]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/vdev_label.c
Add AUTHORS to master branch
[mirror_zfs.git] / module / zfs / vdev_label.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
d164b209 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
34dc7c2f
BB
23 * Use is subject to license terms.
24 */
25
34dc7c2f
BB
26/*
27 * Virtual Device Labels
28 * ---------------------
29 *
30 * The vdev label serves several distinct purposes:
31 *
32 * 1. Uniquely identify this device as part of a ZFS pool and confirm its
33 * identity within the pool.
34 *
35 * 2. Verify that all the devices given in a configuration are present
36 * within the pool.
37 *
38 * 3. Determine the uberblock for the pool.
39 *
40 * 4. In case of an import operation, determine the configuration of the
41 * toplevel vdev of which it is a part.
42 *
43 * 5. If an import operation cannot find all the devices in the pool,
44 * provide enough information to the administrator to determine which
45 * devices are missing.
46 *
47 * It is important to note that while the kernel is responsible for writing the
48 * label, it only consumes the information in the first three cases. The
49 * latter information is only consumed in userland when determining the
50 * configuration to import a pool.
51 *
52 *
53 * Label Organization
54 * ------------------
55 *
56 * Before describing the contents of the label, it's important to understand how
57 * the labels are written and updated with respect to the uberblock.
58 *
59 * When the pool configuration is altered, either because it was newly created
60 * or a device was added, we want to update all the labels such that we can deal
61 * with fatal failure at any point. To this end, each disk has two labels which
62 * are updated before and after the uberblock is synced. Assuming we have
63 * labels and an uberblock with the following transaction groups:
64 *
65 * L1 UB L2
66 * +------+ +------+ +------+
67 * | | | | | |
68 * | t10 | | t10 | | t10 |
69 * | | | | | |
70 * +------+ +------+ +------+
71 *
72 * In this stable state, the labels and the uberblock were all updated within
73 * the same transaction group (10). Each label is mirrored and checksummed, so
74 * that we can detect when we fail partway through writing the label.
75 *
76 * In order to identify which labels are valid, the labels are written in the
77 * following manner:
78 *
79 * 1. For each vdev, update 'L1' to the new label
80 * 2. Update the uberblock
81 * 3. For each vdev, update 'L2' to the new label
82 *
83 * Given arbitrary failure, we can determine the correct label to use based on
84 * the transaction group. If we fail after updating L1 but before updating the
85 * UB, we will notice that L1's transaction group is greater than the uberblock,
86 * so L2 must be valid. If we fail after writing the uberblock but before
87 * writing L2, we will notice that L2's transaction group is less than L1, and
88 * therefore L1 is valid.
89 *
90 * Another added complexity is that not every label is updated when the config
91 * is synced. If we add a single device, we do not want to have to re-write
92 * every label for every device in the pool. This means that both L1 and L2 may
93 * be older than the pool uberblock, because the necessary information is stored
94 * on another vdev.
95 *
96 *
97 * On-disk Format
98 * --------------
99 *
100 * The vdev label consists of two distinct parts, and is wrapped within the
101 * vdev_label_t structure. The label includes 8k of padding to permit legacy
102 * VTOC disk labels, but is otherwise ignored.
103 *
104 * The first half of the label is a packed nvlist which contains pool wide
105 * properties, per-vdev properties, and configuration information. It is
106 * described in more detail below.
107 *
108 * The latter half of the label consists of a redundant array of uberblocks.
109 * These uberblocks are updated whenever a transaction group is committed,
110 * or when the configuration is updated. When a pool is loaded, we scan each
111 * vdev for the 'best' uberblock.
112 *
113 *
114 * Configuration Information
115 * -------------------------
116 *
117 * The nvlist describing the pool and vdev contains the following elements:
118 *
119 * version ZFS on-disk version
120 * name Pool name
121 * state Pool state
122 * txg Transaction group in which this label was written
123 * pool_guid Unique identifier for this pool
124 * vdev_tree An nvlist describing vdev tree.
125 *
126 * Each leaf device label also contains the following:
127 *
128 * top_guid Unique ID for top-level vdev in which this is contained
129 * guid Unique ID for the leaf vdev
130 *
131 * The 'vs' configuration follows the format described in 'spa_config.c'.
132 */
133
134#include <sys/zfs_context.h>
135#include <sys/spa.h>
136#include <sys/spa_impl.h>
137#include <sys/dmu.h>
138#include <sys/zap.h>
139#include <sys/vdev.h>
140#include <sys/vdev_impl.h>
141#include <sys/uberblock_impl.h>
142#include <sys/metaslab.h>
143#include <sys/zio.h>
144#include <sys/fs/zfs.h>
145
146/*
147 * Basic routines to read and write from a vdev label.
148 * Used throughout the rest of this file.
149 */
150uint64_t
151vdev_label_offset(uint64_t psize, int l, uint64_t offset)
152{
153 ASSERT(offset < sizeof (vdev_label_t));
154 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
155
156 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
157 0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
158}
159
b128c09f
BB
160/*
161 * Returns back the vdev label associated with the passed in offset.
162 */
163int
164vdev_label_number(uint64_t psize, uint64_t offset)
165{
166 int l;
167
168 if (offset >= psize - VDEV_LABEL_END_SIZE) {
169 offset -= psize - VDEV_LABEL_END_SIZE;
170 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
171 }
172 l = offset / sizeof (vdev_label_t);
173 return (l < VDEV_LABELS ? l : -1);
174}
175
34dc7c2f
BB
176static void
177vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
b128c09f 178 uint64_t size, zio_done_func_t *done, void *private, int flags)
34dc7c2f 179{
b128c09f
BB
180 ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
181 SCL_STATE_ALL);
182 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
34dc7c2f
BB
183
184 zio_nowait(zio_read_phys(zio, vd,
185 vdev_label_offset(vd->vdev_psize, l, offset),
186 size, buf, ZIO_CHECKSUM_LABEL, done, private,
b128c09f 187 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
34dc7c2f
BB
188}
189
190static void
191vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
192 uint64_t size, zio_done_func_t *done, void *private, int flags)
193{
b128c09f
BB
194 ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
195 (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
196 (SCL_CONFIG | SCL_STATE) &&
197 dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
198 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
34dc7c2f
BB
199
200 zio_nowait(zio_write_phys(zio, vd,
201 vdev_label_offset(vd->vdev_psize, l, offset),
202 size, buf, ZIO_CHECKSUM_LABEL, done, private,
203 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
204}
205
206/*
207 * Generate the nvlist representing this vdev's config.
208 */
209nvlist_t *
210vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
211 boolean_t isspare, boolean_t isl2cache)
212{
213 nvlist_t *nv = NULL;
214
215 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
216
217 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
218 vd->vdev_ops->vdev_op_type) == 0);
219 if (!isspare && !isl2cache)
220 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id)
221 == 0);
222 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0);
223
224 if (vd->vdev_path != NULL)
225 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH,
226 vd->vdev_path) == 0);
227
228 if (vd->vdev_devid != NULL)
229 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID,
230 vd->vdev_devid) == 0);
231
232 if (vd->vdev_physpath != NULL)
233 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
234 vd->vdev_physpath) == 0);
235
9babb374
BB
236 if (vd->vdev_fru != NULL)
237 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_FRU,
238 vd->vdev_fru) == 0);
239
34dc7c2f
BB
240 if (vd->vdev_nparity != 0) {
241 ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
242 VDEV_TYPE_RAIDZ) == 0);
243
244 /*
245 * Make sure someone hasn't managed to sneak a fancy new vdev
246 * into a crufty old storage pool.
247 */
248 ASSERT(vd->vdev_nparity == 1 ||
45d1cae3
BB
249 (vd->vdev_nparity <= 2 &&
250 spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
251 (vd->vdev_nparity <= 3 &&
252 spa_version(spa) >= SPA_VERSION_RAIDZ3));
34dc7c2f
BB
253
254 /*
255 * Note that we'll add the nparity tag even on storage pools
256 * that only support a single parity device -- older software
257 * will just ignore it.
258 */
259 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY,
260 vd->vdev_nparity) == 0);
261 }
262
263 if (vd->vdev_wholedisk != -1ULL)
264 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
265 vd->vdev_wholedisk) == 0);
266
267 if (vd->vdev_not_present)
268 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0);
269
270 if (vd->vdev_isspare)
271 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0);
272
273 if (!isspare && !isl2cache && vd == vd->vdev_top) {
274 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
275 vd->vdev_ms_array) == 0);
276 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
277 vd->vdev_ms_shift) == 0);
278 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT,
279 vd->vdev_ashift) == 0);
280 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
281 vd->vdev_asize) == 0);
282 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG,
283 vd->vdev_islog) == 0);
284 }
285
fb5f0bc8 286 if (vd->vdev_dtl_smo.smo_object != 0)
34dc7c2f 287 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
fb5f0bc8 288 vd->vdev_dtl_smo.smo_object) == 0);
34dc7c2f
BB
289
290 if (getstats) {
291 vdev_stat_t vs;
292 vdev_get_stats(vd, &vs);
293 VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_STATS,
294 (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0);
295 }
296
297 if (!vd->vdev_ops->vdev_op_leaf) {
298 nvlist_t **child;
299 int c;
300
301 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
302 KM_SLEEP);
303
304 for (c = 0; c < vd->vdev_children; c++)
305 child[c] = vdev_config_generate(spa, vd->vdev_child[c],
306 getstats, isspare, isl2cache);
307
308 VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
309 child, vd->vdev_children) == 0);
310
311 for (c = 0; c < vd->vdev_children; c++)
312 nvlist_free(child[c]);
313
314 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
315
316 } else {
317 if (vd->vdev_offline && !vd->vdev_tmpoffline)
318 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE,
319 B_TRUE) == 0);
320 if (vd->vdev_faulted)
321 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED,
322 B_TRUE) == 0);
323 if (vd->vdev_degraded)
324 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED,
325 B_TRUE) == 0);
326 if (vd->vdev_removed)
327 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED,
328 B_TRUE) == 0);
329 if (vd->vdev_unspare)
330 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE,
331 B_TRUE) == 0);
332 }
333
334 return (nv);
335}
336
337nvlist_t *
338vdev_label_read_config(vdev_t *vd)
339{
340 spa_t *spa = vd->vdev_spa;
341 nvlist_t *config = NULL;
342 vdev_phys_t *vp;
343 zio_t *zio;
9babb374
BB
344 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
345 ZIO_FLAG_SPECULATIVE;
34dc7c2f 346
b128c09f 347 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
34dc7c2f
BB
348
349 if (!vdev_readable(vd))
350 return (NULL);
351
352 vp = zio_buf_alloc(sizeof (vdev_phys_t));
353
9babb374 354retry:
b128c09f 355 for (int l = 0; l < VDEV_LABELS; l++) {
34dc7c2f 356
b128c09f 357 zio = zio_root(spa, NULL, NULL, flags);
34dc7c2f
BB
358
359 vdev_label_read(zio, vd, l, vp,
360 offsetof(vdev_label_t, vl_vdev_phys),
b128c09f 361 sizeof (vdev_phys_t), NULL, NULL, flags);
34dc7c2f
BB
362
363 if (zio_wait(zio) == 0 &&
364 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
365 &config, 0) == 0)
366 break;
367
368 if (config != NULL) {
369 nvlist_free(config);
370 config = NULL;
371 }
372 }
373
9babb374
BB
374 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
375 flags |= ZIO_FLAG_TRYHARD;
376 goto retry;
377 }
378
34dc7c2f
BB
379 zio_buf_free(vp, sizeof (vdev_phys_t));
380
381 return (config);
382}
383
384/*
385 * Determine if a device is in use. The 'spare_guid' parameter will be filled
386 * in with the device guid if this spare is active elsewhere on the system.
387 */
388static boolean_t
389vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
390 uint64_t *spare_guid, uint64_t *l2cache_guid)
391{
392 spa_t *spa = vd->vdev_spa;
393 uint64_t state, pool_guid, device_guid, txg, spare_pool;
394 uint64_t vdtxg = 0;
395 nvlist_t *label;
396
397 if (spare_guid)
398 *spare_guid = 0ULL;
399 if (l2cache_guid)
400 *l2cache_guid = 0ULL;
401
402 /*
403 * Read the label, if any, and perform some basic sanity checks.
404 */
405 if ((label = vdev_label_read_config(vd)) == NULL)
406 return (B_FALSE);
407
408 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
409 &vdtxg);
410
411 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
412 &state) != 0 ||
413 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
414 &device_guid) != 0) {
415 nvlist_free(label);
416 return (B_FALSE);
417 }
418
419 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
420 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
421 &pool_guid) != 0 ||
422 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
423 &txg) != 0)) {
424 nvlist_free(label);
425 return (B_FALSE);
426 }
427
428 nvlist_free(label);
429
430 /*
431 * Check to see if this device indeed belongs to the pool it claims to
432 * be a part of. The only way this is allowed is if the device is a hot
433 * spare (which we check for later on).
434 */
435 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
436 !spa_guid_exists(pool_guid, device_guid) &&
b128c09f 437 !spa_spare_exists(device_guid, NULL, NULL) &&
34dc7c2f
BB
438 !spa_l2cache_exists(device_guid, NULL))
439 return (B_FALSE);
440
441 /*
442 * If the transaction group is zero, then this an initialized (but
443 * unused) label. This is only an error if the create transaction
444 * on-disk is the same as the one we're using now, in which case the
445 * user has attempted to add the same vdev multiple times in the same
446 * transaction.
447 */
448 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
449 txg == 0 && vdtxg == crtxg)
450 return (B_TRUE);
451
452 /*
453 * Check to see if this is a spare device. We do an explicit check for
454 * spa_has_spare() here because it may be on our pending list of spares
455 * to add. We also check if it is an l2cache device.
456 */
b128c09f 457 if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
34dc7c2f
BB
458 spa_has_spare(spa, device_guid)) {
459 if (spare_guid)
460 *spare_guid = device_guid;
461
462 switch (reason) {
463 case VDEV_LABEL_CREATE:
464 case VDEV_LABEL_L2CACHE:
465 return (B_TRUE);
466
467 case VDEV_LABEL_REPLACE:
468 return (!spa_has_spare(spa, device_guid) ||
469 spare_pool != 0ULL);
470
471 case VDEV_LABEL_SPARE:
472 return (spa_has_spare(spa, device_guid));
473 }
474 }
475
476 /*
477 * Check to see if this is an l2cache device.
478 */
479 if (spa_l2cache_exists(device_guid, NULL))
480 return (B_TRUE);
481
482 /*
483 * If the device is marked ACTIVE, then this device is in use by another
484 * pool on the system.
485 */
486 return (state == POOL_STATE_ACTIVE);
487}
488
489/*
490 * Initialize a vdev label. We check to make sure each leaf device is not in
491 * use, and writable. We put down an initial label which we will later
492 * overwrite with a complete label. Note that it's important to do this
493 * sequentially, not in parallel, so that we catch cases of multiple use of the
494 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
495 * itself.
496 */
497int
498vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
499{
500 spa_t *spa = vd->vdev_spa;
501 nvlist_t *label;
502 vdev_phys_t *vp;
9babb374 503 char *pad2;
34dc7c2f
BB
504 uberblock_t *ub;
505 zio_t *zio;
34dc7c2f
BB
506 char *buf;
507 size_t buflen;
508 int error;
509 uint64_t spare_guid, l2cache_guid;
b128c09f 510 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
34dc7c2f 511
b128c09f 512 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f 513
b128c09f 514 for (int c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
515 if ((error = vdev_label_init(vd->vdev_child[c],
516 crtxg, reason)) != 0)
517 return (error);
518
519 if (!vd->vdev_ops->vdev_op_leaf)
520 return (0);
521
522 /*
523 * Dead vdevs cannot be initialized.
524 */
525 if (vdev_is_dead(vd))
526 return (EIO);
527
528 /*
529 * Determine if the vdev is in use.
530 */
531 if (reason != VDEV_LABEL_REMOVE &&
532 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
533 return (EBUSY);
534
34dc7c2f
BB
535 /*
536 * If this is a request to add or replace a spare or l2cache device
537 * that is in use elsewhere on the system, then we must update the
538 * guid (which was initialized to a random value) to reflect the
539 * actual GUID (which is shared between multiple pools).
540 */
541 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
542 spare_guid != 0ULL) {
b128c09f 543 uint64_t guid_delta = spare_guid - vd->vdev_guid;
34dc7c2f 544
b128c09f 545 vd->vdev_guid += guid_delta;
34dc7c2f 546
b128c09f
BB
547 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
548 pvd->vdev_guid_sum += guid_delta;
34dc7c2f
BB
549
550 /*
551 * If this is a replacement, then we want to fallthrough to the
552 * rest of the code. If we're adding a spare, then it's already
553 * labeled appropriately and we can just return.
554 */
555 if (reason == VDEV_LABEL_SPARE)
556 return (0);
557 ASSERT(reason == VDEV_LABEL_REPLACE);
558 }
559
560 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
561 l2cache_guid != 0ULL) {
b128c09f 562 uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
34dc7c2f 563
b128c09f 564 vd->vdev_guid += guid_delta;
34dc7c2f 565
b128c09f
BB
566 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
567 pvd->vdev_guid_sum += guid_delta;
34dc7c2f
BB
568
569 /*
570 * If this is a replacement, then we want to fallthrough to the
571 * rest of the code. If we're adding an l2cache, then it's
572 * already labeled appropriately and we can just return.
573 */
574 if (reason == VDEV_LABEL_L2CACHE)
575 return (0);
576 ASSERT(reason == VDEV_LABEL_REPLACE);
577 }
578
579 /*
580 * Initialize its label.
581 */
582 vp = zio_buf_alloc(sizeof (vdev_phys_t));
583 bzero(vp, sizeof (vdev_phys_t));
584
585 /*
586 * Generate a label describing the pool and our top-level vdev.
587 * We mark it as being from txg 0 to indicate that it's not
588 * really part of an active pool just yet. The labels will
589 * be written again with a meaningful txg by spa_sync().
590 */
591 if (reason == VDEV_LABEL_SPARE ||
592 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
593 /*
594 * For inactive hot spares, we generate a special label that
595 * identifies as a mutually shared hot spare. We write the
596 * label if we are adding a hot spare, or if we are removing an
597 * active hot spare (in which case we want to revert the
598 * labels).
599 */
600 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
601
602 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
603 spa_version(spa)) == 0);
604 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
605 POOL_STATE_SPARE) == 0);
606 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
607 vd->vdev_guid) == 0);
608 } else if (reason == VDEV_LABEL_L2CACHE ||
609 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
610 /*
611 * For level 2 ARC devices, add a special label.
612 */
613 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
614
615 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
616 spa_version(spa)) == 0);
617 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
618 POOL_STATE_L2CACHE) == 0);
619 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
620 vd->vdev_guid) == 0);
621 } else {
622 label = spa_config_generate(spa, vd, 0ULL, B_FALSE);
623
624 /*
625 * Add our creation time. This allows us to detect multiple
626 * vdev uses as described above, and automatically expires if we
627 * fail.
628 */
629 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
630 crtxg) == 0);
631 }
632
633 buf = vp->vp_nvlist;
634 buflen = sizeof (vp->vp_nvlist);
635
636 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
637 if (error != 0) {
638 nvlist_free(label);
639 zio_buf_free(vp, sizeof (vdev_phys_t));
640 /* EFAULT means nvlist_pack ran out of room */
641 return (error == EFAULT ? ENAMETOOLONG : EINVAL);
642 }
643
34dc7c2f
BB
644 /*
645 * Initialize uberblock template.
646 */
45d1cae3
BB
647 ub = zio_buf_alloc(VDEV_UBERBLOCK_RING);
648 bzero(ub, VDEV_UBERBLOCK_RING);
34dc7c2f
BB
649 *ub = spa->spa_uberblock;
650 ub->ub_txg = 0;
651
9babb374
BB
652 /* Initialize the 2nd padding area. */
653 pad2 = zio_buf_alloc(VDEV_PAD_SIZE);
654 bzero(pad2, VDEV_PAD_SIZE);
655
34dc7c2f
BB
656 /*
657 * Write everything in parallel.
658 */
9babb374 659retry:
34dc7c2f
BB
660 zio = zio_root(spa, NULL, NULL, flags);
661
b128c09f 662 for (int l = 0; l < VDEV_LABELS; l++) {
34dc7c2f
BB
663
664 vdev_label_write(zio, vd, l, vp,
665 offsetof(vdev_label_t, vl_vdev_phys),
666 sizeof (vdev_phys_t), NULL, NULL, flags);
667
9babb374
BB
668 /*
669 * Skip the 1st padding area.
670 * Zero out the 2nd padding area where it might have
671 * left over data from previous filesystem format.
672 */
673 vdev_label_write(zio, vd, l, pad2,
674 offsetof(vdev_label_t, vl_pad2),
675 VDEV_PAD_SIZE, NULL, NULL, flags);
34dc7c2f 676
45d1cae3
BB
677 vdev_label_write(zio, vd, l, ub,
678 offsetof(vdev_label_t, vl_uberblock),
679 VDEV_UBERBLOCK_RING, NULL, NULL, flags);
34dc7c2f
BB
680 }
681
682 error = zio_wait(zio);
683
9babb374
BB
684 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
685 flags |= ZIO_FLAG_TRYHARD;
686 goto retry;
687 }
688
34dc7c2f 689 nvlist_free(label);
9babb374 690 zio_buf_free(pad2, VDEV_PAD_SIZE);
45d1cae3 691 zio_buf_free(ub, VDEV_UBERBLOCK_RING);
34dc7c2f
BB
692 zio_buf_free(vp, sizeof (vdev_phys_t));
693
694 /*
695 * If this vdev hasn't been previously identified as a spare, then we
696 * mark it as such only if a) we are labeling it as a spare, or b) it
697 * exists as a spare elsewhere in the system. Do the same for
698 * level 2 ARC devices.
699 */
700 if (error == 0 && !vd->vdev_isspare &&
701 (reason == VDEV_LABEL_SPARE ||
b128c09f 702 spa_spare_exists(vd->vdev_guid, NULL, NULL)))
34dc7c2f
BB
703 spa_spare_add(vd);
704
705 if (error == 0 && !vd->vdev_isl2cache &&
706 (reason == VDEV_LABEL_L2CACHE ||
707 spa_l2cache_exists(vd->vdev_guid, NULL)))
708 spa_l2cache_add(vd);
709
710 return (error);
711}
712
713/*
714 * ==========================================================================
715 * uberblock load/sync
716 * ==========================================================================
717 */
718
fb5f0bc8
BB
719/*
720 * For use by zdb and debugging purposes only
721 */
722uint64_t ub_max_txg = UINT64_MAX;
723
34dc7c2f
BB
724/*
725 * Consider the following situation: txg is safely synced to disk. We've
726 * written the first uberblock for txg + 1, and then we lose power. When we
727 * come back up, we fail to see the uberblock for txg + 1 because, say,
728 * it was on a mirrored device and the replica to which we wrote txg + 1
729 * is now offline. If we then make some changes and sync txg + 1, and then
730 * the missing replica comes back, then for a new seconds we'll have two
731 * conflicting uberblocks on disk with the same txg. The solution is simple:
732 * among uberblocks with equal txg, choose the one with the latest timestamp.
733 */
734static int
735vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
736{
737 if (ub1->ub_txg < ub2->ub_txg)
738 return (-1);
739 if (ub1->ub_txg > ub2->ub_txg)
740 return (1);
741
742 if (ub1->ub_timestamp < ub2->ub_timestamp)
743 return (-1);
744 if (ub1->ub_timestamp > ub2->ub_timestamp)
745 return (1);
746
747 return (0);
748}
749
750static void
751vdev_uberblock_load_done(zio_t *zio)
752{
b128c09f 753 zio_t *rio = zio->io_private;
34dc7c2f 754 uberblock_t *ub = zio->io_data;
b128c09f 755 uberblock_t *ubbest = rio->io_private;
34dc7c2f
BB
756
757 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(zio->io_vd));
758
759 if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
b128c09f 760 mutex_enter(&rio->io_lock);
fb5f0bc8
BB
761 if (ub->ub_txg <= ub_max_txg &&
762 vdev_uberblock_compare(ub, ubbest) > 0)
34dc7c2f 763 *ubbest = *ub;
b128c09f 764 mutex_exit(&rio->io_lock);
34dc7c2f
BB
765 }
766
767 zio_buf_free(zio->io_data, zio->io_size);
768}
769
770void
771vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest)
772{
b128c09f
BB
773 spa_t *spa = vd->vdev_spa;
774 vdev_t *rvd = spa->spa_root_vdev;
9babb374
BB
775 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
776 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
b128c09f
BB
777
778 if (vd == rvd) {
779 ASSERT(zio == NULL);
780 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
781 zio = zio_root(spa, NULL, ubbest, flags);
782 bzero(ubbest, sizeof (uberblock_t));
783 }
34dc7c2f 784
b128c09f 785 ASSERT(zio != NULL);
34dc7c2f 786
b128c09f
BB
787 for (int c = 0; c < vd->vdev_children; c++)
788 vdev_uberblock_load(zio, vd->vdev_child[c], ubbest);
34dc7c2f 789
b128c09f
BB
790 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
791 for (int l = 0; l < VDEV_LABELS; l++) {
792 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
793 vdev_label_read(zio, vd, l,
794 zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
795 VDEV_UBERBLOCK_OFFSET(vd, n),
796 VDEV_UBERBLOCK_SIZE(vd),
797 vdev_uberblock_load_done, zio, flags);
798 }
34dc7c2f
BB
799 }
800 }
b128c09f
BB
801
802 if (vd == rvd) {
803 (void) zio_wait(zio);
804 spa_config_exit(spa, SCL_ALL, FTAG);
805 }
34dc7c2f
BB
806}
807
808/*
809 * On success, increment root zio's count of good writes.
810 * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
811 */
812static void
813vdev_uberblock_sync_done(zio_t *zio)
814{
815 uint64_t *good_writes = zio->io_private;
816
817 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
818 atomic_add_64(good_writes, 1);
819}
820
821/*
822 * Write the uberblock to all labels of all leaves of the specified vdev.
823 */
824static void
b128c09f 825vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
34dc7c2f 826{
34dc7c2f 827 uberblock_t *ubbuf;
b128c09f 828 int n;
34dc7c2f 829
b128c09f
BB
830 for (int c = 0; c < vd->vdev_children; c++)
831 vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
34dc7c2f
BB
832
833 if (!vd->vdev_ops->vdev_op_leaf)
834 return;
835
b128c09f 836 if (!vdev_writeable(vd))
34dc7c2f
BB
837 return;
838
839 n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
840
841 ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
842 bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
843 *ubbuf = *ub;
844
b128c09f 845 for (int l = 0; l < VDEV_LABELS; l++)
34dc7c2f 846 vdev_label_write(zio, vd, l, ubbuf,
b128c09f 847 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
34dc7c2f 848 vdev_uberblock_sync_done, zio->io_private,
b128c09f 849 flags | ZIO_FLAG_DONT_PROPAGATE);
34dc7c2f
BB
850
851 zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
852}
853
854int
855vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
856{
857 spa_t *spa = svd[0]->vdev_spa;
34dc7c2f
BB
858 zio_t *zio;
859 uint64_t good_writes = 0;
860
861 zio = zio_root(spa, NULL, &good_writes, flags);
862
b128c09f
BB
863 for (int v = 0; v < svdcount; v++)
864 vdev_uberblock_sync(zio, ub, svd[v], flags);
34dc7c2f
BB
865
866 (void) zio_wait(zio);
867
868 /*
869 * Flush the uberblocks to disk. This ensures that the odd labels
870 * are no longer needed (because the new uberblocks and the even
871 * labels are safely on disk), so it is safe to overwrite them.
872 */
873 zio = zio_root(spa, NULL, NULL, flags);
874
b128c09f 875 for (int v = 0; v < svdcount; v++)
34dc7c2f
BB
876 zio_flush(zio, svd[v]);
877
878 (void) zio_wait(zio);
879
880 return (good_writes >= 1 ? 0 : EIO);
881}
882
883/*
884 * On success, increment the count of good writes for our top-level vdev.
885 */
886static void
887vdev_label_sync_done(zio_t *zio)
888{
889 uint64_t *good_writes = zio->io_private;
890
891 if (zio->io_error == 0)
892 atomic_add_64(good_writes, 1);
893}
894
895/*
896 * If there weren't enough good writes, indicate failure to the parent.
897 */
898static void
899vdev_label_sync_top_done(zio_t *zio)
900{
901 uint64_t *good_writes = zio->io_private;
902
903 if (*good_writes == 0)
904 zio->io_error = EIO;
905
906 kmem_free(good_writes, sizeof (uint64_t));
907}
908
b128c09f
BB
909/*
910 * We ignore errors for log and cache devices, simply free the private data.
911 */
912static void
913vdev_label_sync_ignore_done(zio_t *zio)
914{
915 kmem_free(zio->io_private, sizeof (uint64_t));
916}
917
34dc7c2f
BB
918/*
919 * Write all even or odd labels to all leaves of the specified vdev.
920 */
921static void
b128c09f 922vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
34dc7c2f
BB
923{
924 nvlist_t *label;
925 vdev_phys_t *vp;
926 char *buf;
927 size_t buflen;
34dc7c2f 928
b128c09f
BB
929 for (int c = 0; c < vd->vdev_children; c++)
930 vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
34dc7c2f
BB
931
932 if (!vd->vdev_ops->vdev_op_leaf)
933 return;
934
b128c09f 935 if (!vdev_writeable(vd))
34dc7c2f
BB
936 return;
937
938 /*
939 * Generate a label describing the top-level config to which we belong.
940 */
941 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
942
943 vp = zio_buf_alloc(sizeof (vdev_phys_t));
944 bzero(vp, sizeof (vdev_phys_t));
945
946 buf = vp->vp_nvlist;
947 buflen = sizeof (vp->vp_nvlist);
948
949 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
950 for (; l < VDEV_LABELS; l += 2) {
951 vdev_label_write(zio, vd, l, vp,
952 offsetof(vdev_label_t, vl_vdev_phys),
953 sizeof (vdev_phys_t),
954 vdev_label_sync_done, zio->io_private,
b128c09f 955 flags | ZIO_FLAG_DONT_PROPAGATE);
34dc7c2f
BB
956 }
957 }
958
959 zio_buf_free(vp, sizeof (vdev_phys_t));
960 nvlist_free(label);
961}
962
963int
b128c09f 964vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
34dc7c2f 965{
b128c09f 966 list_t *dl = &spa->spa_config_dirty_list;
34dc7c2f
BB
967 vdev_t *vd;
968 zio_t *zio;
969 int error;
970
971 /*
972 * Write the new labels to disk.
973 */
974 zio = zio_root(spa, NULL, NULL, flags);
975
976 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
977 uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
978 KM_SLEEP);
d164b209 979 zio_t *vio = zio_null(zio, spa, NULL,
b128c09f
BB
980 (vd->vdev_islog || vd->vdev_aux != NULL) ?
981 vdev_label_sync_ignore_done : vdev_label_sync_top_done,
34dc7c2f 982 good_writes, flags);
b128c09f 983 vdev_label_sync(vio, vd, l, txg, flags);
34dc7c2f
BB
984 zio_nowait(vio);
985 }
986
987 error = zio_wait(zio);
988
989 /*
990 * Flush the new labels to disk.
991 */
992 zio = zio_root(spa, NULL, NULL, flags);
993
994 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
995 zio_flush(zio, vd);
996
997 (void) zio_wait(zio);
998
999 return (error);
1000}
1001
1002/*
1003 * Sync the uberblock and any changes to the vdev configuration.
1004 *
1005 * The order of operations is carefully crafted to ensure that
1006 * if the system panics or loses power at any time, the state on disk
1007 * is still transactionally consistent. The in-line comments below
1008 * describe the failure semantics at each stage.
1009 *
1010 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1011 * at any time, you can just call it again, and it will resume its work.
1012 */
1013int
9babb374 1014vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard)
34dc7c2f
BB
1015{
1016 spa_t *spa = svd[0]->vdev_spa;
1017 uberblock_t *ub = &spa->spa_uberblock;
1018 vdev_t *vd;
1019 zio_t *zio;
1020 int error;
b128c09f 1021 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
34dc7c2f 1022
9babb374
BB
1023 /*
1024 * Normally, we don't want to try too hard to write every label and
1025 * uberblock. If there is a flaky disk, we don't want the rest of the
1026 * sync process to block while we retry. But if we can't write a
1027 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1028 * bailing out and declaring the pool faulted.
1029 */
1030 if (tryhard)
1031 flags |= ZIO_FLAG_TRYHARD;
1032
34dc7c2f
BB
1033 ASSERT(ub->ub_txg <= txg);
1034
1035 /*
1036 * If this isn't a resync due to I/O errors,
1037 * and nothing changed in this transaction group,
1038 * and the vdev configuration hasn't changed,
1039 * then there's nothing to do.
1040 */
1041 if (ub->ub_txg < txg &&
1042 uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
b128c09f 1043 list_is_empty(&spa->spa_config_dirty_list))
34dc7c2f
BB
1044 return (0);
1045
1046 if (txg > spa_freeze_txg(spa))
1047 return (0);
1048
1049 ASSERT(txg <= spa->spa_final_txg);
1050
1051 /*
1052 * Flush the write cache of every disk that's been written to
1053 * in this transaction group. This ensures that all blocks
1054 * written in this txg will be committed to stable storage
1055 * before any uberblock that references them.
1056 */
1057 zio = zio_root(spa, NULL, NULL, flags);
1058
1059 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
1060 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1061 zio_flush(zio, vd);
1062
1063 (void) zio_wait(zio);
1064
1065 /*
1066 * Sync out the even labels (L0, L2) for every dirty vdev. If the
1067 * system dies in the middle of this process, that's OK: all of the
1068 * even labels that made it to disk will be newer than any uberblock,
1069 * and will therefore be considered invalid. The odd labels (L1, L3),
1070 * which have not yet been touched, will still be valid. We flush
1071 * the new labels to disk to ensure that all even-label updates
1072 * are committed to stable storage before the uberblock update.
1073 */
b128c09f 1074 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
34dc7c2f
BB
1075 return (error);
1076
1077 /*
1078 * Sync the uberblocks to all vdevs in svd[].
1079 * If the system dies in the middle of this step, there are two cases
1080 * to consider, and the on-disk state is consistent either way:
1081 *
1082 * (1) If none of the new uberblocks made it to disk, then the
1083 * previous uberblock will be the newest, and the odd labels
1084 * (which had not yet been touched) will be valid with respect
1085 * to that uberblock.
1086 *
1087 * (2) If one or more new uberblocks made it to disk, then they
1088 * will be the newest, and the even labels (which had all
1089 * been successfully committed) will be valid with respect
1090 * to the new uberblocks.
1091 */
1092 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
1093 return (error);
1094
1095 /*
1096 * Sync out odd labels for every dirty vdev. If the system dies
1097 * in the middle of this process, the even labels and the new
1098 * uberblocks will suffice to open the pool. The next time
1099 * the pool is opened, the first thing we'll do -- before any
1100 * user data is modified -- is mark every vdev dirty so that
1101 * all labels will be brought up to date. We flush the new labels
1102 * to disk to ensure that all odd-label updates are committed to
1103 * stable storage before the next transaction group begins.
1104 */
b128c09f 1105 return (vdev_label_sync_list(spa, 1, txg, flags));
34dc7c2f 1106}