |
572 | ||
573 | case VDEV_LABEL_REPLACE: | |
574 | return (!spa_has_spare(spa, device_guid) || | |
575 | spare_pool != 0ULL); | |
576 | ||
577 | case VDEV_LABEL_SPARE: | |
578 | return (spa_has_spare(spa, device_guid)); | |
e75c13c3 BB |
579 | default: |
580 | break; | |
34dc7c2f BB |
581 | } |
582 | } | |
583 | ||
584 | /* | |
585 | * Check to see if this is an l2cache device. | |
586 | */ | |
587 | if (spa_l2cache_exists(device_guid, NULL)) | |
588 | return (B_TRUE); | |
589 | ||
572e2857 BB |
590 | /* |
591 | * We can't rely on a pool's state if it's been imported | |
592 | * read-only. Instead we look to see if the pools is marked | |
593 | * read-only in the namespace and set the state to active. | |
594 | */ | |
595 | if ((spa = spa_by_guid(pool_guid, device_guid)) != NULL && | |
596 | spa_mode(spa) == FREAD) | |
597 | state = POOL_STATE_ACTIVE; | |
598 | ||
34dc7c2f BB |
599 | /* |
600 | * If the device is marked ACTIVE, then this device is in use by another | |
601 | * pool on the system. | |
602 | */ | |
603 | return (state == POOL_STATE_ACTIVE); | |
604 | } | |
605 | ||
606 | /* | |
607 | * Initialize a vdev label. We check to make sure each leaf device is not in | |
608 | * use, and writable. We put down an initial label which we will later | |
609 | * overwrite with a complete label. Note that it's important to do this | |
610 | * sequentially, not in parallel, so that we catch cases of multiple use of the | |
611 | * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with | |
612 | * itself. | |
613 | */ | |
614 | int | |
615 | vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) | |
616 | { | |
617 | spa_t *spa = vd->vdev_spa; | |
618 | nvlist_t *label; | |
619 | vdev_phys_t *vp; | |
9babb374 | 620 | char *pad2; |
34dc7c2f BB |
621 | uberblock_t *ub; |
622 | zio_t *zio; | |
34dc7c2f BB |
623 | char *buf; |
624 | size_t buflen; | |
625 | int error; | |
d4ed6673 | 626 | uint64_t spare_guid = 0, l2cache_guid = 0; |
b128c09f | 627 | int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; |
d6320ddb BB |
628 | int c, l; |
629 | vdev_t *pvd; | |
34dc7c2f | 630 | |
b128c09f | 631 | ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); |
34dc7c2f | 632 | |
d6320ddb | 633 | for (c = 0; c < vd->vdev_children; c++) |
34dc7c2f BB |
634 | if ((error = vdev_label_init(vd->vdev_child[c], |
635 | crtxg, reason)) != 0) | |
636 | return (error); | |
637 | ||
428870ff BB |
638 | /* Track the creation time for this vdev */ |
639 | vd->vdev_crtxg = crtxg; | |
640 | ||
34dc7c2f BB |
641 | if (!vd->vdev_ops->vdev_op_leaf) |
642 | return (0); | |
643 | ||
644 | /* | |
645 | * Dead vdevs cannot be initialized. | |
646 | */ | |
647 | if (vdev_is_dead(vd)) | |
648 | return (EIO); | |
649 | ||
650 | /* | |
651 | * Determine if the vdev is in use. | |
652 | */ | |
428870ff | 653 | if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT && |
34dc7c2f BB |
654 | vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) |
655 | return (EBUSY); | |
656 | ||
34dc7c2f BB |
657 | /* |
658 | * If this is a request to add or replace a spare or l2cache device | |
659 | * that is in use elsewhere on the system, then we must update the | |
660 | * guid (which was initialized to a random value) to reflect the | |
661 | * actual GUID (which is shared between multiple pools). | |
662 | */ | |
663 | if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && | |
664 | spare_guid != 0ULL) { | |
b128c09f | 665 | uint64_t guid_delta = spare_guid - vd->vdev_guid; |
34dc7c2f | 666 | |
b128c09f | 667 | vd->vdev_guid += guid_delta; |
34dc7c2f | 668 | |
d6320ddb | 669 | for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) |
b128c09f | 670 | pvd->vdev_guid_sum += guid_delta; |
34dc7c2f BB |
671 | |
672 | /* | |
673 | * If this is a replacement, then we want to fallthrough to the | |
674 | * rest of the code. If we're adding a spare, then it's already | |
675 | * labeled appropriately and we can just return. | |
676 | */ | |
677 | if (reason == VDEV_LABEL_SPARE) | |
678 | return (0); | |
428870ff BB |
679 | ASSERT(reason == VDEV_LABEL_REPLACE || |
680 | reason == VDEV_LABEL_SPLIT); | |
34dc7c2f BB |
681 | } |
682 | ||
683 | if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && | |
684 | l2cache_guid != 0ULL) { | |
b128c09f | 685 | uint64_t guid_delta = l2cache_guid - vd->vdev_guid; |
34dc7c2f | 686 | |
b128c09f | 687 | vd->vdev_guid += guid_delta; |
34dc7c2f | 688 | |
d6320ddb | 689 | for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) |
b128c09f | 690 | pvd->vdev_guid_sum += guid_delta; |
34dc7c2f BB |
691 | |
692 | /* | |
693 | * If this is a replacement, then we want to fallthrough to the | |
694 | * rest of the code. If we're adding an l2cache, then it's | |
695 | * already labeled appropriately and we can just return. | |
696 | */ | |
697 | if (reason == VDEV_LABEL_L2CACHE) | |
698 | return (0); | |
699 | ASSERT(reason == VDEV_LABEL_REPLACE); | |
700 | } | |
701 | ||
702 | /* | |
703 | * Initialize its label. | |
704 | */ | |
705 | vp = zio_buf_alloc(sizeof (vdev_phys_t)); | |
706 | bzero(vp, sizeof (vdev_phys_t)); | |
707 | ||
708 | /* | |
709 | * Generate a label describing the pool and our top-level vdev. | |
710 | * We mark it as being from txg 0 to indicate that it's not | |
711 | * really part of an active pool just yet. The labels will | |
712 | * be written again with a meaningful txg by spa_sync(). | |
713 | */ | |
714 | if (reason == VDEV_LABEL_SPARE || | |
715 | (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) { | |
716 | /* | |
717 | * For inactive hot spares, we generate a special label that | |
718 | * identifies as a mutually shared hot spare. We write the | |
719 | * label if we are adding a hot spare, or if we are removing an | |
720 | * active hot spare (in which case we want to revert the | |
721 | * labels). | |
722 | */ | |
b8d06fca | 723 | VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_PUSHPAGE) == 0); |
34dc7c2f BB |
724 | |
725 | VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, | |
726 | spa_version(spa)) == 0); | |
727 | VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, | |
728 | POOL_STATE_SPARE) == 0); | |
729 | VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, | |
730 | vd->vdev_guid) == 0); | |
731 | } else if (reason == VDEV_LABEL_L2CACHE || | |
732 | (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) { | |
733 | /* | |
734 | * For level 2 ARC devices, add a special label. | |
735 | */ | |
b8d06fca | 736 | VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_PUSHPAGE) == 0); |
34dc7c2f BB |
737 | |
738 | VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, | |
739 | spa_version(spa)) == 0); | |
740 | VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, | |
741 | POOL_STATE_L2CACHE) == 0); | |
742 | VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, | |
743 | vd->vdev_guid) == 0); | |
744 | } else { | |
428870ff BB |
745 | uint64_t txg = 0ULL; |
746 | ||
747 | if (reason == VDEV_LABEL_SPLIT) | |
748 | txg = spa->spa_uberblock.ub_txg; | |
749 | label = spa_config_generate(spa, vd, txg, B_FALSE); | |
34dc7c2f BB |
750 | |
751 | /* | |
752 | * Add our creation time. This allows us to detect multiple | |
753 | * vdev uses as described above, and automatically expires if we | |
754 | * fail. | |
755 | */ | |
756 | VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, | |
757 | crtxg) == 0); | |
758 | } | |
759 | ||
760 | buf = vp->vp_nvlist; | |
761 | buflen = sizeof (vp->vp_nvlist); | |
762 | ||
b8d06fca | 763 | error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_PUSHPAGE); |
34dc7c2f BB |
764 | if (error != 0) { |
765 | nvlist_free(label); | |
766 | zio_buf_free(vp, sizeof (vdev_phys_t)); | |
767 | /* EFAULT means nvlist_pack ran out of room */ | |
768 | return (error == EFAULT ? ENAMETOOLONG : EINVAL); | |
769 | } | |
770 | ||
34dc7c2f BB |
771 | /* |
772 | * Initialize uberblock template. | |
773 | */ | |
45d1cae3 BB |
774 | ub = zio_buf_alloc(VDEV_UBERBLOCK_RING); |
775 | bzero(ub, VDEV_UBERBLOCK_RING); | |
34dc7c2f BB |
776 | *ub = spa->spa_uberblock; |
777 | ub->ub_txg = 0; | |
778 | ||
9babb374 BB |
779 | /* Initialize the 2nd padding area. */ |
780 | pad2 = zio_buf_alloc(VDEV_PAD_SIZE); | |
781 | bzero(pad2, VDEV_PAD_SIZE); | |
782 | ||
34dc7c2f BB |
783 | /* |
784 | * Write everything in parallel. | |
785 | */ | |
9babb374 | 786 | retry: |
34dc7c2f BB |
787 | zio = zio_root(spa, NULL, NULL, flags); |
788 | ||
d6320ddb | 789 | for (l = 0; l < VDEV_LABELS; l++) { |
34dc7c2f BB |
790 | |
791 | vdev_label_write(zio, vd, l, vp, | |
792 | offsetof(vdev_label_t, vl_vdev_phys), | |
793 | sizeof (vdev_phys_t), NULL, NULL, flags); | |
794 | ||
9babb374 BB |
795 | /* |
796 | * Skip the 1st padding area. | |
797 | * Zero out the 2nd padding area where it might have | |
798 | * left over data from previous filesystem format. | |
799 | */ | |
800 | vdev_label_write(zio, vd, l, pad2, | |
801 | offsetof(vdev_label_t, vl_pad2), | |
802 | VDEV_PAD_SIZE, NULL, NULL, flags); | |
34dc7c2f | 803 | |
45d1cae3 BB |
804 | vdev_label_write(zio, vd, l, ub, |
805 | offsetof(vdev_label_t, vl_uberblock), | |
806 | VDEV_UBERBLOCK_RING, NULL, NULL, flags); | |
34dc7c2f BB |
807 | } |
808 | ||
809 | error = zio_wait(zio); | |
810 | ||
9babb374 BB |
811 | if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { |
812 | flags |= ZIO_FLAG_TRYHARD; | |
813 | goto retry; | |
814 | } | |
815 | ||
34dc7c2f | 816 | nvlist_free(label); |
9babb374 | 817 | zio_buf_free(pad2, VDEV_PAD_SIZE); |
45d1cae3 | 818 | zio_buf_free(ub, VDEV_UBERBLOCK_RING); |
34dc7c2f BB |
819 | zio_buf_free(vp, sizeof (vdev_phys_t)); |
820 | ||
821 | /* | |
822 | * If this vdev hasn't been previously identified as a spare, then we | |
823 | * mark it as such only if a) we are labeling it as a spare, or b) it | |
824 | * exists as a spare elsewhere in the system. Do the same for | |
825 | * level 2 ARC devices. | |
826 | */ | |
827 | if (error == 0 && !vd->vdev_isspare && | |
828 | (reason == VDEV_LABEL_SPARE || | |
b128c09f | 829 | spa_spare_exists(vd->vdev_guid, NULL, NULL))) |
34dc7c2f BB |
830 | spa_spare_add(vd); |
831 | ||
832 | if (error == 0 && !vd->vdev_isl2cache && | |
833 | (reason == VDEV_LABEL_L2CACHE || | |
834 | spa_l2cache_exists(vd->vdev_guid, NULL))) | |
835 | spa_l2cache_add(vd); | |
836 | ||
837 | return (error); | |
838 | } | |
839 | ||
840 | /* | |
841 | * ========================================================================== | |
842 | * uberblock load/sync | |
843 | * ========================================================================== | |
844 | */ | |
845 | ||
846 | /* | |
847 | * Consider the following situation: txg is safely synced to disk. We've | |
848 | * written the first uberblock for txg + 1, and then we lose power. When we | |
849 | * come back up, we fail to see the uberblock for txg + 1 because, say, | |
850 | * it was on a mirrored device and the replica to which we wrote txg + 1 | |
851 | * is now offline. If we then make some changes and sync txg + 1, and then | |
9ae529ec | 852 | * the missing replica comes back, then for a few seconds we'll have two |
34dc7c2f BB |
853 | * conflicting uberblocks on disk with the same txg. The solution is simple: |
854 | * among uberblocks with equal txg, choose the one with the latest timestamp. | |
855 | */ | |
856 | static int | |
857 | vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) | |
858 | { | |
859 | if (ub1->ub_txg < ub2->ub_txg) | |
860 | return (-1); | |
861 | if (ub1->ub_txg > ub2->ub_txg) | |
862 | return (1); | |
863 | ||
864 | if (ub1->ub_timestamp < ub2->ub_timestamp) | |
865 | return (-1); | |
866 | if (ub1->ub_timestamp > ub2->ub_timestamp) | |
867 | return (1); | |
868 | ||
869 | return (0); | |
870 | } | |
871 | ||
9ae529ec CS |
872 | struct ubl_cbdata { |
873 | uberblock_t *ubl_ubbest; /* Best uberblock */ | |
874 | vdev_t *ubl_vd; /* vdev associated with the above */ | |
875 | int ubl_label; /* Label associated with the above */ | |
876 | }; | |
877 | ||
34dc7c2f BB |
878 | static void |
879 | vdev_uberblock_load_done(zio_t *zio) | |
880 | { | |
9ae529ec | 881 | vdev_t *vd = zio->io_vd; |
428870ff | 882 | spa_t *spa = zio->io_spa; |
b128c09f | 883 | zio_t *rio = zio->io_private; |
34dc7c2f | 884 | uberblock_t *ub = zio->io_data; |
9ae529ec | 885 | struct ubl_cbdata *cbp = rio->io_private; |
34dc7c2f | 886 | |
9ae529ec | 887 | ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd)); |
34dc7c2f BB |
888 | |
889 | if (zio->io_error == 0 && uberblock_verify(ub) == 0) { | |
b128c09f | 890 | mutex_enter(&rio->io_lock); |
428870ff | 891 | if (ub->ub_txg <= spa->spa_load_max_txg && |
9ae529ec CS |
892 | vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) { |
893 | /* | |
894 | * Keep track of the vdev and label in which this | |
895 | * uberblock was found. We will use this information | |
896 | * later to obtain the config nvlist associated with | |
897 | * this uberblock. | |
898 | */ | |
899 | *cbp->ubl_ubbest = *ub; | |
900 | cbp->ubl_vd = vd; | |
901 | cbp->ubl_label = vdev_label_number(vd->vdev_psize, | |
902 | zio->io_offset); | |
903 | } | |
b128c09f | 904 | mutex_exit(&rio->io_lock); |
34dc7c2f BB |
905 | } |
906 | ||
907 | zio_buf_free(zio->io_data, zio->io_size); | |
908 | } | |
909 | ||
9ae529ec CS |
910 | static void |
911 | vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags, | |
912 | struct ubl_cbdata *cbp) | |
34dc7c2f | 913 | { |
d6320ddb | 914 | int c, l, n; |
b128c09f | 915 | |
d6320ddb | 916 | for (c = 0; c < vd->vdev_children; c++) |
9ae529ec | 917 | vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp); |
34dc7c2f | 918 | |
b128c09f | 919 | if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { |
d6320ddb BB |
920 | for (l = 0; l < VDEV_LABELS; l++) { |
921 | for (n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { | |
b128c09f BB |
922 | vdev_label_read(zio, vd, l, |
923 | zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)), | |
924 | VDEV_UBERBLOCK_OFFSET(vd, n), | |
925 | VDEV_UBERBLOCK_SIZE(vd), | |
926 | vdev_uberblock_load_done, zio, flags); | |
927 | } | |
34dc7c2f BB |
928 | } |
929 | } | |
9ae529ec CS |
930 | } |
931 | ||
932 | /* | |
933 | * Reads the 'best' uberblock from disk along with its associated | |
934 | * configuration. First, we read the uberblock array of each label of each | |
935 | * vdev, keeping track of the uberblock with the highest txg in each array. | |
936 | * Then, we read the configuration from the same label as the best uberblock. | |
937 | */ | |
938 | void | |
939 | vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config) | |
940 | { | |
941 | int i; | |
942 | zio_t *zio; | |
943 | spa_t *spa = rvd->vdev_spa; | |
944 | struct ubl_cbdata cb; | |
945 | int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | | |
946 | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; | |
947 | ||
948 | ASSERT(ub); | |
949 | ASSERT(config); | |
b128c09f | 950 | |
9ae529ec CS |
951 | bzero(ub, sizeof (uberblock_t)); |
952 | *config = NULL; | |
953 | ||
954 | cb.ubl_ubbest = ub; | |
955 | cb.ubl_vd = NULL; | |
956 | ||
957 | spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); | |
958 | zio = zio_root(spa, NULL, &cb, flags); | |
959 | vdev_uberblock_load_impl(zio, rvd, flags, &cb); | |
960 | (void) zio_wait(zio); | |
961 | if (cb.ubl_vd != NULL) { | |
962 | for (i = cb.ubl_label % 2; i < VDEV_LABELS; i += 2) { | |
963 | *config = vdev_label_read_config(cb.ubl_vd, i); | |
964 | if (*config != NULL) | |
965 | break; | |
966 | } | |
b128c09f | 967 | } |
9ae529ec | 968 | spa_config_exit(spa, SCL_ALL, FTAG); |
34dc7c2f BB |
969 | } |
970 | ||
971 | /* | |
972 | * On success, increment root zio's count of good writes. | |
973 | * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). | |
974 | */ | |
975 | static void | |
976 | vdev_uberblock_sync_done(zio_t *zio) | |
977 | { | |
978 | uint64_t *good_writes = zio->io_private; | |
979 | ||
980 | if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) | |
981 | atomic_add_64(good_writes, 1); | |
982 | } | |
983 | ||
984 | /* | |
985 | * Write the uberblock to all labels of all leaves of the specified vdev. | |
986 | */ | |
987 | static void | |
b128c09f | 988 | vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags) |
34dc7c2f | 989 | { |
34dc7c2f | 990 | uberblock_t *ubbuf; |
d6320ddb | 991 | int c, l, n; |
34dc7c2f | 992 | |
d6320ddb | 993 | for (c = 0; c < vd->vdev_children; c++) |
b128c09f | 994 | vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags); |
34dc7c2f BB |
995 | |
996 | if (!vd->vdev_ops->vdev_op_leaf) | |
997 | return; | |
998 | ||
b128c09f | 999 | if (!vdev_writeable(vd)) |
34dc7c2f BB |
1000 | return; |
1001 | ||
1002 | n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1); | |
1003 | ||
1004 | ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)); | |
1005 | bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); | |
1006 | *ubbuf = *ub; | |
1007 | ||
d6320ddb | 1008 | for (l = 0; l < VDEV_LABELS; l++) |
34dc7c2f | 1009 | vdev_label_write(zio, vd, l, ubbuf, |
b128c09f | 1010 | VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), |
34dc7c2f | 1011 | vdev_uberblock_sync_done, zio->io_private, |
b128c09f | 1012 | flags | ZIO_FLAG_DONT_PROPAGATE); |
34dc7c2f BB |
1013 | |
1014 | zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); | |
1015 | } | |
1016 | ||
1017 | int | |
1018 | vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) | |
1019 | { | |
1020 | spa_t *spa = svd[0]->vdev_spa; | |
34dc7c2f BB |
1021 | zio_t *zio; |
1022 | uint64_t good_writes = 0; | |
d6320ddb | 1023 | int v; |
34dc7c2f BB |
1024 | |
1025 | zio = zio_root(spa, NULL, &good_writes, flags); | |
1026 | ||
d6320ddb | 1027 | for (v = 0; v < svdcount; v++) |
b128c09f | 1028 | vdev_uberblock_sync(zio, ub, svd[v], flags); |
34dc7c2f BB |
1029 | |
1030 | (void) zio_wait(zio); | |
1031 | ||
1032 | /* | |
1033 | * Flush the uberblocks to disk. This ensures that the odd labels | |
1034 | * are no longer needed (because the new uberblocks and the even | |
1035 | * labels are safely on disk), so it is safe to overwrite them. | |
1036 | */ | |
1037 | zio = zio_root(spa, NULL, NULL, flags); | |
1038 | ||
d6320ddb | 1039 | for (v = 0; v < svdcount; v++) |
34dc7c2f BB |
1040 | zio_flush(zio, svd[v]); |
1041 | ||
1042 | (void) zio_wait(zio); | |
1043 | ||
1044 | return (good_writes >= 1 ? 0 : EIO); | |
1045 | } | |
1046 | ||
1047 | /* | |
1048 | * On success, increment the count of good writes for our top-level vdev. | |
1049 | */ | |
1050 | static void | |
1051 | vdev_label_sync_done(zio_t *zio) | |
1052 | { | |
1053 | uint64_t *good_writes = zio->io_private; | |
1054 | ||
1055 | if (zio->io_error == 0) | |
1056 | atomic_add_64(good_writes, 1); | |
1057 | } | |
1058 | ||
1059 | /* | |
1060 | * If there weren't enough good writes, indicate failure to the parent. | |
1061 | */ | |
1062 | static void | |
1063 | vdev_label_sync_top_done(zio_t *zio) | |
1064 | { | |
1065 | uint64_t *good_writes = zio->io_private; | |
1066 | ||
1067 | if (*good_writes == 0) | |
1068 | zio->io_error = EIO; | |
1069 | ||
1070 | kmem_free(good_writes, sizeof (uint64_t)); | |
1071 | } | |
1072 | ||
b128c09f BB |
1073 | /* |
1074 | * We ignore errors for log and cache devices, simply free the private data. | |
1075 | */ | |
1076 | static void | |
1077 | vdev_label_sync_ignore_done(zio_t *zio) | |
1078 | { | |
1079 | kmem_free(zio->io_private, sizeof (uint64_t)); | |
1080 | } | |
1081 | ||
34dc7c2f BB |
1082 | /* |
1083 | * Write all even or odd labels to all leaves of the specified vdev. | |
1084 | */ | |
1085 | static void | |
b128c09f | 1086 | vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags) |
34dc7c2f BB |
1087 | { |
1088 | nvlist_t *label; | |
1089 | vdev_phys_t *vp; | |
1090 | char *buf; | |
1091 | size_t buflen; | |
d6320ddb | 1092 | int c; |
34dc7c2f | 1093 | |
d6320ddb | 1094 | for (c = 0; c < vd->vdev_children; c++) |
b128c09f | 1095 | vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags); |
34dc7c2f BB |
1096 | |
1097 | if (!vd->vdev_ops->vdev_op_leaf) | |
1098 | return; | |
1099 | ||
b128c09f | 1100 | if (!vdev_writeable(vd)) |
34dc7c2f BB |
1101 | return; |
1102 | ||
1103 | /* | |
1104 | * Generate a label describing the top-level config to which we belong. | |
1105 | */ | |
1106 | label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); | |
1107 | ||
1108 | vp = zio_buf_alloc(sizeof (vdev_phys_t)); | |
1109 | bzero(vp, sizeof (vdev_phys_t)); | |
1110 | ||
1111 | buf = vp->vp_nvlist; | |
1112 | buflen = sizeof (vp->vp_nvlist); | |
1113 | ||
b8d06fca | 1114 | if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_PUSHPAGE) == 0) { |
34dc7c2f BB |
1115 | for (; l < VDEV_LABELS; l += 2) { |
1116 | vdev_label_write(zio, vd, l, vp, | |
1117 | offsetof(vdev_label_t, vl_vdev_phys), | |
1118 | sizeof (vdev_phys_t), | |
1119 | vdev_label_sync_done, zio->io_private, | |
b128c09f | 1120 | flags | ZIO_FLAG_DONT_PROPAGATE); |
34dc7c2f BB |
1121 | } |
1122 | } | |
1123 | ||
1124 | zio_buf_free(vp, sizeof (vdev_phys_t)); | |
1125 | nvlist_free(label); | |
1126 | } | |
1127 | ||
1128 | int | |
b128c09f | 1129 | vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags) |
34dc7c2f | 1130 | { |
b128c09f | 1131 | list_t *dl = &spa->spa_config_dirty_list; |
34dc7c2f BB |
1132 | vdev_t *vd; |
1133 | zio_t *zio; | |
1134 | int error; | |
1135 | ||
1136 | /* | |
1137 | * Write the new labels to disk. | |
1138 | */ | |
1139 | zio = zio_root(spa, NULL, NULL, flags); | |
1140 | ||
1141 | for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { | |
d6320ddb BB |
1142 | uint64_t *good_writes; |
1143 | zio_t *vio; | |
428870ff BB |
1144 | |
1145 | ASSERT(!vd->vdev_ishole); | |
1146 | ||
b8d06fca | 1147 | good_writes = kmem_zalloc(sizeof (uint64_t), KM_PUSHPAGE); |
d6320ddb | 1148 | vio = zio_null(zio, spa, NULL, |
b128c09f BB |
1149 | (vd->vdev_islog || vd->vdev_aux != NULL) ? |
1150 | vdev_label_sync_ignore_done : vdev_label_sync_top_done, | |
34dc7c2f | 1151 | good_writes, flags); |
b128c09f | 1152 | vdev_label_sync(vio, vd, l, txg, flags); |
34dc7c2f BB |
1153 | zio_nowait(vio); |
1154 | } | |
1155 | ||
1156 | error = zio_wait(zio); | |
1157 | ||
1158 | /* | |
1159 | * Flush the new labels to disk. | |
1160 | */ | |
1161 | zio = zio_root(spa, NULL, NULL, flags); | |
1162 | ||
1163 | for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) | |
1164 | zio_flush(zio, vd); | |
1165 | ||
1166 | (void) zio_wait(zio); | |
1167 | ||
1168 | return (error); | |
1169 | } | |
1170 | ||
1171 | /* | |
1172 | * Sync the uberblock and any changes to the vdev configuration. | |
1173 | * | |
1174 | * The order of operations is carefully crafted to ensure that | |
1175 | * if the system panics or loses power at any time, the state on disk | |
1176 | * is still transactionally consistent. The in-line comments below | |
1177 | * describe the failure semantics at each stage. | |
1178 | * | |
1179 | * Moreover, vdev_config_sync() is designed to be idempotent: if it fails | |
1180 | * at any time, you can just call it again, and it will resume its work. | |
1181 | */ | |
1182 | int | |
9babb374 | 1183 | vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard) |
34dc7c2f BB |
1184 | { |
1185 | spa_t *spa = svd[0]->vdev_spa; | |
1186 | uberblock_t *ub = &spa->spa_uberblock; | |
1187 | vdev_t *vd; | |
1188 | zio_t *zio; | |
1189 | int error; | |
b128c09f | 1190 | int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; |
34dc7c2f | 1191 | |
9babb374 BB |
1192 | /* |
1193 | * Normally, we don't want to try too hard to write every label and | |
1194 | * uberblock. If there is a flaky disk, we don't want the rest of the | |
1195 | * sync process to block while we retry. But if we can't write a | |
1196 | * single label out, we should retry with ZIO_FLAG_TRYHARD before | |
1197 | * bailing out and declaring the pool faulted. | |
1198 | */ | |
1199 | if (tryhard) | |
1200 | flags |= ZIO_FLAG_TRYHARD; | |
1201 | ||
34dc7c2f BB |
1202 | ASSERT(ub->ub_txg <= txg); |
1203 | ||
1204 | /* | |
1205 | * If this isn't a resync due to I/O errors, | |
1206 | * and nothing changed in this transaction group, | |
1207 | * and the vdev configuration hasn't changed, | |
1208 | * then there's nothing to do. | |
1209 | */ | |
1210 | if (ub->ub_txg < txg && | |
1211 | uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE && | |
b128c09f | 1212 | list_is_empty(&spa->spa_config_dirty_list)) |
34dc7c2f BB |
1213 | return (0); |
1214 | ||
1215 | if (txg > spa_freeze_txg(spa)) | |
1216 | return (0); | |
1217 | ||
1218 | ASSERT(txg <= spa->spa_final_txg); | |
1219 | ||
1220 | /* | |
1221 | * Flush the write cache of every disk that's been written to | |
1222 | * in this transaction group. This ensures that all blocks | |
1223 | * written in this txg will be committed to stable storage | |
1224 | * before any uberblock that references them. | |
1225 | */ | |
1226 | zio = zio_root(spa, NULL, NULL, flags); | |
1227 | ||
1228 | for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd; | |
1229 | vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) | |
1230 | zio_flush(zio, vd); | |
1231 | ||
1232 | (void) zio_wait(zio); | |
1233 | ||
1234 | /* | |
1235 | * Sync out the even labels (L0, L2) for every dirty vdev. If the | |
1236 | * system dies in the middle of this process, that's OK: all of the | |
1237 | * even labels that made it to disk will be newer than any uberblock, | |
1238 | * and will therefore be considered invalid. The odd labels (L1, L3), | |
1239 | * which have not yet been touched, will still be valid. We flush | |
1240 | * the new labels to disk to ensure that all even-label updates | |
1241 | * are committed to stable storage before the uberblock update. | |
1242 | */ | |
b128c09f | 1243 | if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) |
34dc7c2f BB |
1244 | return (error); |
1245 | ||
1246 | /* | |
1247 | * Sync the uberblocks to all vdevs in svd[]. | |
1248 | * If the system dies in the middle of this step, there are two cases | |
1249 | * to consider, and the on-disk state is consistent either way: | |
1250 | * | |
1251 | * (1) If none of the new uberblocks made it to disk, then the | |
1252 | * previous uberblock will be the newest, and the odd labels | |
1253 | * (which had not yet been touched) will be valid with respect | |
1254 | * to that uberblock. | |
1255 | * | |
1256 | * (2) If one or more new uberblocks made it to disk, then they | |
1257 | * will be the newest, and the even labels (which had all | |
1258 | * been successfully committed) will be valid with respect | |
1259 | * to the new uberblocks. | |
1260 | */ | |
1261 | if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) | |
1262 | return (error); | |
1263 | ||
1264 | /* | |
1265 | * Sync out odd labels for every dirty vdev. If the system dies | |
1266 | * in the middle of this process, the even labels and the new | |
1267 | * uberblocks will suffice to open the pool. The next time | |
1268 | * the pool is opened, the first thing we'll do -- before any | |
1269 | * user data is modified -- is mark every vdev dirty so that | |
1270 | * all labels will be brought up to date. We flush the new labels | |
1271 | * to disk to ensure that all odd-label updates are committed to | |
1272 | * stable storage before the next transaction group begins. | |
1273 | */ | |
b128c09f | 1274 | return (vdev_label_sync_list(spa, 1, txg, flags)); |
34dc7c2f | 1275 | } |