]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/vdev_raidz_math_scalar.c
Fix typo/etc in module/zfs/zfs_ctldir.c
[mirror_zfs.git] / module / zfs / vdev_raidz_math_scalar.c
CommitLineData
ab9f4b0b
GN
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (C) 2016 Gvozden Nešković. All rights reserved.
24 */
25
26#include <sys/vdev_raidz_impl.h>
cbf484f8 27
ab9f4b0b
GN
28/*
29 * Provide native CPU scalar routines.
30 * Support 32bit and 64bit CPUs.
31 */
32#if ((~(0x0ULL)) >> 24) == 0xffULL
33#define ELEM_SIZE 4
34typedef uint32_t iv_t;
35#elif ((~(0x0ULL)) >> 56) == 0xffULL
36#define ELEM_SIZE 8
37typedef uint64_t iv_t;
38#endif
39
40/*
41 * Vector type used in scalar implementation
42 *
43 * The union is expected to be of native CPU register size. Since addition
44 * uses XOR operation, it can be performed an all byte elements at once.
45 * Multiplication requires per byte access.
46 */
47typedef union {
48 iv_t e;
49 uint8_t b[ELEM_SIZE];
50} v_t;
51
52/*
53 * Precomputed lookup tables for multiplication by a constant
54 *
55 * Reconstruction path requires multiplication by a constant factors. Instead of
56 * performing two step lookup (log & exp tables), a direct lookup can be used
57 * instead. Multiplication of element 'a' by a constant 'c' is obtained as:
58 *
59 * r = vdev_raidz_mul_lt[c_log][a];
60 *
61 * where c_log = vdev_raidz_log2[c]. Log of coefficient factors is used because
62 * they are faster to obtain while solving the syndrome equations.
63 *
64 * PERFORMANCE NOTE:
65 * Even though the complete lookup table uses 64kiB, only relatively small
66 * portion of it is used at the same time. Following shows number of accessed
67 * bytes for different cases:
68 * - 1 failed disk: 256B (1 mul. coefficient)
69 * - 2 failed disks: 512B (2 mul. coefficients)
70 * - 3 failed disks: 1536B (6 mul. coefficients)
71 *
72 * Size of actually accessed lookup table regions is only larger for
73 * reconstruction of 3 failed disks, when compared to traditional log/exp
74 * method. But since the result is obtained in one lookup step performance is
75 * doubled.
76 */
77static uint8_t vdev_raidz_mul_lt[256][256] __attribute__((aligned(256)));
78
79static void
80raidz_init_scalar(void)
81{
82 int c, i;
83 for (c = 0; c < 256; c++)
84 for (i = 0; i < 256; i++)
85 vdev_raidz_mul_lt[c][i] = gf_mul(c, i);
86
87}
88
89#define PREFETCHNTA(ptr, offset) {}
90#define PREFETCH(ptr, offset) {}
91
92#define XOR_ACC(src, acc) acc.e ^= ((v_t *)src)[0].e
93#define XOR(src, acc) acc.e ^= src.e
62a65a65 94#define ZERO(acc) acc.e = 0
ab9f4b0b
GN
95#define COPY(src, dst) dst = src
96#define LOAD(src, val) val = ((v_t *)src)[0]
97#define STORE(dst, val) ((v_t *)dst)[0] = val
98
99/*
100 * Constants used for optimized multiplication by 2.
101 */
102static const struct {
103 iv_t mod;
104 iv_t mask;
105 iv_t msb;
106} scalar_mul2_consts = {
107#if ELEM_SIZE == 8
108 .mod = 0x1d1d1d1d1d1d1d1dULL,
109 .mask = 0xfefefefefefefefeULL,
110 .msb = 0x8080808080808080ULL,
111#else
112 .mod = 0x1d1d1d1dULL,
113 .mask = 0xfefefefeULL,
114 .msb = 0x80808080ULL,
115#endif
116};
117
118#define MUL2_SETUP() {}
119
120#define MUL2(a) \
121{ \
122 iv_t _mask; \
123 \
124 _mask = (a).e & scalar_mul2_consts.msb; \
125 _mask = (_mask << 1) - (_mask >> 7); \
126 (a).e = ((a).e << 1) & scalar_mul2_consts.mask; \
127 (a).e = (a).e ^ (_mask & scalar_mul2_consts.mod); \
128}
129
130#define MUL4(a) \
131{ \
132 MUL2(a); \
133 MUL2(a); \
134}
135
136#define MUL(c, a) \
137{ \
138 const uint8_t *mul_lt = vdev_raidz_mul_lt[c]; \
139 switch (ELEM_SIZE) { \
140 case 8: \
141 a.b[7] = mul_lt[a.b[7]]; \
142 a.b[6] = mul_lt[a.b[6]]; \
143 a.b[5] = mul_lt[a.b[5]]; \
144 a.b[4] = mul_lt[a.b[4]]; \
145 case 4: \
146 a.b[3] = mul_lt[a.b[3]]; \
147 a.b[2] = mul_lt[a.b[2]]; \
148 a.b[1] = mul_lt[a.b[1]]; \
149 a.b[0] = mul_lt[a.b[0]]; \
150 break; \
151 } \
152}
153
154#define raidz_math_begin() {}
155#define raidz_math_end() {}
156
cbf484f8 157#define SYN_STRIDE 1
ab9f4b0b 158
cbf484f8
GN
159#define ZERO_DEFINE() v_t d0
160#define ZERO_STRIDE 1
161#define ZERO_D d0
ab9f4b0b 162
cbf484f8
GN
163#define COPY_DEFINE() v_t d0
164#define COPY_STRIDE 1
165#define COPY_D d0
166
167#define ADD_DEFINE() v_t d0
168#define ADD_STRIDE 1
169#define ADD_D d0
170
171#define MUL_DEFINE() v_t d0
172#define MUL_STRIDE 1
173#define MUL_D d0
174
175#define GEN_P_STRIDE 1
176#define GEN_P_DEFINE() v_t p0
177#define GEN_P_P p0
178
179#define GEN_PQ_STRIDE 1
180#define GEN_PQ_DEFINE() v_t d0, c0
181#define GEN_PQ_D d0
182#define GEN_PQ_C c0
183
184#define GEN_PQR_STRIDE 1
185#define GEN_PQR_DEFINE() v_t d0, c0
186#define GEN_PQR_D d0
187#define GEN_PQR_C c0
188
189#define SYN_Q_DEFINE() v_t d0, x0
190#define SYN_Q_D d0
191#define SYN_Q_X x0
192
193
194#define SYN_R_DEFINE() v_t d0, x0
195#define SYN_R_D d0
196#define SYN_R_X x0
197
198
199#define SYN_PQ_DEFINE() v_t d0, x0
200#define SYN_PQ_D d0
201#define SYN_PQ_X x0
202
203
204#define REC_PQ_STRIDE 1
205#define REC_PQ_DEFINE() v_t x0, y0, t0
206#define REC_PQ_X x0
207#define REC_PQ_Y y0
208#define REC_PQ_T t0
209
210
211#define SYN_PR_DEFINE() v_t d0, x0
212#define SYN_PR_D d0
213#define SYN_PR_X x0
214
215#define REC_PR_STRIDE 1
216#define REC_PR_DEFINE() v_t x0, y0, t0
217#define REC_PR_X x0
218#define REC_PR_Y y0
219#define REC_PR_T t0
220
221
222#define SYN_QR_DEFINE() v_t d0, x0
223#define SYN_QR_D d0
224#define SYN_QR_X x0
225
226
227#define REC_QR_STRIDE 1
228#define REC_QR_DEFINE() v_t x0, y0, t0
229#define REC_QR_X x0
230#define REC_QR_Y y0
231#define REC_QR_T t0
232
233
234#define SYN_PQR_DEFINE() v_t d0, x0
235#define SYN_PQR_D d0
236#define SYN_PQR_X x0
237
238#define REC_PQR_STRIDE 1
239#define REC_PQR_DEFINE() v_t x0, y0, z0, xs0, ys0
240#define REC_PQR_X x0
241#define REC_PQR_Y y0
242#define REC_PQR_Z z0
243#define REC_PQR_XS xs0
244#define REC_PQR_YS ys0
245
246#include "vdev_raidz_math_impl.h"
590c9a09 247
ab9f4b0b
GN
248DEFINE_GEN_METHODS(scalar);
249DEFINE_REC_METHODS(scalar);
250
c9187d86 251boolean_t
ab9f4b0b
GN
252raidz_will_scalar_work(void)
253{
254 return (B_TRUE); /* always */
255}
256
257const raidz_impl_ops_t vdev_raidz_scalar_impl = {
258 .init = raidz_init_scalar,
259 .fini = NULL,
260 .gen = RAIDZ_GEN_METHODS(scalar),
261 .rec = RAIDZ_REC_METHODS(scalar),
262 .is_supported = &raidz_will_scalar_work,
263 .name = "scalar"
264};
265
266/* Powers of 2 in the RAID-Z Galois field. */
267const uint8_t vdev_raidz_pow2[256] __attribute__((aligned(256))) = {
268 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
269 0x1d, 0x3a, 0x74, 0xe8, 0xcd, 0x87, 0x13, 0x26,
270 0x4c, 0x98, 0x2d, 0x5a, 0xb4, 0x75, 0xea, 0xc9,
271 0x8f, 0x03, 0x06, 0x0c, 0x18, 0x30, 0x60, 0xc0,
272 0x9d, 0x27, 0x4e, 0x9c, 0x25, 0x4a, 0x94, 0x35,
273 0x6a, 0xd4, 0xb5, 0x77, 0xee, 0xc1, 0x9f, 0x23,
274 0x46, 0x8c, 0x05, 0x0a, 0x14, 0x28, 0x50, 0xa0,
275 0x5d, 0xba, 0x69, 0xd2, 0xb9, 0x6f, 0xde, 0xa1,
276 0x5f, 0xbe, 0x61, 0xc2, 0x99, 0x2f, 0x5e, 0xbc,
277 0x65, 0xca, 0x89, 0x0f, 0x1e, 0x3c, 0x78, 0xf0,
278 0xfd, 0xe7, 0xd3, 0xbb, 0x6b, 0xd6, 0xb1, 0x7f,
279 0xfe, 0xe1, 0xdf, 0xa3, 0x5b, 0xb6, 0x71, 0xe2,
280 0xd9, 0xaf, 0x43, 0x86, 0x11, 0x22, 0x44, 0x88,
281 0x0d, 0x1a, 0x34, 0x68, 0xd0, 0xbd, 0x67, 0xce,
282 0x81, 0x1f, 0x3e, 0x7c, 0xf8, 0xed, 0xc7, 0x93,
283 0x3b, 0x76, 0xec, 0xc5, 0x97, 0x33, 0x66, 0xcc,
284 0x85, 0x17, 0x2e, 0x5c, 0xb8, 0x6d, 0xda, 0xa9,
285 0x4f, 0x9e, 0x21, 0x42, 0x84, 0x15, 0x2a, 0x54,
286 0xa8, 0x4d, 0x9a, 0x29, 0x52, 0xa4, 0x55, 0xaa,
287 0x49, 0x92, 0x39, 0x72, 0xe4, 0xd5, 0xb7, 0x73,
288 0xe6, 0xd1, 0xbf, 0x63, 0xc6, 0x91, 0x3f, 0x7e,
289 0xfc, 0xe5, 0xd7, 0xb3, 0x7b, 0xf6, 0xf1, 0xff,
290 0xe3, 0xdb, 0xab, 0x4b, 0x96, 0x31, 0x62, 0xc4,
291 0x95, 0x37, 0x6e, 0xdc, 0xa5, 0x57, 0xae, 0x41,
292 0x82, 0x19, 0x32, 0x64, 0xc8, 0x8d, 0x07, 0x0e,
293 0x1c, 0x38, 0x70, 0xe0, 0xdd, 0xa7, 0x53, 0xa6,
294 0x51, 0xa2, 0x59, 0xb2, 0x79, 0xf2, 0xf9, 0xef,
295 0xc3, 0x9b, 0x2b, 0x56, 0xac, 0x45, 0x8a, 0x09,
296 0x12, 0x24, 0x48, 0x90, 0x3d, 0x7a, 0xf4, 0xf5,
297 0xf7, 0xf3, 0xfb, 0xeb, 0xcb, 0x8b, 0x0b, 0x16,
298 0x2c, 0x58, 0xb0, 0x7d, 0xfa, 0xe9, 0xcf, 0x83,
299 0x1b, 0x36, 0x6c, 0xd8, 0xad, 0x47, 0x8e, 0x01
300};
301
302/* Logs of 2 in the RAID-Z Galois field. */
303const uint8_t vdev_raidz_log2[256] __attribute__((aligned(256))) = {
304 0x00, 0x00, 0x01, 0x19, 0x02, 0x32, 0x1a, 0xc6,
305 0x03, 0xdf, 0x33, 0xee, 0x1b, 0x68, 0xc7, 0x4b,
306 0x04, 0x64, 0xe0, 0x0e, 0x34, 0x8d, 0xef, 0x81,
307 0x1c, 0xc1, 0x69, 0xf8, 0xc8, 0x08, 0x4c, 0x71,
308 0x05, 0x8a, 0x65, 0x2f, 0xe1, 0x24, 0x0f, 0x21,
309 0x35, 0x93, 0x8e, 0xda, 0xf0, 0x12, 0x82, 0x45,
310 0x1d, 0xb5, 0xc2, 0x7d, 0x6a, 0x27, 0xf9, 0xb9,
311 0xc9, 0x9a, 0x09, 0x78, 0x4d, 0xe4, 0x72, 0xa6,
312 0x06, 0xbf, 0x8b, 0x62, 0x66, 0xdd, 0x30, 0xfd,
313 0xe2, 0x98, 0x25, 0xb3, 0x10, 0x91, 0x22, 0x88,
314 0x36, 0xd0, 0x94, 0xce, 0x8f, 0x96, 0xdb, 0xbd,
315 0xf1, 0xd2, 0x13, 0x5c, 0x83, 0x38, 0x46, 0x40,
316 0x1e, 0x42, 0xb6, 0xa3, 0xc3, 0x48, 0x7e, 0x6e,
317 0x6b, 0x3a, 0x28, 0x54, 0xfa, 0x85, 0xba, 0x3d,
318 0xca, 0x5e, 0x9b, 0x9f, 0x0a, 0x15, 0x79, 0x2b,
319 0x4e, 0xd4, 0xe5, 0xac, 0x73, 0xf3, 0xa7, 0x57,
320 0x07, 0x70, 0xc0, 0xf7, 0x8c, 0x80, 0x63, 0x0d,
321 0x67, 0x4a, 0xde, 0xed, 0x31, 0xc5, 0xfe, 0x18,
322 0xe3, 0xa5, 0x99, 0x77, 0x26, 0xb8, 0xb4, 0x7c,
323 0x11, 0x44, 0x92, 0xd9, 0x23, 0x20, 0x89, 0x2e,
324 0x37, 0x3f, 0xd1, 0x5b, 0x95, 0xbc, 0xcf, 0xcd,
325 0x90, 0x87, 0x97, 0xb2, 0xdc, 0xfc, 0xbe, 0x61,
326 0xf2, 0x56, 0xd3, 0xab, 0x14, 0x2a, 0x5d, 0x9e,
327 0x84, 0x3c, 0x39, 0x53, 0x47, 0x6d, 0x41, 0xa2,
328 0x1f, 0x2d, 0x43, 0xd8, 0xb7, 0x7b, 0xa4, 0x76,
329 0xc4, 0x17, 0x49, 0xec, 0x7f, 0x0c, 0x6f, 0xf6,
330 0x6c, 0xa1, 0x3b, 0x52, 0x29, 0x9d, 0x55, 0xaa,
331 0xfb, 0x60, 0x86, 0xb1, 0xbb, 0xcc, 0x3e, 0x5a,
332 0xcb, 0x59, 0x5f, 0xb0, 0x9c, 0xa9, 0xa0, 0x51,
333 0x0b, 0xf5, 0x16, 0xeb, 0x7a, 0x75, 0x2c, 0xd7,
334 0x4f, 0xae, 0xd5, 0xe9, 0xe6, 0xe7, 0xad, 0xe8,
335 0x74, 0xd6, 0xf4, 0xea, 0xa8, 0x50, 0x58, 0xaf,
336};