]>
Commit | Line | Data |
---|---|---|
34dc7c2f BB |
1 | /* |
2 | * CDDL HEADER START | |
3 | * | |
4 | * The contents of this file are subject to the terms of the | |
5 | * Common Development and Distribution License (the "License"). | |
6 | * You may not use this file except in compliance with the License. | |
7 | * | |
8 | * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE | |
9 | * or http://www.opensolaris.org/os/licensing. | |
10 | * See the License for the specific language governing permissions | |
11 | * and limitations under the License. | |
12 | * | |
13 | * When distributing Covered Code, include this CDDL HEADER in each | |
14 | * file and include the License file at usr/src/OPENSOLARIS.LICENSE. | |
15 | * If applicable, add the following below this CDDL HEADER, with the | |
16 | * fields enclosed by brackets "[]" replaced with your own identifying | |
17 | * information: Portions Copyright [yyyy] [name of copyright owner] | |
18 | * | |
19 | * CDDL HEADER END | |
20 | */ | |
9ae529ec | 21 | |
34dc7c2f | 22 | /* |
428870ff | 23 | * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. |
a08ee875 | 24 | * Copyright (c) 2013 by Delphix. All rights reserved. |
34dc7c2f BB |
25 | */ |
26 | ||
34dc7c2f BB |
27 | /* |
28 | * Virtual Device Labels | |
29 | * --------------------- | |
30 | * | |
31 | * The vdev label serves several distinct purposes: | |
32 | * | |
33 | * 1. Uniquely identify this device as part of a ZFS pool and confirm its | |
34 | * identity within the pool. | |
35 | * | |
36 | * 2. Verify that all the devices given in a configuration are present | |
37 | * within the pool. | |
38 | * | |
39 | * 3. Determine the uberblock for the pool. | |
40 | * | |
41 | * 4. In case of an import operation, determine the configuration of the | |
42 | * toplevel vdev of which it is a part. | |
43 | * | |
44 | * 5. If an import operation cannot find all the devices in the pool, | |
45 | * provide enough information to the administrator to determine which | |
46 | * devices are missing. | |
47 | * | |
48 | * It is important to note that while the kernel is responsible for writing the | |
49 | * label, it only consumes the information in the first three cases. The | |
50 | * latter information is only consumed in userland when determining the | |
51 | * configuration to import a pool. | |
52 | * | |
53 | * | |
54 | * Label Organization | |
55 | * ------------------ | |
56 | * | |
57 | * Before describing the contents of the label, it's important to understand how | |
58 | * the labels are written and updated with respect to the uberblock. | |
59 | * | |
60 | * When the pool configuration is altered, either because it was newly created | |
61 | * or a device was added, we want to update all the labels such that we can deal | |
62 | * with fatal failure at any point. To this end, each disk has two labels which | |
63 | * are updated before and after the uberblock is synced. Assuming we have | |
64 | * labels and an uberblock with the following transaction groups: | |
65 | * | |
66 | * L1 UB L2 | |
67 | * +------+ +------+ +------+ | |
68 | * | | | | | | | |
69 | * | t10 | | t10 | | t10 | | |
70 | * | | | | | | | |
71 | * +------+ +------+ +------+ | |
72 | * | |
73 | * In this stable state, the labels and the uberblock were all updated within | |
74 | * the same transaction group (10). Each label is mirrored and checksummed, so | |
75 | * that we can detect when we fail partway through writing the label. | |
76 | * | |
77 | * In order to identify which labels are valid, the labels are written in the | |
78 | * following manner: | |
79 | * | |
80 | * 1. For each vdev, update 'L1' to the new label | |
81 | * 2. Update the uberblock | |
82 | * 3. For each vdev, update 'L2' to the new label | |
83 | * | |
84 | * Given arbitrary failure, we can determine the correct label to use based on | |
85 | * the transaction group. If we fail after updating L1 but before updating the | |
86 | * UB, we will notice that L1's transaction group is greater than the uberblock, | |
87 | * so L2 must be valid. If we fail after writing the uberblock but before | |
88 | * writing L2, we will notice that L2's transaction group is less than L1, and | |
89 | * therefore L1 is valid. | |
90 | * | |
91 | * Another added complexity is that not every label is updated when the config | |
92 | * is synced. If we add a single device, we do not want to have to re-write | |
93 | * every label for every device in the pool. This means that both L1 and L2 may | |
94 | * be older than the pool uberblock, because the necessary information is stored | |
95 | * on another vdev. | |
96 | * | |
97 | * | |
98 | * On-disk Format | |
99 | * -------------- | |
100 | * | |
101 | * The vdev label consists of two distinct parts, and is wrapped within the | |
102 | * vdev_label_t structure. The label includes 8k of padding to permit legacy | |
103 | * VTOC disk labels, but is otherwise ignored. | |
104 | * | |
105 | * The first half of the label is a packed nvlist which contains pool wide | |
106 | * properties, per-vdev properties, and configuration information. It is | |
107 | * described in more detail below. | |
108 | * | |
109 | * The latter half of the label consists of a redundant array of uberblocks. | |
110 | * These uberblocks are updated whenever a transaction group is committed, | |
111 | * or when the configuration is updated. When a pool is loaded, we scan each | |
112 | * vdev for the 'best' uberblock. | |
113 | * | |
114 | * | |
115 | * Configuration Information | |
116 | * ------------------------- | |
117 | * | |
118 | * The nvlist describing the pool and vdev contains the following elements: | |
119 | * | |
120 | * version ZFS on-disk version | |
121 | * name Pool name | |
122 | * state Pool state | |
123 | * txg Transaction group in which this label was written | |
124 | * pool_guid Unique identifier for this pool | |
125 | * vdev_tree An nvlist describing vdev tree. | |
9ae529ec CS |
126 | * features_for_read |
127 | * An nvlist of the features necessary for reading the MOS. | |
34dc7c2f BB |
128 | * |
129 | * Each leaf device label also contains the following: | |
130 | * | |
131 | * top_guid Unique ID for top-level vdev in which this is contained | |
132 | * guid Unique ID for the leaf vdev | |
133 | * | |
134 | * The 'vs' configuration follows the format described in 'spa_config.c'. | |
135 | */ | |
136 | ||
137 | #include <sys/zfs_context.h> | |
138 | #include <sys/spa.h> | |
139 | #include <sys/spa_impl.h> | |
140 | #include <sys/dmu.h> | |
141 | #include <sys/zap.h> | |
142 | #include <sys/vdev.h> | |
143 | #include <sys/vdev_impl.h> | |
144 | #include <sys/uberblock_impl.h> | |
145 | #include <sys/metaslab.h> | |
146 | #include <sys/zio.h> | |
428870ff | 147 | #include <sys/dsl_scan.h> |
34dc7c2f BB |
148 | #include <sys/fs/zfs.h> |
149 | ||
150 | /* | |
151 | * Basic routines to read and write from a vdev label. | |
152 | * Used throughout the rest of this file. | |
153 | */ | |
154 | uint64_t | |
155 | vdev_label_offset(uint64_t psize, int l, uint64_t offset) | |
156 | { | |
157 | ASSERT(offset < sizeof (vdev_label_t)); | |
158 | ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); | |
159 | ||
160 | return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? | |
161 | 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); | |
162 | } | |
163 | ||
b128c09f BB |
164 | /* |
165 | * Returns back the vdev label associated with the passed in offset. | |
166 | */ | |
167 | int | |
168 | vdev_label_number(uint64_t psize, uint64_t offset) | |
169 | { | |
170 | int l; | |
171 | ||
172 | if (offset >= psize - VDEV_LABEL_END_SIZE) { | |
173 | offset -= psize - VDEV_LABEL_END_SIZE; | |
174 | offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); | |
175 | } | |
176 | l = offset / sizeof (vdev_label_t); | |
177 | return (l < VDEV_LABELS ? l : -1); | |
178 | } | |
179 | ||
34dc7c2f BB |
180 | static void |
181 | vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, | |
b128c09f | 182 | uint64_t size, zio_done_func_t *done, void *private, int flags) |
34dc7c2f | 183 | { |
b128c09f BB |
184 | ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) == |
185 | SCL_STATE_ALL); | |
186 | ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); | |
34dc7c2f BB |
187 | |
188 | zio_nowait(zio_read_phys(zio, vd, | |
189 | vdev_label_offset(vd->vdev_psize, l, offset), | |
190 | size, buf, ZIO_CHECKSUM_LABEL, done, private, | |
b128c09f | 191 | ZIO_PRIORITY_SYNC_READ, flags, B_TRUE)); |
34dc7c2f BB |
192 | } |
193 | ||
194 | static void | |
195 | vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, | |
196 | uint64_t size, zio_done_func_t *done, void *private, int flags) | |
197 | { | |
b128c09f BB |
198 | ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL || |
199 | (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) == | |
200 | (SCL_CONFIG | SCL_STATE) && | |
201 | dsl_pool_sync_context(spa_get_dsl(zio->io_spa)))); | |
202 | ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); | |
34dc7c2f BB |
203 | |
204 | zio_nowait(zio_write_phys(zio, vd, | |
205 | vdev_label_offset(vd->vdev_psize, l, offset), | |
206 | size, buf, ZIO_CHECKSUM_LABEL, done, private, | |
207 | ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); | |
208 | } | |
209 | ||
210 | /* | |
211 | * Generate the nvlist representing this vdev's config. | |
212 | */ | |
213 | nvlist_t * | |
214 | vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, | |
428870ff | 215 | vdev_config_flag_t flags) |
34dc7c2f BB |
216 | { |
217 | nvlist_t *nv = NULL; | |
218 | ||
b8d06fca | 219 | VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_PUSHPAGE) == 0); |
34dc7c2f | 220 | |
a08ee875 | 221 | fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type); |
428870ff | 222 | if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE))) |
a08ee875 LG |
223 | fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id); |
224 | fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid); | |
34dc7c2f BB |
225 | |
226 | if (vd->vdev_path != NULL) | |
a08ee875 | 227 | fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path); |
34dc7c2f BB |
228 | |
229 | if (vd->vdev_devid != NULL) | |
a08ee875 | 230 | fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid); |
34dc7c2f BB |
231 | |
232 | if (vd->vdev_physpath != NULL) | |
a08ee875 LG |
233 | fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, |
234 | vd->vdev_physpath); | |
34dc7c2f | 235 | |
9babb374 | 236 | if (vd->vdev_fru != NULL) |
a08ee875 | 237 | fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru); |
9babb374 | 238 | |
34dc7c2f BB |
239 | if (vd->vdev_nparity != 0) { |
240 | ASSERT(strcmp(vd->vdev_ops->vdev_op_type, | |
241 | VDEV_TYPE_RAIDZ) == 0); | |
242 | ||
243 | /* | |
244 | * Make sure someone hasn't managed to sneak a fancy new vdev | |
245 | * into a crufty old storage pool. | |
246 | */ | |
247 | ASSERT(vd->vdev_nparity == 1 || | |
45d1cae3 BB |
248 | (vd->vdev_nparity <= 2 && |
249 | spa_version(spa) >= SPA_VERSION_RAIDZ2) || | |
250 | (vd->vdev_nparity <= 3 && | |
251 | spa_version(spa) >= SPA_VERSION_RAIDZ3)); | |
34dc7c2f BB |
252 | |
253 | /* | |
254 | * Note that we'll add the nparity tag even on storage pools | |
255 | * that only support a single parity device -- older software | |
256 | * will just ignore it. | |
257 | */ | |
a08ee875 | 258 | fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity); |
34dc7c2f BB |
259 | } |
260 | ||
261 | if (vd->vdev_wholedisk != -1ULL) | |
a08ee875 LG |
262 | fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, |
263 | vd->vdev_wholedisk); | |
34dc7c2f BB |
264 | |
265 | if (vd->vdev_not_present) | |
a08ee875 | 266 | fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1); |
34dc7c2f BB |
267 | |
268 | if (vd->vdev_isspare) | |
a08ee875 | 269 | fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1); |
34dc7c2f | 270 | |
428870ff BB |
271 | if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) && |
272 | vd == vd->vdev_top) { | |
a08ee875 LG |
273 | fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, |
274 | vd->vdev_ms_array); | |
275 | fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, | |
276 | vd->vdev_ms_shift); | |
277 | fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift); | |
278 | fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, | |
279 | vd->vdev_asize); | |
280 | fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog); | |
428870ff | 281 | if (vd->vdev_removing) |
a08ee875 LG |
282 | fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING, |
283 | vd->vdev_removing); | |
34dc7c2f BB |
284 | } |
285 | ||
fb5f0bc8 | 286 | if (vd->vdev_dtl_smo.smo_object != 0) |
a08ee875 LG |
287 | fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, |
288 | vd->vdev_dtl_smo.smo_object); | |
34dc7c2f | 289 | |
428870ff | 290 | if (vd->vdev_crtxg) |
a08ee875 | 291 | fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg); |
428870ff | 292 | |
34dc7c2f BB |
293 | if (getstats) { |
294 | vdev_stat_t vs; | |
428870ff BB |
295 | pool_scan_stat_t ps; |
296 | ||
34dc7c2f | 297 | vdev_get_stats(vd, &vs); |
a08ee875 LG |
298 | fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, |
299 | (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)); | |
428870ff BB |
300 | |
301 | /* provide either current or previous scan information */ | |
302 | if (spa_scan_get_stats(spa, &ps) == 0) { | |
a08ee875 | 303 | fnvlist_add_uint64_array(nv, |
428870ff | 304 | ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps, |
a08ee875 | 305 | sizeof (pool_scan_stat_t) / sizeof (uint64_t)); |
428870ff | 306 | } |
34dc7c2f BB |
307 | } |
308 | ||
309 | if (!vd->vdev_ops->vdev_op_leaf) { | |
310 | nvlist_t **child; | |
428870ff BB |
311 | int c, idx; |
312 | ||
313 | ASSERT(!vd->vdev_ishole); | |
34dc7c2f BB |
314 | |
315 | child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), | |
b8d06fca | 316 | KM_PUSHPAGE); |
34dc7c2f | 317 | |
428870ff BB |
318 | for (c = 0, idx = 0; c < vd->vdev_children; c++) { |
319 | vdev_t *cvd = vd->vdev_child[c]; | |
34dc7c2f | 320 | |
428870ff BB |
321 | /* |
322 | * If we're generating an nvlist of removing | |
323 | * vdevs then skip over any device which is | |
324 | * not being removed. | |
325 | */ | |
326 | if ((flags & VDEV_CONFIG_REMOVING) && | |
327 | !cvd->vdev_removing) | |
328 | continue; | |
34dc7c2f | 329 | |
428870ff BB |
330 | child[idx++] = vdev_config_generate(spa, cvd, |
331 | getstats, flags); | |
332 | } | |
333 | ||
334 | if (idx) { | |
a08ee875 LG |
335 | fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, |
336 | child, idx); | |
428870ff BB |
337 | } |
338 | ||
339 | for (c = 0; c < idx; c++) | |
34dc7c2f BB |
340 | nvlist_free(child[c]); |
341 | ||
342 | kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); | |
343 | ||
344 | } else { | |
428870ff BB |
345 | const char *aux = NULL; |
346 | ||
34dc7c2f | 347 | if (vd->vdev_offline && !vd->vdev_tmpoffline) |
a08ee875 LG |
348 | fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE); |
349 | if (vd->vdev_resilver_txg != 0) | |
350 | fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, | |
351 | vd->vdev_resilver_txg); | |
34dc7c2f | 352 | if (vd->vdev_faulted) |
a08ee875 | 353 | fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE); |
34dc7c2f | 354 | if (vd->vdev_degraded) |
a08ee875 | 355 | fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE); |
34dc7c2f | 356 | if (vd->vdev_removed) |
a08ee875 | 357 | fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE); |
34dc7c2f | 358 | if (vd->vdev_unspare) |
a08ee875 | 359 | fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE); |
428870ff | 360 | if (vd->vdev_ishole) |
a08ee875 | 361 | fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE); |
428870ff BB |
362 | |
363 | switch (vd->vdev_stat.vs_aux) { | |
364 | case VDEV_AUX_ERR_EXCEEDED: | |
365 | aux = "err_exceeded"; | |
366 | break; | |
367 | ||
368 | case VDEV_AUX_EXTERNAL: | |
369 | aux = "external"; | |
370 | break; | |
371 | } | |
372 | ||
373 | if (aux != NULL) | |
a08ee875 | 374 | fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux); |
428870ff BB |
375 | |
376 | if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) { | |
a08ee875 LG |
377 | fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID, |
378 | vd->vdev_orig_guid); | |
428870ff | 379 | } |
34dc7c2f BB |
380 | } |
381 | ||
382 | return (nv); | |
383 | } | |
384 | ||
428870ff BB |
385 | /* |
386 | * Generate a view of the top-level vdevs. If we currently have holes | |
387 | * in the namespace, then generate an array which contains a list of holey | |
388 | * vdevs. Additionally, add the number of top-level children that currently | |
389 | * exist. | |
390 | */ | |
391 | void | |
392 | vdev_top_config_generate(spa_t *spa, nvlist_t *config) | |
393 | { | |
394 | vdev_t *rvd = spa->spa_root_vdev; | |
395 | uint64_t *array; | |
396 | uint_t c, idx; | |
397 | ||
b8d06fca | 398 | array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_PUSHPAGE); |
428870ff BB |
399 | |
400 | for (c = 0, idx = 0; c < rvd->vdev_children; c++) { | |
401 | vdev_t *tvd = rvd->vdev_child[c]; | |
402 | ||
403 | if (tvd->vdev_ishole) | |
404 | array[idx++] = c; | |
405 | } | |
406 | ||
407 | if (idx) { | |
408 | VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY, | |
409 | array, idx) == 0); | |
410 | } | |
411 | ||
412 | VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, | |
413 | rvd->vdev_children) == 0); | |
414 | ||
415 | kmem_free(array, rvd->vdev_children * sizeof (uint64_t)); | |
416 | } | |
417 | ||
9ae529ec | 418 | /* |
3bc7e0fb GW |
419 | * Returns the configuration from the label of the given vdev. For vdevs |
420 | * which don't have a txg value stored on their label (i.e. spares/cache) | |
421 | * or have not been completely initialized (txg = 0) just return | |
422 | * the configuration from the first valid label we find. Otherwise, | |
423 | * find the most up-to-date label that does not exceed the specified | |
424 | * 'txg' value. | |
9ae529ec | 425 | */ |
34dc7c2f | 426 | nvlist_t * |
3bc7e0fb | 427 | vdev_label_read_config(vdev_t *vd, uint64_t txg) |
34dc7c2f BB |
428 | { |
429 | spa_t *spa = vd->vdev_spa; | |
430 | nvlist_t *config = NULL; | |
431 | vdev_phys_t *vp; | |
432 | zio_t *zio; | |
3bc7e0fb GW |
433 | uint64_t best_txg = 0; |
434 | int error = 0; | |
9babb374 BB |
435 | int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | |
436 | ZIO_FLAG_SPECULATIVE; | |
d6320ddb | 437 | int l; |
34dc7c2f | 438 | |
b128c09f | 439 | ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); |
34dc7c2f BB |
440 | |
441 | if (!vdev_readable(vd)) | |
442 | return (NULL); | |
443 | ||
444 | vp = zio_buf_alloc(sizeof (vdev_phys_t)); | |
445 | ||
9babb374 | 446 | retry: |
d6320ddb | 447 | for (l = 0; l < VDEV_LABELS; l++) { |
3bc7e0fb | 448 | nvlist_t *label = NULL; |
34dc7c2f | 449 | |
b128c09f | 450 | zio = zio_root(spa, NULL, NULL, flags); |
34dc7c2f BB |
451 | |
452 | vdev_label_read(zio, vd, l, vp, | |
453 | offsetof(vdev_label_t, vl_vdev_phys), | |
b128c09f | 454 | sizeof (vdev_phys_t), NULL, NULL, flags); |
34dc7c2f BB |
455 | |
456 | if (zio_wait(zio) == 0 && | |
457 | nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), | |
3bc7e0fb GW |
458 | &label, 0) == 0) { |
459 | uint64_t label_txg = 0; | |
460 | ||
461 | /* | |
462 | * Auxiliary vdevs won't have txg values in their | |
463 | * labels and newly added vdevs may not have been | |
464 | * completely initialized so just return the | |
465 | * configuration from the first valid label we | |
466 | * encounter. | |
467 | */ | |
468 | error = nvlist_lookup_uint64(label, | |
469 | ZPOOL_CONFIG_POOL_TXG, &label_txg); | |
470 | if ((error || label_txg == 0) && !config) { | |
471 | config = label; | |
472 | break; | |
473 | } else if (label_txg <= txg && label_txg > best_txg) { | |
474 | best_txg = label_txg; | |
475 | nvlist_free(config); | |
476 | config = fnvlist_dup(label); | |
477 | } | |
478 | } | |
34dc7c2f | 479 | |
3bc7e0fb GW |
480 | if (label != NULL) { |
481 | nvlist_free(label); | |
482 | label = NULL; | |
34dc7c2f BB |
483 | } |
484 | } | |
485 | ||
9babb374 BB |
486 | if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) { |
487 | flags |= ZIO_FLAG_TRYHARD; | |
488 | goto retry; | |
489 | } | |
490 | ||
34dc7c2f BB |
491 | zio_buf_free(vp, sizeof (vdev_phys_t)); |
492 | ||
493 | return (config); | |
494 | } | |
495 | ||
496 | /* | |
497 | * Determine if a device is in use. The 'spare_guid' parameter will be filled | |
498 | * in with the device guid if this spare is active elsewhere on the system. | |
499 | */ | |
500 | static boolean_t | |
501 | vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, | |
502 | uint64_t *spare_guid, uint64_t *l2cache_guid) | |
503 | { | |
504 | spa_t *spa = vd->vdev_spa; | |
505 | uint64_t state, pool_guid, device_guid, txg, spare_pool; | |
506 | uint64_t vdtxg = 0; | |
507 | nvlist_t *label; | |
508 | ||
509 | if (spare_guid) | |
510 | *spare_guid = 0ULL; | |
511 | if (l2cache_guid) | |
512 | *l2cache_guid = 0ULL; | |
513 | ||
514 | /* | |
515 | * Read the label, if any, and perform some basic sanity checks. | |
516 | */ | |
3bc7e0fb | 517 | if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) |
34dc7c2f BB |
518 | return (B_FALSE); |
519 | ||
520 | (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, | |
521 | &vdtxg); | |
522 | ||
523 | if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, | |
524 | &state) != 0 || | |
525 | nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, | |
526 | &device_guid) != 0) { | |
527 | nvlist_free(label); | |
528 | return (B_FALSE); | |
529 | } | |
530 | ||
531 | if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && | |
532 | (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, | |
533 | &pool_guid) != 0 || | |
534 | nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, | |
535 | &txg) != 0)) { | |
536 | nvlist_free(label); | |
537 | return (B_FALSE); | |
538 | } | |
539 | ||
540 | nvlist_free(label); | |
541 | ||
542 | /* | |
543 | * Check to see if this device indeed belongs to the pool it claims to | |
544 | * be a part of. The only way this is allowed is if the device is a hot | |
545 | * spare (which we check for later on). | |
546 | */ | |
547 | if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && | |
548 | !spa_guid_exists(pool_guid, device_guid) && | |
b128c09f | 549 | !spa_spare_exists(device_guid, NULL, NULL) && |
34dc7c2f BB |
550 | !spa_l2cache_exists(device_guid, NULL)) |
551 | return (B_FALSE); | |
552 | ||
553 | /* | |
554 | * If the transaction group is zero, then this an initialized (but | |
555 | * unused) label. This is only an error if the create transaction | |
556 | * on-disk is the same as the one we're using now, in which case the | |
557 | * user has attempted to add the same vdev multiple times in the same | |
558 | * transaction. | |
559 | */ | |
560 | if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && | |
561 | txg == 0 && vdtxg == crtxg) | |
562 | return (B_TRUE); | |
563 | ||
564 | /* | |
565 | * Check to see if this is a spare device. We do an explicit check for | |
566 | * spa_has_spare() here because it may be on our pending list of spares | |
567 | * to add. We also check if it is an l2cache device. | |
568 | */ | |
b128c09f | 569 | if (spa_spare_exists(device_guid, &spare_pool, NULL) || |
34dc7c2f BB |
570 | spa_has_spare(spa, device_guid)) { |
571 | if (spare_guid) | |
572 | *spare_guid = device_guid; | |
573 | ||
574 | switch (reason) { | |
575 | case VDEV_LABEL_CREATE: | |
576 | case VDEV_LABEL_L2CACHE: | |
577 | return (B_TRUE); | |
578 | ||
579 | case VDEV_LABEL_REPLACE: | |
580 | return (!spa_has_spare(spa, device_guid) || | |
581 | spare_pool != 0ULL); | |
582 | ||
583 | case VDEV_LABEL_SPARE: | |
584 | return (spa_has_spare(spa, device_guid)); | |
e75c13c3 BB |
585 | default: |
586 | break; | |
34dc7c2f BB |
587 | } |
588 | } | |
589 | ||
590 | /* | |
591 | * Check to see if this is an l2cache device. | |
592 | */ | |
593 | if (spa_l2cache_exists(device_guid, NULL)) | |
594 | return (B_TRUE); | |
595 | ||
572e2857 BB |
596 | /* |
597 | * We can't rely on a pool's state if it's been imported | |
598 | * read-only. Instead we look to see if the pools is marked | |
599 | * read-only in the namespace and set the state to active. | |
600 | */ | |
601 | if ((spa = spa_by_guid(pool_guid, device_guid)) != NULL && | |
602 | spa_mode(spa) == FREAD) | |
603 | state = POOL_STATE_ACTIVE; | |
604 | ||
34dc7c2f BB |
605 | /* |
606 | * If the device is marked ACTIVE, then this device is in use by another | |
607 | * pool on the system. | |
608 | */ | |
609 | return (state == POOL_STATE_ACTIVE); | |
610 | } | |
611 | ||
612 | /* | |
613 | * Initialize a vdev label. We check to make sure each leaf device is not in | |
614 | * use, and writable. We put down an initial label which we will later | |
615 | * overwrite with a complete label. Note that it's important to do this | |
616 | * sequentially, not in parallel, so that we catch cases of multiple use of the | |
617 | * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with | |
618 | * itself. | |
619 | */ | |
620 | int | |
621 | vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) | |
622 | { | |
623 | spa_t *spa = vd->vdev_spa; | |
624 | nvlist_t *label; | |
625 | vdev_phys_t *vp; | |
9babb374 | 626 | char *pad2; |
34dc7c2f BB |
627 | uberblock_t *ub; |
628 | zio_t *zio; | |
34dc7c2f BB |
629 | char *buf; |
630 | size_t buflen; | |
631 | int error; | |
d4ed6673 | 632 | uint64_t spare_guid = 0, l2cache_guid = 0; |
b128c09f | 633 | int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; |
d6320ddb BB |
634 | int c, l; |
635 | vdev_t *pvd; | |
34dc7c2f | 636 | |
b128c09f | 637 | ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); |
34dc7c2f | 638 | |
d6320ddb | 639 | for (c = 0; c < vd->vdev_children; c++) |
34dc7c2f BB |
640 | if ((error = vdev_label_init(vd->vdev_child[c], |
641 | crtxg, reason)) != 0) | |
642 | return (error); | |
643 | ||
428870ff BB |
644 | /* Track the creation time for this vdev */ |
645 | vd->vdev_crtxg = crtxg; | |
646 | ||
a08ee875 | 647 | if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa)) |
34dc7c2f BB |
648 | return (0); |
649 | ||
650 | /* | |
651 | * Dead vdevs cannot be initialized. | |
652 | */ | |
653 | if (vdev_is_dead(vd)) | |
a08ee875 | 654 | return (SET_ERROR(EIO)); |
34dc7c2f BB |
655 | |
656 | /* | |
657 | * Determine if the vdev is in use. | |
658 | */ | |
428870ff | 659 | if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT && |
34dc7c2f | 660 | vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) |
a08ee875 | 661 | return (SET_ERROR(EBUSY)); |
34dc7c2f | 662 | |
34dc7c2f BB |
663 | /* |
664 | * If this is a request to add or replace a spare or l2cache device | |
665 | * that is in use elsewhere on the system, then we must update the | |
666 | * guid (which was initialized to a random value) to reflect the | |
667 | * actual GUID (which is shared between multiple pools). | |
668 | */ | |
669 | if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && | |
670 | spare_guid != 0ULL) { | |
b128c09f | 671 | uint64_t guid_delta = spare_guid - vd->vdev_guid; |
34dc7c2f | 672 | |
b128c09f | 673 | vd->vdev_guid += guid_delta; |
34dc7c2f | 674 | |
d6320ddb | 675 | for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) |
b128c09f | 676 | pvd->vdev_guid_sum += guid_delta; |
34dc7c2f BB |
677 | |
678 | /* | |
679 | * If this is a replacement, then we want to fallthrough to the | |
680 | * rest of the code. If we're adding a spare, then it's already | |
681 | * labeled appropriately and we can just return. | |
682 | */ | |
683 | if (reason == VDEV_LABEL_SPARE) | |
684 | return (0); | |
428870ff BB |
685 | ASSERT(reason == VDEV_LABEL_REPLACE || |
686 | reason == VDEV_LABEL_SPLIT); | |
34dc7c2f BB |
687 | } |
688 | ||
689 | if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && | |
690 | l2cache_guid != 0ULL) { | |
b128c09f | 691 | uint64_t guid_delta = l2cache_guid - vd->vdev_guid; |
34dc7c2f | 692 | |
b128c09f | 693 | vd->vdev_guid += guid_delta; |
34dc7c2f | 694 | |
d6320ddb | 695 | for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) |
b128c09f | 696 | pvd->vdev_guid_sum += guid_delta; |
34dc7c2f BB |
697 | |
698 | /* | |
699 | * If this is a replacement, then we want to fallthrough to the | |
700 | * rest of the code. If we're adding an l2cache, then it's | |
701 | * already labeled appropriately and we can just return. | |
702 | */ | |
703 | if (reason == VDEV_LABEL_L2CACHE) | |
704 | return (0); | |
705 | ASSERT(reason == VDEV_LABEL_REPLACE); | |
706 | } | |
707 | ||
708 | /* | |
709 | * Initialize its label. | |
710 | */ | |
711 | vp = zio_buf_alloc(sizeof (vdev_phys_t)); | |
712 | bzero(vp, sizeof (vdev_phys_t)); | |
713 | ||
714 | /* | |
715 | * Generate a label describing the pool and our top-level vdev. | |
716 | * We mark it as being from txg 0 to indicate that it's not | |
717 | * really part of an active pool just yet. The labels will | |
718 | * be written again with a meaningful txg by spa_sync(). | |
719 | */ | |
720 | if (reason == VDEV_LABEL_SPARE || | |
721 | (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) { | |
722 | /* | |
723 | * For inactive hot spares, we generate a special label that | |
724 | * identifies as a mutually shared hot spare. We write the | |
725 | * label if we are adding a hot spare, or if we are removing an | |
726 | * active hot spare (in which case we want to revert the | |
727 | * labels). | |
728 | */ | |
b8d06fca | 729 | VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_PUSHPAGE) == 0); |
34dc7c2f BB |
730 | |
731 | VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, | |
732 | spa_version(spa)) == 0); | |
733 | VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, | |
734 | POOL_STATE_SPARE) == 0); | |
735 | VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, | |
736 | vd->vdev_guid) == 0); | |
737 | } else if (reason == VDEV_LABEL_L2CACHE || | |
738 | (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) { | |
739 | /* | |
740 | * For level 2 ARC devices, add a special label. | |
741 | */ | |
b8d06fca | 742 | VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_PUSHPAGE) == 0); |
34dc7c2f BB |
743 | |
744 | VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, | |
745 | spa_version(spa)) == 0); | |
746 | VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, | |
747 | POOL_STATE_L2CACHE) == 0); | |
748 | VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, | |
749 | vd->vdev_guid) == 0); | |
750 | } else { | |
428870ff BB |
751 | uint64_t txg = 0ULL; |
752 | ||
753 | if (reason == VDEV_LABEL_SPLIT) | |
754 | txg = spa->spa_uberblock.ub_txg; | |
755 | label = spa_config_generate(spa, vd, txg, B_FALSE); | |
34dc7c2f BB |
756 | |
757 | /* | |
758 | * Add our creation time. This allows us to detect multiple | |
759 | * vdev uses as described above, and automatically expires if we | |
760 | * fail. | |
761 | */ | |
762 | VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, | |
763 | crtxg) == 0); | |
764 | } | |
765 | ||
766 | buf = vp->vp_nvlist; | |
767 | buflen = sizeof (vp->vp_nvlist); | |
768 | ||
b8d06fca | 769 | error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_PUSHPAGE); |
34dc7c2f BB |
770 | if (error != 0) { |
771 | nvlist_free(label); | |
772 | zio_buf_free(vp, sizeof (vdev_phys_t)); | |
773 | /* EFAULT means nvlist_pack ran out of room */ | |
774 | return (error == EFAULT ? ENAMETOOLONG : EINVAL); | |
775 | } | |
776 | ||
34dc7c2f BB |
777 | /* |
778 | * Initialize uberblock template. | |
779 | */ | |
45d1cae3 BB |
780 | ub = zio_buf_alloc(VDEV_UBERBLOCK_RING); |
781 | bzero(ub, VDEV_UBERBLOCK_RING); | |
34dc7c2f BB |
782 | *ub = spa->spa_uberblock; |
783 | ub->ub_txg = 0; | |
784 | ||
9babb374 BB |
785 | /* Initialize the 2nd padding area. */ |
786 | pad2 = zio_buf_alloc(VDEV_PAD_SIZE); | |
787 | bzero(pad2, VDEV_PAD_SIZE); | |
788 | ||
34dc7c2f BB |
789 | /* |
790 | * Write everything in parallel. | |
791 | */ | |
9babb374 | 792 | retry: |
34dc7c2f BB |
793 | zio = zio_root(spa, NULL, NULL, flags); |
794 | ||
d6320ddb | 795 | for (l = 0; l < VDEV_LABELS; l++) { |
34dc7c2f BB |
796 | |
797 | vdev_label_write(zio, vd, l, vp, | |
798 | offsetof(vdev_label_t, vl_vdev_phys), | |
799 | sizeof (vdev_phys_t), NULL, NULL, flags); | |
800 | ||
9babb374 BB |
801 | /* |
802 | * Skip the 1st padding area. | |
803 | * Zero out the 2nd padding area where it might have | |
804 | * left over data from previous filesystem format. | |
805 | */ | |
806 | vdev_label_write(zio, vd, l, pad2, | |
807 | offsetof(vdev_label_t, vl_pad2), | |
808 | VDEV_PAD_SIZE, NULL, NULL, flags); | |
34dc7c2f | 809 | |
45d1cae3 BB |
810 | vdev_label_write(zio, vd, l, ub, |
811 | offsetof(vdev_label_t, vl_uberblock), | |
812 | VDEV_UBERBLOCK_RING, NULL, NULL, flags); | |
34dc7c2f BB |
813 | } |
814 | ||
815 | error = zio_wait(zio); | |
816 | ||
9babb374 BB |
817 | if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { |
818 | flags |= ZIO_FLAG_TRYHARD; | |
819 | goto retry; | |
820 | } | |
821 | ||
34dc7c2f | 822 | nvlist_free(label); |
9babb374 | 823 | zio_buf_free(pad2, VDEV_PAD_SIZE); |
45d1cae3 | 824 | zio_buf_free(ub, VDEV_UBERBLOCK_RING); |
34dc7c2f BB |
825 | zio_buf_free(vp, sizeof (vdev_phys_t)); |
826 | ||
827 | /* | |
828 | * If this vdev hasn't been previously identified as a spare, then we | |
829 | * mark it as such only if a) we are labeling it as a spare, or b) it | |
830 | * exists as a spare elsewhere in the system. Do the same for | |
831 | * level 2 ARC devices. | |
832 | */ | |
833 | if (error == 0 && !vd->vdev_isspare && | |
834 | (reason == VDEV_LABEL_SPARE || | |
b128c09f | 835 | spa_spare_exists(vd->vdev_guid, NULL, NULL))) |
34dc7c2f BB |
836 | spa_spare_add(vd); |
837 | ||
838 | if (error == 0 && !vd->vdev_isl2cache && | |
839 | (reason == VDEV_LABEL_L2CACHE || | |
840 | spa_l2cache_exists(vd->vdev_guid, NULL))) | |
841 | spa_l2cache_add(vd); | |
842 | ||
843 | return (error); | |
844 | } | |
845 | ||
846 | /* | |
847 | * ========================================================================== | |
848 | * uberblock load/sync | |
849 | * ========================================================================== | |
850 | */ | |
851 | ||
852 | /* | |
853 | * Consider the following situation: txg is safely synced to disk. We've | |
854 | * written the first uberblock for txg + 1, and then we lose power. When we | |
855 | * come back up, we fail to see the uberblock for txg + 1 because, say, | |
856 | * it was on a mirrored device and the replica to which we wrote txg + 1 | |
857 | * is now offline. If we then make some changes and sync txg + 1, and then | |
9ae529ec | 858 | * the missing replica comes back, then for a few seconds we'll have two |
34dc7c2f BB |
859 | * conflicting uberblocks on disk with the same txg. The solution is simple: |
860 | * among uberblocks with equal txg, choose the one with the latest timestamp. | |
861 | */ | |
862 | static int | |
863 | vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) | |
864 | { | |
865 | if (ub1->ub_txg < ub2->ub_txg) | |
866 | return (-1); | |
867 | if (ub1->ub_txg > ub2->ub_txg) | |
868 | return (1); | |
869 | ||
870 | if (ub1->ub_timestamp < ub2->ub_timestamp) | |
871 | return (-1); | |
872 | if (ub1->ub_timestamp > ub2->ub_timestamp) | |
873 | return (1); | |
874 | ||
875 | return (0); | |
876 | } | |
877 | ||
9ae529ec CS |
878 | struct ubl_cbdata { |
879 | uberblock_t *ubl_ubbest; /* Best uberblock */ | |
880 | vdev_t *ubl_vd; /* vdev associated with the above */ | |
9ae529ec CS |
881 | }; |
882 | ||
34dc7c2f BB |
883 | static void |
884 | vdev_uberblock_load_done(zio_t *zio) | |
885 | { | |
9ae529ec | 886 | vdev_t *vd = zio->io_vd; |
428870ff | 887 | spa_t *spa = zio->io_spa; |
b128c09f | 888 | zio_t *rio = zio->io_private; |
34dc7c2f | 889 | uberblock_t *ub = zio->io_data; |
9ae529ec | 890 | struct ubl_cbdata *cbp = rio->io_private; |
34dc7c2f | 891 | |
9ae529ec | 892 | ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd)); |
34dc7c2f BB |
893 | |
894 | if (zio->io_error == 0 && uberblock_verify(ub) == 0) { | |
b128c09f | 895 | mutex_enter(&rio->io_lock); |
428870ff | 896 | if (ub->ub_txg <= spa->spa_load_max_txg && |
9ae529ec CS |
897 | vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) { |
898 | /* | |
3bc7e0fb GW |
899 | * Keep track of the vdev in which this uberblock |
900 | * was found. We will use this information later | |
901 | * to obtain the config nvlist associated with | |
9ae529ec CS |
902 | * this uberblock. |
903 | */ | |
904 | *cbp->ubl_ubbest = *ub; | |
905 | cbp->ubl_vd = vd; | |
9ae529ec | 906 | } |
b128c09f | 907 | mutex_exit(&rio->io_lock); |
34dc7c2f BB |
908 | } |
909 | ||
910 | zio_buf_free(zio->io_data, zio->io_size); | |
911 | } | |
912 | ||
9ae529ec CS |
913 | static void |
914 | vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags, | |
915 | struct ubl_cbdata *cbp) | |
34dc7c2f | 916 | { |
d6320ddb | 917 | int c, l, n; |
b128c09f | 918 | |
d6320ddb | 919 | for (c = 0; c < vd->vdev_children; c++) |
9ae529ec | 920 | vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp); |
34dc7c2f | 921 | |
b128c09f | 922 | if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { |
d6320ddb BB |
923 | for (l = 0; l < VDEV_LABELS; l++) { |
924 | for (n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { | |
b128c09f BB |
925 | vdev_label_read(zio, vd, l, |
926 | zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)), | |
927 | VDEV_UBERBLOCK_OFFSET(vd, n), | |
928 | VDEV_UBERBLOCK_SIZE(vd), | |
929 | vdev_uberblock_load_done, zio, flags); | |
930 | } | |
34dc7c2f BB |
931 | } |
932 | } | |
9ae529ec CS |
933 | } |
934 | ||
935 | /* | |
936 | * Reads the 'best' uberblock from disk along with its associated | |
937 | * configuration. First, we read the uberblock array of each label of each | |
938 | * vdev, keeping track of the uberblock with the highest txg in each array. | |
3bc7e0fb | 939 | * Then, we read the configuration from the same vdev as the best uberblock. |
9ae529ec CS |
940 | */ |
941 | void | |
942 | vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config) | |
943 | { | |
9ae529ec CS |
944 | zio_t *zio; |
945 | spa_t *spa = rvd->vdev_spa; | |
946 | struct ubl_cbdata cb; | |
947 | int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | | |
948 | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; | |
949 | ||
950 | ASSERT(ub); | |
951 | ASSERT(config); | |
b128c09f | 952 | |
9ae529ec CS |
953 | bzero(ub, sizeof (uberblock_t)); |
954 | *config = NULL; | |
955 | ||
956 | cb.ubl_ubbest = ub; | |
957 | cb.ubl_vd = NULL; | |
958 | ||
959 | spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); | |
960 | zio = zio_root(spa, NULL, &cb, flags); | |
961 | vdev_uberblock_load_impl(zio, rvd, flags, &cb); | |
962 | (void) zio_wait(zio); | |
3bc7e0fb GW |
963 | |
964 | /* | |
965 | * It's possible that the best uberblock was discovered on a label | |
966 | * that has a configuration which was written in a future txg. | |
967 | * Search all labels on this vdev to find the configuration that | |
968 | * matches the txg for our uberblock. | |
969 | */ | |
970 | if (cb.ubl_vd != NULL) | |
971 | *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg); | |
9ae529ec | 972 | spa_config_exit(spa, SCL_ALL, FTAG); |
34dc7c2f BB |
973 | } |
974 | ||
975 | /* | |
976 | * On success, increment root zio's count of good writes. | |
977 | * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). | |
978 | */ | |
979 | static void | |
980 | vdev_uberblock_sync_done(zio_t *zio) | |
981 | { | |
982 | uint64_t *good_writes = zio->io_private; | |
983 | ||
984 | if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) | |
985 | atomic_add_64(good_writes, 1); | |
986 | } | |
987 | ||
988 | /* | |
989 | * Write the uberblock to all labels of all leaves of the specified vdev. | |
990 | */ | |
991 | static void | |
b128c09f | 992 | vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags) |
34dc7c2f | 993 | { |
34dc7c2f | 994 | uberblock_t *ubbuf; |
d6320ddb | 995 | int c, l, n; |
34dc7c2f | 996 | |
d6320ddb | 997 | for (c = 0; c < vd->vdev_children; c++) |
b128c09f | 998 | vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags); |
34dc7c2f BB |
999 | |
1000 | if (!vd->vdev_ops->vdev_op_leaf) | |
1001 | return; | |
1002 | ||
b128c09f | 1003 | if (!vdev_writeable(vd)) |
34dc7c2f BB |
1004 | return; |
1005 | ||
1006 | n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1); | |
1007 | ||
1008 | ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)); | |
1009 | bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); | |
1010 | *ubbuf = *ub; | |
1011 | ||
d6320ddb | 1012 | for (l = 0; l < VDEV_LABELS; l++) |
34dc7c2f | 1013 | vdev_label_write(zio, vd, l, ubbuf, |
b128c09f | 1014 | VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), |
34dc7c2f | 1015 | vdev_uberblock_sync_done, zio->io_private, |
b128c09f | 1016 | flags | ZIO_FLAG_DONT_PROPAGATE); |
34dc7c2f BB |
1017 | |
1018 | zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); | |
1019 | } | |
1020 | ||
a08ee875 | 1021 | /* Sync the uberblocks to all vdevs in svd[] */ |
34dc7c2f BB |
1022 | int |
1023 | vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) | |
1024 | { | |
1025 | spa_t *spa = svd[0]->vdev_spa; | |
34dc7c2f BB |
1026 | zio_t *zio; |
1027 | uint64_t good_writes = 0; | |
d6320ddb | 1028 | int v; |
34dc7c2f BB |
1029 | |
1030 | zio = zio_root(spa, NULL, &good_writes, flags); | |
1031 | ||
d6320ddb | 1032 | for (v = 0; v < svdcount; v++) |
b128c09f | 1033 | vdev_uberblock_sync(zio, ub, svd[v], flags); |
34dc7c2f BB |
1034 | |
1035 | (void) zio_wait(zio); | |
1036 | ||
1037 | /* | |
1038 | * Flush the uberblocks to disk. This ensures that the odd labels | |
1039 | * are no longer needed (because the new uberblocks and the even | |
1040 | * labels are safely on disk), so it is safe to overwrite them. | |
1041 | */ | |
1042 | zio = zio_root(spa, NULL, NULL, flags); | |
1043 | ||
d6320ddb | 1044 | for (v = 0; v < svdcount; v++) |
34dc7c2f BB |
1045 | zio_flush(zio, svd[v]); |
1046 | ||
1047 | (void) zio_wait(zio); | |
1048 | ||
1049 | return (good_writes >= 1 ? 0 : EIO); | |
1050 | } | |
1051 | ||
1052 | /* | |
1053 | * On success, increment the count of good writes for our top-level vdev. | |
1054 | */ | |
1055 | static void | |
1056 | vdev_label_sync_done(zio_t *zio) | |
1057 | { | |
1058 | uint64_t *good_writes = zio->io_private; | |
1059 | ||
1060 | if (zio->io_error == 0) | |
1061 | atomic_add_64(good_writes, 1); | |
1062 | } | |
1063 | ||
1064 | /* | |
1065 | * If there weren't enough good writes, indicate failure to the parent. | |
1066 | */ | |
1067 | static void | |
1068 | vdev_label_sync_top_done(zio_t *zio) | |
1069 | { | |
1070 | uint64_t *good_writes = zio->io_private; | |
1071 | ||
1072 | if (*good_writes == 0) | |
a08ee875 | 1073 | zio->io_error = SET_ERROR(EIO); |
34dc7c2f BB |
1074 | |
1075 | kmem_free(good_writes, sizeof (uint64_t)); | |
1076 | } | |
1077 | ||
b128c09f BB |
1078 | /* |
1079 | * We ignore errors for log and cache devices, simply free the private data. | |
1080 | */ | |
1081 | static void | |
1082 | vdev_label_sync_ignore_done(zio_t *zio) | |
1083 | { | |
1084 | kmem_free(zio->io_private, sizeof (uint64_t)); | |
1085 | } | |
1086 | ||
34dc7c2f BB |
1087 | /* |
1088 | * Write all even or odd labels to all leaves of the specified vdev. | |
1089 | */ | |
1090 | static void | |
b128c09f | 1091 | vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags) |
34dc7c2f BB |
1092 | { |
1093 | nvlist_t *label; | |
1094 | vdev_phys_t *vp; | |
1095 | char *buf; | |
1096 | size_t buflen; | |
d6320ddb | 1097 | int c; |
34dc7c2f | 1098 | |
d6320ddb | 1099 | for (c = 0; c < vd->vdev_children; c++) |
b128c09f | 1100 | vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags); |
34dc7c2f BB |
1101 | |
1102 | if (!vd->vdev_ops->vdev_op_leaf) | |
1103 | return; | |
1104 | ||
b128c09f | 1105 | if (!vdev_writeable(vd)) |
34dc7c2f BB |
1106 | return; |
1107 | ||
1108 | /* | |
1109 | * Generate a label describing the top-level config to which we belong. | |
1110 | */ | |
1111 | label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); | |
1112 | ||
1113 | vp = zio_buf_alloc(sizeof (vdev_phys_t)); | |
1114 | bzero(vp, sizeof (vdev_phys_t)); | |
1115 | ||
1116 | buf = vp->vp_nvlist; | |
1117 | buflen = sizeof (vp->vp_nvlist); | |
1118 | ||
a08ee875 | 1119 | if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_PUSHPAGE)) { |
34dc7c2f BB |
1120 | for (; l < VDEV_LABELS; l += 2) { |
1121 | vdev_label_write(zio, vd, l, vp, | |
1122 | offsetof(vdev_label_t, vl_vdev_phys), | |
1123 | sizeof (vdev_phys_t), | |
1124 | vdev_label_sync_done, zio->io_private, | |
b128c09f | 1125 | flags | ZIO_FLAG_DONT_PROPAGATE); |
34dc7c2f BB |
1126 | } |
1127 | } | |
1128 | ||
1129 | zio_buf_free(vp, sizeof (vdev_phys_t)); | |
1130 | nvlist_free(label); | |
1131 | } | |
1132 | ||
1133 | int | |
b128c09f | 1134 | vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags) |
34dc7c2f | 1135 | { |
b128c09f | 1136 | list_t *dl = &spa->spa_config_dirty_list; |
34dc7c2f BB |
1137 | vdev_t *vd; |
1138 | zio_t *zio; | |
1139 | int error; | |
1140 | ||
1141 | /* | |
1142 | * Write the new labels to disk. | |
1143 | */ | |
1144 | zio = zio_root(spa, NULL, NULL, flags); | |
1145 | ||
1146 | for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { | |
d6320ddb BB |
1147 | uint64_t *good_writes; |
1148 | zio_t *vio; | |
428870ff BB |
1149 | |
1150 | ASSERT(!vd->vdev_ishole); | |
1151 | ||
b8d06fca | 1152 | good_writes = kmem_zalloc(sizeof (uint64_t), KM_PUSHPAGE); |
d6320ddb | 1153 | vio = zio_null(zio, spa, NULL, |
b128c09f BB |
1154 | (vd->vdev_islog || vd->vdev_aux != NULL) ? |
1155 | vdev_label_sync_ignore_done : vdev_label_sync_top_done, | |
34dc7c2f | 1156 | good_writes, flags); |
b128c09f | 1157 | vdev_label_sync(vio, vd, l, txg, flags); |
34dc7c2f BB |
1158 | zio_nowait(vio); |
1159 | } | |
1160 | ||
1161 | error = zio_wait(zio); | |
1162 | ||
1163 | /* | |
1164 | * Flush the new labels to disk. | |
1165 | */ | |
1166 | zio = zio_root(spa, NULL, NULL, flags); | |
1167 | ||
1168 | for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) | |
1169 | zio_flush(zio, vd); | |
1170 | ||
1171 | (void) zio_wait(zio); | |
1172 | ||
1173 | return (error); | |
1174 | } | |
1175 | ||
1176 | /* | |
1177 | * Sync the uberblock and any changes to the vdev configuration. | |
1178 | * | |
1179 | * The order of operations is carefully crafted to ensure that | |
1180 | * if the system panics or loses power at any time, the state on disk | |
1181 | * is still transactionally consistent. The in-line comments below | |
1182 | * describe the failure semantics at each stage. | |
1183 | * | |
1184 | * Moreover, vdev_config_sync() is designed to be idempotent: if it fails | |
1185 | * at any time, you can just call it again, and it will resume its work. | |
1186 | */ | |
1187 | int | |
9babb374 | 1188 | vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard) |
34dc7c2f BB |
1189 | { |
1190 | spa_t *spa = svd[0]->vdev_spa; | |
1191 | uberblock_t *ub = &spa->spa_uberblock; | |
1192 | vdev_t *vd; | |
1193 | zio_t *zio; | |
1194 | int error; | |
b128c09f | 1195 | int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; |
34dc7c2f | 1196 | |
9babb374 BB |
1197 | /* |
1198 | * Normally, we don't want to try too hard to write every label and | |
1199 | * uberblock. If there is a flaky disk, we don't want the rest of the | |
1200 | * sync process to block while we retry. But if we can't write a | |
1201 | * single label out, we should retry with ZIO_FLAG_TRYHARD before | |
1202 | * bailing out and declaring the pool faulted. | |
1203 | */ | |
1204 | if (tryhard) | |
1205 | flags |= ZIO_FLAG_TRYHARD; | |
1206 | ||
34dc7c2f BB |
1207 | ASSERT(ub->ub_txg <= txg); |
1208 | ||
1209 | /* | |
1210 | * If this isn't a resync due to I/O errors, | |
1211 | * and nothing changed in this transaction group, | |
1212 | * and the vdev configuration hasn't changed, | |
1213 | * then there's nothing to do. | |
1214 | */ | |
1215 | if (ub->ub_txg < txg && | |
1216 | uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE && | |
b128c09f | 1217 | list_is_empty(&spa->spa_config_dirty_list)) |
34dc7c2f BB |
1218 | return (0); |
1219 | ||
1220 | if (txg > spa_freeze_txg(spa)) | |
1221 | return (0); | |
1222 | ||
1223 | ASSERT(txg <= spa->spa_final_txg); | |
1224 | ||
1225 | /* | |
1226 | * Flush the write cache of every disk that's been written to | |
1227 | * in this transaction group. This ensures that all blocks | |
1228 | * written in this txg will be committed to stable storage | |
1229 | * before any uberblock that references them. | |
1230 | */ | |
1231 | zio = zio_root(spa, NULL, NULL, flags); | |
1232 | ||
1233 | for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd; | |
1234 | vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) | |
1235 | zio_flush(zio, vd); | |
1236 | ||
1237 | (void) zio_wait(zio); | |
1238 | ||
1239 | /* | |
1240 | * Sync out the even labels (L0, L2) for every dirty vdev. If the | |
1241 | * system dies in the middle of this process, that's OK: all of the | |
1242 | * even labels that made it to disk will be newer than any uberblock, | |
1243 | * and will therefore be considered invalid. The odd labels (L1, L3), | |
1244 | * which have not yet been touched, will still be valid. We flush | |
1245 | * the new labels to disk to ensure that all even-label updates | |
1246 | * are committed to stable storage before the uberblock update. | |
1247 | */ | |
b128c09f | 1248 | if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) |
34dc7c2f BB |
1249 | return (error); |
1250 | ||
1251 | /* | |
1252 | * Sync the uberblocks to all vdevs in svd[]. | |
1253 | * If the system dies in the middle of this step, there are two cases | |
1254 | * to consider, and the on-disk state is consistent either way: | |
1255 | * | |
1256 | * (1) If none of the new uberblocks made it to disk, then the | |
1257 | * previous uberblock will be the newest, and the odd labels | |
1258 | * (which had not yet been touched) will be valid with respect | |
1259 | * to that uberblock. | |
1260 | * | |
1261 | * (2) If one or more new uberblocks made it to disk, then they | |
1262 | * will be the newest, and the even labels (which had all | |
1263 | * been successfully committed) will be valid with respect | |
1264 | * to the new uberblocks. | |
1265 | */ | |
1266 | if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) | |
1267 | return (error); | |
1268 | ||
1269 | /* | |
1270 | * Sync out odd labels for every dirty vdev. If the system dies | |
1271 | * in the middle of this process, the even labels and the new | |
1272 | * uberblocks will suffice to open the pool. The next time | |
1273 | * the pool is opened, the first thing we'll do -- before any | |
1274 | * user data is modified -- is mark every vdev dirty so that | |
1275 | * all labels will be brought up to date. We flush the new labels | |
1276 | * to disk to ensure that all odd-label updates are committed to | |
1277 | * stable storage before the next transaction group begins. | |
1278 | */ | |
b128c09f | 1279 | return (vdev_label_sync_list(spa, 1, txg, flags)); |
34dc7c2f | 1280 | } |