]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/vdev_label.c
Add device rebuild feature
[mirror_zfs.git] / module / zfs / vdev_label.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
9ae529ec 21
34dc7c2f 22/*
428870ff 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
108a454a 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
cc99f275 25 * Copyright (c) 2017, Intel Corporation.
34dc7c2f
BB
26 */
27
34dc7c2f
BB
28/*
29 * Virtual Device Labels
30 * ---------------------
31 *
32 * The vdev label serves several distinct purposes:
33 *
34 * 1. Uniquely identify this device as part of a ZFS pool and confirm its
35 * identity within the pool.
36 *
0dc2f70c 37 * 2. Verify that all the devices given in a configuration are present
34dc7c2f
BB
38 * within the pool.
39 *
0dc2f70c 40 * 3. Determine the uberblock for the pool.
34dc7c2f 41 *
0dc2f70c 42 * 4. In case of an import operation, determine the configuration of the
34dc7c2f
BB
43 * toplevel vdev of which it is a part.
44 *
0dc2f70c 45 * 5. If an import operation cannot find all the devices in the pool,
34dc7c2f
BB
46 * provide enough information to the administrator to determine which
47 * devices are missing.
48 *
49 * It is important to note that while the kernel is responsible for writing the
50 * label, it only consumes the information in the first three cases. The
51 * latter information is only consumed in userland when determining the
52 * configuration to import a pool.
53 *
54 *
55 * Label Organization
56 * ------------------
57 *
58 * Before describing the contents of the label, it's important to understand how
59 * the labels are written and updated with respect to the uberblock.
60 *
61 * When the pool configuration is altered, either because it was newly created
62 * or a device was added, we want to update all the labels such that we can deal
63 * with fatal failure at any point. To this end, each disk has two labels which
64 * are updated before and after the uberblock is synced. Assuming we have
65 * labels and an uberblock with the following transaction groups:
66 *
67 * L1 UB L2
68 * +------+ +------+ +------+
69 * | | | | | |
70 * | t10 | | t10 | | t10 |
71 * | | | | | |
72 * +------+ +------+ +------+
73 *
74 * In this stable state, the labels and the uberblock were all updated within
75 * the same transaction group (10). Each label is mirrored and checksummed, so
76 * that we can detect when we fail partway through writing the label.
77 *
78 * In order to identify which labels are valid, the labels are written in the
79 * following manner:
80 *
0dc2f70c
MA
81 * 1. For each vdev, update 'L1' to the new label
82 * 2. Update the uberblock
83 * 3. For each vdev, update 'L2' to the new label
34dc7c2f
BB
84 *
85 * Given arbitrary failure, we can determine the correct label to use based on
86 * the transaction group. If we fail after updating L1 but before updating the
87 * UB, we will notice that L1's transaction group is greater than the uberblock,
88 * so L2 must be valid. If we fail after writing the uberblock but before
89 * writing L2, we will notice that L2's transaction group is less than L1, and
90 * therefore L1 is valid.
91 *
92 * Another added complexity is that not every label is updated when the config
93 * is synced. If we add a single device, we do not want to have to re-write
94 * every label for every device in the pool. This means that both L1 and L2 may
95 * be older than the pool uberblock, because the necessary information is stored
96 * on another vdev.
97 *
98 *
99 * On-disk Format
100 * --------------
101 *
102 * The vdev label consists of two distinct parts, and is wrapped within the
103 * vdev_label_t structure. The label includes 8k of padding to permit legacy
104 * VTOC disk labels, but is otherwise ignored.
105 *
106 * The first half of the label is a packed nvlist which contains pool wide
107 * properties, per-vdev properties, and configuration information. It is
108 * described in more detail below.
109 *
110 * The latter half of the label consists of a redundant array of uberblocks.
111 * These uberblocks are updated whenever a transaction group is committed,
112 * or when the configuration is updated. When a pool is loaded, we scan each
113 * vdev for the 'best' uberblock.
114 *
115 *
116 * Configuration Information
117 * -------------------------
118 *
119 * The nvlist describing the pool and vdev contains the following elements:
120 *
0dc2f70c
MA
121 * version ZFS on-disk version
122 * name Pool name
123 * state Pool state
124 * txg Transaction group in which this label was written
125 * pool_guid Unique identifier for this pool
126 * vdev_tree An nvlist describing vdev tree.
9ae529ec
CS
127 * features_for_read
128 * An nvlist of the features necessary for reading the MOS.
34dc7c2f
BB
129 *
130 * Each leaf device label also contains the following:
131 *
0dc2f70c
MA
132 * top_guid Unique ID for top-level vdev in which this is contained
133 * guid Unique ID for the leaf vdev
34dc7c2f
BB
134 *
135 * The 'vs' configuration follows the format described in 'spa_config.c'.
136 */
137
138#include <sys/zfs_context.h>
139#include <sys/spa.h>
140#include <sys/spa_impl.h>
141#include <sys/dmu.h>
142#include <sys/zap.h>
143#include <sys/vdev.h>
144#include <sys/vdev_impl.h>
145#include <sys/uberblock_impl.h>
146#include <sys/metaslab.h>
a1d477c2 147#include <sys/metaslab_impl.h>
34dc7c2f 148#include <sys/zio.h>
428870ff 149#include <sys/dsl_scan.h>
a6255b7f 150#include <sys/abd.h>
34dc7c2f
BB
151#include <sys/fs/zfs.h>
152
153/*
154 * Basic routines to read and write from a vdev label.
155 * Used throughout the rest of this file.
156 */
157uint64_t
158vdev_label_offset(uint64_t psize, int l, uint64_t offset)
159{
160 ASSERT(offset < sizeof (vdev_label_t));
161 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
162
163 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
164 0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
165}
166
b128c09f
BB
167/*
168 * Returns back the vdev label associated with the passed in offset.
169 */
170int
171vdev_label_number(uint64_t psize, uint64_t offset)
172{
173 int l;
174
175 if (offset >= psize - VDEV_LABEL_END_SIZE) {
176 offset -= psize - VDEV_LABEL_END_SIZE;
177 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
178 }
179 l = offset / sizeof (vdev_label_t);
180 return (l < VDEV_LABELS ? l : -1);
181}
182
34dc7c2f 183static void
a6255b7f 184vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
e9aa730c 185 uint64_t size, zio_done_func_t *done, void *private, int flags)
34dc7c2f 186{
0091d66f
OF
187 ASSERT(
188 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
189 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
b128c09f 190 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
34dc7c2f
BB
191
192 zio_nowait(zio_read_phys(zio, vd,
193 vdev_label_offset(vd->vdev_psize, l, offset),
194 size, buf, ZIO_CHECKSUM_LABEL, done, private,
b128c09f 195 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
34dc7c2f
BB
196}
197
379ca9cf 198void
a6255b7f 199vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
e9aa730c 200 uint64_t size, zio_done_func_t *done, void *private, int flags)
34dc7c2f 201{
0091d66f
OF
202 ASSERT(
203 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
204 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
b128c09f 205 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
34dc7c2f
BB
206
207 zio_nowait(zio_write_phys(zio, vd,
208 vdev_label_offset(vd->vdev_psize, l, offset),
209 size, buf, ZIO_CHECKSUM_LABEL, done, private,
210 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
211}
212
193a37cb
TH
213/*
214 * Generate the nvlist representing this vdev's stats
215 */
216void
217vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv)
218{
219 nvlist_t *nvx;
220 vdev_stat_t *vs;
221 vdev_stat_ex_t *vsx;
222
223 vs = kmem_alloc(sizeof (*vs), KM_SLEEP);
224 vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP);
225
226 vdev_get_stats_ex(vd, vs, vsx);
227 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
228 (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t));
229
193a37cb
TH
230 /*
231 * Add extended stats into a special extended stats nvlist. This keeps
232 * all the extended stats nicely grouped together. The extended stats
233 * nvlist is then added to the main nvlist.
234 */
235 nvx = fnvlist_alloc();
236
237 /* ZIOs in flight to disk */
238 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE,
239 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]);
240
241 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE,
242 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]);
243
244 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE,
245 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]);
246
247 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE,
248 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]);
249
250 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE,
251 vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]);
252
1b939560
BB
253 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_ACTIVE_QUEUE,
254 vsx->vsx_active_queue[ZIO_PRIORITY_TRIM]);
255
193a37cb
TH
256 /* ZIOs pending */
257 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE,
258 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]);
259
260 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE,
261 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]);
262
263 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE,
264 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]);
265
266 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE,
267 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]);
268
269 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE,
270 vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]);
271
1b939560
BB
272 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_PEND_QUEUE,
273 vsx->vsx_pend_queue[ZIO_PRIORITY_TRIM]);
274
193a37cb
TH
275 /* Histograms */
276 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO,
277 vsx->vsx_total_histo[ZIO_TYPE_READ],
278 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ]));
279
280 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO,
281 vsx->vsx_total_histo[ZIO_TYPE_WRITE],
282 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE]));
283
284 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO,
285 vsx->vsx_disk_histo[ZIO_TYPE_READ],
286 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ]));
287
288 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO,
289 vsx->vsx_disk_histo[ZIO_TYPE_WRITE],
290 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE]));
291
292 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO,
293 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ],
294 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ]));
295
296 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO,
297 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE],
298 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE]));
299
300 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO,
301 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ],
302 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ]));
303
304 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO,
305 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE],
306 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE]));
307
308 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO,
309 vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB],
310 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB]));
311
1b939560
BB
312 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO,
313 vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM],
314 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM]));
315
7e945072
TH
316 /* Request sizes */
317 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO,
318 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ],
319 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ]));
320
321 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO,
322 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE],
323 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE]));
324
325 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO,
326 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ],
327 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ]));
328
329 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO,
330 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE],
331 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE]));
332
333 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO,
334 vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB],
335 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB]));
336
1b939560
BB
337 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO,
338 vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM],
339 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM]));
340
7e945072
TH
341 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO,
342 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ],
343 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ]));
344
345 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO,
346 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE],
347 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE]));
348
349 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO,
350 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ],
351 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ]));
352
353 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO,
354 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE],
355 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE]));
356
357 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO,
358 vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB],
359 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB]));
360
1b939560
BB
361 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_TRIM_HISTO,
362 vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM],
363 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM]));
364
ad796b8a
TH
365 /* IO delays */
366 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SLOW_IOS, vs->vs_slow_ios);
367
193a37cb
TH
368 /* Add extended stats nvlist to main nvlist */
369 fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx);
370
6a796725 371 fnvlist_free(nvx);
c8fd652c 372 kmem_free(vs, sizeof (*vs));
193a37cb
TH
373 kmem_free(vsx, sizeof (*vsx));
374}
375
d2734cce
SD
376static void
377root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
378{
379 spa_t *spa = vd->vdev_spa;
380
381 if (vd != spa->spa_root_vdev)
382 return;
383
384 /* provide either current or previous scan information */
385 pool_scan_stat_t ps;
386 if (spa_scan_get_stats(spa, &ps) == 0) {
387 fnvlist_add_uint64_array(nvl,
388 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
389 sizeof (pool_scan_stat_t) / sizeof (uint64_t));
390 }
391
392 pool_removal_stat_t prs;
393 if (spa_removal_get_stats(spa, &prs) == 0) {
394 fnvlist_add_uint64_array(nvl,
395 ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs,
396 sizeof (prs) / sizeof (uint64_t));
397 }
398
399 pool_checkpoint_stat_t pcs;
400 if (spa_checkpoint_get_stats(spa, &pcs) == 0) {
401 fnvlist_add_uint64_array(nvl,
402 ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs,
403 sizeof (pcs) / sizeof (uint64_t));
404 }
405}
406
9a49d3f3
BB
407static void
408top_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
409{
410 if (vd == vd->vdev_top) {
411 vdev_rebuild_stat_t vrs;
412 if (vdev_rebuild_get_stats(vd, &vrs) == 0) {
413 fnvlist_add_uint64_array(nvl,
414 ZPOOL_CONFIG_REBUILD_STATS, (uint64_t *)&vrs,
415 sizeof (vrs) / sizeof (uint64_t));
416 }
417 }
418}
419
34dc7c2f
BB
420/*
421 * Generate the nvlist representing this vdev's config.
422 */
423nvlist_t *
424vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
428870ff 425 vdev_config_flag_t flags)
34dc7c2f
BB
426{
427 nvlist_t *nv = NULL;
a1d477c2
MA
428 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
429
79c76d5b 430 nv = fnvlist_alloc();
34dc7c2f 431
5d1f7fb6 432 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
428870ff 433 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
5d1f7fb6
GW
434 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
435 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
34dc7c2f
BB
436
437 if (vd->vdev_path != NULL)
5d1f7fb6 438 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
34dc7c2f
BB
439
440 if (vd->vdev_devid != NULL)
5d1f7fb6 441 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
34dc7c2f
BB
442
443 if (vd->vdev_physpath != NULL)
5d1f7fb6
GW
444 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
445 vd->vdev_physpath);
34dc7c2f 446
1bbd8770
TH
447 if (vd->vdev_enc_sysfs_path != NULL)
448 fnvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
449 vd->vdev_enc_sysfs_path);
450
9babb374 451 if (vd->vdev_fru != NULL)
5d1f7fb6 452 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
9babb374 453
34dc7c2f
BB
454 if (vd->vdev_nparity != 0) {
455 ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
456 VDEV_TYPE_RAIDZ) == 0);
457
458 /*
459 * Make sure someone hasn't managed to sneak a fancy new vdev
460 * into a crufty old storage pool.
461 */
462 ASSERT(vd->vdev_nparity == 1 ||
45d1cae3
BB
463 (vd->vdev_nparity <= 2 &&
464 spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
465 (vd->vdev_nparity <= 3 &&
466 spa_version(spa) >= SPA_VERSION_RAIDZ3));
34dc7c2f
BB
467
468 /*
469 * Note that we'll add the nparity tag even on storage pools
470 * that only support a single parity device -- older software
471 * will just ignore it.
472 */
5d1f7fb6 473 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity);
34dc7c2f
BB
474 }
475
476 if (vd->vdev_wholedisk != -1ULL)
5d1f7fb6
GW
477 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
478 vd->vdev_wholedisk);
34dc7c2f 479
6cb8e530 480 if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING))
5d1f7fb6 481 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
34dc7c2f
BB
482
483 if (vd->vdev_isspare)
5d1f7fb6 484 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
34dc7c2f 485
428870ff
BB
486 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
487 vd == vd->vdev_top) {
5d1f7fb6
GW
488 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
489 vd->vdev_ms_array);
490 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
491 vd->vdev_ms_shift);
492 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
493 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
494 vd->vdev_asize);
495 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
a1d477c2 496 if (vd->vdev_removing) {
5d1f7fb6
GW
497 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
498 vd->vdev_removing);
a1d477c2 499 }
cc99f275
DB
500
501 /* zpool command expects alloc class data */
502 if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) {
503 const char *bias = NULL;
504
505 switch (vd->vdev_alloc_bias) {
506 case VDEV_BIAS_LOG:
507 bias = VDEV_ALLOC_BIAS_LOG;
508 break;
509 case VDEV_BIAS_SPECIAL:
510 bias = VDEV_ALLOC_BIAS_SPECIAL;
511 break;
512 case VDEV_BIAS_DEDUP:
513 bias = VDEV_ALLOC_BIAS_DEDUP;
514 break;
515 default:
516 ASSERT3U(vd->vdev_alloc_bias, ==,
517 VDEV_BIAS_NONE);
518 }
519 fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
520 bias);
521 }
34dc7c2f
BB
522 }
523
93cf2076 524 if (vd->vdev_dtl_sm != NULL) {
5d1f7fb6 525 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
93cf2076
GW
526 space_map_object(vd->vdev_dtl_sm));
527 }
34dc7c2f 528
a1d477c2
MA
529 if (vic->vic_mapping_object != 0) {
530 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
531 vic->vic_mapping_object);
532 }
533
534 if (vic->vic_births_object != 0) {
535 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
536 vic->vic_births_object);
537 }
538
539 if (vic->vic_prev_indirect_vdev != UINT64_MAX) {
540 fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
541 vic->vic_prev_indirect_vdev);
542 }
543
428870ff 544 if (vd->vdev_crtxg)
5d1f7fb6 545 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
428870ff 546
d48091de 547 if (vd->vdev_expansion_time)
548 fnvlist_add_uint64(nv, ZPOOL_CONFIG_EXPANSION_TIME,
549 vd->vdev_expansion_time);
550
e0ab3ab5
JS
551 if (flags & VDEV_CONFIG_MOS) {
552 if (vd->vdev_leaf_zap != 0) {
553 ASSERT(vd->vdev_ops->vdev_op_leaf);
554 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
555 vd->vdev_leaf_zap);
556 }
557
558 if (vd->vdev_top_zap != 0) {
559 ASSERT(vd == vd->vdev_top);
560 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
561 vd->vdev_top_zap);
562 }
80a91e74
TC
563
564 if (vd->vdev_resilver_deferred) {
565 ASSERT(vd->vdev_ops->vdev_op_leaf);
566 ASSERT(spa->spa_resilver_deferred);
567 fnvlist_add_boolean(nv, ZPOOL_CONFIG_RESILVER_DEFER);
568 }
e0ab3ab5
JS
569 }
570
34dc7c2f 571 if (getstats) {
193a37cb 572 vdev_config_generate_stats(vd, nv);
428870ff 573
d2734cce 574 root_vdev_actions_getprogress(vd, nv);
9a49d3f3 575 top_vdev_actions_getprogress(vd, nv);
a1d477c2
MA
576
577 /*
578 * Note: this can be called from open context
579 * (spa_get_stats()), so we need the rwlock to prevent
580 * the mapping from being changed by condensing.
581 */
582 rw_enter(&vd->vdev_indirect_rwlock, RW_READER);
583 if (vd->vdev_indirect_mapping != NULL) {
584 ASSERT(vd->vdev_indirect_births != NULL);
585 vdev_indirect_mapping_t *vim =
586 vd->vdev_indirect_mapping;
587 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
588 vdev_indirect_mapping_size(vim));
589 }
590 rw_exit(&vd->vdev_indirect_rwlock);
591 if (vd->vdev_mg != NULL &&
592 vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) {
593 /*
594 * Compute approximately how much memory would be used
595 * for the indirect mapping if this device were to
596 * be removed.
597 *
598 * Note: If the frag metric is invalid, then not
599 * enough metaslabs have been converted to have
600 * histograms.
601 */
602 uint64_t seg_count = 0;
0dc2f70c 603 uint64_t to_alloc = vd->vdev_stat.vs_alloc;
a1d477c2
MA
604
605 /*
606 * There are the same number of allocated segments
607 * as free segments, so we will have at least one
0dc2f70c
MA
608 * entry per free segment. However, small free
609 * segments (smaller than vdev_removal_max_span)
610 * will be combined with adjacent allocated segments
611 * as a single mapping.
a1d477c2
MA
612 */
613 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
0dc2f70c
MA
614 if (1ULL << (i + 1) < vdev_removal_max_span) {
615 to_alloc +=
616 vd->vdev_mg->mg_histogram[i] <<
617 (i + 1);
618 } else {
619 seg_count +=
620 vd->vdev_mg->mg_histogram[i];
621 }
a1d477c2
MA
622 }
623
624 /*
0dc2f70c
MA
625 * The maximum length of a mapping is
626 * zfs_remove_max_segment, so we need at least one entry
627 * per zfs_remove_max_segment of allocated data.
a1d477c2 628 */
53dce5ac 629 seg_count += to_alloc / spa_remove_max_segment(spa);
a1d477c2
MA
630
631 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
632 seg_count *
633 sizeof (vdev_indirect_mapping_entry_phys_t));
634 }
34dc7c2f
BB
635 }
636
637 if (!vd->vdev_ops->vdev_op_leaf) {
638 nvlist_t **child;
428870ff
BB
639 int c, idx;
640
641 ASSERT(!vd->vdev_ishole);
34dc7c2f
BB
642
643 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
79c76d5b 644 KM_SLEEP);
34dc7c2f 645
428870ff
BB
646 for (c = 0, idx = 0; c < vd->vdev_children; c++) {
647 vdev_t *cvd = vd->vdev_child[c];
34dc7c2f 648
428870ff
BB
649 /*
650 * If we're generating an nvlist of removing
651 * vdevs then skip over any device which is
652 * not being removed.
653 */
654 if ((flags & VDEV_CONFIG_REMOVING) &&
655 !cvd->vdev_removing)
656 continue;
34dc7c2f 657
428870ff
BB
658 child[idx++] = vdev_config_generate(spa, cvd,
659 getstats, flags);
660 }
661
662 if (idx) {
5d1f7fb6
GW
663 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
664 child, idx);
428870ff
BB
665 }
666
667 for (c = 0; c < idx; c++)
34dc7c2f
BB
668 nvlist_free(child[c]);
669
670 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
671
672 } else {
428870ff
BB
673 const char *aux = NULL;
674
34dc7c2f 675 if (vd->vdev_offline && !vd->vdev_tmpoffline)
5d1f7fb6
GW
676 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
677 if (vd->vdev_resilver_txg != 0)
678 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
679 vd->vdev_resilver_txg);
9a49d3f3
BB
680 if (vd->vdev_rebuild_txg != 0)
681 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
682 vd->vdev_rebuild_txg);
34dc7c2f 683 if (vd->vdev_faulted)
5d1f7fb6 684 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
34dc7c2f 685 if (vd->vdev_degraded)
5d1f7fb6 686 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
34dc7c2f 687 if (vd->vdev_removed)
5d1f7fb6 688 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
34dc7c2f 689 if (vd->vdev_unspare)
5d1f7fb6 690 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
428870ff 691 if (vd->vdev_ishole)
5d1f7fb6 692 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
428870ff 693
4a283c7f 694 /* Set the reason why we're FAULTED/DEGRADED. */
428870ff
BB
695 switch (vd->vdev_stat.vs_aux) {
696 case VDEV_AUX_ERR_EXCEEDED:
697 aux = "err_exceeded";
698 break;
699
700 case VDEV_AUX_EXTERNAL:
701 aux = "external";
702 break;
703 }
704
4a283c7f 705 if (aux != NULL && !vd->vdev_tmpoffline) {
5d1f7fb6 706 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
4a283c7f
TH
707 } else {
708 /*
709 * We're healthy - clear any previous AUX_STATE values.
710 */
711 if (nvlist_exists(nv, ZPOOL_CONFIG_AUX_STATE))
712 nvlist_remove_all(nv, ZPOOL_CONFIG_AUX_STATE);
713 }
428870ff
BB
714
715 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
5d1f7fb6
GW
716 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
717 vd->vdev_orig_guid);
428870ff 718 }
34dc7c2f
BB
719 }
720
721 return (nv);
722}
723
428870ff
BB
724/*
725 * Generate a view of the top-level vdevs. If we currently have holes
726 * in the namespace, then generate an array which contains a list of holey
727 * vdevs. Additionally, add the number of top-level children that currently
728 * exist.
729 */
730void
731vdev_top_config_generate(spa_t *spa, nvlist_t *config)
732{
733 vdev_t *rvd = spa->spa_root_vdev;
734 uint64_t *array;
735 uint_t c, idx;
736
79c76d5b 737 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
428870ff
BB
738
739 for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
740 vdev_t *tvd = rvd->vdev_child[c];
741
a1d477c2 742 if (tvd->vdev_ishole) {
428870ff 743 array[idx++] = c;
a1d477c2 744 }
428870ff
BB
745 }
746
747 if (idx) {
748 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
749 array, idx) == 0);
750 }
751
752 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
753 rvd->vdev_children) == 0);
754
755 kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
756}
757
9ae529ec 758/*
3bc7e0fb
GW
759 * Returns the configuration from the label of the given vdev. For vdevs
760 * which don't have a txg value stored on their label (i.e. spares/cache)
761 * or have not been completely initialized (txg = 0) just return
762 * the configuration from the first valid label we find. Otherwise,
763 * find the most up-to-date label that does not exceed the specified
764 * 'txg' value.
9ae529ec 765 */
34dc7c2f 766nvlist_t *
3bc7e0fb 767vdev_label_read_config(vdev_t *vd, uint64_t txg)
34dc7c2f
BB
768{
769 spa_t *spa = vd->vdev_spa;
770 nvlist_t *config = NULL;
771 vdev_phys_t *vp;
a6255b7f 772 abd_t *vp_abd;
34dc7c2f 773 zio_t *zio;
3bc7e0fb 774 uint64_t best_txg = 0;
38a19edd 775 uint64_t label_txg = 0;
3bc7e0fb 776 int error = 0;
9babb374
BB
777 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
778 ZIO_FLAG_SPECULATIVE;
34dc7c2f 779
b128c09f 780 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
34dc7c2f
BB
781
782 if (!vdev_readable(vd))
783 return (NULL);
784
a6255b7f
DQ
785 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
786 vp = abd_to_buf(vp_abd);
34dc7c2f 787
9babb374 788retry:
1c27024e 789 for (int l = 0; l < VDEV_LABELS; l++) {
3bc7e0fb 790 nvlist_t *label = NULL;
34dc7c2f 791
b128c09f 792 zio = zio_root(spa, NULL, NULL, flags);
34dc7c2f 793
a6255b7f 794 vdev_label_read(zio, vd, l, vp_abd,
34dc7c2f 795 offsetof(vdev_label_t, vl_vdev_phys),
b128c09f 796 sizeof (vdev_phys_t), NULL, NULL, flags);
34dc7c2f
BB
797
798 if (zio_wait(zio) == 0 &&
799 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
3bc7e0fb 800 &label, 0) == 0) {
3bc7e0fb
GW
801 /*
802 * Auxiliary vdevs won't have txg values in their
803 * labels and newly added vdevs may not have been
804 * completely initialized so just return the
805 * configuration from the first valid label we
806 * encounter.
807 */
808 error = nvlist_lookup_uint64(label,
809 ZPOOL_CONFIG_POOL_TXG, &label_txg);
810 if ((error || label_txg == 0) && !config) {
811 config = label;
812 break;
813 } else if (label_txg <= txg && label_txg > best_txg) {
814 best_txg = label_txg;
815 nvlist_free(config);
816 config = fnvlist_dup(label);
817 }
818 }
34dc7c2f 819
3bc7e0fb
GW
820 if (label != NULL) {
821 nvlist_free(label);
822 label = NULL;
34dc7c2f
BB
823 }
824 }
825
9babb374
BB
826 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
827 flags |= ZIO_FLAG_TRYHARD;
828 goto retry;
829 }
830
38a19edd
PZ
831 /*
832 * We found a valid label but it didn't pass txg restrictions.
833 */
834 if (config == NULL && label_txg != 0) {
835 vdev_dbgmsg(vd, "label discarded as txg is too large "
836 "(%llu > %llu)", (u_longlong_t)label_txg,
837 (u_longlong_t)txg);
838 }
839
a6255b7f 840 abd_free(vp_abd);
34dc7c2f
BB
841
842 return (config);
843}
844
845/*
846 * Determine if a device is in use. The 'spare_guid' parameter will be filled
847 * in with the device guid if this spare is active elsewhere on the system.
848 */
849static boolean_t
850vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
851 uint64_t *spare_guid, uint64_t *l2cache_guid)
852{
853 spa_t *spa = vd->vdev_spa;
854 uint64_t state, pool_guid, device_guid, txg, spare_pool;
855 uint64_t vdtxg = 0;
856 nvlist_t *label;
857
858 if (spare_guid)
859 *spare_guid = 0ULL;
860 if (l2cache_guid)
861 *l2cache_guid = 0ULL;
862
863 /*
864 * Read the label, if any, and perform some basic sanity checks.
865 */
3bc7e0fb 866 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
34dc7c2f
BB
867 return (B_FALSE);
868
869 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
870 &vdtxg);
871
872 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
873 &state) != 0 ||
874 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
875 &device_guid) != 0) {
876 nvlist_free(label);
877 return (B_FALSE);
878 }
879
880 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
881 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
882 &pool_guid) != 0 ||
883 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
884 &txg) != 0)) {
885 nvlist_free(label);
886 return (B_FALSE);
887 }
888
889 nvlist_free(label);
890
891 /*
892 * Check to see if this device indeed belongs to the pool it claims to
893 * be a part of. The only way this is allowed is if the device is a hot
894 * spare (which we check for later on).
895 */
896 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
897 !spa_guid_exists(pool_guid, device_guid) &&
b128c09f 898 !spa_spare_exists(device_guid, NULL, NULL) &&
34dc7c2f
BB
899 !spa_l2cache_exists(device_guid, NULL))
900 return (B_FALSE);
901
902 /*
903 * If the transaction group is zero, then this an initialized (but
904 * unused) label. This is only an error if the create transaction
905 * on-disk is the same as the one we're using now, in which case the
906 * user has attempted to add the same vdev multiple times in the same
907 * transaction.
908 */
909 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
910 txg == 0 && vdtxg == crtxg)
911 return (B_TRUE);
912
913 /*
914 * Check to see if this is a spare device. We do an explicit check for
915 * spa_has_spare() here because it may be on our pending list of spares
916 * to add. We also check if it is an l2cache device.
917 */
b128c09f 918 if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
34dc7c2f
BB
919 spa_has_spare(spa, device_guid)) {
920 if (spare_guid)
921 *spare_guid = device_guid;
922
923 switch (reason) {
924 case VDEV_LABEL_CREATE:
925 case VDEV_LABEL_L2CACHE:
926 return (B_TRUE);
927
928 case VDEV_LABEL_REPLACE:
929 return (!spa_has_spare(spa, device_guid) ||
930 spare_pool != 0ULL);
931
932 case VDEV_LABEL_SPARE:
933 return (spa_has_spare(spa, device_guid));
e75c13c3
BB
934 default:
935 break;
34dc7c2f
BB
936 }
937 }
938
939 /*
940 * Check to see if this is an l2cache device.
941 */
942 if (spa_l2cache_exists(device_guid, NULL))
943 return (B_TRUE);
944
572e2857
BB
945 /*
946 * We can't rely on a pool's state if it's been imported
947 * read-only. Instead we look to see if the pools is marked
948 * read-only in the namespace and set the state to active.
949 */
485c581c
RY
950 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
951 (spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
da92d5cb 952 spa_mode(spa) == SPA_MODE_READ)
572e2857
BB
953 state = POOL_STATE_ACTIVE;
954
34dc7c2f
BB
955 /*
956 * If the device is marked ACTIVE, then this device is in use by another
957 * pool on the system.
958 */
959 return (state == POOL_STATE_ACTIVE);
960}
961
962/*
963 * Initialize a vdev label. We check to make sure each leaf device is not in
964 * use, and writable. We put down an initial label which we will later
965 * overwrite with a complete label. Note that it's important to do this
966 * sequentially, not in parallel, so that we catch cases of multiple use of the
967 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
968 * itself.
969 */
970int
971vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
972{
973 spa_t *spa = vd->vdev_spa;
974 nvlist_t *label;
975 vdev_phys_t *vp;
a6255b7f 976 abd_t *vp_abd;
108a454a 977 abd_t *bootenv;
34dc7c2f 978 uberblock_t *ub;
a6255b7f 979 abd_t *ub_abd;
34dc7c2f 980 zio_t *zio;
34dc7c2f
BB
981 char *buf;
982 size_t buflen;
983 int error;
d4ed6673 984 uint64_t spare_guid = 0, l2cache_guid = 0;
b128c09f 985 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
34dc7c2f 986
b128c09f 987 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f 988
1c27024e 989 for (int c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
990 if ((error = vdev_label_init(vd->vdev_child[c],
991 crtxg, reason)) != 0)
992 return (error);
993
428870ff
BB
994 /* Track the creation time for this vdev */
995 vd->vdev_crtxg = crtxg;
996
dda12da9 997 if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
34dc7c2f
BB
998 return (0);
999
1000 /*
1001 * Dead vdevs cannot be initialized.
1002 */
1003 if (vdev_is_dead(vd))
2e528b49 1004 return (SET_ERROR(EIO));
34dc7c2f
BB
1005
1006 /*
1007 * Determine if the vdev is in use.
1008 */
428870ff 1009 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
34dc7c2f 1010 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
2e528b49 1011 return (SET_ERROR(EBUSY));
34dc7c2f 1012
34dc7c2f
BB
1013 /*
1014 * If this is a request to add or replace a spare or l2cache device
1015 * that is in use elsewhere on the system, then we must update the
1016 * guid (which was initialized to a random value) to reflect the
1017 * actual GUID (which is shared between multiple pools).
1018 */
1019 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
1020 spare_guid != 0ULL) {
b128c09f 1021 uint64_t guid_delta = spare_guid - vd->vdev_guid;
34dc7c2f 1022
b128c09f 1023 vd->vdev_guid += guid_delta;
34dc7c2f 1024
1c27024e 1025 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
b128c09f 1026 pvd->vdev_guid_sum += guid_delta;
34dc7c2f
BB
1027
1028 /*
1029 * If this is a replacement, then we want to fallthrough to the
1030 * rest of the code. If we're adding a spare, then it's already
1031 * labeled appropriately and we can just return.
1032 */
1033 if (reason == VDEV_LABEL_SPARE)
1034 return (0);
428870ff
BB
1035 ASSERT(reason == VDEV_LABEL_REPLACE ||
1036 reason == VDEV_LABEL_SPLIT);
34dc7c2f
BB
1037 }
1038
1039 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
1040 l2cache_guid != 0ULL) {
b128c09f 1041 uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
34dc7c2f 1042
b128c09f 1043 vd->vdev_guid += guid_delta;
34dc7c2f 1044
1c27024e 1045 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
b128c09f 1046 pvd->vdev_guid_sum += guid_delta;
34dc7c2f
BB
1047
1048 /*
1049 * If this is a replacement, then we want to fallthrough to the
1050 * rest of the code. If we're adding an l2cache, then it's
1051 * already labeled appropriately and we can just return.
1052 */
1053 if (reason == VDEV_LABEL_L2CACHE)
1054 return (0);
1055 ASSERT(reason == VDEV_LABEL_REPLACE);
1056 }
1057
1058 /*
1059 * Initialize its label.
1060 */
a6255b7f
DQ
1061 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1062 abd_zero(vp_abd, sizeof (vdev_phys_t));
1063 vp = abd_to_buf(vp_abd);
34dc7c2f
BB
1064
1065 /*
1066 * Generate a label describing the pool and our top-level vdev.
1067 * We mark it as being from txg 0 to indicate that it's not
1068 * really part of an active pool just yet. The labels will
1069 * be written again with a meaningful txg by spa_sync().
1070 */
1071 if (reason == VDEV_LABEL_SPARE ||
1072 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
1073 /*
1074 * For inactive hot spares, we generate a special label that
1075 * identifies as a mutually shared hot spare. We write the
1076 * label if we are adding a hot spare, or if we are removing an
1077 * active hot spare (in which case we want to revert the
1078 * labels).
1079 */
79c76d5b 1080 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
34dc7c2f
BB
1081
1082 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1083 spa_version(spa)) == 0);
1084 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1085 POOL_STATE_SPARE) == 0);
1086 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
1087 vd->vdev_guid) == 0);
1088 } else if (reason == VDEV_LABEL_L2CACHE ||
1089 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
1090 /*
1091 * For level 2 ARC devices, add a special label.
1092 */
79c76d5b 1093 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
34dc7c2f
BB
1094
1095 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1096 spa_version(spa)) == 0);
1097 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1098 POOL_STATE_L2CACHE) == 0);
1099 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
1100 vd->vdev_guid) == 0);
1101 } else {
428870ff
BB
1102 uint64_t txg = 0ULL;
1103
1104 if (reason == VDEV_LABEL_SPLIT)
1105 txg = spa->spa_uberblock.ub_txg;
1106 label = spa_config_generate(spa, vd, txg, B_FALSE);
34dc7c2f
BB
1107
1108 /*
1109 * Add our creation time. This allows us to detect multiple
1110 * vdev uses as described above, and automatically expires if we
1111 * fail.
1112 */
1113 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
1114 crtxg) == 0);
1115 }
1116
1117 buf = vp->vp_nvlist;
1118 buflen = sizeof (vp->vp_nvlist);
1119
79c76d5b 1120 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
34dc7c2f
BB
1121 if (error != 0) {
1122 nvlist_free(label);
a6255b7f 1123 abd_free(vp_abd);
34dc7c2f 1124 /* EFAULT means nvlist_pack ran out of room */
ecb2b7dc 1125 return (SET_ERROR(error == EFAULT ? ENAMETOOLONG : EINVAL));
34dc7c2f
BB
1126 }
1127
34dc7c2f
BB
1128 /*
1129 * Initialize uberblock template.
1130 */
a6255b7f
DQ
1131 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE);
1132 abd_zero(ub_abd, VDEV_UBERBLOCK_RING);
1133 abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t));
1134 ub = abd_to_buf(ub_abd);
34dc7c2f
BB
1135 ub->ub_txg = 0;
1136
9babb374 1137 /* Initialize the 2nd padding area. */
108a454a
PD
1138 bootenv = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
1139 abd_zero(bootenv, VDEV_PAD_SIZE);
9babb374 1140
34dc7c2f
BB
1141 /*
1142 * Write everything in parallel.
1143 */
9babb374 1144retry:
34dc7c2f
BB
1145 zio = zio_root(spa, NULL, NULL, flags);
1146
1c27024e 1147 for (int l = 0; l < VDEV_LABELS; l++) {
34dc7c2f 1148
a6255b7f 1149 vdev_label_write(zio, vd, l, vp_abd,
34dc7c2f
BB
1150 offsetof(vdev_label_t, vl_vdev_phys),
1151 sizeof (vdev_phys_t), NULL, NULL, flags);
1152
9babb374
BB
1153 /*
1154 * Skip the 1st padding area.
1155 * Zero out the 2nd padding area where it might have
1156 * left over data from previous filesystem format.
1157 */
108a454a
PD
1158 vdev_label_write(zio, vd, l, bootenv,
1159 offsetof(vdev_label_t, vl_be),
9babb374 1160 VDEV_PAD_SIZE, NULL, NULL, flags);
34dc7c2f 1161
a6255b7f 1162 vdev_label_write(zio, vd, l, ub_abd,
45d1cae3
BB
1163 offsetof(vdev_label_t, vl_uberblock),
1164 VDEV_UBERBLOCK_RING, NULL, NULL, flags);
34dc7c2f
BB
1165 }
1166
1167 error = zio_wait(zio);
1168
9babb374
BB
1169 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
1170 flags |= ZIO_FLAG_TRYHARD;
1171 goto retry;
1172 }
1173
34dc7c2f 1174 nvlist_free(label);
108a454a 1175 abd_free(bootenv);
a6255b7f
DQ
1176 abd_free(ub_abd);
1177 abd_free(vp_abd);
34dc7c2f
BB
1178
1179 /*
1180 * If this vdev hasn't been previously identified as a spare, then we
1181 * mark it as such only if a) we are labeling it as a spare, or b) it
1182 * exists as a spare elsewhere in the system. Do the same for
1183 * level 2 ARC devices.
1184 */
1185 if (error == 0 && !vd->vdev_isspare &&
1186 (reason == VDEV_LABEL_SPARE ||
b128c09f 1187 spa_spare_exists(vd->vdev_guid, NULL, NULL)))
34dc7c2f
BB
1188 spa_spare_add(vd);
1189
1190 if (error == 0 && !vd->vdev_isl2cache &&
1191 (reason == VDEV_LABEL_L2CACHE ||
1192 spa_l2cache_exists(vd->vdev_guid, NULL)))
1193 spa_l2cache_add(vd);
1194
1195 return (error);
1196}
1197
108a454a
PD
1198/*
1199 * Done callback for vdev_label_read_bootenv_impl. If this is the first
1200 * callback to finish, store our abd in the callback pointer. Otherwise, we
1201 * just free our abd and return.
1202 */
1203static void
1204vdev_label_read_bootenv_done(zio_t *zio)
1205{
1206 zio_t *rio = zio->io_private;
1207 abd_t **cbp = rio->io_private;
1208
1209 ASSERT3U(zio->io_size, ==, VDEV_PAD_SIZE);
1210
1211 if (zio->io_error == 0) {
1212 mutex_enter(&rio->io_lock);
1213 if (*cbp == NULL) {
1214 /* Will free this buffer in vdev_label_read_bootenv. */
1215 *cbp = zio->io_abd;
1216 } else {
1217 abd_free(zio->io_abd);
1218 }
1219 mutex_exit(&rio->io_lock);
1220 } else {
1221 abd_free(zio->io_abd);
1222 }
1223}
1224
1225static void
1226vdev_label_read_bootenv_impl(zio_t *zio, vdev_t *vd, int flags)
1227{
1228 for (int c = 0; c < vd->vdev_children; c++)
1229 vdev_label_read_bootenv_impl(zio, vd->vdev_child[c], flags);
1230
1231 /*
1232 * We just use the first label that has a correct checksum; the
1233 * bootloader should have rewritten them all to be the same on boot,
1234 * and any changes we made since boot have been the same across all
1235 * labels.
1236 *
1237 * While grub supports writing to all four labels, other bootloaders
1238 * don't, so we only use the first two labels to store boot
1239 * information.
1240 */
1241 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1242 for (int l = 0; l < VDEV_LABELS / 2; l++) {
1243 vdev_label_read(zio, vd, l,
1244 abd_alloc_linear(VDEV_PAD_SIZE, B_FALSE),
1245 offsetof(vdev_label_t, vl_be), VDEV_PAD_SIZE,
1246 vdev_label_read_bootenv_done, zio, flags);
1247 }
1248 }
1249}
1250
1251int
1252vdev_label_read_bootenv(vdev_t *rvd, nvlist_t *command)
1253{
1254 spa_t *spa = rvd->vdev_spa;
1255 abd_t *abd = NULL;
1256 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1257 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1258
1259 ASSERT(command);
1260 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1261
1262 zio_t *zio = zio_root(spa, NULL, &abd, flags);
1263 vdev_label_read_bootenv_impl(zio, rvd, flags);
1264 int err = zio_wait(zio);
1265
1266 if (abd != NULL) {
1267 vdev_boot_envblock_t *vbe = abd_to_buf(abd);
1268 if (vbe->vbe_version != VB_RAW) {
1269 abd_free(abd);
1270 return (SET_ERROR(ENOTSUP));
1271 }
1272 vbe->vbe_bootenv[sizeof (vbe->vbe_bootenv) - 1] = '\0';
1273 fnvlist_add_string(command, "envmap", vbe->vbe_bootenv);
1274 /* abd was allocated in vdev_label_read_bootenv_impl() */
1275 abd_free(abd);
1276 /* If we managed to read any successfully, return success. */
1277 return (0);
1278 }
1279 return (err);
1280}
1281
1282int
1283vdev_label_write_bootenv(vdev_t *vd, char *envmap)
1284{
1285 zio_t *zio;
1286 spa_t *spa = vd->vdev_spa;
1287 vdev_boot_envblock_t *bootenv;
1288 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1289 int error = ENXIO;
1290
1291 if (strlen(envmap) >= sizeof (bootenv->vbe_bootenv)) {
1292 return (SET_ERROR(E2BIG));
1293 }
1294
1295 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1296
1297 for (int c = 0; c < vd->vdev_children; c++) {
1298 int child_err = vdev_label_write_bootenv(vd->vdev_child[c],
1299 envmap);
1300 /*
1301 * As long as any of the disks managed to write all of their
1302 * labels successfully, return success.
1303 */
1304 if (child_err == 0)
1305 error = child_err;
1306 }
1307
1308 if (!vd->vdev_ops->vdev_op_leaf || vdev_is_dead(vd) ||
1309 !vdev_writeable(vd)) {
1310 return (error);
1311 }
1312 ASSERT3U(sizeof (*bootenv), ==, VDEV_PAD_SIZE);
1313 abd_t *abd = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
1314 abd_zero(abd, VDEV_PAD_SIZE);
1315 bootenv = abd_borrow_buf_copy(abd, VDEV_PAD_SIZE);
1316
1317 char *buf = bootenv->vbe_bootenv;
1318 (void) strlcpy(buf, envmap, sizeof (bootenv->vbe_bootenv));
1319 bootenv->vbe_version = VB_RAW;
1320 abd_return_buf_copy(abd, bootenv, VDEV_PAD_SIZE);
1321
1322retry:
1323 zio = zio_root(spa, NULL, NULL, flags);
1324 for (int l = 0; l < VDEV_LABELS / 2; l++) {
1325 vdev_label_write(zio, vd, l, abd,
1326 offsetof(vdev_label_t, vl_be),
1327 VDEV_PAD_SIZE, NULL, NULL, flags);
1328 }
1329
1330 error = zio_wait(zio);
1331 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
1332 flags |= ZIO_FLAG_TRYHARD;
1333 goto retry;
1334 }
1335
1336 abd_free(abd);
1337 return (error);
1338}
1339
34dc7c2f
BB
1340/*
1341 * ==========================================================================
1342 * uberblock load/sync
1343 * ==========================================================================
1344 */
1345
1346/*
1347 * Consider the following situation: txg is safely synced to disk. We've
1348 * written the first uberblock for txg + 1, and then we lose power. When we
1349 * come back up, we fail to see the uberblock for txg + 1 because, say,
1350 * it was on a mirrored device and the replica to which we wrote txg + 1
1351 * is now offline. If we then make some changes and sync txg + 1, and then
9ae529ec 1352 * the missing replica comes back, then for a few seconds we'll have two
34dc7c2f
BB
1353 * conflicting uberblocks on disk with the same txg. The solution is simple:
1354 * among uberblocks with equal txg, choose the one with the latest timestamp.
1355 */
1356static int
ee36c709 1357vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
34dc7c2f 1358{
ca577779 1359 int cmp = TREE_CMP(ub1->ub_txg, ub2->ub_txg);
060f0226 1360
ee36c709
GN
1361 if (likely(cmp))
1362 return (cmp);
34dc7c2f 1363
ca577779 1364 cmp = TREE_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
060f0226
OF
1365 if (likely(cmp))
1366 return (cmp);
1367
1368 /*
1369 * If MMP_VALID(ub) && MMP_SEQ_VALID(ub) then the host has an MMP-aware
1370 * ZFS, e.g. zfsonlinux >= 0.7.
1371 *
1372 * If one ub has MMP and the other does not, they were written by
1373 * different hosts, which matters for MMP. So we treat no MMP/no SEQ as
1374 * a 0 value.
1375 *
1376 * Since timestamp and txg are the same if we get this far, either is
1377 * acceptable for importing the pool.
1378 */
1379 unsigned int seq1 = 0;
1380 unsigned int seq2 = 0;
1381
1382 if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
1383 seq1 = MMP_SEQ(ub1);
1384
1385 if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
1386 seq2 = MMP_SEQ(ub2);
1387
ca577779 1388 return (TREE_CMP(seq1, seq2));
34dc7c2f
BB
1389}
1390
9ae529ec
CS
1391struct ubl_cbdata {
1392 uberblock_t *ubl_ubbest; /* Best uberblock */
1393 vdev_t *ubl_vd; /* vdev associated with the above */
9ae529ec
CS
1394};
1395
34dc7c2f
BB
1396static void
1397vdev_uberblock_load_done(zio_t *zio)
1398{
9ae529ec 1399 vdev_t *vd = zio->io_vd;
428870ff 1400 spa_t *spa = zio->io_spa;
b128c09f 1401 zio_t *rio = zio->io_private;
a6255b7f 1402 uberblock_t *ub = abd_to_buf(zio->io_abd);
9ae529ec 1403 struct ubl_cbdata *cbp = rio->io_private;
34dc7c2f 1404
9ae529ec 1405 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
34dc7c2f
BB
1406
1407 if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
b128c09f 1408 mutex_enter(&rio->io_lock);
428870ff 1409 if (ub->ub_txg <= spa->spa_load_max_txg &&
9ae529ec
CS
1410 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
1411 /*
3bc7e0fb
GW
1412 * Keep track of the vdev in which this uberblock
1413 * was found. We will use this information later
1414 * to obtain the config nvlist associated with
9ae529ec
CS
1415 * this uberblock.
1416 */
1417 *cbp->ubl_ubbest = *ub;
1418 cbp->ubl_vd = vd;
9ae529ec 1419 }
b128c09f 1420 mutex_exit(&rio->io_lock);
34dc7c2f
BB
1421 }
1422
a6255b7f 1423 abd_free(zio->io_abd);
34dc7c2f
BB
1424}
1425
9ae529ec
CS
1426static void
1427vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
1428 struct ubl_cbdata *cbp)
34dc7c2f 1429{
379ca9cf 1430 for (int c = 0; c < vd->vdev_children; c++)
9ae529ec 1431 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
34dc7c2f 1432
b128c09f 1433 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
379ca9cf
OF
1434 for (int l = 0; l < VDEV_LABELS; l++) {
1435 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
b128c09f 1436 vdev_label_read(zio, vd, l,
a6255b7f
DQ
1437 abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd),
1438 B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n),
b128c09f
BB
1439 VDEV_UBERBLOCK_SIZE(vd),
1440 vdev_uberblock_load_done, zio, flags);
1441 }
34dc7c2f
BB
1442 }
1443 }
9ae529ec
CS
1444}
1445
1446/*
1447 * Reads the 'best' uberblock from disk along with its associated
1448 * configuration. First, we read the uberblock array of each label of each
1449 * vdev, keeping track of the uberblock with the highest txg in each array.
3bc7e0fb 1450 * Then, we read the configuration from the same vdev as the best uberblock.
9ae529ec
CS
1451 */
1452void
1453vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
1454{
9ae529ec
CS
1455 zio_t *zio;
1456 spa_t *spa = rvd->vdev_spa;
1457 struct ubl_cbdata cb;
1458 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1459 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1460
1461 ASSERT(ub);
1462 ASSERT(config);
b128c09f 1463
9ae529ec
CS
1464 bzero(ub, sizeof (uberblock_t));
1465 *config = NULL;
1466
1467 cb.ubl_ubbest = ub;
1468 cb.ubl_vd = NULL;
1469
1470 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1471 zio = zio_root(spa, NULL, &cb, flags);
1472 vdev_uberblock_load_impl(zio, rvd, flags, &cb);
1473 (void) zio_wait(zio);
3bc7e0fb
GW
1474
1475 /*
1476 * It's possible that the best uberblock was discovered on a label
1477 * that has a configuration which was written in a future txg.
1478 * Search all labels on this vdev to find the configuration that
1479 * matches the txg for our uberblock.
1480 */
4a0ee12a
PZ
1481 if (cb.ubl_vd != NULL) {
1482 vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. "
1483 "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg);
1484
3bc7e0fb 1485 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
6cb8e530
PZ
1486 if (*config == NULL && spa->spa_extreme_rewind) {
1487 vdev_dbgmsg(cb.ubl_vd, "failed to read label config. "
1488 "Trying again without txg restrictions.");
1489 *config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX);
1490 }
4a0ee12a
PZ
1491 if (*config == NULL) {
1492 vdev_dbgmsg(cb.ubl_vd, "failed to read label config");
1493 }
1494 }
9ae529ec 1495 spa_config_exit(spa, SCL_ALL, FTAG);
34dc7c2f
BB
1496}
1497
9d3f7b87
OF
1498/*
1499 * For use when a leaf vdev is expanded.
1500 * The location of labels 2 and 3 changed, and at the new location the
1501 * uberblock rings are either empty or contain garbage. The sync will write
1502 * new configs there because the vdev is dirty, but expansion also needs the
1503 * uberblock rings copied. Read them from label 0 which did not move.
1504 *
1505 * Since the point is to populate labels {2,3} with valid uberblocks,
1506 * we zero uberblocks we fail to read or which are not valid.
1507 */
1508
1509static void
1510vdev_copy_uberblocks(vdev_t *vd)
1511{
1512 abd_t *ub_abd;
1513 zio_t *write_zio;
1514 int locks = (SCL_L2ARC | SCL_ZIO);
1515 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1516 ZIO_FLAG_SPECULATIVE;
1517
1518 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_READER) ==
1519 SCL_STATE);
1520 ASSERT(vd->vdev_ops->vdev_op_leaf);
1521
1522 spa_config_enter(vd->vdev_spa, locks, FTAG, RW_READER);
1523
eea2e241 1524 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
9d3f7b87
OF
1525
1526 write_zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1527 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1528 const int src_label = 0;
1529 zio_t *zio;
1530
1531 zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1532 vdev_label_read(zio, vd, src_label, ub_abd,
1533 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1534 NULL, NULL, flags);
1535
1536 if (zio_wait(zio) || uberblock_verify(abd_to_buf(ub_abd)))
1537 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1538
1539 for (int l = 2; l < VDEV_LABELS; l++)
1540 vdev_label_write(write_zio, vd, l, ub_abd,
1541 VDEV_UBERBLOCK_OFFSET(vd, n),
1542 VDEV_UBERBLOCK_SIZE(vd), NULL, NULL,
1543 flags | ZIO_FLAG_DONT_PROPAGATE);
1544 }
1545 (void) zio_wait(write_zio);
1546
1547 spa_config_exit(vd->vdev_spa, locks, FTAG);
1548
1549 abd_free(ub_abd);
1550}
1551
34dc7c2f
BB
1552/*
1553 * On success, increment root zio's count of good writes.
1554 * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
1555 */
1556static void
1557vdev_uberblock_sync_done(zio_t *zio)
1558{
1559 uint64_t *good_writes = zio->io_private;
1560
1561 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
bc89ac84 1562 atomic_inc_64(good_writes);
34dc7c2f
BB
1563}
1564
1565/*
1566 * Write the uberblock to all labels of all leaves of the specified vdev.
1567 */
1568static void
7f96cc23
MA
1569vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes,
1570 uberblock_t *ub, vdev_t *vd, int flags)
34dc7c2f 1571{
7f96cc23
MA
1572 for (uint64_t c = 0; c < vd->vdev_children; c++) {
1573 vdev_uberblock_sync(zio, good_writes,
1574 ub, vd->vdev_child[c], flags);
1575 }
34dc7c2f
BB
1576
1577 if (!vd->vdev_ops->vdev_op_leaf)
1578 return;
1579
b128c09f 1580 if (!vdev_writeable(vd))
34dc7c2f
BB
1581 return;
1582
9d3f7b87
OF
1583 /* If the vdev was expanded, need to copy uberblock rings. */
1584 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1585 vd->vdev_copy_uberblocks == B_TRUE) {
1586 vdev_copy_uberblocks(vd);
1587 vd->vdev_copy_uberblocks = B_FALSE;
1588 }
1589
379ca9cf
OF
1590 int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0;
1591 int n = ub->ub_txg % (VDEV_UBERBLOCK_COUNT(vd) - m);
34dc7c2f 1592
a6255b7f 1593 /* Copy the uberblock_t into the ABD */
379ca9cf 1594 abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
a6255b7f
DQ
1595 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1596 abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
34dc7c2f 1597
379ca9cf 1598 for (int l = 0; l < VDEV_LABELS; l++)
a6255b7f 1599 vdev_label_write(zio, vd, l, ub_abd,
b128c09f 1600 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
7f96cc23 1601 vdev_uberblock_sync_done, good_writes,
b128c09f 1602 flags | ZIO_FLAG_DONT_PROPAGATE);
34dc7c2f 1603
a6255b7f 1604 abd_free(ub_abd);
34dc7c2f
BB
1605}
1606
e49f1e20 1607/* Sync the uberblocks to all vdevs in svd[] */
65c7cc49 1608static int
34dc7c2f
BB
1609vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1610{
1611 spa_t *spa = svd[0]->vdev_spa;
34dc7c2f
BB
1612 zio_t *zio;
1613 uint64_t good_writes = 0;
1614
7f96cc23 1615 zio = zio_root(spa, NULL, NULL, flags);
34dc7c2f 1616
1c27024e 1617 for (int v = 0; v < svdcount; v++)
7f96cc23 1618 vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags);
34dc7c2f
BB
1619
1620 (void) zio_wait(zio);
1621
1622 /*
1623 * Flush the uberblocks to disk. This ensures that the odd labels
1624 * are no longer needed (because the new uberblocks and the even
1625 * labels are safely on disk), so it is safe to overwrite them.
1626 */
1627 zio = zio_root(spa, NULL, NULL, flags);
1628
a1d477c2
MA
1629 for (int v = 0; v < svdcount; v++) {
1630 if (vdev_writeable(svd[v])) {
1631 zio_flush(zio, svd[v]);
1632 }
1633 }
34dc7c2f
BB
1634
1635 (void) zio_wait(zio);
1636
1637 return (good_writes >= 1 ? 0 : EIO);
1638}
1639
1640/*
1641 * On success, increment the count of good writes for our top-level vdev.
1642 */
1643static void
1644vdev_label_sync_done(zio_t *zio)
1645{
1646 uint64_t *good_writes = zio->io_private;
1647
1648 if (zio->io_error == 0)
bc89ac84 1649 atomic_inc_64(good_writes);
34dc7c2f
BB
1650}
1651
1652/*
1653 * If there weren't enough good writes, indicate failure to the parent.
1654 */
1655static void
1656vdev_label_sync_top_done(zio_t *zio)
1657{
1658 uint64_t *good_writes = zio->io_private;
1659
1660 if (*good_writes == 0)
2e528b49 1661 zio->io_error = SET_ERROR(EIO);
34dc7c2f
BB
1662
1663 kmem_free(good_writes, sizeof (uint64_t));
1664}
1665
b128c09f
BB
1666/*
1667 * We ignore errors for log and cache devices, simply free the private data.
1668 */
1669static void
1670vdev_label_sync_ignore_done(zio_t *zio)
1671{
1672 kmem_free(zio->io_private, sizeof (uint64_t));
1673}
1674
34dc7c2f
BB
1675/*
1676 * Write all even or odd labels to all leaves of the specified vdev.
1677 */
1678static void
7f96cc23
MA
1679vdev_label_sync(zio_t *zio, uint64_t *good_writes,
1680 vdev_t *vd, int l, uint64_t txg, int flags)
34dc7c2f
BB
1681{
1682 nvlist_t *label;
1683 vdev_phys_t *vp;
a6255b7f 1684 abd_t *vp_abd;
34dc7c2f
BB
1685 char *buf;
1686 size_t buflen;
34dc7c2f 1687
7f96cc23
MA
1688 for (int c = 0; c < vd->vdev_children; c++) {
1689 vdev_label_sync(zio, good_writes,
1690 vd->vdev_child[c], l, txg, flags);
1691 }
34dc7c2f
BB
1692
1693 if (!vd->vdev_ops->vdev_op_leaf)
1694 return;
1695
b128c09f 1696 if (!vdev_writeable(vd))
34dc7c2f
BB
1697 return;
1698
1699 /*
1700 * Generate a label describing the top-level config to which we belong.
1701 */
1702 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1703
a6255b7f
DQ
1704 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1705 abd_zero(vp_abd, sizeof (vdev_phys_t));
1706 vp = abd_to_buf(vp_abd);
34dc7c2f
BB
1707
1708 buf = vp->vp_nvlist;
1709 buflen = sizeof (vp->vp_nvlist);
1710
79c76d5b 1711 if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP)) {
34dc7c2f 1712 for (; l < VDEV_LABELS; l += 2) {
a6255b7f 1713 vdev_label_write(zio, vd, l, vp_abd,
34dc7c2f
BB
1714 offsetof(vdev_label_t, vl_vdev_phys),
1715 sizeof (vdev_phys_t),
7f96cc23 1716 vdev_label_sync_done, good_writes,
b128c09f 1717 flags | ZIO_FLAG_DONT_PROPAGATE);
34dc7c2f
BB
1718 }
1719 }
1720
a6255b7f 1721 abd_free(vp_abd);
34dc7c2f
BB
1722 nvlist_free(label);
1723}
1724
65c7cc49 1725static int
b128c09f 1726vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
34dc7c2f 1727{
b128c09f 1728 list_t *dl = &spa->spa_config_dirty_list;
34dc7c2f
BB
1729 vdev_t *vd;
1730 zio_t *zio;
1731 int error;
1732
1733 /*
1734 * Write the new labels to disk.
1735 */
1736 zio = zio_root(spa, NULL, NULL, flags);
1737
1738 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
d6320ddb 1739 uint64_t *good_writes;
428870ff
BB
1740
1741 ASSERT(!vd->vdev_ishole);
1742
79c76d5b 1743 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
1c27024e 1744 zio_t *vio = zio_null(zio, spa, NULL,
b128c09f
BB
1745 (vd->vdev_islog || vd->vdev_aux != NULL) ?
1746 vdev_label_sync_ignore_done : vdev_label_sync_top_done,
34dc7c2f 1747 good_writes, flags);
7f96cc23 1748 vdev_label_sync(vio, good_writes, vd, l, txg, flags);
34dc7c2f
BB
1749 zio_nowait(vio);
1750 }
1751
1752 error = zio_wait(zio);
1753
1754 /*
1755 * Flush the new labels to disk.
1756 */
1757 zio = zio_root(spa, NULL, NULL, flags);
1758
1759 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1760 zio_flush(zio, vd);
1761
1762 (void) zio_wait(zio);
1763
1764 return (error);
1765}
1766
1767/*
1768 * Sync the uberblock and any changes to the vdev configuration.
1769 *
1770 * The order of operations is carefully crafted to ensure that
1771 * if the system panics or loses power at any time, the state on disk
1772 * is still transactionally consistent. The in-line comments below
1773 * describe the failure semantics at each stage.
1774 *
1775 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1776 * at any time, you can just call it again, and it will resume its work.
1777 */
1778int
b6fcb792 1779vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
34dc7c2f
BB
1780{
1781 spa_t *spa = svd[0]->vdev_spa;
1782 uberblock_t *ub = &spa->spa_uberblock;
b6fcb792 1783 int error = 0;
b128c09f 1784 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
34dc7c2f 1785
d2734cce 1786 ASSERT(svdcount != 0);
b6fcb792 1787retry:
9babb374
BB
1788 /*
1789 * Normally, we don't want to try too hard to write every label and
1790 * uberblock. If there is a flaky disk, we don't want the rest of the
1791 * sync process to block while we retry. But if we can't write a
1792 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1793 * bailing out and declaring the pool faulted.
1794 */
b6fcb792
BB
1795 if (error != 0) {
1796 if ((flags & ZIO_FLAG_TRYHARD) != 0)
1797 return (error);
9babb374 1798 flags |= ZIO_FLAG_TRYHARD;
b6fcb792 1799 }
9babb374 1800
34dc7c2f
BB
1801 ASSERT(ub->ub_txg <= txg);
1802
1803 /*
1804 * If this isn't a resync due to I/O errors,
1805 * and nothing changed in this transaction group,
1806 * and the vdev configuration hasn't changed,
1807 * then there's nothing to do.
1808 */
379ca9cf
OF
1809 if (ub->ub_txg < txg) {
1810 boolean_t changed = uberblock_update(ub, spa->spa_root_vdev,
1811 txg, spa->spa_mmp.mmp_delay);
1812
1813 if (!changed && list_is_empty(&spa->spa_config_dirty_list))
1814 return (0);
1815 }
34dc7c2f
BB
1816
1817 if (txg > spa_freeze_txg(spa))
1818 return (0);
1819
1820 ASSERT(txg <= spa->spa_final_txg);
1821
1822 /*
1823 * Flush the write cache of every disk that's been written to
1824 * in this transaction group. This ensures that all blocks
1825 * written in this txg will be committed to stable storage
1826 * before any uberblock that references them.
1827 */
d2734cce 1828 zio_t *zio = zio_root(spa, NULL, NULL, flags);
34dc7c2f 1829
d2734cce
SD
1830 for (vdev_t *vd =
1831 txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL;
34dc7c2f
BB
1832 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1833 zio_flush(zio, vd);
1834
1835 (void) zio_wait(zio);
1836
1837 /*
1838 * Sync out the even labels (L0, L2) for every dirty vdev. If the
1839 * system dies in the middle of this process, that's OK: all of the
1840 * even labels that made it to disk will be newer than any uberblock,
1841 * and will therefore be considered invalid. The odd labels (L1, L3),
1842 * which have not yet been touched, will still be valid. We flush
1843 * the new labels to disk to ensure that all even-label updates
1844 * are committed to stable storage before the uberblock update.
1845 */
d2734cce
SD
1846 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) {
1847 if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1848 zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1849 "for pool '%s' when syncing out the even labels "
1850 "of dirty vdevs", error, spa_name(spa));
1851 }
b6fcb792 1852 goto retry;
d2734cce 1853 }
34dc7c2f
BB
1854
1855 /*
1856 * Sync the uberblocks to all vdevs in svd[].
1857 * If the system dies in the middle of this step, there are two cases
1858 * to consider, and the on-disk state is consistent either way:
1859 *
1860 * (1) If none of the new uberblocks made it to disk, then the
1861 * previous uberblock will be the newest, and the odd labels
1862 * (which had not yet been touched) will be valid with respect
1863 * to that uberblock.
1864 *
1865 * (2) If one or more new uberblocks made it to disk, then they
1866 * will be the newest, and the even labels (which had all
1867 * been successfully committed) will be valid with respect
1868 * to the new uberblocks.
1869 */
d2734cce
SD
1870 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) {
1871 if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1872 zfs_dbgmsg("vdev_uberblock_sync_list() returned error "
1873 "%d for pool '%s'", error, spa_name(spa));
1874 }
b6fcb792 1875 goto retry;
d2734cce 1876 }
34dc7c2f 1877
379ca9cf
OF
1878 if (spa_multihost(spa))
1879 mmp_update_uberblock(spa, ub);
1880
34dc7c2f
BB
1881 /*
1882 * Sync out odd labels for every dirty vdev. If the system dies
1883 * in the middle of this process, the even labels and the new
1884 * uberblocks will suffice to open the pool. The next time
1885 * the pool is opened, the first thing we'll do -- before any
1886 * user data is modified -- is mark every vdev dirty so that
1887 * all labels will be brought up to date. We flush the new labels
1888 * to disk to ensure that all odd-label updates are committed to
1889 * stable storage before the next transaction group begins.
1890 */
d2734cce
SD
1891 if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) {
1892 if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1893 zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1894 "for pool '%s' when syncing out the odd labels of "
1895 "dirty vdevs", error, spa_name(spa));
1896 }
b6fcb792 1897 goto retry;
d2734cce 1898 }
b6fcb792
BB
1899
1900 return (0);
34dc7c2f 1901}