]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/vdev_label.c
Illumos #3699, #3739
[mirror_zfs.git] / module / zfs / vdev_label.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
9ae529ec 21
34dc7c2f 22/*
428870ff 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
2e528b49 24 * Copyright (c) 2013 by Delphix. All rights reserved.
34dc7c2f
BB
25 */
26
34dc7c2f
BB
27/*
28 * Virtual Device Labels
29 * ---------------------
30 *
31 * The vdev label serves several distinct purposes:
32 *
33 * 1. Uniquely identify this device as part of a ZFS pool and confirm its
34 * identity within the pool.
35 *
36 * 2. Verify that all the devices given in a configuration are present
37 * within the pool.
38 *
39 * 3. Determine the uberblock for the pool.
40 *
41 * 4. In case of an import operation, determine the configuration of the
42 * toplevel vdev of which it is a part.
43 *
44 * 5. If an import operation cannot find all the devices in the pool,
45 * provide enough information to the administrator to determine which
46 * devices are missing.
47 *
48 * It is important to note that while the kernel is responsible for writing the
49 * label, it only consumes the information in the first three cases. The
50 * latter information is only consumed in userland when determining the
51 * configuration to import a pool.
52 *
53 *
54 * Label Organization
55 * ------------------
56 *
57 * Before describing the contents of the label, it's important to understand how
58 * the labels are written and updated with respect to the uberblock.
59 *
60 * When the pool configuration is altered, either because it was newly created
61 * or a device was added, we want to update all the labels such that we can deal
62 * with fatal failure at any point. To this end, each disk has two labels which
63 * are updated before and after the uberblock is synced. Assuming we have
64 * labels and an uberblock with the following transaction groups:
65 *
66 * L1 UB L2
67 * +------+ +------+ +------+
68 * | | | | | |
69 * | t10 | | t10 | | t10 |
70 * | | | | | |
71 * +------+ +------+ +------+
72 *
73 * In this stable state, the labels and the uberblock were all updated within
74 * the same transaction group (10). Each label is mirrored and checksummed, so
75 * that we can detect when we fail partway through writing the label.
76 *
77 * In order to identify which labels are valid, the labels are written in the
78 * following manner:
79 *
80 * 1. For each vdev, update 'L1' to the new label
81 * 2. Update the uberblock
82 * 3. For each vdev, update 'L2' to the new label
83 *
84 * Given arbitrary failure, we can determine the correct label to use based on
85 * the transaction group. If we fail after updating L1 but before updating the
86 * UB, we will notice that L1's transaction group is greater than the uberblock,
87 * so L2 must be valid. If we fail after writing the uberblock but before
88 * writing L2, we will notice that L2's transaction group is less than L1, and
89 * therefore L1 is valid.
90 *
91 * Another added complexity is that not every label is updated when the config
92 * is synced. If we add a single device, we do not want to have to re-write
93 * every label for every device in the pool. This means that both L1 and L2 may
94 * be older than the pool uberblock, because the necessary information is stored
95 * on another vdev.
96 *
97 *
98 * On-disk Format
99 * --------------
100 *
101 * The vdev label consists of two distinct parts, and is wrapped within the
102 * vdev_label_t structure. The label includes 8k of padding to permit legacy
103 * VTOC disk labels, but is otherwise ignored.
104 *
105 * The first half of the label is a packed nvlist which contains pool wide
106 * properties, per-vdev properties, and configuration information. It is
107 * described in more detail below.
108 *
109 * The latter half of the label consists of a redundant array of uberblocks.
110 * These uberblocks are updated whenever a transaction group is committed,
111 * or when the configuration is updated. When a pool is loaded, we scan each
112 * vdev for the 'best' uberblock.
113 *
114 *
115 * Configuration Information
116 * -------------------------
117 *
118 * The nvlist describing the pool and vdev contains the following elements:
119 *
120 * version ZFS on-disk version
121 * name Pool name
122 * state Pool state
123 * txg Transaction group in which this label was written
124 * pool_guid Unique identifier for this pool
125 * vdev_tree An nvlist describing vdev tree.
9ae529ec
CS
126 * features_for_read
127 * An nvlist of the features necessary for reading the MOS.
34dc7c2f
BB
128 *
129 * Each leaf device label also contains the following:
130 *
131 * top_guid Unique ID for top-level vdev in which this is contained
132 * guid Unique ID for the leaf vdev
133 *
134 * The 'vs' configuration follows the format described in 'spa_config.c'.
135 */
136
137#include <sys/zfs_context.h>
138#include <sys/spa.h>
139#include <sys/spa_impl.h>
140#include <sys/dmu.h>
141#include <sys/zap.h>
142#include <sys/vdev.h>
143#include <sys/vdev_impl.h>
144#include <sys/uberblock_impl.h>
145#include <sys/metaslab.h>
146#include <sys/zio.h>
428870ff 147#include <sys/dsl_scan.h>
34dc7c2f
BB
148#include <sys/fs/zfs.h>
149
150/*
151 * Basic routines to read and write from a vdev label.
152 * Used throughout the rest of this file.
153 */
154uint64_t
155vdev_label_offset(uint64_t psize, int l, uint64_t offset)
156{
157 ASSERT(offset < sizeof (vdev_label_t));
158 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
159
160 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
161 0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
162}
163
b128c09f
BB
164/*
165 * Returns back the vdev label associated with the passed in offset.
166 */
167int
168vdev_label_number(uint64_t psize, uint64_t offset)
169{
170 int l;
171
172 if (offset >= psize - VDEV_LABEL_END_SIZE) {
173 offset -= psize - VDEV_LABEL_END_SIZE;
174 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
175 }
176 l = offset / sizeof (vdev_label_t);
177 return (l < VDEV_LABELS ? l : -1);
178}
179
34dc7c2f
BB
180static void
181vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
b128c09f 182 uint64_t size, zio_done_func_t *done, void *private, int flags)
34dc7c2f 183{
b128c09f
BB
184 ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
185 SCL_STATE_ALL);
186 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
34dc7c2f
BB
187
188 zio_nowait(zio_read_phys(zio, vd,
189 vdev_label_offset(vd->vdev_psize, l, offset),
190 size, buf, ZIO_CHECKSUM_LABEL, done, private,
b128c09f 191 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
34dc7c2f
BB
192}
193
194static void
195vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
196 uint64_t size, zio_done_func_t *done, void *private, int flags)
197{
b128c09f
BB
198 ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
199 (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
200 (SCL_CONFIG | SCL_STATE) &&
201 dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
202 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
34dc7c2f
BB
203
204 zio_nowait(zio_write_phys(zio, vd,
205 vdev_label_offset(vd->vdev_psize, l, offset),
206 size, buf, ZIO_CHECKSUM_LABEL, done, private,
207 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
208}
209
210/*
211 * Generate the nvlist representing this vdev's config.
212 */
213nvlist_t *
214vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
428870ff 215 vdev_config_flag_t flags)
34dc7c2f
BB
216{
217 nvlist_t *nv = NULL;
218
b8d06fca 219 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
34dc7c2f
BB
220
221 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
222 vd->vdev_ops->vdev_op_type) == 0);
428870ff 223 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
34dc7c2f
BB
224 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id)
225 == 0);
226 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0);
227
228 if (vd->vdev_path != NULL)
229 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH,
230 vd->vdev_path) == 0);
231
232 if (vd->vdev_devid != NULL)
233 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID,
234 vd->vdev_devid) == 0);
235
236 if (vd->vdev_physpath != NULL)
237 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
238 vd->vdev_physpath) == 0);
239
9babb374
BB
240 if (vd->vdev_fru != NULL)
241 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_FRU,
242 vd->vdev_fru) == 0);
243
34dc7c2f
BB
244 if (vd->vdev_nparity != 0) {
245 ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
246 VDEV_TYPE_RAIDZ) == 0);
247
248 /*
249 * Make sure someone hasn't managed to sneak a fancy new vdev
250 * into a crufty old storage pool.
251 */
252 ASSERT(vd->vdev_nparity == 1 ||
45d1cae3
BB
253 (vd->vdev_nparity <= 2 &&
254 spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
255 (vd->vdev_nparity <= 3 &&
256 spa_version(spa) >= SPA_VERSION_RAIDZ3));
34dc7c2f
BB
257
258 /*
259 * Note that we'll add the nparity tag even on storage pools
260 * that only support a single parity device -- older software
261 * will just ignore it.
262 */
263 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY,
264 vd->vdev_nparity) == 0);
265 }
266
267 if (vd->vdev_wholedisk != -1ULL)
268 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
269 vd->vdev_wholedisk) == 0);
270
271 if (vd->vdev_not_present)
272 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0);
273
274 if (vd->vdev_isspare)
275 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0);
276
428870ff
BB
277 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
278 vd == vd->vdev_top) {
34dc7c2f
BB
279 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
280 vd->vdev_ms_array) == 0);
281 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
282 vd->vdev_ms_shift) == 0);
283 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT,
284 vd->vdev_ashift) == 0);
285 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
286 vd->vdev_asize) == 0);
287 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG,
288 vd->vdev_islog) == 0);
428870ff
BB
289 if (vd->vdev_removing)
290 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
291 vd->vdev_removing) == 0);
34dc7c2f
BB
292 }
293
fb5f0bc8 294 if (vd->vdev_dtl_smo.smo_object != 0)
34dc7c2f 295 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
fb5f0bc8 296 vd->vdev_dtl_smo.smo_object) == 0);
34dc7c2f 297
428870ff
BB
298 if (vd->vdev_crtxg)
299 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
300 vd->vdev_crtxg) == 0);
301
34dc7c2f
BB
302 if (getstats) {
303 vdev_stat_t vs;
428870ff
BB
304 pool_scan_stat_t ps;
305
34dc7c2f 306 vdev_get_stats(vd, &vs);
428870ff 307 VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
34dc7c2f 308 (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0);
428870ff
BB
309
310 /* provide either current or previous scan information */
311 if (spa_scan_get_stats(spa, &ps) == 0) {
312 VERIFY(nvlist_add_uint64_array(nv,
313 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
314 sizeof (pool_scan_stat_t) / sizeof (uint64_t))
315 == 0);
316 }
34dc7c2f
BB
317 }
318
319 if (!vd->vdev_ops->vdev_op_leaf) {
320 nvlist_t **child;
428870ff
BB
321 int c, idx;
322
323 ASSERT(!vd->vdev_ishole);
34dc7c2f
BB
324
325 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
b8d06fca 326 KM_PUSHPAGE);
34dc7c2f 327
428870ff
BB
328 for (c = 0, idx = 0; c < vd->vdev_children; c++) {
329 vdev_t *cvd = vd->vdev_child[c];
34dc7c2f 330
428870ff
BB
331 /*
332 * If we're generating an nvlist of removing
333 * vdevs then skip over any device which is
334 * not being removed.
335 */
336 if ((flags & VDEV_CONFIG_REMOVING) &&
337 !cvd->vdev_removing)
338 continue;
34dc7c2f 339
428870ff
BB
340 child[idx++] = vdev_config_generate(spa, cvd,
341 getstats, flags);
342 }
343
344 if (idx) {
345 VERIFY(nvlist_add_nvlist_array(nv,
346 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
347 }
348
349 for (c = 0; c < idx; c++)
34dc7c2f
BB
350 nvlist_free(child[c]);
351
352 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
353
354 } else {
428870ff
BB
355 const char *aux = NULL;
356
34dc7c2f
BB
357 if (vd->vdev_offline && !vd->vdev_tmpoffline)
358 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE,
359 B_TRUE) == 0);
572e2857
BB
360 if (vd->vdev_resilvering)
361 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVERING,
362 B_TRUE) == 0);
34dc7c2f
BB
363 if (vd->vdev_faulted)
364 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED,
365 B_TRUE) == 0);
366 if (vd->vdev_degraded)
367 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED,
368 B_TRUE) == 0);
369 if (vd->vdev_removed)
370 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED,
371 B_TRUE) == 0);
372 if (vd->vdev_unspare)
373 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE,
374 B_TRUE) == 0);
428870ff
BB
375 if (vd->vdev_ishole)
376 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE,
377 B_TRUE) == 0);
378
379 switch (vd->vdev_stat.vs_aux) {
380 case VDEV_AUX_ERR_EXCEEDED:
381 aux = "err_exceeded";
382 break;
383
384 case VDEV_AUX_EXTERNAL:
385 aux = "external";
386 break;
387 }
388
389 if (aux != NULL)
390 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE,
391 aux) == 0);
392
393 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
394 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
395 vd->vdev_orig_guid) == 0);
396 }
34dc7c2f
BB
397 }
398
399 return (nv);
400}
401
428870ff
BB
402/*
403 * Generate a view of the top-level vdevs. If we currently have holes
404 * in the namespace, then generate an array which contains a list of holey
405 * vdevs. Additionally, add the number of top-level children that currently
406 * exist.
407 */
408void
409vdev_top_config_generate(spa_t *spa, nvlist_t *config)
410{
411 vdev_t *rvd = spa->spa_root_vdev;
412 uint64_t *array;
413 uint_t c, idx;
414
b8d06fca 415 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_PUSHPAGE);
428870ff
BB
416
417 for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
418 vdev_t *tvd = rvd->vdev_child[c];
419
420 if (tvd->vdev_ishole)
421 array[idx++] = c;
422 }
423
424 if (idx) {
425 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
426 array, idx) == 0);
427 }
428
429 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
430 rvd->vdev_children) == 0);
431
432 kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
433}
434
9ae529ec 435/*
3bc7e0fb
GW
436 * Returns the configuration from the label of the given vdev. For vdevs
437 * which don't have a txg value stored on their label (i.e. spares/cache)
438 * or have not been completely initialized (txg = 0) just return
439 * the configuration from the first valid label we find. Otherwise,
440 * find the most up-to-date label that does not exceed the specified
441 * 'txg' value.
9ae529ec 442 */
34dc7c2f 443nvlist_t *
3bc7e0fb 444vdev_label_read_config(vdev_t *vd, uint64_t txg)
34dc7c2f
BB
445{
446 spa_t *spa = vd->vdev_spa;
447 nvlist_t *config = NULL;
448 vdev_phys_t *vp;
449 zio_t *zio;
3bc7e0fb
GW
450 uint64_t best_txg = 0;
451 int error = 0;
9babb374
BB
452 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
453 ZIO_FLAG_SPECULATIVE;
d6320ddb 454 int l;
34dc7c2f 455
b128c09f 456 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
34dc7c2f
BB
457
458 if (!vdev_readable(vd))
459 return (NULL);
460
461 vp = zio_buf_alloc(sizeof (vdev_phys_t));
462
9babb374 463retry:
d6320ddb 464 for (l = 0; l < VDEV_LABELS; l++) {
3bc7e0fb 465 nvlist_t *label = NULL;
34dc7c2f 466
b128c09f 467 zio = zio_root(spa, NULL, NULL, flags);
34dc7c2f
BB
468
469 vdev_label_read(zio, vd, l, vp,
470 offsetof(vdev_label_t, vl_vdev_phys),
b128c09f 471 sizeof (vdev_phys_t), NULL, NULL, flags);
34dc7c2f
BB
472
473 if (zio_wait(zio) == 0 &&
474 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
3bc7e0fb
GW
475 &label, 0) == 0) {
476 uint64_t label_txg = 0;
477
478 /*
479 * Auxiliary vdevs won't have txg values in their
480 * labels and newly added vdevs may not have been
481 * completely initialized so just return the
482 * configuration from the first valid label we
483 * encounter.
484 */
485 error = nvlist_lookup_uint64(label,
486 ZPOOL_CONFIG_POOL_TXG, &label_txg);
487 if ((error || label_txg == 0) && !config) {
488 config = label;
489 break;
490 } else if (label_txg <= txg && label_txg > best_txg) {
491 best_txg = label_txg;
492 nvlist_free(config);
493 config = fnvlist_dup(label);
494 }
495 }
34dc7c2f 496
3bc7e0fb
GW
497 if (label != NULL) {
498 nvlist_free(label);
499 label = NULL;
34dc7c2f
BB
500 }
501 }
502
9babb374
BB
503 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
504 flags |= ZIO_FLAG_TRYHARD;
505 goto retry;
506 }
507
34dc7c2f
BB
508 zio_buf_free(vp, sizeof (vdev_phys_t));
509
510 return (config);
511}
512
513/*
514 * Determine if a device is in use. The 'spare_guid' parameter will be filled
515 * in with the device guid if this spare is active elsewhere on the system.
516 */
517static boolean_t
518vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
519 uint64_t *spare_guid, uint64_t *l2cache_guid)
520{
521 spa_t *spa = vd->vdev_spa;
522 uint64_t state, pool_guid, device_guid, txg, spare_pool;
523 uint64_t vdtxg = 0;
524 nvlist_t *label;
525
526 if (spare_guid)
527 *spare_guid = 0ULL;
528 if (l2cache_guid)
529 *l2cache_guid = 0ULL;
530
531 /*
532 * Read the label, if any, and perform some basic sanity checks.
533 */
3bc7e0fb 534 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
34dc7c2f
BB
535 return (B_FALSE);
536
537 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
538 &vdtxg);
539
540 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
541 &state) != 0 ||
542 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
543 &device_guid) != 0) {
544 nvlist_free(label);
545 return (B_FALSE);
546 }
547
548 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
549 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
550 &pool_guid) != 0 ||
551 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
552 &txg) != 0)) {
553 nvlist_free(label);
554 return (B_FALSE);
555 }
556
557 nvlist_free(label);
558
559 /*
560 * Check to see if this device indeed belongs to the pool it claims to
561 * be a part of. The only way this is allowed is if the device is a hot
562 * spare (which we check for later on).
563 */
564 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
565 !spa_guid_exists(pool_guid, device_guid) &&
b128c09f 566 !spa_spare_exists(device_guid, NULL, NULL) &&
34dc7c2f
BB
567 !spa_l2cache_exists(device_guid, NULL))
568 return (B_FALSE);
569
570 /*
571 * If the transaction group is zero, then this an initialized (but
572 * unused) label. This is only an error if the create transaction
573 * on-disk is the same as the one we're using now, in which case the
574 * user has attempted to add the same vdev multiple times in the same
575 * transaction.
576 */
577 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
578 txg == 0 && vdtxg == crtxg)
579 return (B_TRUE);
580
581 /*
582 * Check to see if this is a spare device. We do an explicit check for
583 * spa_has_spare() here because it may be on our pending list of spares
584 * to add. We also check if it is an l2cache device.
585 */
b128c09f 586 if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
34dc7c2f
BB
587 spa_has_spare(spa, device_guid)) {
588 if (spare_guid)
589 *spare_guid = device_guid;
590
591 switch (reason) {
592 case VDEV_LABEL_CREATE:
593 case VDEV_LABEL_L2CACHE:
594 return (B_TRUE);
595
596 case VDEV_LABEL_REPLACE:
597 return (!spa_has_spare(spa, device_guid) ||
598 spare_pool != 0ULL);
599
600 case VDEV_LABEL_SPARE:
601 return (spa_has_spare(spa, device_guid));
e75c13c3
BB
602 default:
603 break;
34dc7c2f
BB
604 }
605 }
606
607 /*
608 * Check to see if this is an l2cache device.
609 */
610 if (spa_l2cache_exists(device_guid, NULL))
611 return (B_TRUE);
612
572e2857
BB
613 /*
614 * We can't rely on a pool's state if it's been imported
615 * read-only. Instead we look to see if the pools is marked
616 * read-only in the namespace and set the state to active.
617 */
618 if ((spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
619 spa_mode(spa) == FREAD)
620 state = POOL_STATE_ACTIVE;
621
34dc7c2f
BB
622 /*
623 * If the device is marked ACTIVE, then this device is in use by another
624 * pool on the system.
625 */
626 return (state == POOL_STATE_ACTIVE);
627}
628
629/*
630 * Initialize a vdev label. We check to make sure each leaf device is not in
631 * use, and writable. We put down an initial label which we will later
632 * overwrite with a complete label. Note that it's important to do this
633 * sequentially, not in parallel, so that we catch cases of multiple use of the
634 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
635 * itself.
636 */
637int
638vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
639{
640 spa_t *spa = vd->vdev_spa;
641 nvlist_t *label;
642 vdev_phys_t *vp;
9babb374 643 char *pad2;
34dc7c2f
BB
644 uberblock_t *ub;
645 zio_t *zio;
34dc7c2f
BB
646 char *buf;
647 size_t buflen;
648 int error;
d4ed6673 649 uint64_t spare_guid = 0, l2cache_guid = 0;
b128c09f 650 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
d6320ddb
BB
651 int c, l;
652 vdev_t *pvd;
34dc7c2f 653
b128c09f 654 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f 655
d6320ddb 656 for (c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
657 if ((error = vdev_label_init(vd->vdev_child[c],
658 crtxg, reason)) != 0)
659 return (error);
660
428870ff
BB
661 /* Track the creation time for this vdev */
662 vd->vdev_crtxg = crtxg;
663
34dc7c2f
BB
664 if (!vd->vdev_ops->vdev_op_leaf)
665 return (0);
666
667 /*
668 * Dead vdevs cannot be initialized.
669 */
670 if (vdev_is_dead(vd))
2e528b49 671 return (SET_ERROR(EIO));
34dc7c2f
BB
672
673 /*
674 * Determine if the vdev is in use.
675 */
428870ff 676 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
34dc7c2f 677 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
2e528b49 678 return (SET_ERROR(EBUSY));
34dc7c2f 679
34dc7c2f
BB
680 /*
681 * If this is a request to add or replace a spare or l2cache device
682 * that is in use elsewhere on the system, then we must update the
683 * guid (which was initialized to a random value) to reflect the
684 * actual GUID (which is shared between multiple pools).
685 */
686 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
687 spare_guid != 0ULL) {
b128c09f 688 uint64_t guid_delta = spare_guid - vd->vdev_guid;
34dc7c2f 689
b128c09f 690 vd->vdev_guid += guid_delta;
34dc7c2f 691
d6320ddb 692 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
b128c09f 693 pvd->vdev_guid_sum += guid_delta;
34dc7c2f
BB
694
695 /*
696 * If this is a replacement, then we want to fallthrough to the
697 * rest of the code. If we're adding a spare, then it's already
698 * labeled appropriately and we can just return.
699 */
700 if (reason == VDEV_LABEL_SPARE)
701 return (0);
428870ff
BB
702 ASSERT(reason == VDEV_LABEL_REPLACE ||
703 reason == VDEV_LABEL_SPLIT);
34dc7c2f
BB
704 }
705
706 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
707 l2cache_guid != 0ULL) {
b128c09f 708 uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
34dc7c2f 709
b128c09f 710 vd->vdev_guid += guid_delta;
34dc7c2f 711
d6320ddb 712 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
b128c09f 713 pvd->vdev_guid_sum += guid_delta;
34dc7c2f
BB
714
715 /*
716 * If this is a replacement, then we want to fallthrough to the
717 * rest of the code. If we're adding an l2cache, then it's
718 * already labeled appropriately and we can just return.
719 */
720 if (reason == VDEV_LABEL_L2CACHE)
721 return (0);
722 ASSERT(reason == VDEV_LABEL_REPLACE);
723 }
724
725 /*
726 * Initialize its label.
727 */
728 vp = zio_buf_alloc(sizeof (vdev_phys_t));
729 bzero(vp, sizeof (vdev_phys_t));
730
731 /*
732 * Generate a label describing the pool and our top-level vdev.
733 * We mark it as being from txg 0 to indicate that it's not
734 * really part of an active pool just yet. The labels will
735 * be written again with a meaningful txg by spa_sync().
736 */
737 if (reason == VDEV_LABEL_SPARE ||
738 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
739 /*
740 * For inactive hot spares, we generate a special label that
741 * identifies as a mutually shared hot spare. We write the
742 * label if we are adding a hot spare, or if we are removing an
743 * active hot spare (in which case we want to revert the
744 * labels).
745 */
b8d06fca 746 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
34dc7c2f
BB
747
748 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
749 spa_version(spa)) == 0);
750 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
751 POOL_STATE_SPARE) == 0);
752 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
753 vd->vdev_guid) == 0);
754 } else if (reason == VDEV_LABEL_L2CACHE ||
755 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
756 /*
757 * For level 2 ARC devices, add a special label.
758 */
b8d06fca 759 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
34dc7c2f
BB
760
761 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
762 spa_version(spa)) == 0);
763 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
764 POOL_STATE_L2CACHE) == 0);
765 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
766 vd->vdev_guid) == 0);
767 } else {
428870ff
BB
768 uint64_t txg = 0ULL;
769
770 if (reason == VDEV_LABEL_SPLIT)
771 txg = spa->spa_uberblock.ub_txg;
772 label = spa_config_generate(spa, vd, txg, B_FALSE);
34dc7c2f
BB
773
774 /*
775 * Add our creation time. This allows us to detect multiple
776 * vdev uses as described above, and automatically expires if we
777 * fail.
778 */
779 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
780 crtxg) == 0);
781 }
782
783 buf = vp->vp_nvlist;
784 buflen = sizeof (vp->vp_nvlist);
785
b8d06fca 786 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_PUSHPAGE);
34dc7c2f
BB
787 if (error != 0) {
788 nvlist_free(label);
789 zio_buf_free(vp, sizeof (vdev_phys_t));
790 /* EFAULT means nvlist_pack ran out of room */
791 return (error == EFAULT ? ENAMETOOLONG : EINVAL);
792 }
793
34dc7c2f
BB
794 /*
795 * Initialize uberblock template.
796 */
45d1cae3
BB
797 ub = zio_buf_alloc(VDEV_UBERBLOCK_RING);
798 bzero(ub, VDEV_UBERBLOCK_RING);
34dc7c2f
BB
799 *ub = spa->spa_uberblock;
800 ub->ub_txg = 0;
801
9babb374
BB
802 /* Initialize the 2nd padding area. */
803 pad2 = zio_buf_alloc(VDEV_PAD_SIZE);
804 bzero(pad2, VDEV_PAD_SIZE);
805
34dc7c2f
BB
806 /*
807 * Write everything in parallel.
808 */
9babb374 809retry:
34dc7c2f
BB
810 zio = zio_root(spa, NULL, NULL, flags);
811
d6320ddb 812 for (l = 0; l < VDEV_LABELS; l++) {
34dc7c2f
BB
813
814 vdev_label_write(zio, vd, l, vp,
815 offsetof(vdev_label_t, vl_vdev_phys),
816 sizeof (vdev_phys_t), NULL, NULL, flags);
817
9babb374
BB
818 /*
819 * Skip the 1st padding area.
820 * Zero out the 2nd padding area where it might have
821 * left over data from previous filesystem format.
822 */
823 vdev_label_write(zio, vd, l, pad2,
824 offsetof(vdev_label_t, vl_pad2),
825 VDEV_PAD_SIZE, NULL, NULL, flags);
34dc7c2f 826
45d1cae3
BB
827 vdev_label_write(zio, vd, l, ub,
828 offsetof(vdev_label_t, vl_uberblock),
829 VDEV_UBERBLOCK_RING, NULL, NULL, flags);
34dc7c2f
BB
830 }
831
832 error = zio_wait(zio);
833
9babb374
BB
834 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
835 flags |= ZIO_FLAG_TRYHARD;
836 goto retry;
837 }
838
34dc7c2f 839 nvlist_free(label);
9babb374 840 zio_buf_free(pad2, VDEV_PAD_SIZE);
45d1cae3 841 zio_buf_free(ub, VDEV_UBERBLOCK_RING);
34dc7c2f
BB
842 zio_buf_free(vp, sizeof (vdev_phys_t));
843
844 /*
845 * If this vdev hasn't been previously identified as a spare, then we
846 * mark it as such only if a) we are labeling it as a spare, or b) it
847 * exists as a spare elsewhere in the system. Do the same for
848 * level 2 ARC devices.
849 */
850 if (error == 0 && !vd->vdev_isspare &&
851 (reason == VDEV_LABEL_SPARE ||
b128c09f 852 spa_spare_exists(vd->vdev_guid, NULL, NULL)))
34dc7c2f
BB
853 spa_spare_add(vd);
854
855 if (error == 0 && !vd->vdev_isl2cache &&
856 (reason == VDEV_LABEL_L2CACHE ||
857 spa_l2cache_exists(vd->vdev_guid, NULL)))
858 spa_l2cache_add(vd);
859
860 return (error);
861}
862
863/*
864 * ==========================================================================
865 * uberblock load/sync
866 * ==========================================================================
867 */
868
869/*
870 * Consider the following situation: txg is safely synced to disk. We've
871 * written the first uberblock for txg + 1, and then we lose power. When we
872 * come back up, we fail to see the uberblock for txg + 1 because, say,
873 * it was on a mirrored device and the replica to which we wrote txg + 1
874 * is now offline. If we then make some changes and sync txg + 1, and then
9ae529ec 875 * the missing replica comes back, then for a few seconds we'll have two
34dc7c2f
BB
876 * conflicting uberblocks on disk with the same txg. The solution is simple:
877 * among uberblocks with equal txg, choose the one with the latest timestamp.
878 */
879static int
880vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
881{
882 if (ub1->ub_txg < ub2->ub_txg)
883 return (-1);
884 if (ub1->ub_txg > ub2->ub_txg)
885 return (1);
886
887 if (ub1->ub_timestamp < ub2->ub_timestamp)
888 return (-1);
889 if (ub1->ub_timestamp > ub2->ub_timestamp)
890 return (1);
891
892 return (0);
893}
894
9ae529ec
CS
895struct ubl_cbdata {
896 uberblock_t *ubl_ubbest; /* Best uberblock */
897 vdev_t *ubl_vd; /* vdev associated with the above */
9ae529ec
CS
898};
899
34dc7c2f
BB
900static void
901vdev_uberblock_load_done(zio_t *zio)
902{
9ae529ec 903 vdev_t *vd = zio->io_vd;
428870ff 904 spa_t *spa = zio->io_spa;
b128c09f 905 zio_t *rio = zio->io_private;
34dc7c2f 906 uberblock_t *ub = zio->io_data;
9ae529ec 907 struct ubl_cbdata *cbp = rio->io_private;
34dc7c2f 908
9ae529ec 909 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
34dc7c2f
BB
910
911 if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
b128c09f 912 mutex_enter(&rio->io_lock);
428870ff 913 if (ub->ub_txg <= spa->spa_load_max_txg &&
9ae529ec
CS
914 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
915 /*
3bc7e0fb
GW
916 * Keep track of the vdev in which this uberblock
917 * was found. We will use this information later
918 * to obtain the config nvlist associated with
9ae529ec
CS
919 * this uberblock.
920 */
921 *cbp->ubl_ubbest = *ub;
922 cbp->ubl_vd = vd;
9ae529ec 923 }
b128c09f 924 mutex_exit(&rio->io_lock);
34dc7c2f
BB
925 }
926
927 zio_buf_free(zio->io_data, zio->io_size);
928}
929
9ae529ec
CS
930static void
931vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
932 struct ubl_cbdata *cbp)
34dc7c2f 933{
d6320ddb 934 int c, l, n;
b128c09f 935
d6320ddb 936 for (c = 0; c < vd->vdev_children; c++)
9ae529ec 937 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
34dc7c2f 938
b128c09f 939 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
d6320ddb
BB
940 for (l = 0; l < VDEV_LABELS; l++) {
941 for (n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
b128c09f
BB
942 vdev_label_read(zio, vd, l,
943 zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
944 VDEV_UBERBLOCK_OFFSET(vd, n),
945 VDEV_UBERBLOCK_SIZE(vd),
946 vdev_uberblock_load_done, zio, flags);
947 }
34dc7c2f
BB
948 }
949 }
9ae529ec
CS
950}
951
952/*
953 * Reads the 'best' uberblock from disk along with its associated
954 * configuration. First, we read the uberblock array of each label of each
955 * vdev, keeping track of the uberblock with the highest txg in each array.
3bc7e0fb 956 * Then, we read the configuration from the same vdev as the best uberblock.
9ae529ec
CS
957 */
958void
959vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
960{
9ae529ec
CS
961 zio_t *zio;
962 spa_t *spa = rvd->vdev_spa;
963 struct ubl_cbdata cb;
964 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
965 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
966
967 ASSERT(ub);
968 ASSERT(config);
b128c09f 969
9ae529ec
CS
970 bzero(ub, sizeof (uberblock_t));
971 *config = NULL;
972
973 cb.ubl_ubbest = ub;
974 cb.ubl_vd = NULL;
975
976 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
977 zio = zio_root(spa, NULL, &cb, flags);
978 vdev_uberblock_load_impl(zio, rvd, flags, &cb);
979 (void) zio_wait(zio);
3bc7e0fb
GW
980
981 /*
982 * It's possible that the best uberblock was discovered on a label
983 * that has a configuration which was written in a future txg.
984 * Search all labels on this vdev to find the configuration that
985 * matches the txg for our uberblock.
986 */
987 if (cb.ubl_vd != NULL)
988 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
9ae529ec 989 spa_config_exit(spa, SCL_ALL, FTAG);
34dc7c2f
BB
990}
991
992/*
993 * On success, increment root zio's count of good writes.
994 * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
995 */
996static void
997vdev_uberblock_sync_done(zio_t *zio)
998{
999 uint64_t *good_writes = zio->io_private;
1000
1001 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
1002 atomic_add_64(good_writes, 1);
1003}
1004
1005/*
1006 * Write the uberblock to all labels of all leaves of the specified vdev.
1007 */
1008static void
b128c09f 1009vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
34dc7c2f 1010{
34dc7c2f 1011 uberblock_t *ubbuf;
d6320ddb 1012 int c, l, n;
34dc7c2f 1013
d6320ddb 1014 for (c = 0; c < vd->vdev_children; c++)
b128c09f 1015 vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
34dc7c2f
BB
1016
1017 if (!vd->vdev_ops->vdev_op_leaf)
1018 return;
1019
b128c09f 1020 if (!vdev_writeable(vd))
34dc7c2f
BB
1021 return;
1022
1023 n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
1024
1025 ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
1026 bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
1027 *ubbuf = *ub;
1028
d6320ddb 1029 for (l = 0; l < VDEV_LABELS; l++)
34dc7c2f 1030 vdev_label_write(zio, vd, l, ubbuf,
b128c09f 1031 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
34dc7c2f 1032 vdev_uberblock_sync_done, zio->io_private,
b128c09f 1033 flags | ZIO_FLAG_DONT_PROPAGATE);
34dc7c2f
BB
1034
1035 zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
1036}
1037
1038int
1039vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1040{
1041 spa_t *spa = svd[0]->vdev_spa;
34dc7c2f
BB
1042 zio_t *zio;
1043 uint64_t good_writes = 0;
d6320ddb 1044 int v;
34dc7c2f
BB
1045
1046 zio = zio_root(spa, NULL, &good_writes, flags);
1047
d6320ddb 1048 for (v = 0; v < svdcount; v++)
b128c09f 1049 vdev_uberblock_sync(zio, ub, svd[v], flags);
34dc7c2f
BB
1050
1051 (void) zio_wait(zio);
1052
1053 /*
1054 * Flush the uberblocks to disk. This ensures that the odd labels
1055 * are no longer needed (because the new uberblocks and the even
1056 * labels are safely on disk), so it is safe to overwrite them.
1057 */
1058 zio = zio_root(spa, NULL, NULL, flags);
1059
d6320ddb 1060 for (v = 0; v < svdcount; v++)
34dc7c2f
BB
1061 zio_flush(zio, svd[v]);
1062
1063 (void) zio_wait(zio);
1064
1065 return (good_writes >= 1 ? 0 : EIO);
1066}
1067
1068/*
1069 * On success, increment the count of good writes for our top-level vdev.
1070 */
1071static void
1072vdev_label_sync_done(zio_t *zio)
1073{
1074 uint64_t *good_writes = zio->io_private;
1075
1076 if (zio->io_error == 0)
1077 atomic_add_64(good_writes, 1);
1078}
1079
1080/*
1081 * If there weren't enough good writes, indicate failure to the parent.
1082 */
1083static void
1084vdev_label_sync_top_done(zio_t *zio)
1085{
1086 uint64_t *good_writes = zio->io_private;
1087
1088 if (*good_writes == 0)
2e528b49 1089 zio->io_error = SET_ERROR(EIO);
34dc7c2f
BB
1090
1091 kmem_free(good_writes, sizeof (uint64_t));
1092}
1093
b128c09f
BB
1094/*
1095 * We ignore errors for log and cache devices, simply free the private data.
1096 */
1097static void
1098vdev_label_sync_ignore_done(zio_t *zio)
1099{
1100 kmem_free(zio->io_private, sizeof (uint64_t));
1101}
1102
34dc7c2f
BB
1103/*
1104 * Write all even or odd labels to all leaves of the specified vdev.
1105 */
1106static void
b128c09f 1107vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
34dc7c2f
BB
1108{
1109 nvlist_t *label;
1110 vdev_phys_t *vp;
1111 char *buf;
1112 size_t buflen;
d6320ddb 1113 int c;
34dc7c2f 1114
d6320ddb 1115 for (c = 0; c < vd->vdev_children; c++)
b128c09f 1116 vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
34dc7c2f
BB
1117
1118 if (!vd->vdev_ops->vdev_op_leaf)
1119 return;
1120
b128c09f 1121 if (!vdev_writeable(vd))
34dc7c2f
BB
1122 return;
1123
1124 /*
1125 * Generate a label describing the top-level config to which we belong.
1126 */
1127 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1128
1129 vp = zio_buf_alloc(sizeof (vdev_phys_t));
1130 bzero(vp, sizeof (vdev_phys_t));
1131
1132 buf = vp->vp_nvlist;
1133 buflen = sizeof (vp->vp_nvlist);
1134
b8d06fca 1135 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_PUSHPAGE) == 0) {
34dc7c2f
BB
1136 for (; l < VDEV_LABELS; l += 2) {
1137 vdev_label_write(zio, vd, l, vp,
1138 offsetof(vdev_label_t, vl_vdev_phys),
1139 sizeof (vdev_phys_t),
1140 vdev_label_sync_done, zio->io_private,
b128c09f 1141 flags | ZIO_FLAG_DONT_PROPAGATE);
34dc7c2f
BB
1142 }
1143 }
1144
1145 zio_buf_free(vp, sizeof (vdev_phys_t));
1146 nvlist_free(label);
1147}
1148
1149int
b128c09f 1150vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
34dc7c2f 1151{
b128c09f 1152 list_t *dl = &spa->spa_config_dirty_list;
34dc7c2f
BB
1153 vdev_t *vd;
1154 zio_t *zio;
1155 int error;
1156
1157 /*
1158 * Write the new labels to disk.
1159 */
1160 zio = zio_root(spa, NULL, NULL, flags);
1161
1162 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
d6320ddb
BB
1163 uint64_t *good_writes;
1164 zio_t *vio;
428870ff
BB
1165
1166 ASSERT(!vd->vdev_ishole);
1167
b8d06fca 1168 good_writes = kmem_zalloc(sizeof (uint64_t), KM_PUSHPAGE);
d6320ddb 1169 vio = zio_null(zio, spa, NULL,
b128c09f
BB
1170 (vd->vdev_islog || vd->vdev_aux != NULL) ?
1171 vdev_label_sync_ignore_done : vdev_label_sync_top_done,
34dc7c2f 1172 good_writes, flags);
b128c09f 1173 vdev_label_sync(vio, vd, l, txg, flags);
34dc7c2f
BB
1174 zio_nowait(vio);
1175 }
1176
1177 error = zio_wait(zio);
1178
1179 /*
1180 * Flush the new labels to disk.
1181 */
1182 zio = zio_root(spa, NULL, NULL, flags);
1183
1184 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1185 zio_flush(zio, vd);
1186
1187 (void) zio_wait(zio);
1188
1189 return (error);
1190}
1191
1192/*
1193 * Sync the uberblock and any changes to the vdev configuration.
1194 *
1195 * The order of operations is carefully crafted to ensure that
1196 * if the system panics or loses power at any time, the state on disk
1197 * is still transactionally consistent. The in-line comments below
1198 * describe the failure semantics at each stage.
1199 *
1200 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1201 * at any time, you can just call it again, and it will resume its work.
1202 */
1203int
9babb374 1204vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard)
34dc7c2f
BB
1205{
1206 spa_t *spa = svd[0]->vdev_spa;
1207 uberblock_t *ub = &spa->spa_uberblock;
1208 vdev_t *vd;
1209 zio_t *zio;
1210 int error;
b128c09f 1211 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
34dc7c2f 1212
9babb374
BB
1213 /*
1214 * Normally, we don't want to try too hard to write every label and
1215 * uberblock. If there is a flaky disk, we don't want the rest of the
1216 * sync process to block while we retry. But if we can't write a
1217 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1218 * bailing out and declaring the pool faulted.
1219 */
1220 if (tryhard)
1221 flags |= ZIO_FLAG_TRYHARD;
1222
34dc7c2f
BB
1223 ASSERT(ub->ub_txg <= txg);
1224
1225 /*
1226 * If this isn't a resync due to I/O errors,
1227 * and nothing changed in this transaction group,
1228 * and the vdev configuration hasn't changed,
1229 * then there's nothing to do.
1230 */
1231 if (ub->ub_txg < txg &&
1232 uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
b128c09f 1233 list_is_empty(&spa->spa_config_dirty_list))
34dc7c2f
BB
1234 return (0);
1235
1236 if (txg > spa_freeze_txg(spa))
1237 return (0);
1238
1239 ASSERT(txg <= spa->spa_final_txg);
1240
1241 /*
1242 * Flush the write cache of every disk that's been written to
1243 * in this transaction group. This ensures that all blocks
1244 * written in this txg will be committed to stable storage
1245 * before any uberblock that references them.
1246 */
1247 zio = zio_root(spa, NULL, NULL, flags);
1248
1249 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
1250 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1251 zio_flush(zio, vd);
1252
1253 (void) zio_wait(zio);
1254
1255 /*
1256 * Sync out the even labels (L0, L2) for every dirty vdev. If the
1257 * system dies in the middle of this process, that's OK: all of the
1258 * even labels that made it to disk will be newer than any uberblock,
1259 * and will therefore be considered invalid. The odd labels (L1, L3),
1260 * which have not yet been touched, will still be valid. We flush
1261 * the new labels to disk to ensure that all even-label updates
1262 * are committed to stable storage before the uberblock update.
1263 */
b128c09f 1264 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
34dc7c2f
BB
1265 return (error);
1266
1267 /*
1268 * Sync the uberblocks to all vdevs in svd[].
1269 * If the system dies in the middle of this step, there are two cases
1270 * to consider, and the on-disk state is consistent either way:
1271 *
1272 * (1) If none of the new uberblocks made it to disk, then the
1273 * previous uberblock will be the newest, and the odd labels
1274 * (which had not yet been touched) will be valid with respect
1275 * to that uberblock.
1276 *
1277 * (2) If one or more new uberblocks made it to disk, then they
1278 * will be the newest, and the even labels (which had all
1279 * been successfully committed) will be valid with respect
1280 * to the new uberblocks.
1281 */
1282 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
1283 return (error);
1284
1285 /*
1286 * Sync out odd labels for every dirty vdev. If the system dies
1287 * in the middle of this process, the even labels and the new
1288 * uberblocks will suffice to open the pool. The next time
1289 * the pool is opened, the first thing we'll do -- before any
1290 * user data is modified -- is mark every vdev dirty so that
1291 * all labels will be brought up to date. We flush the new labels
1292 * to disk to ensure that all odd-label updates are committed to
1293 * stable storage before the next transaction group begins.
1294 */
b128c09f 1295 return (vdev_label_sync_list(spa, 1, txg, flags));
34dc7c2f 1296}