]>
Commit | Line | Data |
---|---|---|
34dc7c2f BB |
1 | /* |
2 | * CDDL HEADER START | |
3 | * | |
4 | * The contents of this file are subject to the terms of the | |
5 | * Common Development and Distribution License (the "License"). | |
6 | * You may not use this file except in compliance with the License. | |
7 | * | |
8 | * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE | |
9 | * or http://www.opensolaris.org/os/licensing. | |
10 | * See the License for the specific language governing permissions | |
11 | * and limitations under the License. | |
12 | * | |
13 | * When distributing Covered Code, include this CDDL HEADER in each | |
14 | * file and include the License file at usr/src/OPENSOLARIS.LICENSE. | |
15 | * If applicable, add the following below this CDDL HEADER, with the | |
16 | * fields enclosed by brackets "[]" replaced with your own identifying | |
17 | * information: Portions Copyright [yyyy] [name of copyright owner] | |
18 | * | |
19 | * CDDL HEADER END | |
20 | */ | |
21 | /* | |
428870ff | 22 | * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. |
34dc7c2f BB |
23 | */ |
24 | ||
34dc7c2f BB |
25 | /* |
26 | * Virtual Device Labels | |
27 | * --------------------- | |
28 | * | |
29 | * The vdev label serves several distinct purposes: | |
30 | * | |
31 | * 1. Uniquely identify this device as part of a ZFS pool and confirm its | |
32 | * identity within the pool. | |
33 | * | |
34 | * 2. Verify that all the devices given in a configuration are present | |
35 | * within the pool. | |
36 | * | |
37 | * 3. Determine the uberblock for the pool. | |
38 | * | |
39 | * 4. In case of an import operation, determine the configuration of the | |
40 | * toplevel vdev of which it is a part. | |
41 | * | |
42 | * 5. If an import operation cannot find all the devices in the pool, | |
43 | * provide enough information to the administrator to determine which | |
44 | * devices are missing. | |
45 | * | |
46 | * It is important to note that while the kernel is responsible for writing the | |
47 | * label, it only consumes the information in the first three cases. The | |
48 | * latter information is only consumed in userland when determining the | |
49 | * configuration to import a pool. | |
50 | * | |
51 | * | |
52 | * Label Organization | |
53 | * ------------------ | |
54 | * | |
55 | * Before describing the contents of the label, it's important to understand how | |
56 | * the labels are written and updated with respect to the uberblock. | |
57 | * | |
58 | * When the pool configuration is altered, either because it was newly created | |
59 | * or a device was added, we want to update all the labels such that we can deal | |
60 | * with fatal failure at any point. To this end, each disk has two labels which | |
61 | * are updated before and after the uberblock is synced. Assuming we have | |
62 | * labels and an uberblock with the following transaction groups: | |
63 | * | |
64 | * L1 UB L2 | |
65 | * +------+ +------+ +------+ | |
66 | * | | | | | | | |
67 | * | t10 | | t10 | | t10 | | |
68 | * | | | | | | | |
69 | * +------+ +------+ +------+ | |
70 | * | |
71 | * In this stable state, the labels and the uberblock were all updated within | |
72 | * the same transaction group (10). Each label is mirrored and checksummed, so | |
73 | * that we can detect when we fail partway through writing the label. | |
74 | * | |
75 | * In order to identify which labels are valid, the labels are written in the | |
76 | * following manner: | |
77 | * | |
78 | * 1. For each vdev, update 'L1' to the new label | |
79 | * 2. Update the uberblock | |
80 | * 3. For each vdev, update 'L2' to the new label | |
81 | * | |
82 | * Given arbitrary failure, we can determine the correct label to use based on | |
83 | * the transaction group. If we fail after updating L1 but before updating the | |
84 | * UB, we will notice that L1's transaction group is greater than the uberblock, | |
85 | * so L2 must be valid. If we fail after writing the uberblock but before | |
86 | * writing L2, we will notice that L2's transaction group is less than L1, and | |
87 | * therefore L1 is valid. | |
88 | * | |
89 | * Another added complexity is that not every label is updated when the config | |
90 | * is synced. If we add a single device, we do not want to have to re-write | |
91 | * every label for every device in the pool. This means that both L1 and L2 may | |
92 | * be older than the pool uberblock, because the necessary information is stored | |
93 | * on another vdev. | |
94 | * | |
95 | * | |
96 | * On-disk Format | |
97 | * -------------- | |
98 | * | |
99 | * The vdev label consists of two distinct parts, and is wrapped within the | |
100 | * vdev_label_t structure. The label includes 8k of padding to permit legacy | |
101 | * VTOC disk labels, but is otherwise ignored. | |
102 | * | |
103 | * The first half of the label is a packed nvlist which contains pool wide | |
104 | * properties, per-vdev properties, and configuration information. It is | |
105 | * described in more detail below. | |
106 | * | |
107 | * The latter half of the label consists of a redundant array of uberblocks. | |
108 | * These uberblocks are updated whenever a transaction group is committed, | |
109 | * or when the configuration is updated. When a pool is loaded, we scan each | |
110 | * vdev for the 'best' uberblock. | |
111 | * | |
112 | * | |
113 | * Configuration Information | |
114 | * ------------------------- | |
115 | * | |
116 | * The nvlist describing the pool and vdev contains the following elements: | |
117 | * | |
118 | * version ZFS on-disk version | |
119 | * name Pool name | |
120 | * state Pool state | |
121 | * txg Transaction group in which this label was written | |
122 | * pool_guid Unique identifier for this pool | |
123 | * vdev_tree An nvlist describing vdev tree. | |
124 | * | |
125 | * Each leaf device label also contains the following: | |
126 | * | |
127 | * top_guid Unique ID for top-level vdev in which this is contained | |
128 | * guid Unique ID for the leaf vdev | |
129 | * | |
130 | * The 'vs' configuration follows the format described in 'spa_config.c'. | |
131 | */ | |
132 | ||
133 | #include <sys/zfs_context.h> | |
134 | #include <sys/spa.h> | |
135 | #include <sys/spa_impl.h> | |
136 | #include <sys/dmu.h> | |
137 | #include <sys/zap.h> | |
138 | #include <sys/vdev.h> | |
139 | #include <sys/vdev_impl.h> | |
140 | #include <sys/uberblock_impl.h> | |
141 | #include <sys/metaslab.h> | |
142 | #include <sys/zio.h> | |
428870ff | 143 | #include <sys/dsl_scan.h> |
34dc7c2f BB |
144 | #include <sys/fs/zfs.h> |
145 | ||
146 | /* | |
147 | * Basic routines to read and write from a vdev label. | |
148 | * Used throughout the rest of this file. | |
149 | */ | |
150 | uint64_t | |
151 | vdev_label_offset(uint64_t psize, int l, uint64_t offset) | |
152 | { | |
153 | ASSERT(offset < sizeof (vdev_label_t)); | |
154 | ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); | |
155 | ||
156 | return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? | |
157 | 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); | |
158 | } | |
159 | ||
b128c09f BB |
160 | /* |
161 | * Returns back the vdev label associated with the passed in offset. | |
162 | */ | |
163 | int | |
164 | vdev_label_number(uint64_t psize, uint64_t offset) | |
165 | { | |
166 | int l; | |
167 | ||
168 | if (offset >= psize - VDEV_LABEL_END_SIZE) { | |
169 | offset -= psize - VDEV_LABEL_END_SIZE; | |
170 | offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); | |
171 | } | |
172 | l = offset / sizeof (vdev_label_t); | |
173 | return (l < VDEV_LABELS ? l : -1); | |
174 | } | |
175 | ||
34dc7c2f BB |
176 | static void |
177 | vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, | |
b128c09f | 178 | uint64_t size, zio_done_func_t *done, void *private, int flags) |
34dc7c2f | 179 | { |
b128c09f BB |
180 | ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) == |
181 | SCL_STATE_ALL); | |
182 | ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); | |
34dc7c2f BB |
183 | |
184 | zio_nowait(zio_read_phys(zio, vd, | |
185 | vdev_label_offset(vd->vdev_psize, l, offset), | |
186 | size, buf, ZIO_CHECKSUM_LABEL, done, private, | |
b128c09f | 187 | ZIO_PRIORITY_SYNC_READ, flags, B_TRUE)); |
34dc7c2f BB |
188 | } |
189 | ||
190 | static void | |
191 | vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, | |
192 | uint64_t size, zio_done_func_t *done, void *private, int flags) | |
193 | { | |
b128c09f BB |
194 | ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL || |
195 | (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) == | |
196 | (SCL_CONFIG | SCL_STATE) && | |
197 | dsl_pool_sync_context(spa_get_dsl(zio->io_spa)))); | |
198 | ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); | |
34dc7c2f BB |
199 | |
200 | zio_nowait(zio_write_phys(zio, vd, | |
201 | vdev_label_offset(vd->vdev_psize, l, offset), | |
202 | size, buf, ZIO_CHECKSUM_LABEL, done, private, | |
203 | ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); | |
204 | } | |
205 | ||
206 | /* | |
207 | * Generate the nvlist representing this vdev's config. | |
208 | */ | |
209 | nvlist_t * | |
210 | vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, | |
428870ff | 211 | vdev_config_flag_t flags) |
34dc7c2f BB |
212 | { |
213 | nvlist_t *nv = NULL; | |
214 | ||
215 | VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); | |
216 | ||
217 | VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE, | |
218 | vd->vdev_ops->vdev_op_type) == 0); | |
428870ff | 219 | if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE))) |
34dc7c2f BB |
220 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id) |
221 | == 0); | |
222 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0); | |
223 | ||
224 | if (vd->vdev_path != NULL) | |
225 | VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, | |
226 | vd->vdev_path) == 0); | |
227 | ||
228 | if (vd->vdev_devid != NULL) | |
229 | VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, | |
230 | vd->vdev_devid) == 0); | |
231 | ||
232 | if (vd->vdev_physpath != NULL) | |
233 | VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, | |
234 | vd->vdev_physpath) == 0); | |
235 | ||
9babb374 BB |
236 | if (vd->vdev_fru != NULL) |
237 | VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_FRU, | |
238 | vd->vdev_fru) == 0); | |
239 | ||
34dc7c2f BB |
240 | if (vd->vdev_nparity != 0) { |
241 | ASSERT(strcmp(vd->vdev_ops->vdev_op_type, | |
242 | VDEV_TYPE_RAIDZ) == 0); | |
243 | ||
244 | /* | |
245 | * Make sure someone hasn't managed to sneak a fancy new vdev | |
246 | * into a crufty old storage pool. | |
247 | */ | |
248 | ASSERT(vd->vdev_nparity == 1 || | |
45d1cae3 BB |
249 | (vd->vdev_nparity <= 2 && |
250 | spa_version(spa) >= SPA_VERSION_RAIDZ2) || | |
251 | (vd->vdev_nparity <= 3 && | |
252 | spa_version(spa) >= SPA_VERSION_RAIDZ3)); | |
34dc7c2f BB |
253 | |
254 | /* | |
255 | * Note that we'll add the nparity tag even on storage pools | |
256 | * that only support a single parity device -- older software | |
257 | * will just ignore it. | |
258 | */ | |
259 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, | |
260 | vd->vdev_nparity) == 0); | |
261 | } | |
262 | ||
263 | if (vd->vdev_wholedisk != -1ULL) | |
264 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, | |
265 | vd->vdev_wholedisk) == 0); | |
266 | ||
267 | if (vd->vdev_not_present) | |
268 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0); | |
269 | ||
270 | if (vd->vdev_isspare) | |
271 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0); | |
272 | ||
428870ff BB |
273 | if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) && |
274 | vd == vd->vdev_top) { | |
34dc7c2f BB |
275 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, |
276 | vd->vdev_ms_array) == 0); | |
277 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, | |
278 | vd->vdev_ms_shift) == 0); | |
279 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, | |
280 | vd->vdev_ashift) == 0); | |
281 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, | |
282 | vd->vdev_asize) == 0); | |
283 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, | |
284 | vd->vdev_islog) == 0); | |
428870ff BB |
285 | if (vd->vdev_removing) |
286 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING, | |
287 | vd->vdev_removing) == 0); | |
34dc7c2f BB |
288 | } |
289 | ||
fb5f0bc8 | 290 | if (vd->vdev_dtl_smo.smo_object != 0) |
34dc7c2f | 291 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, |
fb5f0bc8 | 292 | vd->vdev_dtl_smo.smo_object) == 0); |
34dc7c2f | 293 | |
428870ff BB |
294 | if (vd->vdev_crtxg) |
295 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, | |
296 | vd->vdev_crtxg) == 0); | |
297 | ||
34dc7c2f BB |
298 | if (getstats) { |
299 | vdev_stat_t vs; | |
428870ff BB |
300 | pool_scan_stat_t ps; |
301 | ||
34dc7c2f | 302 | vdev_get_stats(vd, &vs); |
428870ff | 303 | VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, |
34dc7c2f | 304 | (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0); |
428870ff BB |
305 | |
306 | /* provide either current or previous scan information */ | |
307 | if (spa_scan_get_stats(spa, &ps) == 0) { | |
308 | VERIFY(nvlist_add_uint64_array(nv, | |
309 | ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps, | |
310 | sizeof (pool_scan_stat_t) / sizeof (uint64_t)) | |
311 | == 0); | |
312 | } | |
34dc7c2f BB |
313 | } |
314 | ||
315 | if (!vd->vdev_ops->vdev_op_leaf) { | |
316 | nvlist_t **child; | |
428870ff BB |
317 | int c, idx; |
318 | ||
319 | ASSERT(!vd->vdev_ishole); | |
34dc7c2f BB |
320 | |
321 | child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), | |
322 | KM_SLEEP); | |
323 | ||
428870ff BB |
324 | for (c = 0, idx = 0; c < vd->vdev_children; c++) { |
325 | vdev_t *cvd = vd->vdev_child[c]; | |
34dc7c2f | 326 | |
428870ff BB |
327 | /* |
328 | * If we're generating an nvlist of removing | |
329 | * vdevs then skip over any device which is | |
330 | * not being removed. | |
331 | */ | |
332 | if ((flags & VDEV_CONFIG_REMOVING) && | |
333 | !cvd->vdev_removing) | |
334 | continue; | |
34dc7c2f | 335 | |
428870ff BB |
336 | child[idx++] = vdev_config_generate(spa, cvd, |
337 | getstats, flags); | |
338 | } | |
339 | ||
340 | if (idx) { | |
341 | VERIFY(nvlist_add_nvlist_array(nv, | |
342 | ZPOOL_CONFIG_CHILDREN, child, idx) == 0); | |
343 | } | |
344 | ||
345 | for (c = 0; c < idx; c++) | |
34dc7c2f BB |
346 | nvlist_free(child[c]); |
347 | ||
348 | kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); | |
349 | ||
350 | } else { | |
428870ff BB |
351 | const char *aux = NULL; |
352 | ||
34dc7c2f BB |
353 | if (vd->vdev_offline && !vd->vdev_tmpoffline) |
354 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, | |
355 | B_TRUE) == 0); | |
572e2857 BB |
356 | if (vd->vdev_resilvering) |
357 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVERING, | |
358 | B_TRUE) == 0); | |
34dc7c2f BB |
359 | if (vd->vdev_faulted) |
360 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, | |
361 | B_TRUE) == 0); | |
362 | if (vd->vdev_degraded) | |
363 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, | |
364 | B_TRUE) == 0); | |
365 | if (vd->vdev_removed) | |
366 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, | |
367 | B_TRUE) == 0); | |
368 | if (vd->vdev_unspare) | |
369 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, | |
370 | B_TRUE) == 0); | |
428870ff BB |
371 | if (vd->vdev_ishole) |
372 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, | |
373 | B_TRUE) == 0); | |
374 | ||
375 | switch (vd->vdev_stat.vs_aux) { | |
376 | case VDEV_AUX_ERR_EXCEEDED: | |
377 | aux = "err_exceeded"; | |
378 | break; | |
379 | ||
380 | case VDEV_AUX_EXTERNAL: | |
381 | aux = "external"; | |
382 | break; | |
383 | } | |
384 | ||
385 | if (aux != NULL) | |
386 | VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, | |
387 | aux) == 0); | |
388 | ||
389 | if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) { | |
390 | VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID, | |
391 | vd->vdev_orig_guid) == 0); | |
392 | } | |
34dc7c2f BB |
393 | } |
394 | ||
395 | return (nv); | |
396 | } | |
397 | ||
428870ff BB |
398 | /* |
399 | * Generate a view of the top-level vdevs. If we currently have holes | |
400 | * in the namespace, then generate an array which contains a list of holey | |
401 | * vdevs. Additionally, add the number of top-level children that currently | |
402 | * exist. | |
403 | */ | |
404 | void | |
405 | vdev_top_config_generate(spa_t *spa, nvlist_t *config) | |
406 | { | |
407 | vdev_t *rvd = spa->spa_root_vdev; | |
408 | uint64_t *array; | |
409 | uint_t c, idx; | |
410 | ||
411 | array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP); | |
412 | ||
413 | for (c = 0, idx = 0; c < rvd->vdev_children; c++) { | |
414 | vdev_t *tvd = rvd->vdev_child[c]; | |
415 | ||
416 | if (tvd->vdev_ishole) | |
417 | array[idx++] = c; | |
418 | } | |
419 | ||
420 | if (idx) { | |
421 | VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY, | |
422 | array, idx) == 0); | |
423 | } | |
424 | ||
425 | VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, | |
426 | rvd->vdev_children) == 0); | |
427 | ||
428 | kmem_free(array, rvd->vdev_children * sizeof (uint64_t)); | |
429 | } | |
430 | ||
34dc7c2f BB |
431 | nvlist_t * |
432 | vdev_label_read_config(vdev_t *vd) | |
433 | { | |
434 | spa_t *spa = vd->vdev_spa; | |
435 | nvlist_t *config = NULL; | |
436 | vdev_phys_t *vp; | |
437 | zio_t *zio; | |
9babb374 BB |
438 | int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | |
439 | ZIO_FLAG_SPECULATIVE; | |
34dc7c2f | 440 | |
b128c09f | 441 | ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); |
34dc7c2f BB |
442 | |
443 | if (!vdev_readable(vd)) | |
444 | return (NULL); | |
445 | ||
446 | vp = zio_buf_alloc(sizeof (vdev_phys_t)); | |
447 | ||
9babb374 | 448 | retry: |
b128c09f | 449 | for (int l = 0; l < VDEV_LABELS; l++) { |
34dc7c2f | 450 | |
b128c09f | 451 | zio = zio_root(spa, NULL, NULL, flags); |
34dc7c2f BB |
452 | |
453 | vdev_label_read(zio, vd, l, vp, | |
454 | offsetof(vdev_label_t, vl_vdev_phys), | |
b128c09f | 455 | sizeof (vdev_phys_t), NULL, NULL, flags); |
34dc7c2f BB |
456 | |
457 | if (zio_wait(zio) == 0 && | |
458 | nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), | |
459 | &config, 0) == 0) | |
460 | break; | |
461 | ||
462 | if (config != NULL) { | |
463 | nvlist_free(config); | |
464 | config = NULL; | |
465 | } | |
466 | } | |
467 | ||
9babb374 BB |
468 | if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) { |
469 | flags |= ZIO_FLAG_TRYHARD; | |
470 | goto retry; | |
471 | } | |
472 | ||
34dc7c2f BB |
473 | zio_buf_free(vp, sizeof (vdev_phys_t)); |
474 | ||
475 | return (config); | |
476 | } | |
477 | ||
478 | /* | |
479 | * Determine if a device is in use. The 'spare_guid' parameter will be filled | |
480 | * in with the device guid if this spare is active elsewhere on the system. | |
481 | */ | |
482 | static boolean_t | |
483 | vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, | |
484 | uint64_t *spare_guid, uint64_t *l2cache_guid) | |
485 | { | |
486 | spa_t *spa = vd->vdev_spa; | |
487 | uint64_t state, pool_guid, device_guid, txg, spare_pool; | |
488 | uint64_t vdtxg = 0; | |
489 | nvlist_t *label; | |
490 | ||
491 | if (spare_guid) | |
492 | *spare_guid = 0ULL; | |
493 | if (l2cache_guid) | |
494 | *l2cache_guid = 0ULL; | |
495 | ||
496 | /* | |
497 | * Read the label, if any, and perform some basic sanity checks. | |
498 | */ | |
499 | if ((label = vdev_label_read_config(vd)) == NULL) | |
500 | return (B_FALSE); | |
501 | ||
502 | (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, | |
503 | &vdtxg); | |
504 | ||
505 | if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, | |
506 | &state) != 0 || | |
507 | nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, | |
508 | &device_guid) != 0) { | |
509 | nvlist_free(label); | |
510 | return (B_FALSE); | |
511 | } | |
512 | ||
513 | if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && | |
514 | (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, | |
515 | &pool_guid) != 0 || | |
516 | nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, | |
517 | &txg) != 0)) { | |
518 | nvlist_free(label); | |
519 | return (B_FALSE); | |
520 | } | |
521 | ||
522 | nvlist_free(label); | |
523 | ||
524 | /* | |
525 | * Check to see if this device indeed belongs to the pool it claims to | |
526 | * be a part of. The only way this is allowed is if the device is a hot | |
527 | * spare (which we check for later on). | |
528 | */ | |
529 | if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && | |
530 | !spa_guid_exists(pool_guid, device_guid) && | |
b128c09f | 531 | !spa_spare_exists(device_guid, NULL, NULL) && |
34dc7c2f BB |
532 | !spa_l2cache_exists(device_guid, NULL)) |
533 | return (B_FALSE); | |
534 | ||
535 | /* | |
536 | * If the transaction group is zero, then this an initialized (but | |
537 | * unused) label. This is only an error if the create transaction | |
538 | * on-disk is the same as the one we're using now, in which case the | |
539 | * user has attempted to add the same vdev multiple times in the same | |
540 | * transaction. | |
541 | */ | |
542 | if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && | |
543 | txg == 0 && vdtxg == crtxg) | |
544 | return (B_TRUE); | |
545 | ||
546 | /* | |
547 | * Check to see if this is a spare device. We do an explicit check for | |
548 | * spa_has_spare() here because it may be on our pending list of spares | |
549 | * to add. We also check if it is an l2cache device. | |
550 | */ | |
b128c09f | 551 | if (spa_spare_exists(device_guid, &spare_pool, NULL) || |
34dc7c2f BB |
552 | spa_has_spare(spa, device_guid)) { |
553 | if (spare_guid) | |
554 | *spare_guid = device_guid; | |
555 | ||
556 | switch (reason) { | |
557 | case VDEV_LABEL_CREATE: | |
558 | case VDEV_LABEL_L2CACHE: | |
559 | return (B_TRUE); | |
560 | ||
561 | case VDEV_LABEL_REPLACE: | |
562 | return (!spa_has_spare(spa, device_guid) || | |
563 | spare_pool != 0ULL); | |
564 | ||
565 | case VDEV_LABEL_SPARE: | |
566 | return (spa_has_spare(spa, device_guid)); | |
567 | } | |
568 | } | |
569 | ||
570 | /* | |
571 | * Check to see if this is an l2cache device. | |
572 | */ | |
573 | if (spa_l2cache_exists(device_guid, NULL)) | |
574 | return (B_TRUE); | |
575 | ||
572e2857 BB |
576 | /* |
577 | * We can't rely on a pool's state if it's been imported | |
578 | * read-only. Instead we look to see if the pools is marked | |
579 | * read-only in the namespace and set the state to active. | |
580 | */ | |
581 | if ((spa = spa_by_guid(pool_guid, device_guid)) != NULL && | |
582 | spa_mode(spa) == FREAD) | |
583 | state = POOL_STATE_ACTIVE; | |
584 | ||
34dc7c2f BB |
585 | /* |
586 | * If the device is marked ACTIVE, then this device is in use by another | |
587 | * pool on the system. | |
588 | */ | |
589 | return (state == POOL_STATE_ACTIVE); | |
590 | } | |
591 | ||
592 | /* | |
593 | * Initialize a vdev label. We check to make sure each leaf device is not in | |
594 | * use, and writable. We put down an initial label which we will later | |
595 | * overwrite with a complete label. Note that it's important to do this | |
596 | * sequentially, not in parallel, so that we catch cases of multiple use of the | |
597 | * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with | |
598 | * itself. | |
599 | */ | |
600 | int | |
601 | vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) | |
602 | { | |
603 | spa_t *spa = vd->vdev_spa; | |
604 | nvlist_t *label; | |
605 | vdev_phys_t *vp; | |
9babb374 | 606 | char *pad2; |
34dc7c2f BB |
607 | uberblock_t *ub; |
608 | zio_t *zio; | |
34dc7c2f BB |
609 | char *buf; |
610 | size_t buflen; | |
611 | int error; | |
612 | uint64_t spare_guid, l2cache_guid; | |
b128c09f | 613 | int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; |
34dc7c2f | 614 | |
b128c09f | 615 | ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); |
34dc7c2f | 616 | |
b128c09f | 617 | for (int c = 0; c < vd->vdev_children; c++) |
34dc7c2f BB |
618 | if ((error = vdev_label_init(vd->vdev_child[c], |
619 | crtxg, reason)) != 0) | |
620 | return (error); | |
621 | ||
428870ff BB |
622 | /* Track the creation time for this vdev */ |
623 | vd->vdev_crtxg = crtxg; | |
624 | ||
34dc7c2f BB |
625 | if (!vd->vdev_ops->vdev_op_leaf) |
626 | return (0); | |
627 | ||
628 | /* | |
629 | * Dead vdevs cannot be initialized. | |
630 | */ | |
631 | if (vdev_is_dead(vd)) | |
632 | return (EIO); | |
633 | ||
634 | /* | |
635 | * Determine if the vdev is in use. | |
636 | */ | |
428870ff | 637 | if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT && |
34dc7c2f BB |
638 | vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) |
639 | return (EBUSY); | |
640 | ||
34dc7c2f BB |
641 | /* |
642 | * If this is a request to add or replace a spare or l2cache device | |
643 | * that is in use elsewhere on the system, then we must update the | |
644 | * guid (which was initialized to a random value) to reflect the | |
645 | * actual GUID (which is shared between multiple pools). | |
646 | */ | |
647 | if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && | |
648 | spare_guid != 0ULL) { | |
b128c09f | 649 | uint64_t guid_delta = spare_guid - vd->vdev_guid; |
34dc7c2f | 650 | |
b128c09f | 651 | vd->vdev_guid += guid_delta; |
34dc7c2f | 652 | |
b128c09f BB |
653 | for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) |
654 | pvd->vdev_guid_sum += guid_delta; | |
34dc7c2f BB |
655 | |
656 | /* | |
657 | * If this is a replacement, then we want to fallthrough to the | |
658 | * rest of the code. If we're adding a spare, then it's already | |
659 | * labeled appropriately and we can just return. | |
660 | */ | |
661 | if (reason == VDEV_LABEL_SPARE) | |
662 | return (0); | |
428870ff BB |
663 | ASSERT(reason == VDEV_LABEL_REPLACE || |
664 | reason == VDEV_LABEL_SPLIT); | |
34dc7c2f BB |
665 | } |
666 | ||
667 | if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && | |
668 | l2cache_guid != 0ULL) { | |
b128c09f | 669 | uint64_t guid_delta = l2cache_guid - vd->vdev_guid; |
34dc7c2f | 670 | |
b128c09f | 671 | vd->vdev_guid += guid_delta; |
34dc7c2f | 672 | |
b128c09f BB |
673 | for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) |
674 | pvd->vdev_guid_sum += guid_delta; | |
34dc7c2f BB |
675 | |
676 | /* | |
677 | * If this is a replacement, then we want to fallthrough to the | |
678 | * rest of the code. If we're adding an l2cache, then it's | |
679 | * already labeled appropriately and we can just return. | |
680 | */ | |
681 | if (reason == VDEV_LABEL_L2CACHE) | |
682 | return (0); | |
683 | ASSERT(reason == VDEV_LABEL_REPLACE); | |
684 | } | |
685 | ||
686 | /* | |
687 | * Initialize its label. | |
688 | */ | |
689 | vp = zio_buf_alloc(sizeof (vdev_phys_t)); | |
690 | bzero(vp, sizeof (vdev_phys_t)); | |
691 | ||
692 | /* | |
693 | * Generate a label describing the pool and our top-level vdev. | |
694 | * We mark it as being from txg 0 to indicate that it's not | |
695 | * really part of an active pool just yet. The labels will | |
696 | * be written again with a meaningful txg by spa_sync(). | |
697 | */ | |
698 | if (reason == VDEV_LABEL_SPARE || | |
699 | (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) { | |
700 | /* | |
701 | * For inactive hot spares, we generate a special label that | |
702 | * identifies as a mutually shared hot spare. We write the | |
703 | * label if we are adding a hot spare, or if we are removing an | |
704 | * active hot spare (in which case we want to revert the | |
705 | * labels). | |
706 | */ | |
707 | VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); | |
708 | ||
709 | VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, | |
710 | spa_version(spa)) == 0); | |
711 | VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, | |
712 | POOL_STATE_SPARE) == 0); | |
713 | VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, | |
714 | vd->vdev_guid) == 0); | |
715 | } else if (reason == VDEV_LABEL_L2CACHE || | |
716 | (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) { | |
717 | /* | |
718 | * For level 2 ARC devices, add a special label. | |
719 | */ | |
720 | VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); | |
721 | ||
722 | VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, | |
723 | spa_version(spa)) == 0); | |
724 | VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, | |
725 | POOL_STATE_L2CACHE) == 0); | |
726 | VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, | |
727 | vd->vdev_guid) == 0); | |
728 | } else { | |
428870ff BB |
729 | uint64_t txg = 0ULL; |
730 | ||
731 | if (reason == VDEV_LABEL_SPLIT) | |
732 | txg = spa->spa_uberblock.ub_txg; | |
733 | label = spa_config_generate(spa, vd, txg, B_FALSE); | |
34dc7c2f BB |
734 | |
735 | /* | |
736 | * Add our creation time. This allows us to detect multiple | |
737 | * vdev uses as described above, and automatically expires if we | |
738 | * fail. | |
739 | */ | |
740 | VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, | |
741 | crtxg) == 0); | |
742 | } | |
743 | ||
744 | buf = vp->vp_nvlist; | |
745 | buflen = sizeof (vp->vp_nvlist); | |
746 | ||
747 | error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); | |
748 | if (error != 0) { | |
749 | nvlist_free(label); | |
750 | zio_buf_free(vp, sizeof (vdev_phys_t)); | |
751 | /* EFAULT means nvlist_pack ran out of room */ | |
752 | return (error == EFAULT ? ENAMETOOLONG : EINVAL); | |
753 | } | |
754 | ||
34dc7c2f BB |
755 | /* |
756 | * Initialize uberblock template. | |
757 | */ | |
45d1cae3 BB |
758 | ub = zio_buf_alloc(VDEV_UBERBLOCK_RING); |
759 | bzero(ub, VDEV_UBERBLOCK_RING); | |
34dc7c2f BB |
760 | *ub = spa->spa_uberblock; |
761 | ub->ub_txg = 0; | |
762 | ||
9babb374 BB |
763 | /* Initialize the 2nd padding area. */ |
764 | pad2 = zio_buf_alloc(VDEV_PAD_SIZE); | |
765 | bzero(pad2, VDEV_PAD_SIZE); | |
766 | ||
34dc7c2f BB |
767 | /* |
768 | * Write everything in parallel. | |
769 | */ | |
9babb374 | 770 | retry: |
34dc7c2f BB |
771 | zio = zio_root(spa, NULL, NULL, flags); |
772 | ||
b128c09f | 773 | for (int l = 0; l < VDEV_LABELS; l++) { |
34dc7c2f BB |
774 | |
775 | vdev_label_write(zio, vd, l, vp, | |
776 | offsetof(vdev_label_t, vl_vdev_phys), | |
777 | sizeof (vdev_phys_t), NULL, NULL, flags); | |
778 | ||
9babb374 BB |
779 | /* |
780 | * Skip the 1st padding area. | |
781 | * Zero out the 2nd padding area where it might have | |
782 | * left over data from previous filesystem format. | |
783 | */ | |
784 | vdev_label_write(zio, vd, l, pad2, | |
785 | offsetof(vdev_label_t, vl_pad2), | |
786 | VDEV_PAD_SIZE, NULL, NULL, flags); | |
34dc7c2f | 787 | |
45d1cae3 BB |
788 | vdev_label_write(zio, vd, l, ub, |
789 | offsetof(vdev_label_t, vl_uberblock), | |
790 | VDEV_UBERBLOCK_RING, NULL, NULL, flags); | |
34dc7c2f BB |
791 | } |
792 | ||
793 | error = zio_wait(zio); | |
794 | ||
9babb374 BB |
795 | if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { |
796 | flags |= ZIO_FLAG_TRYHARD; | |
797 | goto retry; | |
798 | } | |
799 | ||
34dc7c2f | 800 | nvlist_free(label); |
9babb374 | 801 | zio_buf_free(pad2, VDEV_PAD_SIZE); |
45d1cae3 | 802 | zio_buf_free(ub, VDEV_UBERBLOCK_RING); |
34dc7c2f BB |
803 | zio_buf_free(vp, sizeof (vdev_phys_t)); |
804 | ||
805 | /* | |
806 | * If this vdev hasn't been previously identified as a spare, then we | |
807 | * mark it as such only if a) we are labeling it as a spare, or b) it | |
808 | * exists as a spare elsewhere in the system. Do the same for | |
809 | * level 2 ARC devices. | |
810 | */ | |
811 | if (error == 0 && !vd->vdev_isspare && | |
812 | (reason == VDEV_LABEL_SPARE || | |
b128c09f | 813 | spa_spare_exists(vd->vdev_guid, NULL, NULL))) |
34dc7c2f BB |
814 | spa_spare_add(vd); |
815 | ||
816 | if (error == 0 && !vd->vdev_isl2cache && | |
817 | (reason == VDEV_LABEL_L2CACHE || | |
818 | spa_l2cache_exists(vd->vdev_guid, NULL))) | |
819 | spa_l2cache_add(vd); | |
820 | ||
821 | return (error); | |
822 | } | |
823 | ||
824 | /* | |
825 | * ========================================================================== | |
826 | * uberblock load/sync | |
827 | * ========================================================================== | |
828 | */ | |
829 | ||
830 | /* | |
831 | * Consider the following situation: txg is safely synced to disk. We've | |
832 | * written the first uberblock for txg + 1, and then we lose power. When we | |
833 | * come back up, we fail to see the uberblock for txg + 1 because, say, | |
834 | * it was on a mirrored device and the replica to which we wrote txg + 1 | |
835 | * is now offline. If we then make some changes and sync txg + 1, and then | |
836 | * the missing replica comes back, then for a new seconds we'll have two | |
837 | * conflicting uberblocks on disk with the same txg. The solution is simple: | |
838 | * among uberblocks with equal txg, choose the one with the latest timestamp. | |
839 | */ | |
840 | static int | |
841 | vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) | |
842 | { | |
843 | if (ub1->ub_txg < ub2->ub_txg) | |
844 | return (-1); | |
845 | if (ub1->ub_txg > ub2->ub_txg) | |
846 | return (1); | |
847 | ||
848 | if (ub1->ub_timestamp < ub2->ub_timestamp) | |
849 | return (-1); | |
850 | if (ub1->ub_timestamp > ub2->ub_timestamp) | |
851 | return (1); | |
852 | ||
853 | return (0); | |
854 | } | |
855 | ||
856 | static void | |
857 | vdev_uberblock_load_done(zio_t *zio) | |
858 | { | |
428870ff | 859 | spa_t *spa = zio->io_spa; |
b128c09f | 860 | zio_t *rio = zio->io_private; |
34dc7c2f | 861 | uberblock_t *ub = zio->io_data; |
b128c09f | 862 | uberblock_t *ubbest = rio->io_private; |
34dc7c2f BB |
863 | |
864 | ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(zio->io_vd)); | |
865 | ||
866 | if (zio->io_error == 0 && uberblock_verify(ub) == 0) { | |
b128c09f | 867 | mutex_enter(&rio->io_lock); |
428870ff | 868 | if (ub->ub_txg <= spa->spa_load_max_txg && |
fb5f0bc8 | 869 | vdev_uberblock_compare(ub, ubbest) > 0) |
34dc7c2f | 870 | *ubbest = *ub; |
b128c09f | 871 | mutex_exit(&rio->io_lock); |
34dc7c2f BB |
872 | } |
873 | ||
874 | zio_buf_free(zio->io_data, zio->io_size); | |
875 | } | |
876 | ||
877 | void | |
878 | vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest) | |
879 | { | |
b128c09f BB |
880 | spa_t *spa = vd->vdev_spa; |
881 | vdev_t *rvd = spa->spa_root_vdev; | |
9babb374 BB |
882 | int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | |
883 | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; | |
b128c09f BB |
884 | |
885 | if (vd == rvd) { | |
886 | ASSERT(zio == NULL); | |
887 | spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); | |
888 | zio = zio_root(spa, NULL, ubbest, flags); | |
889 | bzero(ubbest, sizeof (uberblock_t)); | |
890 | } | |
34dc7c2f | 891 | |
b128c09f | 892 | ASSERT(zio != NULL); |
34dc7c2f | 893 | |
b128c09f BB |
894 | for (int c = 0; c < vd->vdev_children; c++) |
895 | vdev_uberblock_load(zio, vd->vdev_child[c], ubbest); | |
34dc7c2f | 896 | |
b128c09f BB |
897 | if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { |
898 | for (int l = 0; l < VDEV_LABELS; l++) { | |
899 | for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { | |
900 | vdev_label_read(zio, vd, l, | |
901 | zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)), | |
902 | VDEV_UBERBLOCK_OFFSET(vd, n), | |
903 | VDEV_UBERBLOCK_SIZE(vd), | |
904 | vdev_uberblock_load_done, zio, flags); | |
905 | } | |
34dc7c2f BB |
906 | } |
907 | } | |
b128c09f BB |
908 | |
909 | if (vd == rvd) { | |
910 | (void) zio_wait(zio); | |
911 | spa_config_exit(spa, SCL_ALL, FTAG); | |
912 | } | |
34dc7c2f BB |
913 | } |
914 | ||
915 | /* | |
916 | * On success, increment root zio's count of good writes. | |
917 | * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). | |
918 | */ | |
919 | static void | |
920 | vdev_uberblock_sync_done(zio_t *zio) | |
921 | { | |
922 | uint64_t *good_writes = zio->io_private; | |
923 | ||
924 | if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) | |
925 | atomic_add_64(good_writes, 1); | |
926 | } | |
927 | ||
928 | /* | |
929 | * Write the uberblock to all labels of all leaves of the specified vdev. | |
930 | */ | |
931 | static void | |
b128c09f | 932 | vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags) |
34dc7c2f | 933 | { |
34dc7c2f | 934 | uberblock_t *ubbuf; |
b128c09f | 935 | int n; |
34dc7c2f | 936 | |
b128c09f BB |
937 | for (int c = 0; c < vd->vdev_children; c++) |
938 | vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags); | |
34dc7c2f BB |
939 | |
940 | if (!vd->vdev_ops->vdev_op_leaf) | |
941 | return; | |
942 | ||
b128c09f | 943 | if (!vdev_writeable(vd)) |
34dc7c2f BB |
944 | return; |
945 | ||
946 | n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1); | |
947 | ||
948 | ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)); | |
949 | bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); | |
950 | *ubbuf = *ub; | |
951 | ||
b128c09f | 952 | for (int l = 0; l < VDEV_LABELS; l++) |
34dc7c2f | 953 | vdev_label_write(zio, vd, l, ubbuf, |
b128c09f | 954 | VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), |
34dc7c2f | 955 | vdev_uberblock_sync_done, zio->io_private, |
b128c09f | 956 | flags | ZIO_FLAG_DONT_PROPAGATE); |
34dc7c2f BB |
957 | |
958 | zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); | |
959 | } | |
960 | ||
961 | int | |
962 | vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) | |
963 | { | |
964 | spa_t *spa = svd[0]->vdev_spa; | |
34dc7c2f BB |
965 | zio_t *zio; |
966 | uint64_t good_writes = 0; | |
967 | ||
968 | zio = zio_root(spa, NULL, &good_writes, flags); | |
969 | ||
b128c09f BB |
970 | for (int v = 0; v < svdcount; v++) |
971 | vdev_uberblock_sync(zio, ub, svd[v], flags); | |
34dc7c2f BB |
972 | |
973 | (void) zio_wait(zio); | |
974 | ||
975 | /* | |
976 | * Flush the uberblocks to disk. This ensures that the odd labels | |
977 | * are no longer needed (because the new uberblocks and the even | |
978 | * labels are safely on disk), so it is safe to overwrite them. | |
979 | */ | |
980 | zio = zio_root(spa, NULL, NULL, flags); | |
981 | ||
b128c09f | 982 | for (int v = 0; v < svdcount; v++) |
34dc7c2f BB |
983 | zio_flush(zio, svd[v]); |
984 | ||
985 | (void) zio_wait(zio); | |
986 | ||
987 | return (good_writes >= 1 ? 0 : EIO); | |
988 | } | |
989 | ||
990 | /* | |
991 | * On success, increment the count of good writes for our top-level vdev. | |
992 | */ | |
993 | static void | |
994 | vdev_label_sync_done(zio_t *zio) | |
995 | { | |
996 | uint64_t *good_writes = zio->io_private; | |
997 | ||
998 | if (zio->io_error == 0) | |
999 | atomic_add_64(good_writes, 1); | |
1000 | } | |
1001 | ||
1002 | /* | |
1003 | * If there weren't enough good writes, indicate failure to the parent. | |
1004 | */ | |
1005 | static void | |
1006 | vdev_label_sync_top_done(zio_t *zio) | |
1007 | { | |
1008 | uint64_t *good_writes = zio->io_private; | |
1009 | ||
1010 | if (*good_writes == 0) | |
1011 | zio->io_error = EIO; | |
1012 | ||
1013 | kmem_free(good_writes, sizeof (uint64_t)); | |
1014 | } | |
1015 | ||
b128c09f BB |
1016 | /* |
1017 | * We ignore errors for log and cache devices, simply free the private data. | |
1018 | */ | |
1019 | static void | |
1020 | vdev_label_sync_ignore_done(zio_t *zio) | |
1021 | { | |
1022 | kmem_free(zio->io_private, sizeof (uint64_t)); | |
1023 | } | |
1024 | ||
34dc7c2f BB |
1025 | /* |
1026 | * Write all even or odd labels to all leaves of the specified vdev. | |
1027 | */ | |
1028 | static void | |
b128c09f | 1029 | vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags) |
34dc7c2f BB |
1030 | { |
1031 | nvlist_t *label; | |
1032 | vdev_phys_t *vp; | |
1033 | char *buf; | |
1034 | size_t buflen; | |
34dc7c2f | 1035 | |
b128c09f BB |
1036 | for (int c = 0; c < vd->vdev_children; c++) |
1037 | vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags); | |
34dc7c2f BB |
1038 | |
1039 | if (!vd->vdev_ops->vdev_op_leaf) | |
1040 | return; | |
1041 | ||
b128c09f | 1042 | if (!vdev_writeable(vd)) |
34dc7c2f BB |
1043 | return; |
1044 | ||
1045 | /* | |
1046 | * Generate a label describing the top-level config to which we belong. | |
1047 | */ | |
1048 | label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); | |
1049 | ||
1050 | vp = zio_buf_alloc(sizeof (vdev_phys_t)); | |
1051 | bzero(vp, sizeof (vdev_phys_t)); | |
1052 | ||
1053 | buf = vp->vp_nvlist; | |
1054 | buflen = sizeof (vp->vp_nvlist); | |
1055 | ||
1056 | if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) { | |
1057 | for (; l < VDEV_LABELS; l += 2) { | |
1058 | vdev_label_write(zio, vd, l, vp, | |
1059 | offsetof(vdev_label_t, vl_vdev_phys), | |
1060 | sizeof (vdev_phys_t), | |
1061 | vdev_label_sync_done, zio->io_private, | |
b128c09f | 1062 | flags | ZIO_FLAG_DONT_PROPAGATE); |
34dc7c2f BB |
1063 | } |
1064 | } | |
1065 | ||
1066 | zio_buf_free(vp, sizeof (vdev_phys_t)); | |
1067 | nvlist_free(label); | |
1068 | } | |
1069 | ||
1070 | int | |
b128c09f | 1071 | vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags) |
34dc7c2f | 1072 | { |
b128c09f | 1073 | list_t *dl = &spa->spa_config_dirty_list; |
34dc7c2f BB |
1074 | vdev_t *vd; |
1075 | zio_t *zio; | |
1076 | int error; | |
1077 | ||
1078 | /* | |
1079 | * Write the new labels to disk. | |
1080 | */ | |
1081 | zio = zio_root(spa, NULL, NULL, flags); | |
1082 | ||
1083 | for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { | |
1084 | uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t), | |
1085 | KM_SLEEP); | |
428870ff BB |
1086 | |
1087 | ASSERT(!vd->vdev_ishole); | |
1088 | ||
d164b209 | 1089 | zio_t *vio = zio_null(zio, spa, NULL, |
b128c09f BB |
1090 | (vd->vdev_islog || vd->vdev_aux != NULL) ? |
1091 | vdev_label_sync_ignore_done : vdev_label_sync_top_done, | |
34dc7c2f | 1092 | good_writes, flags); |
b128c09f | 1093 | vdev_label_sync(vio, vd, l, txg, flags); |
34dc7c2f BB |
1094 | zio_nowait(vio); |
1095 | } | |
1096 | ||
1097 | error = zio_wait(zio); | |
1098 | ||
1099 | /* | |
1100 | * Flush the new labels to disk. | |
1101 | */ | |
1102 | zio = zio_root(spa, NULL, NULL, flags); | |
1103 | ||
1104 | for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) | |
1105 | zio_flush(zio, vd); | |
1106 | ||
1107 | (void) zio_wait(zio); | |
1108 | ||
1109 | return (error); | |
1110 | } | |
1111 | ||
1112 | /* | |
1113 | * Sync the uberblock and any changes to the vdev configuration. | |
1114 | * | |
1115 | * The order of operations is carefully crafted to ensure that | |
1116 | * if the system panics or loses power at any time, the state on disk | |
1117 | * is still transactionally consistent. The in-line comments below | |
1118 | * describe the failure semantics at each stage. | |
1119 | * | |
1120 | * Moreover, vdev_config_sync() is designed to be idempotent: if it fails | |
1121 | * at any time, you can just call it again, and it will resume its work. | |
1122 | */ | |
1123 | int | |
9babb374 | 1124 | vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard) |
34dc7c2f BB |
1125 | { |
1126 | spa_t *spa = svd[0]->vdev_spa; | |
1127 | uberblock_t *ub = &spa->spa_uberblock; | |
1128 | vdev_t *vd; | |
1129 | zio_t *zio; | |
1130 | int error; | |
b128c09f | 1131 | int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; |
34dc7c2f | 1132 | |
9babb374 BB |
1133 | /* |
1134 | * Normally, we don't want to try too hard to write every label and | |
1135 | * uberblock. If there is a flaky disk, we don't want the rest of the | |
1136 | * sync process to block while we retry. But if we can't write a | |
1137 | * single label out, we should retry with ZIO_FLAG_TRYHARD before | |
1138 | * bailing out and declaring the pool faulted. | |
1139 | */ | |
1140 | if (tryhard) | |
1141 | flags |= ZIO_FLAG_TRYHARD; | |
1142 | ||
34dc7c2f BB |
1143 | ASSERT(ub->ub_txg <= txg); |
1144 | ||
1145 | /* | |
1146 | * If this isn't a resync due to I/O errors, | |
1147 | * and nothing changed in this transaction group, | |
1148 | * and the vdev configuration hasn't changed, | |
1149 | * then there's nothing to do. | |
1150 | */ | |
1151 | if (ub->ub_txg < txg && | |
1152 | uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE && | |
b128c09f | 1153 | list_is_empty(&spa->spa_config_dirty_list)) |
34dc7c2f BB |
1154 | return (0); |
1155 | ||
1156 | if (txg > spa_freeze_txg(spa)) | |
1157 | return (0); | |
1158 | ||
1159 | ASSERT(txg <= spa->spa_final_txg); | |
1160 | ||
1161 | /* | |
1162 | * Flush the write cache of every disk that's been written to | |
1163 | * in this transaction group. This ensures that all blocks | |
1164 | * written in this txg will be committed to stable storage | |
1165 | * before any uberblock that references them. | |
1166 | */ | |
1167 | zio = zio_root(spa, NULL, NULL, flags); | |
1168 | ||
1169 | for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd; | |
1170 | vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) | |
1171 | zio_flush(zio, vd); | |
1172 | ||
1173 | (void) zio_wait(zio); | |
1174 | ||
1175 | /* | |
1176 | * Sync out the even labels (L0, L2) for every dirty vdev. If the | |
1177 | * system dies in the middle of this process, that's OK: all of the | |
1178 | * even labels that made it to disk will be newer than any uberblock, | |
1179 | * and will therefore be considered invalid. The odd labels (L1, L3), | |
1180 | * which have not yet been touched, will still be valid. We flush | |
1181 | * the new labels to disk to ensure that all even-label updates | |
1182 | * are committed to stable storage before the uberblock update. | |
1183 | */ | |
b128c09f | 1184 | if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) |
34dc7c2f BB |
1185 | return (error); |
1186 | ||
1187 | /* | |
1188 | * Sync the uberblocks to all vdevs in svd[]. | |
1189 | * If the system dies in the middle of this step, there are two cases | |
1190 | * to consider, and the on-disk state is consistent either way: | |
1191 | * | |
1192 | * (1) If none of the new uberblocks made it to disk, then the | |
1193 | * previous uberblock will be the newest, and the odd labels | |
1194 | * (which had not yet been touched) will be valid with respect | |
1195 | * to that uberblock. | |
1196 | * | |
1197 | * (2) If one or more new uberblocks made it to disk, then they | |
1198 | * will be the newest, and the even labels (which had all | |
1199 | * been successfully committed) will be valid with respect | |
1200 | * to the new uberblocks. | |
1201 | */ | |
1202 | if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) | |
1203 | return (error); | |
1204 | ||
1205 | /* | |
1206 | * Sync out odd labels for every dirty vdev. If the system dies | |
1207 | * in the middle of this process, the even labels and the new | |
1208 | * uberblocks will suffice to open the pool. The next time | |
1209 | * the pool is opened, the first thing we'll do -- before any | |
1210 | * user data is modified -- is mark every vdev dirty so that | |
1211 | * all labels will be brought up to date. We flush the new labels | |
1212 | * to disk to ensure that all odd-label updates are committed to | |
1213 | * stable storage before the next transaction group begins. | |
1214 | */ | |
b128c09f | 1215 | return (vdev_label_sync_list(spa, 1, txg, flags)); |
34dc7c2f | 1216 | } |