]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/vdev_queue.c
Fix typo/etc in module/zfs/zfs_ctldir.c
[mirror_zfs.git] / module / zfs / vdev_queue.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
d164b209 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
34dc7c2f
BB
23 * Use is subject to license terms.
24 */
25
cc92e9d0 26/*
492f64e9 27 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
cc92e9d0
GW
28 */
29
34dc7c2f 30#include <sys/zfs_context.h>
34dc7c2f 31#include <sys/vdev_impl.h>
330847ff 32#include <sys/spa_impl.h>
34dc7c2f
BB
33#include <sys/zio.h>
34#include <sys/avl.h>
e8b96c60 35#include <sys/dsl_pool.h>
3dfb57a3 36#include <sys/metaslab_impl.h>
e8b96c60
MA
37#include <sys/spa.h>
38#include <sys/spa_impl.h>
330847ff 39#include <sys/kstat.h>
a6255b7f 40#include <sys/abd.h>
34dc7c2f
BB
41
42/*
e8b96c60
MA
43 * ZFS I/O Scheduler
44 * ---------------
45 *
46 * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios. The
47 * I/O scheduler determines when and in what order those operations are
48 * issued. The I/O scheduler divides operations into five I/O classes
49 * prioritized in the following order: sync read, sync write, async read,
50 * async write, and scrub/resilver. Each queue defines the minimum and
51 * maximum number of concurrent operations that may be issued to the device.
52 * In addition, the device has an aggregate maximum. Note that the sum of the
53 * per-queue minimums must not exceed the aggregate maximum. If the
54 * sum of the per-queue maximums exceeds the aggregate maximum, then the
55 * number of active i/os may reach zfs_vdev_max_active, in which case no
56 * further i/os will be issued regardless of whether all per-queue
57 * minimums have been met.
58 *
59 * For many physical devices, throughput increases with the number of
60 * concurrent operations, but latency typically suffers. Further, physical
61 * devices typically have a limit at which more concurrent operations have no
62 * effect on throughput or can actually cause it to decrease.
63 *
64 * The scheduler selects the next operation to issue by first looking for an
65 * I/O class whose minimum has not been satisfied. Once all are satisfied and
66 * the aggregate maximum has not been hit, the scheduler looks for classes
67 * whose maximum has not been satisfied. Iteration through the I/O classes is
68 * done in the order specified above. No further operations are issued if the
69 * aggregate maximum number of concurrent operations has been hit or if there
70 * are no operations queued for an I/O class that has not hit its maximum.
71 * Every time an i/o is queued or an operation completes, the I/O scheduler
72 * looks for new operations to issue.
73 *
74 * All I/O classes have a fixed maximum number of outstanding operations
75 * except for the async write class. Asynchronous writes represent the data
76 * that is committed to stable storage during the syncing stage for
77 * transaction groups (see txg.c). Transaction groups enter the syncing state
78 * periodically so the number of queued async writes will quickly burst up and
79 * then bleed down to zero. Rather than servicing them as quickly as possible,
80 * the I/O scheduler changes the maximum number of active async write i/os
81 * according to the amount of dirty data in the pool (see dsl_pool.c). Since
82 * both throughput and latency typically increase with the number of
83 * concurrent operations issued to physical devices, reducing the burstiness
84 * in the number of concurrent operations also stabilizes the response time of
85 * operations from other -- and in particular synchronous -- queues. In broad
86 * strokes, the I/O scheduler will issue more concurrent operations from the
87 * async write queue as there's more dirty data in the pool.
88 *
89 * Async Writes
90 *
91 * The number of concurrent operations issued for the async write I/O class
92 * follows a piece-wise linear function defined by a few adjustable points.
93 *
94 * | o---------| <-- zfs_vdev_async_write_max_active
95 * ^ | /^ |
96 * | | / | |
97 * active | / | |
98 * I/O | / | |
99 * count | / | |
100 * | / | |
101 * |------------o | | <-- zfs_vdev_async_write_min_active
102 * 0|____________^______|_________|
103 * 0% | | 100% of zfs_dirty_data_max
104 * | |
105 * | `-- zfs_vdev_async_write_active_max_dirty_percent
106 * `--------- zfs_vdev_async_write_active_min_dirty_percent
107 *
108 * Until the amount of dirty data exceeds a minimum percentage of the dirty
109 * data allowed in the pool, the I/O scheduler will limit the number of
110 * concurrent operations to the minimum. As that threshold is crossed, the
111 * number of concurrent operations issued increases linearly to the maximum at
112 * the specified maximum percentage of the dirty data allowed in the pool.
113 *
114 * Ideally, the amount of dirty data on a busy pool will stay in the sloped
115 * part of the function between zfs_vdev_async_write_active_min_dirty_percent
116 * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
117 * maximum percentage, this indicates that the rate of incoming data is
118 * greater than the rate that the backend storage can handle. In this case, we
119 * must further throttle incoming writes (see dmu_tx_delay() for details).
34dc7c2f 120 */
d3cc8b15 121
34dc7c2f 122/*
e8b96c60
MA
123 * The maximum number of i/os active to each device. Ideally, this will be >=
124 * the sum of each queue's max_active. It must be at least the sum of each
125 * queue's min_active.
34dc7c2f 126 */
e8b96c60 127uint32_t zfs_vdev_max_active = 1000;
34dc7c2f 128
cb682a17 129/*
e8b96c60
MA
130 * Per-queue limits on the number of i/os active to each device. If the
131 * number of active i/os is < zfs_vdev_max_active, then the min_active comes
132 * into play. We will send min_active from each queue, and then select from
133 * queues in the order defined by zio_priority_t.
134 *
135 * In general, smaller max_active's will lead to lower latency of synchronous
136 * operations. Larger max_active's may lead to higher overall throughput,
137 * depending on underlying storage.
138 *
139 * The ratio of the queues' max_actives determines the balance of performance
140 * between reads, writes, and scrubs. E.g., increasing
141 * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
142 * more quickly, but reads and writes to have higher latency and lower
143 * throughput.
cb682a17 144 */
e8b96c60
MA
145uint32_t zfs_vdev_sync_read_min_active = 10;
146uint32_t zfs_vdev_sync_read_max_active = 10;
147uint32_t zfs_vdev_sync_write_min_active = 10;
148uint32_t zfs_vdev_sync_write_max_active = 10;
149uint32_t zfs_vdev_async_read_min_active = 1;
150uint32_t zfs_vdev_async_read_max_active = 3;
06226b59 151uint32_t zfs_vdev_async_write_min_active = 2;
e8b96c60
MA
152uint32_t zfs_vdev_async_write_max_active = 10;
153uint32_t zfs_vdev_scrub_min_active = 1;
154uint32_t zfs_vdev_scrub_max_active = 2;
a1d477c2
MA
155uint32_t zfs_vdev_removal_min_active = 1;
156uint32_t zfs_vdev_removal_max_active = 2;
619f0976
GW
157uint32_t zfs_vdev_initializing_min_active = 1;
158uint32_t zfs_vdev_initializing_max_active = 1;
1b939560
BB
159uint32_t zfs_vdev_trim_min_active = 1;
160uint32_t zfs_vdev_trim_max_active = 2;
34dc7c2f 161
e8b96c60
MA
162/*
163 * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
164 * dirty data, use zfs_vdev_async_write_min_active. When it has more than
165 * zfs_vdev_async_write_active_max_dirty_percent, use
166 * zfs_vdev_async_write_max_active. The value is linearly interpolated
167 * between min and max.
168 */
169int zfs_vdev_async_write_active_min_dirty_percent = 30;
170int zfs_vdev_async_write_active_max_dirty_percent = 60;
34dc7c2f
BB
171
172/*
45d1cae3
BB
173 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
174 * For read I/Os, we also aggregate across small adjacency gaps; for writes
175 * we include spans of optional I/Os to aid aggregation at the disk even when
176 * they aren't able to help us aggregate at this level.
34dc7c2f 177 */
d4a72f23 178int zfs_vdev_aggregation_limit = 1 << 20;
1af240f3 179int zfs_vdev_aggregation_limit_non_rotating = SPA_OLD_MAXBLOCKSIZE;
9babb374 180int zfs_vdev_read_gap_limit = 32 << 10;
45d1cae3 181int zfs_vdev_write_gap_limit = 4 << 10;
34dc7c2f 182
3dfb57a3
DB
183/*
184 * Define the queue depth percentage for each top-level. This percentage is
185 * used in conjunction with zfs_vdev_async_max_active to determine how many
186 * allocations a specific top-level vdev should handle. Once the queue depth
187 * reaches zfs_vdev_queue_depth_pct * zfs_vdev_async_write_max_active / 100
188 * then allocator will stop allocating blocks on that top-level device.
189 * The default kernel setting is 1000% which will yield 100 allocations per
190 * device. For userland testing, the default setting is 300% which equates
191 * to 30 allocations per device.
192 */
193#ifdef _KERNEL
194int zfs_vdev_queue_depth_pct = 1000;
195#else
196int zfs_vdev_queue_depth_pct = 300;
197#endif
198
492f64e9
PD
199/*
200 * When performing allocations for a given metaslab, we want to make sure that
201 * there are enough IOs to aggregate together to improve throughput. We want to
202 * ensure that there are at least 128k worth of IOs that can be aggregated, and
203 * we assume that the average allocation size is 4k, so we need the queue depth
204 * to be 32 per allocator to get good aggregation of sequential writes.
205 */
206int zfs_vdev_def_queue_depth = 32;
207
1b939560
BB
208/*
209 * Allow TRIM I/Os to be aggregated. This should normally not be needed since
210 * TRIM I/O for extents up to zfs_trim_extent_bytes_max (128M) can be submitted
211 * by the TRIM code in zfs_trim.c.
212 */
213int zfs_vdev_aggregate_trim = 0;
3dfb57a3 214
34dc7c2f 215int
e8b96c60 216vdev_queue_offset_compare(const void *x1, const void *x2)
34dc7c2f 217{
ee36c709
GN
218 const zio_t *z1 = (const zio_t *)x1;
219 const zio_t *z2 = (const zio_t *)x2;
34dc7c2f 220
ee36c709 221 int cmp = AVL_CMP(z1->io_offset, z2->io_offset);
34dc7c2f 222
ee36c709
GN
223 if (likely(cmp))
224 return (cmp);
34dc7c2f 225
ee36c709 226 return (AVL_PCMP(z1, z2));
34dc7c2f
BB
227}
228
ec8501ee
JG
229static inline avl_tree_t *
230vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p)
231{
232 return (&vq->vq_class[p].vqc_queued_tree);
233}
234
235static inline avl_tree_t *
236vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t)
237{
1b939560 238 ASSERT(t == ZIO_TYPE_READ || t == ZIO_TYPE_WRITE || t == ZIO_TYPE_TRIM);
ec8501ee
JG
239 if (t == ZIO_TYPE_READ)
240 return (&vq->vq_read_offset_tree);
1b939560 241 else if (t == ZIO_TYPE_WRITE)
ec8501ee 242 return (&vq->vq_write_offset_tree);
1b939560
BB
243 else
244 return (&vq->vq_trim_offset_tree);
ec8501ee
JG
245}
246
34dc7c2f 247int
e8b96c60 248vdev_queue_timestamp_compare(const void *x1, const void *x2)
34dc7c2f 249{
ee36c709
GN
250 const zio_t *z1 = (const zio_t *)x1;
251 const zio_t *z2 = (const zio_t *)x2;
34dc7c2f 252
ee36c709 253 int cmp = AVL_CMP(z1->io_timestamp, z2->io_timestamp);
34dc7c2f 254
ee36c709
GN
255 if (likely(cmp))
256 return (cmp);
34dc7c2f 257
ee36c709 258 return (AVL_PCMP(z1, z2));
34dc7c2f
BB
259}
260
e8b96c60
MA
261static int
262vdev_queue_class_min_active(zio_priority_t p)
263{
264 switch (p) {
265 case ZIO_PRIORITY_SYNC_READ:
266 return (zfs_vdev_sync_read_min_active);
267 case ZIO_PRIORITY_SYNC_WRITE:
268 return (zfs_vdev_sync_write_min_active);
269 case ZIO_PRIORITY_ASYNC_READ:
270 return (zfs_vdev_async_read_min_active);
271 case ZIO_PRIORITY_ASYNC_WRITE:
272 return (zfs_vdev_async_write_min_active);
273 case ZIO_PRIORITY_SCRUB:
274 return (zfs_vdev_scrub_min_active);
a1d477c2
MA
275 case ZIO_PRIORITY_REMOVAL:
276 return (zfs_vdev_removal_min_active);
619f0976
GW
277 case ZIO_PRIORITY_INITIALIZING:
278 return (zfs_vdev_initializing_min_active);
1b939560
BB
279 case ZIO_PRIORITY_TRIM:
280 return (zfs_vdev_trim_min_active);
e8b96c60
MA
281 default:
282 panic("invalid priority %u", p);
283 return (0);
284 }
285}
286
287static int
acbad6ff 288vdev_queue_max_async_writes(spa_t *spa)
e8b96c60
MA
289{
290 int writes;
b7faa7aa
G
291 uint64_t dirty = 0;
292 dsl_pool_t *dp = spa_get_dsl(spa);
e8b96c60
MA
293 uint64_t min_bytes = zfs_dirty_data_max *
294 zfs_vdev_async_write_active_min_dirty_percent / 100;
295 uint64_t max_bytes = zfs_dirty_data_max *
296 zfs_vdev_async_write_active_max_dirty_percent / 100;
297
b7faa7aa
G
298 /*
299 * Async writes may occur before the assignment of the spa's
300 * dsl_pool_t if a self-healing zio is issued prior to the
301 * completion of dmu_objset_open_impl().
302 */
303 if (dp == NULL)
304 return (zfs_vdev_async_write_max_active);
305
acbad6ff
AR
306 /*
307 * Sync tasks correspond to interactive user actions. To reduce the
308 * execution time of those actions we push data out as fast as possible.
309 */
b7faa7aa 310 if (spa_has_pending_synctask(spa))
acbad6ff 311 return (zfs_vdev_async_write_max_active);
acbad6ff 312
b7faa7aa 313 dirty = dp->dp_dirty_total;
e8b96c60
MA
314 if (dirty < min_bytes)
315 return (zfs_vdev_async_write_min_active);
316 if (dirty > max_bytes)
317 return (zfs_vdev_async_write_max_active);
318
319 /*
320 * linear interpolation:
321 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
322 * move right by min_bytes
323 * move up by min_writes
324 */
325 writes = (dirty - min_bytes) *
326 (zfs_vdev_async_write_max_active -
327 zfs_vdev_async_write_min_active) /
328 (max_bytes - min_bytes) +
329 zfs_vdev_async_write_min_active;
330 ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
331 ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
332 return (writes);
333}
334
335static int
336vdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
337{
338 switch (p) {
339 case ZIO_PRIORITY_SYNC_READ:
340 return (zfs_vdev_sync_read_max_active);
341 case ZIO_PRIORITY_SYNC_WRITE:
342 return (zfs_vdev_sync_write_max_active);
343 case ZIO_PRIORITY_ASYNC_READ:
344 return (zfs_vdev_async_read_max_active);
345 case ZIO_PRIORITY_ASYNC_WRITE:
acbad6ff 346 return (vdev_queue_max_async_writes(spa));
e8b96c60
MA
347 case ZIO_PRIORITY_SCRUB:
348 return (zfs_vdev_scrub_max_active);
a1d477c2
MA
349 case ZIO_PRIORITY_REMOVAL:
350 return (zfs_vdev_removal_max_active);
619f0976
GW
351 case ZIO_PRIORITY_INITIALIZING:
352 return (zfs_vdev_initializing_max_active);
1b939560
BB
353 case ZIO_PRIORITY_TRIM:
354 return (zfs_vdev_trim_max_active);
e8b96c60
MA
355 default:
356 panic("invalid priority %u", p);
357 return (0);
358 }
359}
360
361/*
362 * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
363 * there is no eligible class.
364 */
365static zio_priority_t
366vdev_queue_class_to_issue(vdev_queue_t *vq)
367{
368 spa_t *spa = vq->vq_vdev->vdev_spa;
369 zio_priority_t p;
370
371 if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
372 return (ZIO_PRIORITY_NUM_QUEUEABLE);
373
374 /* find a queue that has not reached its minimum # outstanding i/os */
375 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
ec8501ee 376 if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
e8b96c60
MA
377 vq->vq_class[p].vqc_active <
378 vdev_queue_class_min_active(p))
379 return (p);
380 }
381
382 /*
383 * If we haven't found a queue, look for one that hasn't reached its
384 * maximum # outstanding i/os.
385 */
386 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
ec8501ee 387 if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
e8b96c60
MA
388 vq->vq_class[p].vqc_active <
389 vdev_queue_class_max_active(spa, p))
390 return (p);
391 }
392
393 /* No eligible queued i/os */
394 return (ZIO_PRIORITY_NUM_QUEUEABLE);
395}
396
34dc7c2f
BB
397void
398vdev_queue_init(vdev_t *vd)
399{
400 vdev_queue_t *vq = &vd->vdev_queue;
e8b96c60 401 zio_priority_t p;
34dc7c2f
BB
402
403 mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
e8b96c60 404 vq->vq_vdev = vd;
36b454ab 405 taskq_init_ent(&vd->vdev_queue.vq_io_search.io_tqent);
34dc7c2f 406
e8b96c60
MA
407 avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
408 sizeof (zio_t), offsetof(struct zio, io_queue_node));
ec8501ee 409 avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ),
02730c33
BB
410 vdev_queue_offset_compare, sizeof (zio_t),
411 offsetof(struct zio, io_offset_node));
ec8501ee 412 avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE),
02730c33
BB
413 vdev_queue_offset_compare, sizeof (zio_t),
414 offsetof(struct zio, io_offset_node));
1b939560
BB
415 avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_TRIM),
416 vdev_queue_offset_compare, sizeof (zio_t),
417 offsetof(struct zio, io_offset_node));
34dc7c2f 418
e8b96c60 419 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
ec8501ee
JG
420 int (*compfn) (const void *, const void *);
421
e8b96c60 422 /*
1b939560 423 * The synchronous/trim i/o queues are dispatched in FIFO rather
ec8501ee
JG
424 * than LBA order. This provides more consistent latency for
425 * these i/os.
e8b96c60 426 */
1b939560
BB
427 if (p == ZIO_PRIORITY_SYNC_READ ||
428 p == ZIO_PRIORITY_SYNC_WRITE ||
429 p == ZIO_PRIORITY_TRIM) {
ec8501ee 430 compfn = vdev_queue_timestamp_compare;
1b939560 431 } else {
ec8501ee 432 compfn = vdev_queue_offset_compare;
1b939560 433 }
ec8501ee 434 avl_create(vdev_queue_class_tree(vq, p), compfn,
02730c33 435 sizeof (zio_t), offsetof(struct zio, io_queue_node));
e8b96c60 436 }
9f500936 437
d6c6590c 438 vq->vq_last_offset = 0;
34dc7c2f
BB
439}
440
441void
442vdev_queue_fini(vdev_t *vd)
443{
444 vdev_queue_t *vq = &vd->vdev_queue;
445
1c27024e 446 for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
ec8501ee 447 avl_destroy(vdev_queue_class_tree(vq, p));
e8b96c60 448 avl_destroy(&vq->vq_active_tree);
ec8501ee
JG
449 avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ));
450 avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE));
1b939560 451 avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_TRIM));
34dc7c2f
BB
452
453 mutex_destroy(&vq->vq_lock);
454}
455
456static void
457vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
458{
330847ff 459 spa_t *spa = zio->io_spa;
d1261452 460 spa_history_kstat_t *shk = &spa->spa_stats.io_history;
330847ff 461
e8b96c60 462 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
ec8501ee
JG
463 avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
464 avl_add(vdev_queue_type_tree(vq, zio->io_type), zio);
330847ff 465
d1261452
JG
466 if (shk->kstat != NULL) {
467 mutex_enter(&shk->lock);
468 kstat_waitq_enter(shk->kstat->ks_data);
469 mutex_exit(&shk->lock);
330847ff 470 }
34dc7c2f
BB
471}
472
473static void
474vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
475{
330847ff 476 spa_t *spa = zio->io_spa;
d1261452 477 spa_history_kstat_t *shk = &spa->spa_stats.io_history;
330847ff 478
e8b96c60 479 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
ec8501ee
JG
480 avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
481 avl_remove(vdev_queue_type_tree(vq, zio->io_type), zio);
330847ff 482
d1261452
JG
483 if (shk->kstat != NULL) {
484 mutex_enter(&shk->lock);
485 kstat_waitq_exit(shk->kstat->ks_data);
486 mutex_exit(&shk->lock);
330847ff
MA
487 }
488}
489
490static void
491vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
492{
493 spa_t *spa = zio->io_spa;
d1261452 494 spa_history_kstat_t *shk = &spa->spa_stats.io_history;
330847ff 495
e8b96c60
MA
496 ASSERT(MUTEX_HELD(&vq->vq_lock));
497 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
498 vq->vq_class[zio->io_priority].vqc_active++;
499 avl_add(&vq->vq_active_tree, zio);
330847ff 500
d1261452
JG
501 if (shk->kstat != NULL) {
502 mutex_enter(&shk->lock);
503 kstat_runq_enter(shk->kstat->ks_data);
504 mutex_exit(&shk->lock);
330847ff
MA
505 }
506}
507
508static void
509vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
510{
511 spa_t *spa = zio->io_spa;
d1261452 512 spa_history_kstat_t *shk = &spa->spa_stats.io_history;
330847ff 513
e8b96c60
MA
514 ASSERT(MUTEX_HELD(&vq->vq_lock));
515 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
516 vq->vq_class[zio->io_priority].vqc_active--;
517 avl_remove(&vq->vq_active_tree, zio);
330847ff 518
d1261452
JG
519 if (shk->kstat != NULL) {
520 kstat_io_t *ksio = shk->kstat->ks_data;
330847ff 521
d1261452 522 mutex_enter(&shk->lock);
330847ff
MA
523 kstat_runq_exit(ksio);
524 if (zio->io_type == ZIO_TYPE_READ) {
525 ksio->reads++;
526 ksio->nread += zio->io_size;
527 } else if (zio->io_type == ZIO_TYPE_WRITE) {
528 ksio->writes++;
529 ksio->nwritten += zio->io_size;
530 }
d1261452 531 mutex_exit(&shk->lock);
330847ff 532 }
34dc7c2f
BB
533}
534
535static void
536vdev_queue_agg_io_done(zio_t *aio)
537{
e8b96c60
MA
538 if (aio->io_type == ZIO_TYPE_READ) {
539 zio_t *pio;
3dfb57a3
DB
540 zio_link_t *zl = NULL;
541 while ((pio = zio_walk_parents(aio, &zl)) != NULL) {
a6255b7f
DQ
542 abd_copy_off(pio->io_abd, aio->io_abd,
543 0, pio->io_offset - aio->io_offset, pio->io_size);
e8b96c60
MA
544 }
545 }
34dc7c2f 546
a6255b7f 547 abd_free(aio->io_abd);
34dc7c2f
BB
548}
549
9babb374
BB
550/*
551 * Compute the range spanned by two i/os, which is the endpoint of the last
552 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
553 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
554 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
555 */
556#define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
557#define IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
34dc7c2f
BB
558
559static zio_t *
e8b96c60 560vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
34dc7c2f 561{
e8b96c60 562 zio_t *first, *last, *aio, *dio, *mandatory, *nio;
a76f3d04 563 zio_link_t *zl = NULL;
e8b96c60
MA
564 uint64_t maxgap = 0;
565 uint64_t size;
a58df6f5 566 uint64_t limit;
2d678f77 567 int maxblocksize;
e8b96c60 568 boolean_t stretch = B_FALSE;
ec8501ee 569 avl_tree_t *t = vdev_queue_type_tree(vq, zio->io_type);
e8b96c60 570 enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
a6255b7f 571 abd_t *abd;
e8b96c60 572
2d678f77 573 maxblocksize = spa_maxblocksize(vq->vq_vdev->vdev_spa);
1af240f3
AM
574 if (vq->vq_vdev->vdev_nonrot)
575 limit = zfs_vdev_aggregation_limit_non_rotating;
576 else
577 limit = zfs_vdev_aggregation_limit;
578 limit = MAX(MIN(limit, maxblocksize), 0);
34dc7c2f 579
a58df6f5
BB
580 if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE || limit == 0)
581 return (NULL);
34dc7c2f 582
1b939560
BB
583 /*
584 * While TRIM commands could be aggregated based on offset this
585 * behavior is disabled until it's determined to be beneficial.
586 */
587 if (zio->io_type == ZIO_TYPE_TRIM && !zfs_vdev_aggregate_trim)
588 return (NULL);
589
e8b96c60 590 first = last = zio;
34dc7c2f 591
e8b96c60
MA
592 if (zio->io_type == ZIO_TYPE_READ)
593 maxgap = zfs_vdev_read_gap_limit;
fb5f0bc8 594
e8b96c60
MA
595 /*
596 * We can aggregate I/Os that are sufficiently adjacent and of
597 * the same flavor, as expressed by the AGG_INHERIT flags.
598 * The latter requirement is necessary so that certain
599 * attributes of the I/O, such as whether it's a normal I/O
600 * or a scrub/resilver, can be preserved in the aggregate.
601 * We can include optional I/Os, but don't allow them
602 * to begin a range as they add no benefit in that situation.
603 */
45d1cae3 604
e8b96c60
MA
605 /*
606 * We keep track of the last non-optional I/O.
607 */
608 mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
45d1cae3 609
e8b96c60
MA
610 /*
611 * Walk backwards through sufficiently contiguous I/Os
8542ef85 612 * recording the last non-optional I/O.
e8b96c60
MA
613 */
614 while ((dio = AVL_PREV(t, first)) != NULL &&
615 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
a58df6f5 616 IO_SPAN(dio, last) <= limit &&
a1d477c2
MA
617 IO_GAP(dio, first) <= maxgap &&
618 dio->io_type == zio->io_type) {
e8b96c60
MA
619 first = dio;
620 if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
621 mandatory = first;
622 }
45d1cae3 623
e8b96c60
MA
624 /*
625 * Skip any initial optional I/Os.
626 */
627 while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
628 first = AVL_NEXT(t, first);
629 ASSERT(first != NULL);
630 }
9babb374 631
45d1cae3 632
e8b96c60
MA
633 /*
634 * Walk forward through sufficiently contiguous I/Os.
8542ef85
MA
635 * The aggregation limit does not apply to optional i/os, so that
636 * we can issue contiguous writes even if they are larger than the
637 * aggregation limit.
e8b96c60
MA
638 */
639 while ((dio = AVL_NEXT(t, last)) != NULL &&
640 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
8542ef85
MA
641 (IO_SPAN(first, dio) <= limit ||
642 (dio->io_flags & ZIO_FLAG_OPTIONAL)) &&
2d678f77 643 IO_SPAN(first, dio) <= maxblocksize &&
a1d477c2
MA
644 IO_GAP(last, dio) <= maxgap &&
645 dio->io_type == zio->io_type) {
e8b96c60
MA
646 last = dio;
647 if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
648 mandatory = last;
649 }
650
651 /*
652 * Now that we've established the range of the I/O aggregation
653 * we must decide what to do with trailing optional I/Os.
654 * For reads, there's nothing to do. While we are unable to
655 * aggregate further, it's possible that a trailing optional
656 * I/O would allow the underlying device to aggregate with
657 * subsequent I/Os. We must therefore determine if the next
658 * non-optional I/O is close enough to make aggregation
659 * worthwhile.
660 */
661 if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
662 zio_t *nio = last;
663 while ((dio = AVL_NEXT(t, nio)) != NULL &&
664 IO_GAP(nio, dio) == 0 &&
665 IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
666 nio = dio;
667 if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
668 stretch = B_TRUE;
669 break;
45d1cae3
BB
670 }
671 }
e8b96c60 672 }
45d1cae3 673
e8b96c60 674 if (stretch) {
8542ef85
MA
675 /*
676 * We are going to include an optional io in our aggregated
677 * span, thus closing the write gap. Only mandatory i/os can
678 * start aggregated spans, so make sure that the next i/o
679 * after our span is mandatory.
680 */
e8b96c60
MA
681 dio = AVL_NEXT(t, last);
682 dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
683 } else {
8542ef85 684 /* do not include the optional i/o */
e8b96c60
MA
685 while (last != mandatory && last != first) {
686 ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
687 last = AVL_PREV(t, last);
688 ASSERT(last != NULL);
45d1cae3 689 }
34dc7c2f
BB
690 }
691
e8b96c60
MA
692 if (first == last)
693 return (NULL);
694
e8b96c60 695 size = IO_SPAN(first, last);
2d678f77 696 ASSERT3U(size, <=, maxblocksize);
e8b96c60 697
a6255b7f
DQ
698 abd = abd_alloc_for_io(size, B_TRUE);
699 if (abd == NULL)
6fe53787
BB
700 return (NULL);
701
e8b96c60 702 aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
a6255b7f 703 abd, size, first->io_type, zio->io_priority,
e8b96c60
MA
704 flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
705 vdev_queue_agg_io_done, NULL);
706 aio->io_timestamp = first->io_timestamp;
707
708 nio = first;
709 do {
710 dio = nio;
711 nio = AVL_NEXT(t, dio);
712 ASSERT3U(dio->io_type, ==, aio->io_type);
713
714 if (dio->io_flags & ZIO_FLAG_NODATA) {
715 ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
a6255b7f
DQ
716 abd_zero_off(aio->io_abd,
717 dio->io_offset - aio->io_offset, dio->io_size);
e8b96c60 718 } else if (dio->io_type == ZIO_TYPE_WRITE) {
a6255b7f
DQ
719 abd_copy_off(aio->io_abd, dio->io_abd,
720 dio->io_offset - aio->io_offset, 0, dio->io_size);
e8b96c60 721 }
d164b209 722
e8b96c60
MA
723 zio_add_child(dio, aio);
724 vdev_queue_io_remove(vq, dio);
a76f3d04
BB
725 } while (dio != last);
726
727 /*
728 * We need to drop the vdev queue's lock to avoid a deadlock that we
729 * could encounter since this I/O will complete immediately.
730 */
731 mutex_exit(&vq->vq_lock);
732 while ((dio = zio_walk_parents(aio, &zl)) != NULL) {
e8b96c60
MA
733 zio_vdev_io_bypass(dio);
734 zio_execute(dio);
a76f3d04
BB
735 }
736 mutex_enter(&vq->vq_lock);
34dc7c2f 737
e8b96c60
MA
738 return (aio);
739}
740
741static zio_t *
742vdev_queue_io_to_issue(vdev_queue_t *vq)
743{
744 zio_t *zio, *aio;
745 zio_priority_t p;
746 avl_index_t idx;
ec8501ee 747 avl_tree_t *tree;
e8b96c60
MA
748
749again:
750 ASSERT(MUTEX_HELD(&vq->vq_lock));
751
752 p = vdev_queue_class_to_issue(vq);
34dc7c2f 753
e8b96c60
MA
754 if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
755 /* No eligible queued i/os */
756 return (NULL);
34dc7c2f
BB
757 }
758
e8b96c60 759 /*
619f0976
GW
760 * For LBA-ordered queues (async / scrub / initializing), issue the
761 * i/o which follows the most recently issued i/o in LBA (offset) order.
e8b96c60 762 *
1b939560 763 * For FIFO queues (sync/trim), issue the i/o with the lowest timestamp.
e8b96c60 764 */
ec8501ee 765 tree = vdev_queue_class_tree(vq, p);
50b25b21 766 vq->vq_io_search.io_timestamp = 0;
d6c6590c
GN
767 vq->vq_io_search.io_offset = vq->vq_last_offset - 1;
768 VERIFY3P(avl_find(tree, &vq->vq_io_search, &idx), ==, NULL);
ec8501ee 769 zio = avl_nearest(tree, idx, AVL_AFTER);
e8b96c60 770 if (zio == NULL)
ec8501ee 771 zio = avl_first(tree);
e8b96c60
MA
772 ASSERT3U(zio->io_priority, ==, p);
773
774 aio = vdev_queue_aggregate(vq, zio);
775 if (aio != NULL)
776 zio = aio;
777 else
778 vdev_queue_io_remove(vq, zio);
34dc7c2f 779
45d1cae3
BB
780 /*
781 * If the I/O is or was optional and therefore has no data, we need to
782 * simply discard it. We need to drop the vdev queue's lock to avoid a
783 * deadlock that we could encounter since this I/O will complete
784 * immediately.
785 */
e8b96c60 786 if (zio->io_flags & ZIO_FLAG_NODATA) {
45d1cae3 787 mutex_exit(&vq->vq_lock);
e8b96c60
MA
788 zio_vdev_io_bypass(zio);
789 zio_execute(zio);
45d1cae3
BB
790 mutex_enter(&vq->vq_lock);
791 goto again;
792 }
793
e8b96c60 794 vdev_queue_pending_add(vq, zio);
d6c6590c 795 vq->vq_last_offset = zio->io_offset + zio->io_size;
34dc7c2f 796
e8b96c60 797 return (zio);
34dc7c2f
BB
798}
799
800zio_t *
801vdev_queue_io(zio_t *zio)
802{
803 vdev_queue_t *vq = &zio->io_vd->vdev_queue;
804 zio_t *nio;
805
34dc7c2f
BB
806 if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
807 return (zio);
808
e8b96c60
MA
809 /*
810 * Children i/os inherent their parent's priority, which might
811 * not match the child's i/o type. Fix it up here.
812 */
813 if (zio->io_type == ZIO_TYPE_READ) {
1b939560
BB
814 ASSERT(zio->io_priority != ZIO_PRIORITY_TRIM);
815
e8b96c60
MA
816 if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
817 zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
a1d477c2 818 zio->io_priority != ZIO_PRIORITY_SCRUB &&
619f0976 819 zio->io_priority != ZIO_PRIORITY_REMOVAL &&
1b939560 820 zio->io_priority != ZIO_PRIORITY_INITIALIZING) {
e8b96c60 821 zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
1b939560
BB
822 }
823 } else if (zio->io_type == ZIO_TYPE_WRITE) {
824 ASSERT(zio->io_priority != ZIO_PRIORITY_TRIM);
825
e8b96c60 826 if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
a1d477c2 827 zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE &&
619f0976 828 zio->io_priority != ZIO_PRIORITY_REMOVAL &&
1b939560 829 zio->io_priority != ZIO_PRIORITY_INITIALIZING) {
e8b96c60 830 zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
1b939560
BB
831 }
832 } else {
833 ASSERT(zio->io_type == ZIO_TYPE_TRIM);
834 ASSERT(zio->io_priority == ZIO_PRIORITY_TRIM);
e8b96c60 835 }
34dc7c2f 836
e8b96c60 837 zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
34dc7c2f
BB
838
839 mutex_enter(&vq->vq_lock);
cb682a17 840 zio->io_timestamp = gethrtime();
34dc7c2f 841 vdev_queue_io_add(vq, zio);
e8b96c60 842 nio = vdev_queue_io_to_issue(vq);
34dc7c2f
BB
843 mutex_exit(&vq->vq_lock);
844
845 if (nio == NULL)
846 return (NULL);
847
848 if (nio->io_done == vdev_queue_agg_io_done) {
849 zio_nowait(nio);
850 return (NULL);
851 }
852
853 return (nio);
854}
855
856void
857vdev_queue_io_done(zio_t *zio)
858{
859 vdev_queue_t *vq = &zio->io_vd->vdev_queue;
e8b96c60 860 zio_t *nio;
34dc7c2f
BB
861
862 mutex_enter(&vq->vq_lock);
863
330847ff 864 vdev_queue_pending_remove(vq, zio);
34dc7c2f 865
cb682a17
MA
866 zio->io_delta = gethrtime() - zio->io_timestamp;
867 vq->vq_io_complete_ts = gethrtime();
cc92e9d0
GW
868 vq->vq_io_delta_ts = vq->vq_io_complete_ts - zio->io_timestamp;
869
e8b96c60 870 while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
34dc7c2f
BB
871 mutex_exit(&vq->vq_lock);
872 if (nio->io_done == vdev_queue_agg_io_done) {
873 zio_nowait(nio);
874 } else {
875 zio_vdev_io_reissue(nio);
876 zio_execute(nio);
877 }
878 mutex_enter(&vq->vq_lock);
879 }
880
881 mutex_exit(&vq->vq_lock);
882}
c28b2279 883
a8b2e306
TC
884void
885vdev_queue_change_io_priority(zio_t *zio, zio_priority_t priority)
886{
887 vdev_queue_t *vq = &zio->io_vd->vdev_queue;
888 avl_tree_t *tree;
889
c26cf096
TH
890 /*
891 * ZIO_PRIORITY_NOW is used by the vdev cache code and the aggregate zio
892 * code to issue IOs without adding them to the vdev queue. In this
893 * case, the zio is already going to be issued as quickly as possible
894 * and so it doesn't need any reprioitization to help.
895 */
896 if (zio->io_priority == ZIO_PRIORITY_NOW)
897 return;
898
a8b2e306
TC
899 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
900 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
901
902 if (zio->io_type == ZIO_TYPE_READ) {
903 if (priority != ZIO_PRIORITY_SYNC_READ &&
904 priority != ZIO_PRIORITY_ASYNC_READ &&
905 priority != ZIO_PRIORITY_SCRUB)
906 priority = ZIO_PRIORITY_ASYNC_READ;
907 } else {
908 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
909 if (priority != ZIO_PRIORITY_SYNC_WRITE &&
910 priority != ZIO_PRIORITY_ASYNC_WRITE)
911 priority = ZIO_PRIORITY_ASYNC_WRITE;
912 }
913
914 mutex_enter(&vq->vq_lock);
915
916 /*
917 * If the zio is in none of the queues we can simply change
918 * the priority. If the zio is waiting to be submitted we must
919 * remove it from the queue and re-insert it with the new priority.
920 * Otherwise, the zio is currently active and we cannot change its
921 * priority.
922 */
923 tree = vdev_queue_class_tree(vq, zio->io_priority);
924 if (avl_find(tree, zio, NULL) == zio) {
925 avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
926 zio->io_priority = priority;
927 avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
928 } else if (avl_find(&vq->vq_active_tree, zio, NULL) != zio) {
929 zio->io_priority = priority;
930 }
931
932 mutex_exit(&vq->vq_lock);
933}
934
9f500936 935/*
d6c6590c 936 * As these two methods are only used for load calculations we're not
9f500936 937 * concerned if we get an incorrect value on 32bit platforms due to lack of
938 * vq_lock mutex use here, instead we prefer to keep it lock free for
939 * performance.
940 */
941int
942vdev_queue_length(vdev_t *vd)
943{
944 return (avl_numnodes(&vd->vdev_queue.vq_active_tree));
945}
946
947uint64_t
d6c6590c 948vdev_queue_last_offset(vdev_t *vd)
9f500936 949{
d6c6590c 950 return (vd->vdev_queue.vq_last_offset);
9f500936 951}
952
93ce2b4c 953#if defined(_KERNEL)
c28b2279 954module_param(zfs_vdev_aggregation_limit, int, 0644);
c409e464
BB
955MODULE_PARM_DESC(zfs_vdev_aggregation_limit, "Max vdev I/O aggregation size");
956
1af240f3
AM
957module_param(zfs_vdev_aggregation_limit_non_rotating, int, 0644);
958MODULE_PARM_DESC(zfs_vdev_aggregation_limit_non_rotating,
959 "Max vdev I/O aggregation size for non-rotating media");
960
1b939560
BB
961module_param(zfs_vdev_aggregate_trim, int, 0644);
962MODULE_PARM_DESC(zfs_vdev_aggregate_trim, "Allow TRIM I/O to be aggregated");
963
c409e464
BB
964module_param(zfs_vdev_read_gap_limit, int, 0644);
965MODULE_PARM_DESC(zfs_vdev_read_gap_limit, "Aggregate read I/O over gap");
966
967module_param(zfs_vdev_write_gap_limit, int, 0644);
968MODULE_PARM_DESC(zfs_vdev_write_gap_limit, "Aggregate write I/O over gap");
e8b96c60
MA
969
970module_param(zfs_vdev_max_active, int, 0644);
971MODULE_PARM_DESC(zfs_vdev_max_active, "Maximum number of active I/Os per vdev");
972
973module_param(zfs_vdev_async_write_active_max_dirty_percent, int, 0644);
974MODULE_PARM_DESC(zfs_vdev_async_write_active_max_dirty_percent,
d1d7e268 975 "Async write concurrency max threshold");
e8b96c60
MA
976
977module_param(zfs_vdev_async_write_active_min_dirty_percent, int, 0644);
978MODULE_PARM_DESC(zfs_vdev_async_write_active_min_dirty_percent,
d1d7e268 979 "Async write concurrency min threshold");
e8b96c60
MA
980
981module_param(zfs_vdev_async_read_max_active, int, 0644);
982MODULE_PARM_DESC(zfs_vdev_async_read_max_active,
d1d7e268 983 "Max active async read I/Os per vdev");
e8b96c60
MA
984
985module_param(zfs_vdev_async_read_min_active, int, 0644);
986MODULE_PARM_DESC(zfs_vdev_async_read_min_active,
d1d7e268 987 "Min active async read I/Os per vdev");
e8b96c60
MA
988
989module_param(zfs_vdev_async_write_max_active, int, 0644);
990MODULE_PARM_DESC(zfs_vdev_async_write_max_active,
d1d7e268 991 "Max active async write I/Os per vdev");
e8b96c60
MA
992
993module_param(zfs_vdev_async_write_min_active, int, 0644);
994MODULE_PARM_DESC(zfs_vdev_async_write_min_active,
d1d7e268 995 "Min active async write I/Os per vdev");
e8b96c60 996
619f0976
GW
997module_param(zfs_vdev_initializing_max_active, int, 0644);
998MODULE_PARM_DESC(zfs_vdev_initializing_max_active,
999 "Max active initializing I/Os per vdev");
1000
1001module_param(zfs_vdev_initializing_min_active, int, 0644);
1002MODULE_PARM_DESC(zfs_vdev_initializing_min_active,
1003 "Min active initializing I/Os per vdev");
1004
1005module_param(zfs_vdev_removal_max_active, int, 0644);
1006MODULE_PARM_DESC(zfs_vdev_removal_max_active,
1007 "Max active removal I/Os per vdev");
1008
1009module_param(zfs_vdev_removal_min_active, int, 0644);
1010MODULE_PARM_DESC(zfs_vdev_removal_min_active,
1011 "Min active removal I/Os per vdev");
1012
e8b96c60 1013module_param(zfs_vdev_scrub_max_active, int, 0644);
619f0976
GW
1014MODULE_PARM_DESC(zfs_vdev_scrub_max_active,
1015 "Max active scrub I/Os per vdev");
e8b96c60
MA
1016
1017module_param(zfs_vdev_scrub_min_active, int, 0644);
619f0976
GW
1018MODULE_PARM_DESC(zfs_vdev_scrub_min_active,
1019 "Min active scrub I/Os per vdev");
e8b96c60
MA
1020
1021module_param(zfs_vdev_sync_read_max_active, int, 0644);
1022MODULE_PARM_DESC(zfs_vdev_sync_read_max_active,
d1d7e268 1023 "Max active sync read I/Os per vdev");
e8b96c60
MA
1024
1025module_param(zfs_vdev_sync_read_min_active, int, 0644);
1026MODULE_PARM_DESC(zfs_vdev_sync_read_min_active,
d1d7e268 1027 "Min active sync read I/Os per vdev");
e8b96c60
MA
1028
1029module_param(zfs_vdev_sync_write_max_active, int, 0644);
1030MODULE_PARM_DESC(zfs_vdev_sync_write_max_active,
d1d7e268 1031 "Max active sync write I/Os per vdev");
e8b96c60
MA
1032
1033module_param(zfs_vdev_sync_write_min_active, int, 0644);
1034MODULE_PARM_DESC(zfs_vdev_sync_write_min_active,
3757bff3 1035 "Min active sync write I/Os per vdev");
3dfb57a3 1036
1b939560
BB
1037module_param(zfs_vdev_trim_max_active, int, 0644);
1038MODULE_PARM_DESC(zfs_vdev_trim_max_active,
1039 "Max active trim/discard I/Os per vdev");
1040
1041module_param(zfs_vdev_trim_min_active, int, 0644);
1042MODULE_PARM_DESC(zfs_vdev_trim_min_active,
1043 "Min active trim/discard I/Os per vdev");
1044
3dfb57a3
DB
1045module_param(zfs_vdev_queue_depth_pct, int, 0644);
1046MODULE_PARM_DESC(zfs_vdev_queue_depth_pct,
1047 "Queue depth percentage for each top-level vdev");
c28b2279 1048#endif