]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/vdev_removal.c
Pool allocation classes
[mirror_zfs.git] / module / zfs / vdev_removal.c
CommitLineData
a1d477c2
MA
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
cc99f275 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
a1d477c2
MA
25 */
26
27#include <sys/zfs_context.h>
28#include <sys/spa_impl.h>
29#include <sys/dmu.h>
30#include <sys/dmu_tx.h>
31#include <sys/zap.h>
32#include <sys/vdev_impl.h>
33#include <sys/metaslab.h>
34#include <sys/metaslab_impl.h>
35#include <sys/uberblock_impl.h>
36#include <sys/txg.h>
37#include <sys/avl.h>
38#include <sys/bpobj.h>
39#include <sys/dsl_pool.h>
40#include <sys/dsl_synctask.h>
41#include <sys/dsl_dir.h>
42#include <sys/arc.h>
43#include <sys/zfeature.h>
44#include <sys/vdev_indirect_births.h>
45#include <sys/vdev_indirect_mapping.h>
46#include <sys/abd.h>
47#include <sys/trace_vdev.h>
48
49/*
50 * This file contains the necessary logic to remove vdevs from a
51 * storage pool. Currently, the only devices that can be removed
52 * are log, cache, and spare devices; and top level vdevs from a pool
53 * w/o raidz or mirrors. (Note that members of a mirror can be removed
54 * by the detach operation.)
55 *
56 * Log vdevs are removed by evacuating them and then turning the vdev
57 * into a hole vdev while holding spa config locks.
58 *
59 * Top level vdevs are removed and converted into an indirect vdev via
60 * a multi-step process:
61 *
62 * - Disable allocations from this device (spa_vdev_remove_top).
63 *
64 * - From a new thread (spa_vdev_remove_thread), copy data from
65 * the removing vdev to a different vdev. The copy happens in open
66 * context (spa_vdev_copy_impl) and issues a sync task
67 * (vdev_mapping_sync) so the sync thread can update the partial
68 * indirect mappings in core and on disk.
69 *
70 * - If a free happens during a removal, it is freed from the
71 * removing vdev, and if it has already been copied, from the new
72 * location as well (free_from_removing_vdev).
73 *
74 * - After the removal is completed, the copy thread converts the vdev
75 * into an indirect vdev (vdev_remove_complete) before instructing
76 * the sync thread to destroy the space maps and finish the removal
77 * (spa_finish_removal).
78 */
79
80typedef struct vdev_copy_arg {
81 metaslab_t *vca_msp;
82 uint64_t vca_outstanding_bytes;
83 kcondvar_t vca_cv;
84 kmutex_t vca_lock;
85} vdev_copy_arg_t;
86
a1d477c2 87/*
9e052db4
MA
88 * The maximum amount of memory we can use for outstanding i/o while
89 * doing a device removal. This determines how much i/o we can have
90 * in flight concurrently.
a1d477c2 91 */
9e052db4 92int zfs_remove_max_copy_bytes = 64 * 1024 * 1024;
a1d477c2
MA
93
94/*
95 * The largest contiguous segment that we will attempt to allocate when
96 * removing a device. This can be no larger than SPA_MAXBLOCKSIZE. If
97 * there is a performance problem with attempting to allocate large blocks,
98 * consider decreasing this.
99 */
100int zfs_remove_max_segment = SPA_MAXBLOCKSIZE;
101
0dc2f70c
MA
102/*
103 * Allow a remap segment to span free chunks of at most this size. The main
104 * impact of a larger span is that we will read and write larger, more
105 * contiguous chunks, with more "unnecessary" data -- trading off bandwidth
106 * for iops. The value here was chosen to align with
107 * zfs_vdev_read_gap_limit, which is a similar concept when doing regular
108 * reads (but there's no reason it has to be the same).
109 *
110 * Additionally, a higher span will have the following relatively minor
111 * effects:
112 * - the mapping will be smaller, since one entry can cover more allocated
113 * segments
114 * - more of the fragmentation in the removing device will be preserved
115 * - we'll do larger allocations, which may fail and fall back on smaller
116 * allocations
117 */
118int vdev_removal_max_span = 32 * 1024;
119
d2734cce
SD
120/*
121 * This is used by the test suite so that it can ensure that certain
122 * actions happen while in the middle of a removal.
123 */
124unsigned long zfs_remove_max_bytes_pause = -1UL;
125
a1d477c2
MA
126#define VDEV_REMOVAL_ZAP_OBJS "lzap"
127
128static void spa_vdev_remove_thread(void *arg);
129
130static void
131spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
132{
133 VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
134 DMU_POOL_DIRECTORY_OBJECT,
135 DMU_POOL_REMOVING, sizeof (uint64_t),
136 sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
137 &spa->spa_removing_phys, tx));
138}
139
140static nvlist_t *
141spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
142{
143 for (int i = 0; i < count; i++) {
144 uint64_t guid =
145 fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
146
147 if (guid == target_guid)
148 return (nvpp[i]);
149 }
150
151 return (NULL);
152}
153
154static void
155spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
156 nvlist_t *dev_to_remove)
157{
158 nvlist_t **newdev = NULL;
159
160 if (count > 1)
161 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
162
163 for (int i = 0, j = 0; i < count; i++) {
164 if (dev[i] == dev_to_remove)
165 continue;
166 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
167 }
168
169 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
170 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
171
172 for (int i = 0; i < count - 1; i++)
173 nvlist_free(newdev[i]);
174
175 if (count > 1)
176 kmem_free(newdev, (count - 1) * sizeof (void *));
177}
178
179static spa_vdev_removal_t *
180spa_vdev_removal_create(vdev_t *vd)
181{
182 spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
183 mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
184 cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
185 svr->svr_allocd_segs = range_tree_create(NULL, NULL);
9e052db4 186 svr->svr_vdev_id = vd->vdev_id;
a1d477c2
MA
187
188 for (int i = 0; i < TXG_SIZE; i++) {
189 svr->svr_frees[i] = range_tree_create(NULL, NULL);
190 list_create(&svr->svr_new_segments[i],
191 sizeof (vdev_indirect_mapping_entry_t),
192 offsetof(vdev_indirect_mapping_entry_t, vime_node));
193 }
194
195 return (svr);
196}
197
198void
199spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
200{
201 for (int i = 0; i < TXG_SIZE; i++) {
202 ASSERT0(svr->svr_bytes_done[i]);
203 ASSERT0(svr->svr_max_offset_to_sync[i]);
204 range_tree_destroy(svr->svr_frees[i]);
205 list_destroy(&svr->svr_new_segments[i]);
206 }
207
208 range_tree_destroy(svr->svr_allocd_segs);
209 mutex_destroy(&svr->svr_lock);
210 cv_destroy(&svr->svr_cv);
211 kmem_free(svr, sizeof (*svr));
212}
213
214/*
215 * This is called as a synctask in the txg in which we will mark this vdev
216 * as removing (in the config stored in the MOS).
217 *
218 * It begins the evacuation of a toplevel vdev by:
219 * - initializing the spa_removing_phys which tracks this removal
220 * - computing the amount of space to remove for accounting purposes
221 * - dirtying all dbufs in the spa_config_object
222 * - creating the spa_vdev_removal
223 * - starting the spa_vdev_remove_thread
224 */
225static void
226vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
227{
9e052db4
MA
228 int vdev_id = (uintptr_t)arg;
229 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
230 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
a1d477c2 231 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
a1d477c2
MA
232 objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
233 spa_vdev_removal_t *svr = NULL;
234 ASSERTV(uint64_t txg = dmu_tx_get_txg(tx));
235
236 ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
237 svr = spa_vdev_removal_create(vd);
238
239 ASSERT(vd->vdev_removing);
240 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
241
242 spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
243 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
244 /*
245 * By activating the OBSOLETE_COUNTS feature, we prevent
246 * the pool from being downgraded and ensure that the
247 * refcounts are precise.
248 */
249 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
250 uint64_t one = 1;
251 VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
252 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
253 &one, tx));
254 ASSERT3U(vdev_obsolete_counts_are_precise(vd), !=, 0);
255 }
256
257 vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
258 vd->vdev_indirect_mapping =
259 vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
260 vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
261 vd->vdev_indirect_births =
262 vdev_indirect_births_open(mos, vic->vic_births_object);
263 spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
264 spa->spa_removing_phys.sr_start_time = gethrestime_sec();
265 spa->spa_removing_phys.sr_end_time = 0;
266 spa->spa_removing_phys.sr_state = DSS_SCANNING;
267 spa->spa_removing_phys.sr_to_copy = 0;
268 spa->spa_removing_phys.sr_copied = 0;
269
270 /*
271 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
272 * there may be space in the defer tree, which is free, but still
273 * counted in vs_alloc.
274 */
275 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
276 metaslab_t *ms = vd->vdev_ms[i];
277 if (ms->ms_sm == NULL)
278 continue;
279
280 /*
281 * Sync tasks happen before metaslab_sync(), therefore
282 * smp_alloc and sm_alloc must be the same.
283 */
284 ASSERT3U(space_map_allocated(ms->ms_sm), ==,
285 ms->ms_sm->sm_phys->smp_alloc);
286
287 spa->spa_removing_phys.sr_to_copy +=
288 space_map_allocated(ms->ms_sm);
289
290 /*
291 * Space which we are freeing this txg does not need to
292 * be copied.
293 */
294 spa->spa_removing_phys.sr_to_copy -=
d2734cce 295 range_tree_space(ms->ms_freeing);
a1d477c2 296
d2734cce 297 ASSERT0(range_tree_space(ms->ms_freed));
a1d477c2 298 for (int t = 0; t < TXG_SIZE; t++)
d2734cce 299 ASSERT0(range_tree_space(ms->ms_allocating[t]));
a1d477c2
MA
300 }
301
302 /*
303 * Sync tasks are called before metaslab_sync(), so there should
304 * be no already-synced metaslabs in the TXG_CLEAN list.
305 */
306 ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
307
308 spa_sync_removing_state(spa, tx);
309
310 /*
311 * All blocks that we need to read the most recent mapping must be
312 * stored on concrete vdevs. Therefore, we must dirty anything that
313 * is read before spa_remove_init(). Specifically, the
314 * spa_config_object. (Note that although we already modified the
315 * spa_config_object in spa_sync_removing_state, that may not have
316 * modified all blocks of the object.)
317 */
318 dmu_object_info_t doi;
319 VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
320 for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
321 dmu_buf_t *dbuf;
322 VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
323 offset, FTAG, &dbuf, 0));
324 dmu_buf_will_dirty(dbuf, tx);
325 offset += dbuf->db_size;
326 dmu_buf_rele(dbuf, FTAG);
327 }
328
329 /*
330 * Now that we've allocated the im_object, dirty the vdev to ensure
331 * that the object gets written to the config on disk.
332 */
333 vdev_config_dirty(vd);
334
335 zfs_dbgmsg("starting removal thread for vdev %llu (%p) in txg %llu "
336 "im_obj=%llu", vd->vdev_id, vd, dmu_tx_get_txg(tx),
337 vic->vic_mapping_object);
338
339 spa_history_log_internal(spa, "vdev remove started", tx,
340 "%s vdev %llu %s", spa_name(spa), vd->vdev_id,
341 (vd->vdev_path != NULL) ? vd->vdev_path : "-");
342 /*
343 * Setting spa_vdev_removal causes subsequent frees to call
344 * free_from_removing_vdev(). Note that we don't need any locking
345 * because we are the sync thread, and metaslab_free_impl() is only
346 * called from syncing context (potentially from a zio taskq thread,
347 * but in any case only when there are outstanding free i/os, which
348 * there are not).
349 */
350 ASSERT3P(spa->spa_vdev_removal, ==, NULL);
351 spa->spa_vdev_removal = svr;
352 svr->svr_thread = thread_create(NULL, 0,
9e052db4 353 spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri);
a1d477c2
MA
354}
355
356/*
357 * When we are opening a pool, we must read the mapping for each
358 * indirect vdev in order from most recently removed to least
359 * recently removed. We do this because the blocks for the mapping
360 * of older indirect vdevs may be stored on more recently removed vdevs.
361 * In order to read each indirect mapping object, we must have
362 * initialized all more recently removed vdevs.
363 */
364int
365spa_remove_init(spa_t *spa)
366{
367 int error;
368
369 error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
370 DMU_POOL_DIRECTORY_OBJECT,
371 DMU_POOL_REMOVING, sizeof (uint64_t),
372 sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
373 &spa->spa_removing_phys);
374
375 if (error == ENOENT) {
376 spa->spa_removing_phys.sr_state = DSS_NONE;
377 spa->spa_removing_phys.sr_removing_vdev = -1;
378 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
20507534 379 spa->spa_indirect_vdevs_loaded = B_TRUE;
a1d477c2
MA
380 return (0);
381 } else if (error != 0) {
382 return (error);
383 }
384
385 if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
386 /*
387 * We are currently removing a vdev. Create and
388 * initialize a spa_vdev_removal_t from the bonus
389 * buffer of the removing vdevs vdev_im_object, and
390 * initialize its partial mapping.
391 */
392 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
393 vdev_t *vd = vdev_lookup_top(spa,
394 spa->spa_removing_phys.sr_removing_vdev);
a1d477c2 395
9e052db4
MA
396 if (vd == NULL) {
397 spa_config_exit(spa, SCL_STATE, FTAG);
a1d477c2 398 return (EINVAL);
9e052db4 399 }
a1d477c2
MA
400
401 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
402
403 ASSERT(vdev_is_concrete(vd));
404 spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
9e052db4
MA
405 ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id);
406 ASSERT(vd->vdev_removing);
a1d477c2
MA
407
408 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
409 spa->spa_meta_objset, vic->vic_mapping_object);
410 vd->vdev_indirect_births = vdev_indirect_births_open(
411 spa->spa_meta_objset, vic->vic_births_object);
9e052db4 412 spa_config_exit(spa, SCL_STATE, FTAG);
a1d477c2
MA
413
414 spa->spa_vdev_removal = svr;
415 }
416
417 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
418 uint64_t indirect_vdev_id =
419 spa->spa_removing_phys.sr_prev_indirect_vdev;
420 while (indirect_vdev_id != UINT64_MAX) {
421 vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
422 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
423
424 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
425 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
426 spa->spa_meta_objset, vic->vic_mapping_object);
427 vd->vdev_indirect_births = vdev_indirect_births_open(
428 spa->spa_meta_objset, vic->vic_births_object);
429
430 indirect_vdev_id = vic->vic_prev_indirect_vdev;
431 }
432 spa_config_exit(spa, SCL_STATE, FTAG);
433
434 /*
435 * Now that we've loaded all the indirect mappings, we can allow
436 * reads from other blocks (e.g. via predictive prefetch).
437 */
438 spa->spa_indirect_vdevs_loaded = B_TRUE;
439 return (0);
440}
441
442void
443spa_restart_removal(spa_t *spa)
444{
445 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
446
447 if (svr == NULL)
448 return;
449
450 /*
451 * In general when this function is called there is no
452 * removal thread running. The only scenario where this
453 * is not true is during spa_import() where this function
454 * is called twice [once from spa_import_impl() and
455 * spa_async_resume()]. Thus, in the scenario where we
456 * import a pool that has an ongoing removal we don't
457 * want to spawn a second thread.
458 */
459 if (svr->svr_thread != NULL)
460 return;
461
462 if (!spa_writeable(spa))
463 return;
464
9e052db4
MA
465 zfs_dbgmsg("restarting removal of %llu", svr->svr_vdev_id);
466 svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa,
a1d477c2
MA
467 0, &p0, TS_RUN, minclsyspri);
468}
469
470/*
471 * Process freeing from a device which is in the middle of being removed.
472 * We must handle this carefully so that we attempt to copy freed data,
473 * and we correctly free already-copied data.
474 */
475void
d2734cce 476free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
a1d477c2
MA
477{
478 spa_t *spa = vd->vdev_spa;
479 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
480 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
d2734cce 481 uint64_t txg = spa_syncing_txg(spa);
a1d477c2
MA
482 uint64_t max_offset_yet = 0;
483
484 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
485 ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
486 vdev_indirect_mapping_object(vim));
9e052db4 487 ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id);
a1d477c2
MA
488
489 mutex_enter(&svr->svr_lock);
490
491 /*
492 * Remove the segment from the removing vdev's spacemap. This
493 * ensures that we will not attempt to copy this space (if the
494 * removal thread has not yet visited it), and also ensures
495 * that we know what is actually allocated on the new vdevs
496 * (needed if we cancel the removal).
497 *
498 * Note: we must do the metaslab_free_concrete() with the svr_lock
499 * held, so that the remove_thread can not load this metaslab and then
500 * visit this offset between the time that we metaslab_free_concrete()
501 * and when we check to see if it has been visited.
d2734cce
SD
502 *
503 * Note: The checkpoint flag is set to false as having/taking
504 * a checkpoint and removing a device can't happen at the same
505 * time.
a1d477c2 506 */
d2734cce
SD
507 ASSERT(!spa_has_checkpoint(spa));
508 metaslab_free_concrete(vd, offset, size, B_FALSE);
a1d477c2
MA
509
510 uint64_t synced_size = 0;
511 uint64_t synced_offset = 0;
512 uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
513 if (offset < max_offset_synced) {
514 /*
515 * The mapping for this offset is already on disk.
516 * Free from the new location.
517 *
518 * Note that we use svr_max_synced_offset because it is
519 * updated atomically with respect to the in-core mapping.
520 * By contrast, vim_max_offset is not.
521 *
522 * This block may be split between a synced entry and an
523 * in-flight or unvisited entry. Only process the synced
524 * portion of it here.
525 */
526 synced_size = MIN(size, max_offset_synced - offset);
527 synced_offset = offset;
528
529 ASSERT3U(max_offset_yet, <=, max_offset_synced);
530 max_offset_yet = max_offset_synced;
531
532 DTRACE_PROBE3(remove__free__synced,
533 spa_t *, spa,
534 uint64_t, offset,
535 uint64_t, synced_size);
536
537 size -= synced_size;
538 offset += synced_size;
539 }
540
541 /*
542 * Look at all in-flight txgs starting from the currently syncing one
543 * and see if a section of this free is being copied. By starting from
544 * this txg and iterating forward, we might find that this region
545 * was copied in two different txgs and handle it appropriately.
546 */
547 for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
548 int txgoff = (txg + i) & TXG_MASK;
549 if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
550 /*
551 * The mapping for this offset is in flight, and
552 * will be synced in txg+i.
553 */
554 uint64_t inflight_size = MIN(size,
555 svr->svr_max_offset_to_sync[txgoff] - offset);
556
557 DTRACE_PROBE4(remove__free__inflight,
558 spa_t *, spa,
559 uint64_t, offset,
560 uint64_t, inflight_size,
561 uint64_t, txg + i);
562
563 /*
564 * We copy data in order of increasing offset.
565 * Therefore the max_offset_to_sync[] must increase
566 * (or be zero, indicating that nothing is being
567 * copied in that txg).
568 */
569 if (svr->svr_max_offset_to_sync[txgoff] != 0) {
570 ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
571 >=, max_offset_yet);
572 max_offset_yet =
573 svr->svr_max_offset_to_sync[txgoff];
574 }
575
576 /*
577 * We've already committed to copying this segment:
578 * we have allocated space elsewhere in the pool for
579 * it and have an IO outstanding to copy the data. We
580 * cannot free the space before the copy has
581 * completed, or else the copy IO might overwrite any
582 * new data. To free that space, we record the
583 * segment in the appropriate svr_frees tree and free
584 * the mapped space later, in the txg where we have
585 * completed the copy and synced the mapping (see
586 * vdev_mapping_sync).
587 */
588 range_tree_add(svr->svr_frees[txgoff],
589 offset, inflight_size);
590 size -= inflight_size;
591 offset += inflight_size;
592
593 /*
594 * This space is already accounted for as being
595 * done, because it is being copied in txg+i.
596 * However, if i!=0, then it is being copied in
597 * a future txg. If we crash after this txg
598 * syncs but before txg+i syncs, then the space
599 * will be free. Therefore we must account
600 * for the space being done in *this* txg
601 * (when it is freed) rather than the future txg
602 * (when it will be copied).
603 */
604 ASSERT3U(svr->svr_bytes_done[txgoff], >=,
605 inflight_size);
606 svr->svr_bytes_done[txgoff] -= inflight_size;
607 svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
608 }
609 }
610 ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
611
612 if (size > 0) {
613 /*
614 * The copy thread has not yet visited this offset. Ensure
615 * that it doesn't.
616 */
617
618 DTRACE_PROBE3(remove__free__unvisited,
619 spa_t *, spa,
620 uint64_t, offset,
621 uint64_t, size);
622
623 if (svr->svr_allocd_segs != NULL)
624 range_tree_clear(svr->svr_allocd_segs, offset, size);
625
626 /*
627 * Since we now do not need to copy this data, for
628 * accounting purposes we have done our job and can count
629 * it as completed.
630 */
631 svr->svr_bytes_done[txg & TXG_MASK] += size;
632 }
633 mutex_exit(&svr->svr_lock);
634
635 /*
636 * Now that we have dropped svr_lock, process the synced portion
637 * of this free.
638 */
639 if (synced_size > 0) {
d2734cce
SD
640 vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
641
a1d477c2
MA
642 /*
643 * Note: this can only be called from syncing context,
644 * and the vdev_indirect_mapping is only changed from the
645 * sync thread, so we don't need svr_lock while doing
646 * metaslab_free_impl_cb.
647 */
d2734cce 648 boolean_t checkpoint = B_FALSE;
a1d477c2 649 vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
d2734cce 650 metaslab_free_impl_cb, &checkpoint);
a1d477c2
MA
651 }
652}
653
654/*
655 * Stop an active removal and update the spa_removing phys.
656 */
657static void
658spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
659{
660 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
661 ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
662
663 /* Ensure the removal thread has completed before we free the svr. */
664 spa_vdev_remove_suspend(spa);
665
666 ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
667
668 if (state == DSS_FINISHED) {
669 spa_removing_phys_t *srp = &spa->spa_removing_phys;
9e052db4 670 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
a1d477c2
MA
671 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
672
673 if (srp->sr_prev_indirect_vdev != UINT64_MAX) {
674 vdev_t *pvd;
675 pvd = vdev_lookup_top(spa,
676 srp->sr_prev_indirect_vdev);
677 ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
678 }
679
680 vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
681 srp->sr_prev_indirect_vdev = vd->vdev_id;
682 }
683 spa->spa_removing_phys.sr_state = state;
684 spa->spa_removing_phys.sr_end_time = gethrestime_sec();
685
686 spa->spa_vdev_removal = NULL;
687 spa_vdev_removal_destroy(svr);
688
689 spa_sync_removing_state(spa, tx);
690
691 vdev_config_dirty(spa->spa_root_vdev);
692}
693
694static void
695free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
696{
697 vdev_t *vd = arg;
d2734cce
SD
698 vdev_indirect_mark_obsolete(vd, offset, size);
699 boolean_t checkpoint = B_FALSE;
a1d477c2 700 vdev_indirect_ops.vdev_op_remap(vd, offset, size,
d2734cce 701 metaslab_free_impl_cb, &checkpoint);
a1d477c2
MA
702}
703
704/*
705 * On behalf of the removal thread, syncs an incremental bit more of
706 * the indirect mapping to disk and updates the in-memory mapping.
707 * Called as a sync task in every txg that the removal thread makes progress.
708 */
709static void
710vdev_mapping_sync(void *arg, dmu_tx_t *tx)
711{
712 spa_vdev_removal_t *svr = arg;
713 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9e052db4 714 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
a1d477c2
MA
715 ASSERTV(vdev_indirect_config_t *vic = &vd->vdev_indirect_config);
716 uint64_t txg = dmu_tx_get_txg(tx);
717 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
718
719 ASSERT(vic->vic_mapping_object != 0);
720 ASSERT3U(txg, ==, spa_syncing_txg(spa));
721
722 vdev_indirect_mapping_add_entries(vim,
723 &svr->svr_new_segments[txg & TXG_MASK], tx);
724 vdev_indirect_births_add_entry(vd->vdev_indirect_births,
725 vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
726
727 /*
728 * Free the copied data for anything that was freed while the
729 * mapping entries were in flight.
730 */
731 mutex_enter(&svr->svr_lock);
732 range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
733 free_mapped_segment_cb, vd);
734 ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
735 vdev_indirect_mapping_max_offset(vim));
736 svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
737 mutex_exit(&svr->svr_lock);
738
739 spa_sync_removing_state(spa, tx);
740}
741
0dc2f70c
MA
742typedef struct vdev_copy_segment_arg {
743 spa_t *vcsa_spa;
744 dva_t *vcsa_dest_dva;
745 uint64_t vcsa_txg;
746 range_tree_t *vcsa_obsolete_segs;
747} vdev_copy_segment_arg_t;
748
749static void
750unalloc_seg(void *arg, uint64_t start, uint64_t size)
751{
752 vdev_copy_segment_arg_t *vcsa = arg;
753 spa_t *spa = vcsa->vcsa_spa;
754 blkptr_t bp = { { { {0} } } };
755
756 BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL);
757 BP_SET_LSIZE(&bp, size);
758 BP_SET_PSIZE(&bp, size);
759 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
760 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF);
761 BP_SET_TYPE(&bp, DMU_OT_NONE);
762 BP_SET_LEVEL(&bp, 0);
763 BP_SET_DEDUP(&bp, 0);
764 BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER);
765
766 DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva));
767 DVA_SET_OFFSET(&bp.blk_dva[0],
768 DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start);
769 DVA_SET_ASIZE(&bp.blk_dva[0], size);
770
771 zio_free(spa, vcsa->vcsa_txg, &bp);
772}
773
9e052db4
MA
774/*
775 * All reads and writes associated with a call to spa_vdev_copy_segment()
776 * are done.
777 */
778static void
0dc2f70c 779spa_vdev_copy_segment_done(zio_t *zio)
9e052db4 780{
0dc2f70c
MA
781 vdev_copy_segment_arg_t *vcsa = zio->io_private;
782
783 range_tree_vacate(vcsa->vcsa_obsolete_segs,
784 unalloc_seg, vcsa);
785 range_tree_destroy(vcsa->vcsa_obsolete_segs);
786 kmem_free(vcsa, sizeof (*vcsa));
787
9e052db4
MA
788 spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
789}
790
791/*
792 * The write of the new location is done.
793 */
a1d477c2
MA
794static void
795spa_vdev_copy_segment_write_done(zio_t *zio)
796{
9e052db4
MA
797 vdev_copy_arg_t *vca = zio->io_private;
798
a1d477c2
MA
799 abd_free(zio->io_abd);
800
801 mutex_enter(&vca->vca_lock);
802 vca->vca_outstanding_bytes -= zio->io_size;
803 cv_signal(&vca->vca_cv);
804 mutex_exit(&vca->vca_lock);
a1d477c2
MA
805}
806
9e052db4
MA
807/*
808 * The read of the old location is done. The parent zio is the write to
809 * the new location. Allow it to start.
810 */
a1d477c2
MA
811static void
812spa_vdev_copy_segment_read_done(zio_t *zio)
813{
9e052db4
MA
814 zio_nowait(zio_unique_parent(zio));
815}
816
817/*
818 * If the old and new vdevs are mirrors, we will read both sides of the old
819 * mirror, and write each copy to the corresponding side of the new mirror.
820 * If the old and new vdevs have a different number of children, we will do
821 * this as best as possible. Since we aren't verifying checksums, this
822 * ensures that as long as there's a good copy of the data, we'll have a
823 * good copy after the removal, even if there's silent damage to one side
824 * of the mirror. If we're removing a mirror that has some silent damage,
825 * we'll have exactly the same damage in the new location (assuming that
826 * the new location is also a mirror).
827 *
828 * We accomplish this by creating a tree of zio_t's, with as many writes as
829 * there are "children" of the new vdev (a non-redundant vdev counts as one
830 * child, a 2-way mirror has 2 children, etc). Each write has an associated
831 * read from a child of the old vdev. Typically there will be the same
832 * number of children of the old and new vdevs. However, if there are more
833 * children of the new vdev, some child(ren) of the old vdev will be issued
834 * multiple reads. If there are more children of the old vdev, some copies
835 * will be dropped.
836 *
837 * For example, the tree of zio_t's for a 2-way mirror is:
838 *
839 * null
840 * / \
841 * write(new vdev, child 0) write(new vdev, child 1)
842 * | |
843 * read(old vdev, child 0) read(old vdev, child 1)
844 *
845 * Child zio's complete before their parents complete. However, zio's
846 * created with zio_vdev_child_io() may be issued before their children
847 * complete. In this case we need to make sure that the children (reads)
848 * complete before the parents (writes) are *issued*. We do this by not
849 * calling zio_nowait() on each write until its corresponding read has
850 * completed.
851 *
852 * The spa_config_lock must be held while zio's created by
853 * zio_vdev_child_io() are in progress, to ensure that the vdev tree does
854 * not change (e.g. due to a concurrent "zpool attach/detach"). The "null"
855 * zio is needed to release the spa_config_lock after all the reads and
856 * writes complete. (Note that we can't grab the config lock for each read,
857 * because it is not reentrant - we could deadlock with a thread waiting
858 * for a write lock.)
859 */
860static void
861spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio,
862 vdev_t *source_vd, uint64_t source_offset,
863 vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size)
864{
865 ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0);
866
867 mutex_enter(&vca->vca_lock);
868 vca->vca_outstanding_bytes += size;
869 mutex_exit(&vca->vca_lock);
870
871 abd_t *abd = abd_alloc_for_io(size, B_FALSE);
872
873 vdev_t *source_child_vd;
874 if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) {
875 /*
876 * Source and dest are both mirrors. Copy from the same
877 * child id as we are copying to (wrapping around if there
878 * are more dest children than source children).
879 */
880 source_child_vd =
881 source_vd->vdev_child[dest_id % source_vd->vdev_children];
882 } else {
883 source_child_vd = source_vd;
884 }
885
886 zio_t *write_zio = zio_vdev_child_io(nzio, NULL,
887 dest_child_vd, dest_offset, abd, size,
888 ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
889 ZIO_FLAG_CANFAIL,
890 spa_vdev_copy_segment_write_done, vca);
891
892 zio_nowait(zio_vdev_child_io(write_zio, NULL,
893 source_child_vd, source_offset, abd, size,
894 ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
895 ZIO_FLAG_CANFAIL,
896 spa_vdev_copy_segment_read_done, vca));
a1d477c2
MA
897}
898
9e052db4
MA
899/*
900 * Allocate a new location for this segment, and create the zio_t's to
901 * read from the old location and write to the new location.
902 */
a1d477c2 903static int
0dc2f70c
MA
904spa_vdev_copy_segment(vdev_t *vd, range_tree_t *segs,
905 uint64_t maxalloc, uint64_t txg,
a1d477c2
MA
906 vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
907{
908 metaslab_group_t *mg = vd->vdev_mg;
909 spa_t *spa = vd->vdev_spa;
910 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
911 vdev_indirect_mapping_entry_t *entry;
a1d477c2 912 dva_t dst = {{ 0 }};
0dc2f70c
MA
913 uint64_t start = range_tree_min(segs);
914
915 ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE);
a1d477c2 916
0dc2f70c
MA
917 uint64_t size = range_tree_span(segs);
918 if (range_tree_span(segs) > maxalloc) {
919 /*
920 * We can't allocate all the segments. Prefer to end
921 * the allocation at the end of a segment, thus avoiding
922 * additional split blocks.
923 */
924 range_seg_t search;
925 avl_index_t where;
926 search.rs_start = start + maxalloc;
927 search.rs_end = search.rs_start;
928 range_seg_t *rs = avl_find(&segs->rt_root, &search, &where);
929 if (rs == NULL) {
930 rs = avl_nearest(&segs->rt_root, where, AVL_BEFORE);
931 } else {
932 rs = AVL_PREV(&segs->rt_root, rs);
933 }
934 if (rs != NULL) {
935 size = rs->rs_end - start;
936 } else {
937 /*
938 * There are no segments that end before maxalloc.
939 * I.e. the first segment is larger than maxalloc,
940 * so we must split it.
941 */
942 size = maxalloc;
943 }
944 }
945 ASSERT3U(size, <=, maxalloc);
a1d477c2 946
cc99f275
DB
947 /*
948 * An allocation class might not have any remaining vdevs or space
949 */
950 metaslab_class_t *mc = mg->mg_class;
951 if (mc != spa_normal_class(spa) && mc->mc_groups <= 1)
952 mc = spa_normal_class(spa);
953 int error = metaslab_alloc_dva(spa, mc, size, &dst, 0, NULL, txg, 0,
954 zal, 0);
955 if (error == ENOSPC && mc != spa_normal_class(spa)) {
956 error = metaslab_alloc_dva(spa, spa_normal_class(spa), size,
957 &dst, 0, NULL, txg, 0, zal, 0);
958 }
a1d477c2
MA
959 if (error != 0)
960 return (error);
961
0dc2f70c
MA
962 /*
963 * Determine the ranges that are not actually needed. Offsets are
964 * relative to the start of the range to be copied (i.e. relative to the
965 * local variable "start").
966 */
967 range_tree_t *obsolete_segs = range_tree_create(NULL, NULL);
968
969 range_seg_t *rs = avl_first(&segs->rt_root);
970 ASSERT3U(rs->rs_start, ==, start);
971 uint64_t prev_seg_end = rs->rs_end;
972 while ((rs = AVL_NEXT(&segs->rt_root, rs)) != NULL) {
973 if (rs->rs_start >= start + size) {
974 break;
975 } else {
976 range_tree_add(obsolete_segs,
977 prev_seg_end - start,
978 rs->rs_start - prev_seg_end);
979 }
980 prev_seg_end = rs->rs_end;
981 }
982 /* We don't end in the middle of an obsolete range */
983 ASSERT3U(start + size, <=, prev_seg_end);
984
985 range_tree_clear(segs, start, size);
986
a1d477c2
MA
987 /*
988 * We can't have any padding of the allocated size, otherwise we will
989 * misunderstand what's allocated, and the size of the mapping.
990 * The caller ensures this will be true by passing in a size that is
991 * aligned to the worst (highest) ashift in the pool.
992 */
993 ASSERT3U(DVA_GET_ASIZE(&dst), ==, size);
994
a1d477c2
MA
995 entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
996 DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
997 entry->vime_mapping.vimep_dst = dst;
0dc2f70c
MA
998 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
999 entry->vime_obsolete_count = range_tree_space(obsolete_segs);
1000 }
1001
1002 vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP);
1003 vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
1004 vcsa->vcsa_obsolete_segs = obsolete_segs;
1005 vcsa->vcsa_spa = spa;
1006 vcsa->vcsa_txg = txg;
a1d477c2 1007
a1d477c2 1008 /*
9e052db4 1009 * See comment before spa_vdev_copy_one_child().
a1d477c2 1010 */
9e052db4
MA
1011 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1012 zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL,
0dc2f70c 1013 spa_vdev_copy_segment_done, vcsa, 0);
9e052db4
MA
1014 vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst));
1015 if (dest_vd->vdev_ops == &vdev_mirror_ops) {
1016 for (int i = 0; i < dest_vd->vdev_children; i++) {
1017 vdev_t *child = dest_vd->vdev_child[i];
1018 spa_vdev_copy_one_child(vca, nzio, vd, start,
1019 child, DVA_GET_OFFSET(&dst), i, size);
1020 }
1021 } else {
1022 spa_vdev_copy_one_child(vca, nzio, vd, start,
1023 dest_vd, DVA_GET_OFFSET(&dst), -1, size);
1024 }
1025 zio_nowait(nzio);
a1d477c2
MA
1026
1027 list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
1028 ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
1029 vdev_dirty(vd, 0, NULL, txg);
1030
1031 return (0);
1032}
1033
1034/*
1035 * Complete the removal of a toplevel vdev. This is called as a
1036 * synctask in the same txg that we will sync out the new config (to the
1037 * MOS object) which indicates that this vdev is indirect.
1038 */
1039static void
1040vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
1041{
1042 spa_vdev_removal_t *svr = arg;
9e052db4
MA
1043 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1044 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
a1d477c2
MA
1045
1046 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1047
1048 for (int i = 0; i < TXG_SIZE; i++) {
1049 ASSERT0(svr->svr_bytes_done[i]);
1050 }
1051
1052 ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
1053 spa->spa_removing_phys.sr_to_copy);
1054
1055 vdev_destroy_spacemaps(vd, tx);
1056
1057 /* destroy leaf zaps, if any */
1058 ASSERT3P(svr->svr_zaplist, !=, NULL);
1059 for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
1060 pair != NULL;
1061 pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
1062 vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
1063 }
1064 fnvlist_free(svr->svr_zaplist);
1065
1066 spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
1067 /* vd->vdev_path is not available here */
1068 spa_history_log_internal(spa, "vdev remove completed", tx,
1069 "%s vdev %llu", spa_name(spa), vd->vdev_id);
1070}
1071
a1d477c2
MA
1072static void
1073vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
1074{
1075 ASSERT3P(zlist, !=, NULL);
1076 ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
1077
1078 if (vd->vdev_leaf_zap != 0) {
1079 char zkey[32];
1080 (void) snprintf(zkey, sizeof (zkey), "%s-%llu",
1081 VDEV_REMOVAL_ZAP_OBJS, (u_longlong_t)vd->vdev_leaf_zap);
1082 fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
1083 }
1084
1085 for (uint64_t id = 0; id < vd->vdev_children; id++) {
1086 vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
1087 }
1088}
1089
1090static void
1091vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
1092{
1093 vdev_t *ivd;
1094 dmu_tx_t *tx;
1095 spa_t *spa = vd->vdev_spa;
1096 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1097
1098 /*
1099 * First, build a list of leaf zaps to be destroyed.
1100 * This is passed to the sync context thread,
1101 * which does the actual unlinking.
1102 */
1103 svr->svr_zaplist = fnvlist_alloc();
1104 vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
1105
1106 ivd = vdev_add_parent(vd, &vdev_indirect_ops);
9e052db4 1107 ivd->vdev_removing = 0;
a1d477c2
MA
1108
1109 vd->vdev_leaf_zap = 0;
1110
1111 vdev_remove_child(ivd, vd);
1112 vdev_compact_children(ivd);
1113
a1d477c2
MA
1114 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1115
1116 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1117 dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_remove_complete_sync, svr,
1118 0, ZFS_SPACE_CHECK_NONE, tx);
1119 dmu_tx_commit(tx);
1120
1121 /*
1122 * Indicate that this thread has exited.
1123 * After this, we can not use svr.
1124 */
1125 mutex_enter(&svr->svr_lock);
1126 svr->svr_thread = NULL;
1127 cv_broadcast(&svr->svr_cv);
1128 mutex_exit(&svr->svr_lock);
1129}
1130
1131/*
1132 * Complete the removal of a toplevel vdev. This is called in open
1133 * context by the removal thread after we have copied all vdev's data.
1134 */
1135static void
9e052db4 1136vdev_remove_complete(spa_t *spa)
a1d477c2 1137{
a1d477c2
MA
1138 uint64_t txg;
1139
1140 /*
1141 * Wait for any deferred frees to be synced before we call
1142 * vdev_metaslab_fini()
1143 */
1144 txg_wait_synced(spa->spa_dsl_pool, 0);
a1d477c2 1145 txg = spa_vdev_enter(spa);
9e052db4
MA
1146 vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1147
1148 sysevent_t *ev = spa_event_create(spa, vd, NULL,
1149 ESC_ZFS_VDEV_REMOVE_DEV);
1150
a1d477c2
MA
1151 zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1152 vd->vdev_id, txg);
1153
1154 /*
1155 * Discard allocation state.
1156 */
1157 if (vd->vdev_mg != NULL) {
1158 vdev_metaslab_fini(vd);
1159 metaslab_group_destroy(vd->vdev_mg);
1160 vd->vdev_mg = NULL;
1161 }
1162 ASSERT0(vd->vdev_stat.vs_space);
1163 ASSERT0(vd->vdev_stat.vs_dspace);
1164
1165 vdev_remove_replace_with_indirect(vd, txg);
1166
1167 /*
1168 * We now release the locks, allowing spa_sync to run and finish the
1169 * removal via vdev_remove_complete_sync in syncing context.
9e052db4
MA
1170 *
1171 * Note that we hold on to the vdev_t that has been replaced. Since
1172 * it isn't part of the vdev tree any longer, it can't be concurrently
1173 * manipulated, even while we don't have the config lock.
a1d477c2
MA
1174 */
1175 (void) spa_vdev_exit(spa, NULL, txg, 0);
1176
1177 /*
1178 * Top ZAP should have been transferred to the indirect vdev in
1179 * vdev_remove_replace_with_indirect.
1180 */
1181 ASSERT0(vd->vdev_top_zap);
1182
1183 /*
1184 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1185 */
1186 ASSERT0(vd->vdev_leaf_zap);
1187
1188 txg = spa_vdev_enter(spa);
1189 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1190 /*
1191 * Request to update the config and the config cachefile.
1192 */
1193 vdev_config_dirty(spa->spa_root_vdev);
1194 (void) spa_vdev_exit(spa, vd, txg, 0);
9e052db4
MA
1195
1196 if (ev != NULL)
1197 spa_event_post(ev);
a1d477c2
MA
1198}
1199
1200/*
1201 * Evacuates a segment of size at most max_alloc from the vdev
1202 * via repeated calls to spa_vdev_copy_segment. If an allocation
1203 * fails, the pool is probably too fragmented to handle such a
1204 * large size, so decrease max_alloc so that the caller will not try
1205 * this size again this txg.
1206 */
1207static void
9e052db4 1208spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
a1d477c2
MA
1209 uint64_t *max_alloc, dmu_tx_t *tx)
1210{
1211 uint64_t txg = dmu_tx_get_txg(tx);
1212 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1213
1214 mutex_enter(&svr->svr_lock);
1215
0dc2f70c
MA
1216 /*
1217 * Determine how big of a chunk to copy. We can allocate up
1218 * to max_alloc bytes, and we can span up to vdev_removal_max_span
1219 * bytes of unallocated space at a time. "segs" will track the
1220 * allocated segments that we are copying. We may also be copying
1221 * free segments (of up to vdev_removal_max_span bytes).
1222 */
1223 range_tree_t *segs = range_tree_create(NULL, NULL);
1224 for (;;) {
1225 range_seg_t *rs = range_tree_first(svr->svr_allocd_segs);
1226
1227 if (rs == NULL)
1228 break;
1229
1230 uint64_t seg_length;
1231
1232 if (range_tree_is_empty(segs)) {
1233 /* need to truncate the first seg based on max_alloc */
1234 seg_length =
1235 MIN(rs->rs_end - rs->rs_start, *max_alloc);
1236 } else {
1237 if (rs->rs_start - range_tree_max(segs) >
1238 vdev_removal_max_span) {
1239 /*
1240 * Including this segment would cause us to
1241 * copy a larger unneeded chunk than is allowed.
1242 */
1243 break;
1244 } else if (rs->rs_end - range_tree_min(segs) >
1245 *max_alloc) {
1246 /*
1247 * This additional segment would extend past
1248 * max_alloc. Rather than splitting this
1249 * segment, leave it for the next mapping.
1250 */
1251 break;
1252 } else {
1253 seg_length = rs->rs_end - rs->rs_start;
1254 }
1255 }
1256
1257 range_tree_add(segs, rs->rs_start, seg_length);
1258 range_tree_remove(svr->svr_allocd_segs,
1259 rs->rs_start, seg_length);
1260 }
1261
1262 if (range_tree_is_empty(segs)) {
a1d477c2 1263 mutex_exit(&svr->svr_lock);
0dc2f70c 1264 range_tree_destroy(segs);
a1d477c2
MA
1265 return;
1266 }
a1d477c2
MA
1267
1268 if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1269 dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1270 svr, 0, ZFS_SPACE_CHECK_NONE, tx);
1271 }
1272
0dc2f70c 1273 svr->svr_max_offset_to_sync[txg & TXG_MASK] = range_tree_max(segs);
a1d477c2
MA
1274
1275 /*
1276 * Note: this is the amount of *allocated* space
1277 * that we are taking care of each txg.
1278 */
0dc2f70c 1279 svr->svr_bytes_done[txg & TXG_MASK] += range_tree_space(segs);
a1d477c2
MA
1280
1281 mutex_exit(&svr->svr_lock);
1282
1283 zio_alloc_list_t zal;
1284 metaslab_trace_init(&zal);
0dc2f70c
MA
1285 uint64_t thismax = SPA_MAXBLOCKSIZE;
1286 while (!range_tree_is_empty(segs)) {
9e052db4 1287 int error = spa_vdev_copy_segment(vd,
0dc2f70c 1288 segs, thismax, txg, vca, &zal);
a1d477c2
MA
1289
1290 if (error == ENOSPC) {
1291 /*
1292 * Cut our segment in half, and don't try this
1293 * segment size again this txg. Note that the
1294 * allocation size must be aligned to the highest
1295 * ashift in the pool, so that the allocation will
1296 * not be padded out to a multiple of the ashift,
1297 * which could cause us to think that this mapping
1298 * is larger than we intended.
1299 */
1300 ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1301 ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
0dc2f70c
MA
1302 uint64_t attempted =
1303 MIN(range_tree_span(segs), thismax);
1304 thismax = P2ROUNDUP(attempted / 2,
a1d477c2 1305 1 << spa->spa_max_ashift);
a1d477c2
MA
1306 /*
1307 * The minimum-size allocation can not fail.
1308 */
0dc2f70c
MA
1309 ASSERT3U(attempted, >, 1 << spa->spa_max_ashift);
1310 *max_alloc = attempted - (1 << spa->spa_max_ashift);
a1d477c2
MA
1311 } else {
1312 ASSERT0(error);
a1d477c2
MA
1313
1314 /*
1315 * We've performed an allocation, so reset the
1316 * alloc trace list.
1317 */
1318 metaslab_trace_fini(&zal);
1319 metaslab_trace_init(&zal);
1320 }
1321 }
1322 metaslab_trace_fini(&zal);
0dc2f70c 1323 range_tree_destroy(segs);
a1d477c2
MA
1324}
1325
1326/*
1327 * The removal thread operates in open context. It iterates over all
1328 * allocated space in the vdev, by loading each metaslab's spacemap.
1329 * For each contiguous segment of allocated space (capping the segment
1330 * size at SPA_MAXBLOCKSIZE), we:
1331 * - Allocate space for it on another vdev.
1332 * - Create a new mapping from the old location to the new location
1333 * (as a record in svr_new_segments).
1334 * - Initiate a physical read zio to get the data off the removing disk.
1335 * - In the read zio's done callback, initiate a physical write zio to
1336 * write it to the new vdev.
1337 * Note that all of this will take effect when a particular TXG syncs.
1338 * The sync thread ensures that all the phys reads and writes for the syncing
1339 * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1340 * (see vdev_mapping_sync()).
1341 */
1342static void
1343spa_vdev_remove_thread(void *arg)
1344{
9e052db4 1345 spa_t *spa = arg;
a1d477c2
MA
1346 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1347 vdev_copy_arg_t vca;
1348 uint64_t max_alloc = zfs_remove_max_segment;
1349 uint64_t last_txg = 0;
9e052db4
MA
1350
1351 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1352 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
a1d477c2
MA
1353 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1354 uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1355
1356 ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1357 ASSERT(vdev_is_concrete(vd));
1358 ASSERT(vd->vdev_removing);
1359 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
a1d477c2
MA
1360 ASSERT(vim != NULL);
1361
1362 mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1363 cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1364 vca.vca_outstanding_bytes = 0;
1365
1366 mutex_enter(&svr->svr_lock);
1367
1368 /*
1369 * Start from vim_max_offset so we pick up where we left off
1370 * if we are restarting the removal after opening the pool.
1371 */
1372 uint64_t msi;
1373 for (msi = start_offset >> vd->vdev_ms_shift;
1374 msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1375 metaslab_t *msp = vd->vdev_ms[msi];
1376 ASSERT3U(msi, <=, vd->vdev_ms_count);
1377
1378 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1379
1380 mutex_enter(&msp->ms_sync_lock);
1381 mutex_enter(&msp->ms_lock);
1382
1383 /*
1384 * Assert nothing in flight -- ms_*tree is empty.
1385 */
1386 for (int i = 0; i < TXG_SIZE; i++) {
d2734cce 1387 ASSERT0(range_tree_space(msp->ms_allocating[i]));
a1d477c2
MA
1388 }
1389
1390 /*
1391 * If the metaslab has ever been allocated from (ms_sm!=NULL),
1392 * read the allocated segments from the space map object
1393 * into svr_allocd_segs. Since we do this while holding
1394 * svr_lock and ms_sync_lock, concurrent frees (which
1395 * would have modified the space map) will wait for us
1396 * to finish loading the spacemap, and then take the
1397 * appropriate action (see free_from_removing_vdev()).
1398 */
1399 if (msp->ms_sm != NULL) {
1400 space_map_t *sm = NULL;
1401
1402 /*
1403 * We have to open a new space map here, because
1404 * ms_sm's sm_length and sm_alloc may not reflect
1405 * what's in the object contents, if we are in between
1406 * metaslab_sync() and metaslab_sync_done().
1407 */
1408 VERIFY0(space_map_open(&sm,
1409 spa->spa_dsl_pool->dp_meta_objset,
1410 msp->ms_sm->sm_object, msp->ms_sm->sm_start,
1411 msp->ms_sm->sm_size, msp->ms_sm->sm_shift));
1412 space_map_update(sm);
1413 VERIFY0(space_map_load(sm, svr->svr_allocd_segs,
1414 SM_ALLOC));
1415 space_map_close(sm);
1416
d2734cce 1417 range_tree_walk(msp->ms_freeing,
a1d477c2
MA
1418 range_tree_remove, svr->svr_allocd_segs);
1419
1420 /*
1421 * When we are resuming from a paused removal (i.e.
1422 * when importing a pool with a removal in progress),
1423 * discard any state that we have already processed.
1424 */
1425 range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
1426 }
1427 mutex_exit(&msp->ms_lock);
1428 mutex_exit(&msp->ms_sync_lock);
1429
1430 vca.vca_msp = msp;
1431 zfs_dbgmsg("copying %llu segments for metaslab %llu",
1432 avl_numnodes(&svr->svr_allocd_segs->rt_root),
1433 msp->ms_id);
1434
1435 while (!svr->svr_thread_exit &&
d2734cce 1436 !range_tree_is_empty(svr->svr_allocd_segs)) {
a1d477c2
MA
1437
1438 mutex_exit(&svr->svr_lock);
1439
9e052db4
MA
1440 /*
1441 * We need to periodically drop the config lock so that
1442 * writers can get in. Additionally, we can't wait
1443 * for a txg to sync while holding a config lock
1444 * (since a waiting writer could cause a 3-way deadlock
1445 * with the sync thread, which also gets a config
1446 * lock for reader). So we can't hold the config lock
1447 * while calling dmu_tx_assign().
1448 */
1449 spa_config_exit(spa, SCL_CONFIG, FTAG);
1450
d2734cce
SD
1451 /*
1452 * This delay will pause the removal around the point
1453 * specified by zfs_remove_max_bytes_pause. We do this
1454 * solely from the test suite or during debugging.
1455 */
1456 uint64_t bytes_copied =
1457 spa->spa_removing_phys.sr_copied;
1458 for (int i = 0; i < TXG_SIZE; i++)
1459 bytes_copied += svr->svr_bytes_done[i];
1460 while (zfs_remove_max_bytes_pause <= bytes_copied &&
1461 !svr->svr_thread_exit)
1462 delay(hz);
1463
a1d477c2
MA
1464 mutex_enter(&vca.vca_lock);
1465 while (vca.vca_outstanding_bytes >
1466 zfs_remove_max_copy_bytes) {
1467 cv_wait(&vca.vca_cv, &vca.vca_lock);
1468 }
1469 mutex_exit(&vca.vca_lock);
1470
1471 dmu_tx_t *tx =
1472 dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1473 dmu_tx_hold_space(tx, SPA_MAXBLOCKSIZE);
1474 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1475 uint64_t txg = dmu_tx_get_txg(tx);
1476
9e052db4
MA
1477 /*
1478 * Reacquire the vdev_config lock. The vdev_t
1479 * that we're removing may have changed, e.g. due
1480 * to a vdev_attach or vdev_detach.
1481 */
1482 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1483 vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1484
a1d477c2
MA
1485 if (txg != last_txg)
1486 max_alloc = zfs_remove_max_segment;
1487 last_txg = txg;
1488
9e052db4 1489 spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx);
a1d477c2
MA
1490
1491 dmu_tx_commit(tx);
1492 mutex_enter(&svr->svr_lock);
1493 }
1494 }
1495
1496 mutex_exit(&svr->svr_lock);
9e052db4
MA
1497
1498 spa_config_exit(spa, SCL_CONFIG, FTAG);
1499
a1d477c2
MA
1500 /*
1501 * Wait for all copies to finish before cleaning up the vca.
1502 */
1503 txg_wait_synced(spa->spa_dsl_pool, 0);
1504 ASSERT0(vca.vca_outstanding_bytes);
1505
1506 mutex_destroy(&vca.vca_lock);
1507 cv_destroy(&vca.vca_cv);
1508
1509 if (svr->svr_thread_exit) {
1510 mutex_enter(&svr->svr_lock);
1511 range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1512 svr->svr_thread = NULL;
1513 cv_broadcast(&svr->svr_cv);
1514 mutex_exit(&svr->svr_lock);
1515 } else {
1516 ASSERT0(range_tree_space(svr->svr_allocd_segs));
9e052db4 1517 vdev_remove_complete(spa);
a1d477c2
MA
1518 }
1519}
1520
1521void
1522spa_vdev_remove_suspend(spa_t *spa)
1523{
1524 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1525
1526 if (svr == NULL)
1527 return;
1528
1529 mutex_enter(&svr->svr_lock);
1530 svr->svr_thread_exit = B_TRUE;
1531 while (svr->svr_thread != NULL)
1532 cv_wait(&svr->svr_cv, &svr->svr_lock);
1533 svr->svr_thread_exit = B_FALSE;
1534 mutex_exit(&svr->svr_lock);
1535}
1536
1537/* ARGSUSED */
1538static int
1539spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1540{
1541 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1542
1543 if (spa->spa_vdev_removal == NULL)
1544 return (ENOTACTIVE);
1545 return (0);
1546}
1547
1548/*
1549 * Cancel a removal by freeing all entries from the partial mapping
1550 * and marking the vdev as no longer being removing.
1551 */
1552/* ARGSUSED */
1553static void
1554spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1555{
1556 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1557 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
9e052db4 1558 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
a1d477c2
MA
1559 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1560 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1561 objset_t *mos = spa->spa_meta_objset;
1562
1563 ASSERT3P(svr->svr_thread, ==, NULL);
1564
1565 spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
1566 if (vdev_obsolete_counts_are_precise(vd)) {
1567 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1568 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1569 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1570 }
1571
1572 if (vdev_obsolete_sm_object(vd) != 0) {
1573 ASSERT(vd->vdev_obsolete_sm != NULL);
1574 ASSERT3U(vdev_obsolete_sm_object(vd), ==,
1575 space_map_object(vd->vdev_obsolete_sm));
1576
1577 space_map_free(vd->vdev_obsolete_sm, tx);
1578 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1579 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1580 space_map_close(vd->vdev_obsolete_sm);
1581 vd->vdev_obsolete_sm = NULL;
1582 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1583 }
1584 for (int i = 0; i < TXG_SIZE; i++) {
1585 ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1586 ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1587 vdev_indirect_mapping_max_offset(vim));
1588 }
1589
1590 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1591 metaslab_t *msp = vd->vdev_ms[msi];
1592
1593 if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1594 break;
1595
1596 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1597
1598 mutex_enter(&msp->ms_lock);
1599
1600 /*
1601 * Assert nothing in flight -- ms_*tree is empty.
1602 */
1603 for (int i = 0; i < TXG_SIZE; i++)
d2734cce 1604 ASSERT0(range_tree_space(msp->ms_allocating[i]));
a1d477c2 1605 for (int i = 0; i < TXG_DEFER_SIZE; i++)
d2734cce
SD
1606 ASSERT0(range_tree_space(msp->ms_defer[i]));
1607 ASSERT0(range_tree_space(msp->ms_freed));
a1d477c2
MA
1608
1609 if (msp->ms_sm != NULL) {
1610 /*
1611 * Assert that the in-core spacemap has the same
1612 * length as the on-disk one, so we can use the
1613 * existing in-core spacemap to load it from disk.
1614 */
1615 ASSERT3U(msp->ms_sm->sm_alloc, ==,
1616 msp->ms_sm->sm_phys->smp_alloc);
1617 ASSERT3U(msp->ms_sm->sm_length, ==,
1618 msp->ms_sm->sm_phys->smp_objsize);
1619
1620 mutex_enter(&svr->svr_lock);
1621 VERIFY0(space_map_load(msp->ms_sm,
1622 svr->svr_allocd_segs, SM_ALLOC));
d2734cce 1623 range_tree_walk(msp->ms_freeing,
a1d477c2
MA
1624 range_tree_remove, svr->svr_allocd_segs);
1625
1626 /*
1627 * Clear everything past what has been synced,
1628 * because we have not allocated mappings for it yet.
1629 */
1630 uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
9e052db4
MA
1631 uint64_t sm_end = msp->ms_sm->sm_start +
1632 msp->ms_sm->sm_size;
1633 if (sm_end > syncd)
1634 range_tree_clear(svr->svr_allocd_segs,
1635 syncd, sm_end - syncd);
a1d477c2
MA
1636
1637 mutex_exit(&svr->svr_lock);
1638 }
1639 mutex_exit(&msp->ms_lock);
1640
1641 mutex_enter(&svr->svr_lock);
1642 range_tree_vacate(svr->svr_allocd_segs,
1643 free_mapped_segment_cb, vd);
1644 mutex_exit(&svr->svr_lock);
1645 }
1646
1647 /*
1648 * Note: this must happen after we invoke free_mapped_segment_cb,
1649 * because it adds to the obsolete_segments.
1650 */
1651 range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1652
1653 ASSERT3U(vic->vic_mapping_object, ==,
1654 vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1655 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1656 vd->vdev_indirect_mapping = NULL;
1657 vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1658 vic->vic_mapping_object = 0;
1659
1660 ASSERT3U(vic->vic_births_object, ==,
1661 vdev_indirect_births_object(vd->vdev_indirect_births));
1662 vdev_indirect_births_close(vd->vdev_indirect_births);
1663 vd->vdev_indirect_births = NULL;
1664 vdev_indirect_births_free(mos, vic->vic_births_object, tx);
1665 vic->vic_births_object = 0;
1666
1667 /*
1668 * We may have processed some frees from the removing vdev in this
1669 * txg, thus increasing svr_bytes_done; discard that here to
1670 * satisfy the assertions in spa_vdev_removal_destroy().
1671 * Note that future txg's can not have any bytes_done, because
1672 * future TXG's are only modified from open context, and we have
1673 * already shut down the copying thread.
1674 */
1675 svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
1676 spa_finish_removal(spa, DSS_CANCELED, tx);
1677
1678 vd->vdev_removing = B_FALSE;
1679 vdev_config_dirty(vd);
1680
1681 zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1682 vd->vdev_id, dmu_tx_get_txg(tx));
1683 spa_history_log_internal(spa, "vdev remove canceled", tx,
1684 "%s vdev %llu %s", spa_name(spa),
1685 vd->vdev_id, (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1686}
1687
1688int
1689spa_vdev_remove_cancel(spa_t *spa)
1690{
1691 spa_vdev_remove_suspend(spa);
1692
1693 if (spa->spa_vdev_removal == NULL)
1694 return (ENOTACTIVE);
1695
9e052db4 1696 uint64_t vdid = spa->spa_vdev_removal->svr_vdev_id;
a1d477c2
MA
1697
1698 int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
d2734cce
SD
1699 spa_vdev_remove_cancel_sync, NULL, 0,
1700 ZFS_SPACE_CHECK_EXTRA_RESERVED);
a1d477c2
MA
1701
1702 if (error == 0) {
1703 spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
1704 vdev_t *vd = vdev_lookup_top(spa, vdid);
1705 metaslab_group_activate(vd->vdev_mg);
1706 spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
1707 }
1708
1709 return (error);
1710}
1711
1712/*
1713 * Called every sync pass of every txg if there's a svr.
1714 */
1715void
1716svr_sync(spa_t *spa, dmu_tx_t *tx)
1717{
1718 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1719 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1720
1721 /*
1722 * This check is necessary so that we do not dirty the
1723 * DIRECTORY_OBJECT via spa_sync_removing_state() when there
1724 * is nothing to do. Dirtying it every time would prevent us
1725 * from syncing-to-convergence.
1726 */
1727 if (svr->svr_bytes_done[txgoff] == 0)
1728 return;
1729
1730 /*
1731 * Update progress accounting.
1732 */
1733 spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
1734 svr->svr_bytes_done[txgoff] = 0;
1735
1736 spa_sync_removing_state(spa, tx);
1737}
1738
1739static void
1740vdev_remove_make_hole_and_free(vdev_t *vd)
1741{
1742 uint64_t id = vd->vdev_id;
1743 spa_t *spa = vd->vdev_spa;
1744 vdev_t *rvd = spa->spa_root_vdev;
1745 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
1746
1747 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1748 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1749
1750 vdev_free(vd);
1751
1752 if (last_vdev) {
1753 vdev_compact_children(rvd);
1754 } else {
1755 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
1756 vdev_add_child(rvd, vd);
1757 }
1758 vdev_config_dirty(rvd);
1759
1760 /*
1761 * Reassess the health of our root vdev.
1762 */
1763 vdev_reopen(rvd);
1764}
1765
1766/*
1767 * Remove a log device. The config lock is held for the specified TXG.
1768 */
1769static int
1770spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
1771{
1772 metaslab_group_t *mg = vd->vdev_mg;
1773 spa_t *spa = vd->vdev_spa;
1774 int error = 0;
1775
1776 ASSERT(vd->vdev_islog);
1777 ASSERT(vd == vd->vdev_top);
1778
1779 /*
1780 * Stop allocating from this vdev.
1781 */
1782 metaslab_group_passivate(mg);
1783
1784 /*
1785 * Wait for the youngest allocations and frees to sync,
1786 * and then wait for the deferral of those frees to finish.
1787 */
1788 spa_vdev_config_exit(spa, NULL,
1789 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1790
1791 /*
1792 * Evacuate the device. We don't hold the config lock as writer
1793 * since we need to do I/O but we do keep the
1794 * spa_namespace_lock held. Once this completes the device
1795 * should no longer have any blocks allocated on it.
1796 */
1797 if (vd->vdev_islog) {
1798 if (vd->vdev_stat.vs_alloc != 0)
1799 error = spa_reset_logs(spa);
1800 }
1801
1802 *txg = spa_vdev_config_enter(spa);
1803
1804 if (error != 0) {
1805 metaslab_group_activate(mg);
1806 return (error);
1807 }
1808 ASSERT0(vd->vdev_stat.vs_alloc);
1809
1810 /*
1811 * The evacuation succeeded. Remove any remaining MOS metadata
1812 * associated with this vdev, and wait for these changes to sync.
1813 */
1814 vd->vdev_removing = B_TRUE;
1815
1816 vdev_dirty_leaves(vd, VDD_DTL, *txg);
1817 vdev_config_dirty(vd);
1818
1819 spa_history_log_internal(spa, "vdev remove", NULL,
1820 "%s vdev %llu (log) %s", spa_name(spa), vd->vdev_id,
1821 (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1822
1823 spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
1824
1825 *txg = spa_vdev_config_enter(spa);
1826
1827 sysevent_t *ev = spa_event_create(spa, vd, NULL,
1828 ESC_ZFS_VDEV_REMOVE_DEV);
1829 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1830 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1831
1832 /* The top ZAP should have been destroyed by vdev_remove_empty. */
1833 ASSERT0(vd->vdev_top_zap);
1834 /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
1835 ASSERT0(vd->vdev_leaf_zap);
1836
1837 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1838
1839 if (list_link_active(&vd->vdev_state_dirty_node))
1840 vdev_state_clean(vd);
1841 if (list_link_active(&vd->vdev_config_dirty_node))
1842 vdev_config_clean(vd);
1843
1844 /*
1845 * Clean up the vdev namespace.
1846 */
1847 vdev_remove_make_hole_and_free(vd);
1848
1849 if (ev != NULL)
1850 spa_event_post(ev);
1851
1852 return (0);
1853}
1854
1855static int
1856spa_vdev_remove_top_check(vdev_t *vd)
1857{
1858 spa_t *spa = vd->vdev_spa;
1859
1860 if (vd != vd->vdev_top)
1861 return (SET_ERROR(ENOTSUP));
1862
1863 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
1864 return (SET_ERROR(ENOTSUP));
1865
cc99f275
DB
1866 /* available space in the pool's normal class */
1867 uint64_t available = dsl_dir_space_available(
1868 spa->spa_dsl_pool->dp_root_dir, NULL, 0, B_TRUE);
1869
1870 metaslab_class_t *mc = vd->vdev_mg->mg_class;
1871
1872 /*
1873 * When removing a vdev from an allocation class that has
1874 * remaining vdevs, include available space from the class.
1875 */
1876 if (mc != spa_normal_class(spa) && mc->mc_groups > 1) {
1877 uint64_t class_avail = metaslab_class_get_space(mc) -
1878 metaslab_class_get_alloc(mc);
1879
1880 /* add class space, adjusted for overhead */
1881 available += (class_avail * 94) / 100;
1882 }
1883
a1d477c2
MA
1884 /*
1885 * There has to be enough free space to remove the
1886 * device and leave double the "slop" space (i.e. we
1887 * must leave at least 3% of the pool free, in addition to
1888 * the normal slop space).
1889 */
cc99f275 1890 if (available < vd->vdev_stat.vs_dspace + spa_get_slop_space(spa)) {
a1d477c2
MA
1891 return (SET_ERROR(ENOSPC));
1892 }
1893
1894 /*
1895 * There can not be a removal in progress.
1896 */
1897 if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
1898 return (SET_ERROR(EBUSY));
1899
1900 /*
1901 * The device must have all its data.
1902 */
1903 if (!vdev_dtl_empty(vd, DTL_MISSING) ||
1904 !vdev_dtl_empty(vd, DTL_OUTAGE))
1905 return (SET_ERROR(EBUSY));
1906
1907 /*
1908 * The device must be healthy.
1909 */
1910 if (!vdev_readable(vd))
1911 return (SET_ERROR(EIO));
1912
1913 /*
1914 * All vdevs in normal class must have the same ashift.
1915 */
1916 if (spa->spa_max_ashift != spa->spa_min_ashift) {
1917 return (SET_ERROR(EINVAL));
1918 }
1919
1920 /*
1921 * All vdevs in normal class must have the same ashift
1922 * and not be raidz.
1923 */
1924 vdev_t *rvd = spa->spa_root_vdev;
1925 int num_indirect = 0;
1926 for (uint64_t id = 0; id < rvd->vdev_children; id++) {
1927 vdev_t *cvd = rvd->vdev_child[id];
1928 if (cvd->vdev_ashift != 0 && !cvd->vdev_islog)
1929 ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
1930 if (cvd->vdev_ops == &vdev_indirect_ops)
1931 num_indirect++;
1932 if (!vdev_is_concrete(cvd))
1933 continue;
1934 if (cvd->vdev_ops == &vdev_raidz_ops)
1935 return (SET_ERROR(EINVAL));
1936 /*
1937 * Need the mirror to be mirror of leaf vdevs only
1938 */
1939 if (cvd->vdev_ops == &vdev_mirror_ops) {
1940 for (uint64_t cid = 0;
1941 cid < cvd->vdev_children; cid++) {
1942 if (!cvd->vdev_child[cid]->vdev_ops->
1943 vdev_op_leaf)
1944 return (SET_ERROR(EINVAL));
1945 }
1946 }
1947 }
1948
1949 return (0);
1950}
1951
1952/*
1953 * Initiate removal of a top-level vdev, reducing the total space in the pool.
1954 * The config lock is held for the specified TXG. Once initiated,
1955 * evacuation of all allocated space (copying it to other vdevs) happens
1956 * in the background (see spa_vdev_remove_thread()), and can be canceled
1957 * (see spa_vdev_remove_cancel()). If successful, the vdev will
1958 * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
1959 */
1960static int
1961spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
1962{
1963 spa_t *spa = vd->vdev_spa;
1964 int error;
1965
1966 /*
1967 * Check for errors up-front, so that we don't waste time
1968 * passivating the metaslab group and clearing the ZIL if there
1969 * are errors.
1970 */
1971 error = spa_vdev_remove_top_check(vd);
1972 if (error != 0)
1973 return (error);
1974
1975 /*
1976 * Stop allocating from this vdev. Note that we must check
1977 * that this is not the only device in the pool before
1978 * passivating, otherwise we will not be able to make
1979 * progress because we can't allocate from any vdevs.
1980 * The above check for sufficient free space serves this
1981 * purpose.
1982 */
1983 metaslab_group_t *mg = vd->vdev_mg;
1984 metaslab_group_passivate(mg);
1985
1986 /*
1987 * Wait for the youngest allocations and frees to sync,
1988 * and then wait for the deferral of those frees to finish.
1989 */
1990 spa_vdev_config_exit(spa, NULL,
1991 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1992
1993 /*
1994 * We must ensure that no "stubby" log blocks are allocated
1995 * on the device to be removed. These blocks could be
1996 * written at any time, including while we are in the middle
1997 * of copying them.
1998 */
1999 error = spa_reset_logs(spa);
2000
2001 *txg = spa_vdev_config_enter(spa);
2002
2003 /*
2004 * Things might have changed while the config lock was dropped
2005 * (e.g. space usage). Check for errors again.
2006 */
2007 if (error == 0)
2008 error = spa_vdev_remove_top_check(vd);
2009
2010 if (error != 0) {
2011 metaslab_group_activate(mg);
2012 return (error);
2013 }
2014
2015 vd->vdev_removing = B_TRUE;
2016
2017 vdev_dirty_leaves(vd, VDD_DTL, *txg);
2018 vdev_config_dirty(vd);
2019 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
2020 dsl_sync_task_nowait(spa->spa_dsl_pool,
2021 vdev_remove_initiate_sync,
9e052db4 2022 (void *)(uintptr_t)vd->vdev_id, 0, ZFS_SPACE_CHECK_NONE, tx);
a1d477c2
MA
2023 dmu_tx_commit(tx);
2024
2025 return (0);
2026}
2027
2028/*
2029 * Remove a device from the pool.
2030 *
2031 * Removing a device from the vdev namespace requires several steps
2032 * and can take a significant amount of time. As a result we use
2033 * the spa_vdev_config_[enter/exit] functions which allow us to
2034 * grab and release the spa_config_lock while still holding the namespace
2035 * lock. During each step the configuration is synced out.
2036 */
2037int
2038spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2039{
2040 vdev_t *vd;
2041 nvlist_t **spares, **l2cache, *nv;
2042 uint64_t txg = 0;
2043 uint_t nspares, nl2cache;
2044 int error = 0;
2045 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
2046 sysevent_t *ev = NULL;
2047
2048 ASSERT(spa_writeable(spa));
2049
2050 if (!locked)
2051 txg = spa_vdev_enter(spa);
2052
d2734cce
SD
2053 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2054 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
2055 error = (spa_has_checkpoint(spa)) ?
2056 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
2057
2058 if (!locked)
2059 return (spa_vdev_exit(spa, NULL, txg, error));
2060
2061 return (error);
2062 }
2063
a1d477c2
MA
2064 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
2065
2066 if (spa->spa_spares.sav_vdevs != NULL &&
2067 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2068 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
2069 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
2070 /*
2071 * Only remove the hot spare if it's not currently in use
2072 * in this pool.
2073 */
2074 if (vd == NULL || unspare) {
2075 if (vd == NULL)
2076 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2077 ev = spa_event_create(spa, vd, NULL,
2078 ESC_ZFS_VDEV_REMOVE_AUX);
2079
2080 char *nvstr = fnvlist_lookup_string(nv,
2081 ZPOOL_CONFIG_PATH);
2082 spa_history_log_internal(spa, "vdev remove", NULL,
2083 "%s vdev (%s) %s", spa_name(spa),
2084 VDEV_TYPE_SPARE, nvstr);
2085 spa_vdev_remove_aux(spa->spa_spares.sav_config,
2086 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
2087 spa_load_spares(spa);
2088 spa->spa_spares.sav_sync = B_TRUE;
2089 } else {
2090 error = SET_ERROR(EBUSY);
2091 }
2092 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
2093 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2094 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
2095 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
2096 char *nvstr = fnvlist_lookup_string(nv, ZPOOL_CONFIG_PATH);
2097 spa_history_log_internal(spa, "vdev remove", NULL,
2098 "%s vdev (%s) %s", spa_name(spa), VDEV_TYPE_L2CACHE, nvstr);
2099 /*
2100 * Cache devices can always be removed.
2101 */
2102 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2103 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
2104 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
2105 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
2106 spa_load_l2cache(spa);
2107 spa->spa_l2cache.sav_sync = B_TRUE;
2108 } else if (vd != NULL && vd->vdev_islog) {
2109 ASSERT(!locked);
2110 error = spa_vdev_remove_log(vd, &txg);
2111 } else if (vd != NULL) {
2112 ASSERT(!locked);
2113 error = spa_vdev_remove_top(vd, &txg);
2114 } else {
2115 /*
2116 * There is no vdev of any kind with the specified guid.
2117 */
2118 error = SET_ERROR(ENOENT);
2119 }
2120
2121 if (!locked)
2122 error = spa_vdev_exit(spa, NULL, txg, error);
2123
2124 if (ev != NULL)
2125 spa_event_post(ev);
2126
2127 return (error);
2128}
2129
2130int
2131spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
2132{
2133 prs->prs_state = spa->spa_removing_phys.sr_state;
2134
2135 if (prs->prs_state == DSS_NONE)
2136 return (SET_ERROR(ENOENT));
2137
2138 prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
2139 prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
2140 prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
2141 prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
2142 prs->prs_copied = spa->spa_removing_phys.sr_copied;
2143
2144 if (spa->spa_vdev_removal != NULL) {
2145 for (int i = 0; i < TXG_SIZE; i++) {
2146 prs->prs_copied +=
2147 spa->spa_vdev_removal->svr_bytes_done[i];
2148 }
2149 }
2150
2151 prs->prs_mapping_memory = 0;
2152 uint64_t indirect_vdev_id =
2153 spa->spa_removing_phys.sr_prev_indirect_vdev;
2154 while (indirect_vdev_id != -1) {
2155 vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
2156 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
2157 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
2158
2159 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2160 prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
2161 indirect_vdev_id = vic->vic_prev_indirect_vdev;
2162 }
2163
2164 return (0);
2165}
2166
93ce2b4c 2167#if defined(_KERNEL)
a1d477c2
MA
2168module_param(zfs_remove_max_segment, int, 0644);
2169MODULE_PARM_DESC(zfs_remove_max_segment,
2170 "Largest contiguous segment to allocate when removing device");
2171
0dc2f70c
MA
2172module_param(vdev_removal_max_span, int, 0644);
2173MODULE_PARM_DESC(vdev_removal_max_span,
2174 "Largest span of free chunks a remap segment can span");
2175
d2734cce
SD
2176/* BEGIN CSTYLED */
2177module_param(zfs_remove_max_bytes_pause, ulong, 0644);
2178MODULE_PARM_DESC(zfs_remove_max_bytes_pause,
2179 "Pause device removal after this many bytes are copied "
2180 "(debug use only - causes removal to hang)");
2181/* END CSTYLED */
2182
a1d477c2
MA
2183EXPORT_SYMBOL(free_from_removing_vdev);
2184EXPORT_SYMBOL(spa_removal_get_stats);
2185EXPORT_SYMBOL(spa_remove_init);
2186EXPORT_SYMBOL(spa_restart_removal);
2187EXPORT_SYMBOL(spa_vdev_removal_destroy);
2188EXPORT_SYMBOL(spa_vdev_remove);
2189EXPORT_SYMBOL(spa_vdev_remove_cancel);
2190EXPORT_SYMBOL(spa_vdev_remove_suspend);
2191EXPORT_SYMBOL(svr_sync);
2192#endif