]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/vdev_trim.c
Zpool can start allocating from metaslab before TRIMs have completed
[mirror_zfs.git] / module / zfs / vdev_trim.c
CommitLineData
1b939560
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
1d3ba0bf 9 * or https://opensource.org/licenses/CDDL-1.0.
1b939560
BB
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2016 by Delphix. All rights reserved.
24 * Copyright (c) 2019 by Lawrence Livermore National Security, LLC.
bedbc13d 25 * Copyright (c) 2021 Hewlett Packard Enterprise Development LP
8a740701 26 * Copyright 2023 RackTop Systems, Inc.
1b939560
BB
27 */
28
29#include <sys/spa.h>
30#include <sys/spa_impl.h>
31#include <sys/txg.h>
32#include <sys/vdev_impl.h>
33#include <sys/vdev_trim.h>
1b939560
BB
34#include <sys/metaslab_impl.h>
35#include <sys/dsl_synctask.h>
36#include <sys/zap.h>
37#include <sys/dmu_tx.h>
b7654bd7 38#include <sys/arc_impl.h>
1b939560
BB
39
40/*
41 * TRIM is a feature which is used to notify a SSD that some previously
42 * written space is no longer allocated by the pool. This is useful because
43 * writes to a SSD must be performed to blocks which have first been erased.
44 * Ensuring the SSD always has a supply of erased blocks for new writes
45 * helps prevent the performance from deteriorating.
46 *
47 * There are two supported TRIM methods; manual and automatic.
48 *
49 * Manual TRIM:
50 *
51 * A manual TRIM is initiated by running the 'zpool trim' command. A single
52 * 'vdev_trim' thread is created for each leaf vdev, and it is responsible for
53 * managing that vdev TRIM process. This involves iterating over all the
54 * metaslabs, calculating the unallocated space ranges, and then issuing the
55 * required TRIM I/Os.
56 *
57 * While a metaslab is being actively trimmed it is not eligible to perform
58 * new allocations. After traversing all of the metaslabs the thread is
59 * terminated. Finally, both the requested options and current progress of
60 * the TRIM are regularly written to the pool. This allows the TRIM to be
61 * suspended and resumed as needed.
62 *
63 * Automatic TRIM:
64 *
65 * An automatic TRIM is enabled by setting the 'autotrim' pool property
66 * to 'on'. When enabled, a `vdev_autotrim' thread is created for each
67 * top-level (not leaf) vdev in the pool. These threads perform the same
68 * core TRIM process as a manual TRIM, but with a few key differences.
69 *
70 * 1) Automatic TRIM happens continuously in the background and operates
71 * solely on recently freed blocks (ms_trim not ms_allocatable).
72 *
73 * 2) Each thread is associated with a top-level (not leaf) vdev. This has
74 * the benefit of simplifying the threading model, it makes it easier
75 * to coordinate administrative commands, and it ensures only a single
76 * metaslab is disabled at a time. Unlike manual TRIM, this means each
77 * 'vdev_autotrim' thread is responsible for issuing TRIM I/Os for its
78 * children.
79 *
80 * 3) There is no automatic TRIM progress information stored on disk, nor
81 * is it reported by 'zpool status'.
82 *
83 * While the automatic TRIM process is highly effective it is more likely
84 * than a manual TRIM to encounter tiny ranges. Ranges less than or equal to
85 * 'zfs_trim_extent_bytes_min' (32k) are considered too small to efficiently
86 * TRIM and are skipped. This means small amounts of freed space may not
87 * be automatically trimmed.
88 *
89 * Furthermore, devices with attached hot spares and devices being actively
90 * replaced are skipped. This is done to avoid adding additional stress to
91 * a potentially unhealthy device and to minimize the required rebuild time.
92 *
93 * For this reason it may be beneficial to occasionally manually TRIM a pool
94 * even when automatic TRIM is enabled.
95 */
96
97/*
98 * Maximum size of TRIM I/O, ranges will be chunked in to 128MiB lengths.
99 */
18168da7 100static unsigned int zfs_trim_extent_bytes_max = 128 * 1024 * 1024;
1b939560
BB
101
102/*
103 * Minimum size of TRIM I/O, extents smaller than 32Kib will be skipped.
104 */
18168da7 105static unsigned int zfs_trim_extent_bytes_min = 32 * 1024;
1b939560
BB
106
107/*
108 * Skip uninitialized metaslabs during the TRIM process. This option is
109 * useful for pools constructed from large thinly-provisioned devices where
110 * TRIM operations are slow. As a pool ages an increasing fraction of
111 * the pools metaslabs will be initialized progressively degrading the
112 * usefulness of this option. This setting is stored when starting a
113 * manual TRIM and will persist for the duration of the requested TRIM.
114 */
115unsigned int zfs_trim_metaslab_skip = 0;
116
117/*
118 * Maximum number of queued TRIM I/Os per leaf vdev. The number of
119 * concurrent TRIM I/Os issued to the device is controlled by the
120 * zfs_vdev_trim_min_active and zfs_vdev_trim_max_active module options.
121 */
18168da7 122static unsigned int zfs_trim_queue_limit = 10;
1b939560
BB
123
124/*
125 * The minimum number of transaction groups between automatic trims of a
126 * metaslab. This setting represents a trade-off between issuing more
127 * efficient TRIM operations, by allowing them to be aggregated longer,
128 * and issuing them promptly so the trimmed space is available. Note
129 * that this value is a minimum; metaslabs can be trimmed less frequently
130 * when there are a large number of ranges which need to be trimmed.
131 *
132 * Increasing this value will allow frees to be aggregated for a longer
133 * time. This can result is larger TRIM operations, and increased memory
134 * usage in order to track the ranges to be trimmed. Decreasing this value
135 * has the opposite effect. The default value of 32 was determined though
136 * testing to be a reasonable compromise.
137 */
18168da7 138static unsigned int zfs_trim_txg_batch = 32;
1b939560
BB
139
140/*
141 * The trim_args are a control structure which describe how a leaf vdev
142 * should be trimmed. The core elements are the vdev, the metaslab being
143 * trimmed and a range tree containing the extents to TRIM. All provided
144 * ranges must be within the metaslab.
145 */
146typedef struct trim_args {
147 /*
148 * These fields are set by the caller of vdev_trim_ranges().
149 */
150 vdev_t *trim_vdev; /* Leaf vdev to TRIM */
151 metaslab_t *trim_msp; /* Disabled metaslab */
152 range_tree_t *trim_tree; /* TRIM ranges (in metaslab) */
153 trim_type_t trim_type; /* Manual or auto TRIM */
154 uint64_t trim_extent_bytes_max; /* Maximum TRIM I/O size */
155 uint64_t trim_extent_bytes_min; /* Minimum TRIM I/O size */
156 enum trim_flag trim_flags; /* TRIM flags (secure) */
157
158 /*
159 * These fields are updated by vdev_trim_ranges().
160 */
161 hrtime_t trim_start_time; /* Start time */
162 uint64_t trim_bytes_done; /* Bytes trimmed */
163} trim_args_t;
164
165/*
166 * Determines whether a vdev_trim_thread() should be stopped.
167 */
168static boolean_t
169vdev_trim_should_stop(vdev_t *vd)
170{
171 return (vd->vdev_trim_exit_wanted || !vdev_writeable(vd) ||
172 vd->vdev_detached || vd->vdev_top->vdev_removing);
173}
174
175/*
176 * Determines whether a vdev_autotrim_thread() should be stopped.
177 */
178static boolean_t
179vdev_autotrim_should_stop(vdev_t *tvd)
180{
181 return (tvd->vdev_autotrim_exit_wanted ||
182 !vdev_writeable(tvd) || tvd->vdev_removing ||
183 spa_get_autotrim(tvd->vdev_spa) == SPA_AUTOTRIM_OFF);
184}
185
65d10bd8
KJ
186/*
187 * Wait for given number of kicks, return true if the wait is aborted due to
188 * vdev_autotrim_exit_wanted.
189 */
190static boolean_t
191vdev_autotrim_wait_kick(vdev_t *vd, int num_of_kick)
192{
193 mutex_enter(&vd->vdev_autotrim_lock);
194 for (int i = 0; i < num_of_kick; i++) {
195 if (vd->vdev_autotrim_exit_wanted)
196 break;
197 cv_wait(&vd->vdev_autotrim_kick_cv, &vd->vdev_autotrim_lock);
198 }
199 boolean_t exit_wanted = vd->vdev_autotrim_exit_wanted;
200 mutex_exit(&vd->vdev_autotrim_lock);
201
202 return (exit_wanted);
203}
204
1b939560
BB
205/*
206 * The sync task for updating the on-disk state of a manual TRIM. This
207 * is scheduled by vdev_trim_change_state().
208 */
209static void
210vdev_trim_zap_update_sync(void *arg, dmu_tx_t *tx)
211{
212 /*
213 * We pass in the guid instead of the vdev_t since the vdev may
214 * have been freed prior to the sync task being processed. This
215 * happens when a vdev is detached as we call spa_config_vdev_exit(),
216 * stop the trimming thread, schedule the sync task, and free
217 * the vdev. Later when the scheduled sync task is invoked, it would
218 * find that the vdev has been freed.
219 */
220 uint64_t guid = *(uint64_t *)arg;
221 uint64_t txg = dmu_tx_get_txg(tx);
222 kmem_free(arg, sizeof (uint64_t));
223
224 vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
225 if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
226 return;
227
228 uint64_t last_offset = vd->vdev_trim_offset[txg & TXG_MASK];
229 vd->vdev_trim_offset[txg & TXG_MASK] = 0;
230
231 VERIFY3U(vd->vdev_leaf_zap, !=, 0);
232
233 objset_t *mos = vd->vdev_spa->spa_meta_objset;
234
235 if (last_offset > 0 || vd->vdev_trim_last_offset == UINT64_MAX) {
236
237 if (vd->vdev_trim_last_offset == UINT64_MAX)
238 last_offset = 0;
239
240 vd->vdev_trim_last_offset = last_offset;
241 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
242 VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
243 sizeof (last_offset), 1, &last_offset, tx));
244 }
245
246 if (vd->vdev_trim_action_time > 0) {
247 uint64_t val = (uint64_t)vd->vdev_trim_action_time;
248 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
249 VDEV_LEAF_ZAP_TRIM_ACTION_TIME, sizeof (val),
250 1, &val, tx));
251 }
252
253 if (vd->vdev_trim_rate > 0) {
254 uint64_t rate = (uint64_t)vd->vdev_trim_rate;
255
256 if (rate == UINT64_MAX)
257 rate = 0;
258
259 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
260 VDEV_LEAF_ZAP_TRIM_RATE, sizeof (rate), 1, &rate, tx));
261 }
262
263 uint64_t partial = vd->vdev_trim_partial;
264 if (partial == UINT64_MAX)
265 partial = 0;
266
267 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
268 sizeof (partial), 1, &partial, tx));
269
270 uint64_t secure = vd->vdev_trim_secure;
271 if (secure == UINT64_MAX)
272 secure = 0;
273
274 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
275 sizeof (secure), 1, &secure, tx));
276
277
278 uint64_t trim_state = vd->vdev_trim_state;
279 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
280 sizeof (trim_state), 1, &trim_state, tx));
281}
282
283/*
284 * Update the on-disk state of a manual TRIM. This is called to request
285 * that a TRIM be started/suspended/canceled, or to change one of the
286 * TRIM options (partial, secure, rate).
287 */
288static void
289vdev_trim_change_state(vdev_t *vd, vdev_trim_state_t new_state,
290 uint64_t rate, boolean_t partial, boolean_t secure)
291{
292 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
293 spa_t *spa = vd->vdev_spa;
294
295 if (new_state == vd->vdev_trim_state)
296 return;
297
298 /*
299 * Copy the vd's guid, this will be freed by the sync task.
300 */
301 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
302 *guid = vd->vdev_guid;
303
304 /*
305 * If we're suspending, then preserve the original start time.
306 */
307 if (vd->vdev_trim_state != VDEV_TRIM_SUSPENDED) {
308 vd->vdev_trim_action_time = gethrestime_sec();
309 }
310
311 /*
312 * If we're activating, then preserve the requested rate and trim
313 * method. Setting the last offset and rate to UINT64_MAX is used
314 * as a sentinel to indicate they should be reset to default values.
315 */
316 if (new_state == VDEV_TRIM_ACTIVE) {
317 if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE ||
318 vd->vdev_trim_state == VDEV_TRIM_CANCELED) {
319 vd->vdev_trim_last_offset = UINT64_MAX;
320 vd->vdev_trim_rate = UINT64_MAX;
321 vd->vdev_trim_partial = UINT64_MAX;
322 vd->vdev_trim_secure = UINT64_MAX;
323 }
324
325 if (rate != 0)
326 vd->vdev_trim_rate = rate;
327
328 if (partial != 0)
329 vd->vdev_trim_partial = partial;
330
331 if (secure != 0)
332 vd->vdev_trim_secure = secure;
333 }
334
b2255edc
BB
335 vdev_trim_state_t old_state = vd->vdev_trim_state;
336 boolean_t resumed = (old_state == VDEV_TRIM_SUSPENDED);
1b939560
BB
337 vd->vdev_trim_state = new_state;
338
339 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
340 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
341 dsl_sync_task_nowait(spa_get_dsl(spa), vdev_trim_zap_update_sync,
38080324 342 guid, tx);
1b939560
BB
343
344 switch (new_state) {
345 case VDEV_TRIM_ACTIVE:
346 spa_event_notify(spa, vd, NULL,
347 resumed ? ESC_ZFS_TRIM_RESUME : ESC_ZFS_TRIM_START);
348 spa_history_log_internal(spa, "trim", tx,
349 "vdev=%s activated", vd->vdev_path);
350 break;
351 case VDEV_TRIM_SUSPENDED:
352 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_SUSPEND);
353 spa_history_log_internal(spa, "trim", tx,
354 "vdev=%s suspended", vd->vdev_path);
355 break;
356 case VDEV_TRIM_CANCELED:
b2255edc
BB
357 if (old_state == VDEV_TRIM_ACTIVE ||
358 old_state == VDEV_TRIM_SUSPENDED) {
359 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_CANCEL);
360 spa_history_log_internal(spa, "trim", tx,
361 "vdev=%s canceled", vd->vdev_path);
362 }
1b939560
BB
363 break;
364 case VDEV_TRIM_COMPLETE:
365 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_FINISH);
366 spa_history_log_internal(spa, "trim", tx,
367 "vdev=%s complete", vd->vdev_path);
368 break;
369 default:
370 panic("invalid state %llu", (unsigned long long)new_state);
371 }
372
373 dmu_tx_commit(tx);
2288d419
BB
374
375 if (new_state != VDEV_TRIM_ACTIVE)
376 spa_notify_waiters(spa);
1b939560
BB
377}
378
379/*
380 * The zio_done_func_t done callback for each manual TRIM issued. It is
381 * responsible for updating the TRIM stats, reissuing failed TRIM I/Os,
382 * and limiting the number of in flight TRIM I/Os.
383 */
384static void
385vdev_trim_cb(zio_t *zio)
386{
387 vdev_t *vd = zio->io_vd;
388
389 mutex_enter(&vd->vdev_trim_io_lock);
390 if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
391 /*
392 * The I/O failed because the vdev was unavailable; roll the
393 * last offset back. (This works because spa_sync waits on
394 * spa_txg_zio before it runs sync tasks.)
395 */
396 uint64_t *offset =
397 &vd->vdev_trim_offset[zio->io_txg & TXG_MASK];
398 *offset = MIN(*offset, zio->io_offset);
399 } else {
400 if (zio->io_error != 0) {
401 vd->vdev_stat.vs_trim_errors++;
402 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
403 0, 0, 0, 0, 1, zio->io_orig_size);
404 } else {
405 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
406 1, zio->io_orig_size, 0, 0, 0, 0);
407 }
408
409 vd->vdev_trim_bytes_done += zio->io_orig_size;
410 }
411
412 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_MANUAL], >, 0);
413 vd->vdev_trim_inflight[TRIM_TYPE_MANUAL]--;
414 cv_broadcast(&vd->vdev_trim_io_cv);
415 mutex_exit(&vd->vdev_trim_io_lock);
416
417 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
418}
419
420/*
421 * The zio_done_func_t done callback for each automatic TRIM issued. It
422 * is responsible for updating the TRIM stats and limiting the number of
423 * in flight TRIM I/Os. Automatic TRIM I/Os are best effort and are
424 * never reissued on failure.
425 */
426static void
427vdev_autotrim_cb(zio_t *zio)
428{
429 vdev_t *vd = zio->io_vd;
430
431 mutex_enter(&vd->vdev_trim_io_lock);
432
433 if (zio->io_error != 0) {
434 vd->vdev_stat.vs_trim_errors++;
435 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
436 0, 0, 0, 0, 1, zio->io_orig_size);
437 } else {
438 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
439 1, zio->io_orig_size, 0, 0, 0, 0);
440 }
441
442 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_AUTO], >, 0);
443 vd->vdev_trim_inflight[TRIM_TYPE_AUTO]--;
444 cv_broadcast(&vd->vdev_trim_io_cv);
445 mutex_exit(&vd->vdev_trim_io_lock);
446
447 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
448}
449
b7654bd7
GA
450/*
451 * The zio_done_func_t done callback for each TRIM issued via
452 * vdev_trim_simple(). It is responsible for updating the TRIM stats and
453 * limiting the number of in flight TRIM I/Os. Simple TRIM I/Os are best
454 * effort and are never reissued on failure.
455 */
456static void
457vdev_trim_simple_cb(zio_t *zio)
458{
459 vdev_t *vd = zio->io_vd;
460
461 mutex_enter(&vd->vdev_trim_io_lock);
462
463 if (zio->io_error != 0) {
464 vd->vdev_stat.vs_trim_errors++;
465 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
466 0, 0, 0, 0, 1, zio->io_orig_size);
467 } else {
468 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
469 1, zio->io_orig_size, 0, 0, 0, 0);
470 }
471
472 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE], >, 0);
473 vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE]--;
474 cv_broadcast(&vd->vdev_trim_io_cv);
475 mutex_exit(&vd->vdev_trim_io_lock);
476
477 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
478}
1b939560
BB
479/*
480 * Returns the average trim rate in bytes/sec for the ta->trim_vdev.
481 */
482static uint64_t
483vdev_trim_calculate_rate(trim_args_t *ta)
484{
485 return (ta->trim_bytes_done * 1000 /
486 (NSEC2MSEC(gethrtime() - ta->trim_start_time) + 1));
487}
488
489/*
490 * Issues a physical TRIM and takes care of rate limiting (bytes/sec)
491 * and number of concurrent TRIM I/Os.
492 */
493static int
494vdev_trim_range(trim_args_t *ta, uint64_t start, uint64_t size)
495{
496 vdev_t *vd = ta->trim_vdev;
497 spa_t *spa = vd->vdev_spa;
b7654bd7 498 void *cb;
1b939560
BB
499
500 mutex_enter(&vd->vdev_trim_io_lock);
501
502 /*
503 * Limit manual TRIM I/Os to the requested rate. This does not
504 * apply to automatic TRIM since no per vdev rate can be specified.
505 */
506 if (ta->trim_type == TRIM_TYPE_MANUAL) {
507 while (vd->vdev_trim_rate != 0 && !vdev_trim_should_stop(vd) &&
508 vdev_trim_calculate_rate(ta) > vd->vdev_trim_rate) {
ac6e5fb2 509 cv_timedwait_idle(&vd->vdev_trim_io_cv,
1b939560
BB
510 &vd->vdev_trim_io_lock, ddi_get_lbolt() +
511 MSEC_TO_TICK(10));
512 }
513 }
514 ta->trim_bytes_done += size;
515
516 /* Limit in flight trimming I/Os */
b7654bd7
GA
517 while (vd->vdev_trim_inflight[0] + vd->vdev_trim_inflight[1] +
518 vd->vdev_trim_inflight[2] >= zfs_trim_queue_limit) {
1b939560
BB
519 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
520 }
521 vd->vdev_trim_inflight[ta->trim_type]++;
522 mutex_exit(&vd->vdev_trim_io_lock);
523
524 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
525 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
526 uint64_t txg = dmu_tx_get_txg(tx);
527
528 spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
529 mutex_enter(&vd->vdev_trim_lock);
530
531 if (ta->trim_type == TRIM_TYPE_MANUAL &&
532 vd->vdev_trim_offset[txg & TXG_MASK] == 0) {
533 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
534 *guid = vd->vdev_guid;
535
536 /* This is the first write of this txg. */
537 dsl_sync_task_nowait(spa_get_dsl(spa),
38080324 538 vdev_trim_zap_update_sync, guid, tx);
1b939560
BB
539 }
540
541 /*
542 * We know the vdev_t will still be around since all consumers of
543 * vdev_free must stop the trimming first.
544 */
545 if ((ta->trim_type == TRIM_TYPE_MANUAL &&
546 vdev_trim_should_stop(vd)) ||
547 (ta->trim_type == TRIM_TYPE_AUTO &&
548 vdev_autotrim_should_stop(vd->vdev_top))) {
549 mutex_enter(&vd->vdev_trim_io_lock);
550 vd->vdev_trim_inflight[ta->trim_type]--;
551 mutex_exit(&vd->vdev_trim_io_lock);
552 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
553 mutex_exit(&vd->vdev_trim_lock);
554 dmu_tx_commit(tx);
555 return (SET_ERROR(EINTR));
556 }
557 mutex_exit(&vd->vdev_trim_lock);
558
559 if (ta->trim_type == TRIM_TYPE_MANUAL)
560 vd->vdev_trim_offset[txg & TXG_MASK] = start + size;
561
b7654bd7
GA
562 if (ta->trim_type == TRIM_TYPE_MANUAL) {
563 cb = vdev_trim_cb;
564 } else if (ta->trim_type == TRIM_TYPE_AUTO) {
565 cb = vdev_autotrim_cb;
566 } else {
567 cb = vdev_trim_simple_cb;
568 }
569
1b939560 570 zio_nowait(zio_trim(spa->spa_txg_zio[txg & TXG_MASK], vd,
b7654bd7
GA
571 start, size, cb, NULL, ZIO_PRIORITY_TRIM, ZIO_FLAG_CANFAIL,
572 ta->trim_flags));
1b939560
BB
573 /* vdev_trim_cb and vdev_autotrim_cb release SCL_STATE_ALL */
574
575 dmu_tx_commit(tx);
576
577 return (0);
578}
579
580/*
581 * Issues TRIM I/Os for all ranges in the provided ta->trim_tree range tree.
582 * Additional parameters describing how the TRIM should be performed must
583 * be set in the trim_args structure. See the trim_args definition for
584 * additional information.
585 */
586static int
587vdev_trim_ranges(trim_args_t *ta)
588{
589 vdev_t *vd = ta->trim_vdev;
ca577779
PD
590 zfs_btree_t *t = &ta->trim_tree->rt_root;
591 zfs_btree_index_t idx;
1b939560
BB
592 uint64_t extent_bytes_max = ta->trim_extent_bytes_max;
593 uint64_t extent_bytes_min = ta->trim_extent_bytes_min;
594 spa_t *spa = vd->vdev_spa;
8a740701 595 int error = 0;
1b939560
BB
596
597 ta->trim_start_time = gethrtime();
598 ta->trim_bytes_done = 0;
599
ca577779
PD
600 for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL;
601 rs = zfs_btree_next(t, &idx, &idx)) {
602 uint64_t size = rs_get_end(rs, ta->trim_tree) - rs_get_start(rs,
603 ta->trim_tree);
1b939560
BB
604
605 if (extent_bytes_min && size < extent_bytes_min) {
606 spa_iostats_trim_add(spa, ta->trim_type,
607 0, 0, 1, size, 0, 0);
608 continue;
609 }
610
611 /* Split range into legally-sized physical chunks */
612 uint64_t writes_required = ((size - 1) / extent_bytes_max) + 1;
613
614 for (uint64_t w = 0; w < writes_required; w++) {
1b939560 615 error = vdev_trim_range(ta, VDEV_LABEL_START_SIZE +
ca577779
PD
616 rs_get_start(rs, ta->trim_tree) +
617 (w *extent_bytes_max), MIN(size -
618 (w * extent_bytes_max), extent_bytes_max));
1b939560 619 if (error != 0) {
8a740701 620 goto done;
1b939560
BB
621 }
622 }
623 }
624
8a740701
JK
625done:
626 /*
627 * Make sure all TRIMs for this metaslab have completed before
628 * returning. TRIM zios have lower priority over regular or syncing
629 * zios, so all TRIM zios for this metaslab must complete before the
630 * metaslab is re-enabled. Otherwise it's possible write zios to
631 * this metaslab could cut ahead of still queued TRIM zios for this
632 * metaslab causing corruption if the ranges overlap.
633 */
634 mutex_enter(&vd->vdev_trim_io_lock);
635 while (vd->vdev_trim_inflight[0] > 0) {
636 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
637 }
638 mutex_exit(&vd->vdev_trim_io_lock);
639
640 return (error);
1b939560
BB
641}
642
b2255edc
BB
643static void
644vdev_trim_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs)
645{
646 uint64_t *last_rs_end = (uint64_t *)arg;
647
648 if (physical_rs->rs_end > *last_rs_end)
649 *last_rs_end = physical_rs->rs_end;
650}
651
652static void
653vdev_trim_xlate_progress(void *arg, range_seg64_t *physical_rs)
654{
655 vdev_t *vd = (vdev_t *)arg;
656
657 uint64_t size = physical_rs->rs_end - physical_rs->rs_start;
658 vd->vdev_trim_bytes_est += size;
659
660 if (vd->vdev_trim_last_offset >= physical_rs->rs_end) {
661 vd->vdev_trim_bytes_done += size;
662 } else if (vd->vdev_trim_last_offset > physical_rs->rs_start &&
663 vd->vdev_trim_last_offset <= physical_rs->rs_end) {
664 vd->vdev_trim_bytes_done +=
665 vd->vdev_trim_last_offset - physical_rs->rs_start;
666 }
667}
668
1b939560
BB
669/*
670 * Calculates the completion percentage of a manual TRIM.
671 */
672static void
673vdev_trim_calculate_progress(vdev_t *vd)
674{
675 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
676 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
677 ASSERT(vd->vdev_leaf_zap != 0);
678
679 vd->vdev_trim_bytes_est = 0;
680 vd->vdev_trim_bytes_done = 0;
681
682 for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
683 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
684 mutex_enter(&msp->ms_lock);
685
b2255edc
BB
686 uint64_t ms_free = (msp->ms_size -
687 metaslab_allocated_space(msp)) /
688 vdev_get_ndisks(vd->vdev_top);
1b939560
BB
689
690 /*
691 * Convert the metaslab range to a physical range
692 * on our vdev. We use this to determine if we are
693 * in the middle of this metaslab range.
694 */
b2255edc 695 range_seg64_t logical_rs, physical_rs, remain_rs;
1b939560
BB
696 logical_rs.rs_start = msp->ms_start;
697 logical_rs.rs_end = msp->ms_start + msp->ms_size;
1b939560 698
b2255edc
BB
699 /* Metaslab space after this offset has not been trimmed. */
700 vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs);
1b939560
BB
701 if (vd->vdev_trim_last_offset <= physical_rs.rs_start) {
702 vd->vdev_trim_bytes_est += ms_free;
703 mutex_exit(&msp->ms_lock);
704 continue;
b2255edc
BB
705 }
706
707 /* Metaslab space before this offset has been trimmed */
708 uint64_t last_rs_end = physical_rs.rs_end;
709 if (!vdev_xlate_is_empty(&remain_rs)) {
710 vdev_xlate_walk(vd, &remain_rs,
711 vdev_trim_xlate_last_rs_end, &last_rs_end);
712 }
713
714 if (vd->vdev_trim_last_offset > last_rs_end) {
1b939560
BB
715 vd->vdev_trim_bytes_done += ms_free;
716 vd->vdev_trim_bytes_est += ms_free;
717 mutex_exit(&msp->ms_lock);
718 continue;
719 }
720
721 /*
722 * If we get here, we're in the middle of trimming this
723 * metaslab. Load it and walk the free tree for more
724 * accurate progress estimation.
725 */
726 VERIFY0(metaslab_load(msp));
727
ca577779
PD
728 range_tree_t *rt = msp->ms_allocatable;
729 zfs_btree_t *bt = &rt->rt_root;
730 zfs_btree_index_t idx;
731 for (range_seg_t *rs = zfs_btree_first(bt, &idx);
732 rs != NULL; rs = zfs_btree_next(bt, &idx, &idx)) {
733 logical_rs.rs_start = rs_get_start(rs, rt);
734 logical_rs.rs_end = rs_get_end(rs, rt);
b2255edc
BB
735
736 vdev_xlate_walk(vd, &logical_rs,
737 vdev_trim_xlate_progress, vd);
1b939560
BB
738 }
739 mutex_exit(&msp->ms_lock);
740 }
741}
742
743/*
744 * Load from disk the vdev's manual TRIM information. This includes the
745 * state, progress, and options provided when initiating the manual TRIM.
746 */
747static int
748vdev_trim_load(vdev_t *vd)
749{
750 int err = 0;
751 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
752 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
753 ASSERT(vd->vdev_leaf_zap != 0);
754
755 if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE ||
756 vd->vdev_trim_state == VDEV_TRIM_SUSPENDED) {
757 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
758 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
759 sizeof (vd->vdev_trim_last_offset), 1,
760 &vd->vdev_trim_last_offset);
761 if (err == ENOENT) {
762 vd->vdev_trim_last_offset = 0;
763 err = 0;
764 }
765
766 if (err == 0) {
767 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
768 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_RATE,
769 sizeof (vd->vdev_trim_rate), 1,
770 &vd->vdev_trim_rate);
771 if (err == ENOENT) {
772 vd->vdev_trim_rate = 0;
773 err = 0;
774 }
775 }
776
777 if (err == 0) {
778 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
779 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
780 sizeof (vd->vdev_trim_partial), 1,
781 &vd->vdev_trim_partial);
782 if (err == ENOENT) {
783 vd->vdev_trim_partial = 0;
784 err = 0;
785 }
786 }
787
788 if (err == 0) {
789 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
790 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
791 sizeof (vd->vdev_trim_secure), 1,
792 &vd->vdev_trim_secure);
793 if (err == ENOENT) {
794 vd->vdev_trim_secure = 0;
795 err = 0;
796 }
797 }
798 }
799
800 vdev_trim_calculate_progress(vd);
801
802 return (err);
803}
804
b2255edc
BB
805static void
806vdev_trim_xlate_range_add(void *arg, range_seg64_t *physical_rs)
807{
808 trim_args_t *ta = arg;
809 vdev_t *vd = ta->trim_vdev;
810
811 /*
812 * Only a manual trim will be traversing the vdev sequentially.
813 * For an auto trim all valid ranges should be added.
814 */
815 if (ta->trim_type == TRIM_TYPE_MANUAL) {
816
817 /* Only add segments that we have not visited yet */
818 if (physical_rs->rs_end <= vd->vdev_trim_last_offset)
819 return;
820
821 /* Pick up where we left off mid-range. */
822 if (vd->vdev_trim_last_offset > physical_rs->rs_start) {
823 ASSERT3U(physical_rs->rs_end, >,
824 vd->vdev_trim_last_offset);
825 physical_rs->rs_start = vd->vdev_trim_last_offset;
826 }
827 }
828
829 ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start);
830
831 range_tree_add(ta->trim_tree, physical_rs->rs_start,
832 physical_rs->rs_end - physical_rs->rs_start);
833}
834
1b939560 835/*
b2255edc 836 * Convert the logical range into physical ranges and add them to the
1b939560
BB
837 * range tree passed in the trim_args_t.
838 */
839static void
840vdev_trim_range_add(void *arg, uint64_t start, uint64_t size)
841{
842 trim_args_t *ta = arg;
843 vdev_t *vd = ta->trim_vdev;
b2255edc 844 range_seg64_t logical_rs;
1b939560
BB
845 logical_rs.rs_start = start;
846 logical_rs.rs_end = start + size;
847
848 /*
849 * Every range to be trimmed must be part of ms_allocatable.
850 * When ZFS_DEBUG_TRIM is set load the metaslab to verify this
851 * is always the case.
852 */
853 if (zfs_flags & ZFS_DEBUG_TRIM) {
854 metaslab_t *msp = ta->trim_msp;
855 VERIFY0(metaslab_load(msp));
856 VERIFY3B(msp->ms_loaded, ==, B_TRUE);
ca577779 857 VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
1b939560
BB
858 }
859
860 ASSERT(vd->vdev_ops->vdev_op_leaf);
b2255edc 861 vdev_xlate_walk(vd, &logical_rs, vdev_trim_xlate_range_add, arg);
1b939560
BB
862}
863
864/*
865 * Each manual TRIM thread is responsible for trimming the unallocated
866 * space for each leaf vdev. This is accomplished by sequentially iterating
867 * over its top-level metaslabs and issuing TRIM I/O for the space described
868 * by its ms_allocatable. While a metaslab is undergoing trimming it is
869 * not eligible for new allocations.
870 */
460748d4 871static __attribute__((noreturn)) void
1b939560
BB
872vdev_trim_thread(void *arg)
873{
874 vdev_t *vd = arg;
875 spa_t *spa = vd->vdev_spa;
876 trim_args_t ta;
877 int error = 0;
878
879 /*
880 * The VDEV_LEAF_ZAP_TRIM_* entries may have been updated by
881 * vdev_trim(). Wait for the updated values to be reflected
882 * in the zap in order to start with the requested settings.
883 */
884 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
885
886 ASSERT(vdev_is_concrete(vd));
887 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
888
889 vd->vdev_trim_last_offset = 0;
890 vd->vdev_trim_rate = 0;
891 vd->vdev_trim_partial = 0;
892 vd->vdev_trim_secure = 0;
893
894 VERIFY0(vdev_trim_load(vd));
895
896 ta.trim_vdev = vd;
897 ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
898 ta.trim_extent_bytes_min = zfs_trim_extent_bytes_min;
ca577779 899 ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1b939560
BB
900 ta.trim_type = TRIM_TYPE_MANUAL;
901 ta.trim_flags = 0;
902
903 /*
904 * When a secure TRIM has been requested infer that the intent
905 * is that everything must be trimmed. Override the default
906 * minimum TRIM size to prevent ranges from being skipped.
907 */
908 if (vd->vdev_trim_secure) {
909 ta.trim_flags |= ZIO_TRIM_SECURE;
910 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
911 }
912
913 uint64_t ms_count = 0;
914 for (uint64_t i = 0; !vd->vdev_detached &&
915 i < vd->vdev_top->vdev_ms_count; i++) {
916 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
917
918 /*
919 * If we've expanded the top-level vdev or it's our
920 * first pass, calculate our progress.
921 */
922 if (vd->vdev_top->vdev_ms_count != ms_count) {
923 vdev_trim_calculate_progress(vd);
924 ms_count = vd->vdev_top->vdev_ms_count;
925 }
926
927 spa_config_exit(spa, SCL_CONFIG, FTAG);
928 metaslab_disable(msp);
929 mutex_enter(&msp->ms_lock);
930 VERIFY0(metaslab_load(msp));
931
932 /*
933 * If a partial TRIM was requested skip metaslabs which have
934 * never been initialized and thus have never been written.
935 */
936 if (msp->ms_sm == NULL && vd->vdev_trim_partial) {
937 mutex_exit(&msp->ms_lock);
f09fda50 938 metaslab_enable(msp, B_FALSE, B_FALSE);
1b939560
BB
939 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
940 vdev_trim_calculate_progress(vd);
941 continue;
942 }
943
944 ta.trim_msp = msp;
945 range_tree_walk(msp->ms_allocatable, vdev_trim_range_add, &ta);
946 range_tree_vacate(msp->ms_trim, NULL, NULL);
947 mutex_exit(&msp->ms_lock);
948
949 error = vdev_trim_ranges(&ta);
f09fda50 950 metaslab_enable(msp, B_TRUE, B_FALSE);
1b939560
BB
951 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
952
953 range_tree_vacate(ta.trim_tree, NULL, NULL);
954 if (error != 0)
955 break;
956 }
957
958 spa_config_exit(spa, SCL_CONFIG, FTAG);
1b939560
BB
959
960 range_tree_destroy(ta.trim_tree);
961
962 mutex_enter(&vd->vdev_trim_lock);
bedbc13d
S
963 if (!vd->vdev_trim_exit_wanted) {
964 if (vdev_writeable(vd)) {
965 vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
966 vd->vdev_trim_rate, vd->vdev_trim_partial,
967 vd->vdev_trim_secure);
968 } else if (vd->vdev_faulted) {
969 vdev_trim_change_state(vd, VDEV_TRIM_CANCELED,
970 vd->vdev_trim_rate, vd->vdev_trim_partial,
971 vd->vdev_trim_secure);
972 }
1b939560
BB
973 }
974 ASSERT(vd->vdev_trim_thread != NULL || vd->vdev_trim_inflight[0] == 0);
975
976 /*
977 * Drop the vdev_trim_lock while we sync out the txg since it's
978 * possible that a device might be trying to come online and must
979 * check to see if it needs to restart a trim. That thread will be
980 * holding the spa_config_lock which would prevent the txg_wait_synced
981 * from completing.
982 */
983 mutex_exit(&vd->vdev_trim_lock);
984 txg_wait_synced(spa_get_dsl(spa), 0);
985 mutex_enter(&vd->vdev_trim_lock);
986
987 vd->vdev_trim_thread = NULL;
988 cv_broadcast(&vd->vdev_trim_cv);
989 mutex_exit(&vd->vdev_trim_lock);
eeb8fae9
JL
990
991 thread_exit();
1b939560
BB
992}
993
994/*
995 * Initiates a manual TRIM for the vdev_t. Callers must hold vdev_trim_lock,
996 * the vdev_t must be a leaf and cannot already be manually trimming.
997 */
998void
999vdev_trim(vdev_t *vd, uint64_t rate, boolean_t partial, boolean_t secure)
1000{
1001 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1002 ASSERT(vd->vdev_ops->vdev_op_leaf);
1003 ASSERT(vdev_is_concrete(vd));
1004 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1005 ASSERT(!vd->vdev_detached);
1006 ASSERT(!vd->vdev_trim_exit_wanted);
1007 ASSERT(!vd->vdev_top->vdev_removing);
1008
1009 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, rate, partial, secure);
1010 vd->vdev_trim_thread = thread_create(NULL, 0,
1011 vdev_trim_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
1012}
1013
1014/*
1015 * Wait for the trimming thread to be terminated (canceled or stopped).
1016 */
1017static void
1018vdev_trim_stop_wait_impl(vdev_t *vd)
1019{
1020 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1021
1022 while (vd->vdev_trim_thread != NULL)
1023 cv_wait(&vd->vdev_trim_cv, &vd->vdev_trim_lock);
1024
1025 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1026 vd->vdev_trim_exit_wanted = B_FALSE;
1027}
1028
1029/*
1030 * Wait for vdev trim threads which were listed to cleanly exit.
1031 */
1032void
1033vdev_trim_stop_wait(spa_t *spa, list_t *vd_list)
1034{
14e4e3cb 1035 (void) spa;
1b939560
BB
1036 vdev_t *vd;
1037
1038 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1039
1040 while ((vd = list_remove_head(vd_list)) != NULL) {
1041 mutex_enter(&vd->vdev_trim_lock);
1042 vdev_trim_stop_wait_impl(vd);
1043 mutex_exit(&vd->vdev_trim_lock);
1044 }
1045}
1046
1047/*
1048 * Stop trimming a device, with the resultant trimming state being tgt_state.
1049 * For blocking behavior pass NULL for vd_list. Otherwise, when a list_t is
1050 * provided the stopping vdev is inserted in to the list. Callers are then
1051 * required to call vdev_trim_stop_wait() to block for all the trim threads
1052 * to exit. The caller must hold vdev_trim_lock and must not be writing to
1053 * the spa config, as the trimming thread may try to enter the config as a
1054 * reader before exiting.
1055 */
1056void
1057vdev_trim_stop(vdev_t *vd, vdev_trim_state_t tgt_state, list_t *vd_list)
1058{
1059 ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
1060 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1061 ASSERT(vd->vdev_ops->vdev_op_leaf);
1062 ASSERT(vdev_is_concrete(vd));
1063
1064 /*
1065 * Allow cancel requests to proceed even if the trim thread has
1066 * stopped.
1067 */
1068 if (vd->vdev_trim_thread == NULL && tgt_state != VDEV_TRIM_CANCELED)
1069 return;
1070
1071 vdev_trim_change_state(vd, tgt_state, 0, 0, 0);
1072 vd->vdev_trim_exit_wanted = B_TRUE;
1073
1074 if (vd_list == NULL) {
1075 vdev_trim_stop_wait_impl(vd);
1076 } else {
1077 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1078 list_insert_tail(vd_list, vd);
1079 }
1080}
1081
1082/*
1083 * Requests that all listed vdevs stop trimming.
1084 */
1085static void
1086vdev_trim_stop_all_impl(vdev_t *vd, vdev_trim_state_t tgt_state,
1087 list_t *vd_list)
1088{
1089 if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
1090 mutex_enter(&vd->vdev_trim_lock);
1091 vdev_trim_stop(vd, tgt_state, vd_list);
1092 mutex_exit(&vd->vdev_trim_lock);
1093 return;
1094 }
1095
1096 for (uint64_t i = 0; i < vd->vdev_children; i++) {
1097 vdev_trim_stop_all_impl(vd->vdev_child[i], tgt_state,
1098 vd_list);
1099 }
1100}
1101
1102/*
1103 * Convenience function to stop trimming of a vdev tree and set all trim
1104 * thread pointers to NULL.
1105 */
1106void
1107vdev_trim_stop_all(vdev_t *vd, vdev_trim_state_t tgt_state)
1108{
1109 spa_t *spa = vd->vdev_spa;
1110 list_t vd_list;
b7654bd7 1111 vdev_t *vd_l2cache;
1b939560
BB
1112
1113 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1114
1115 list_create(&vd_list, sizeof (vdev_t),
1116 offsetof(vdev_t, vdev_trim_node));
1117
1118 vdev_trim_stop_all_impl(vd, tgt_state, &vd_list);
b7654bd7
GA
1119
1120 /*
1121 * Iterate over cache devices and request stop trimming the
1122 * whole device in case we export the pool or remove the cache
1123 * device prematurely.
1124 */
1125 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1126 vd_l2cache = spa->spa_l2cache.sav_vdevs[i];
1127 vdev_trim_stop_all_impl(vd_l2cache, tgt_state, &vd_list);
1128 }
1129
1b939560
BB
1130 vdev_trim_stop_wait(spa, &vd_list);
1131
1132 if (vd->vdev_spa->spa_sync_on) {
1133 /* Make sure that our state has been synced to disk */
1134 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
1135 }
1136
1137 list_destroy(&vd_list);
1138}
1139
1140/*
1141 * Conditionally restarts a manual TRIM given its on-disk state.
1142 */
1143void
1144vdev_trim_restart(vdev_t *vd)
1145{
1146 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1147 ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
1148
1149 if (vd->vdev_leaf_zap != 0) {
1150 mutex_enter(&vd->vdev_trim_lock);
1151 uint64_t trim_state = VDEV_TRIM_NONE;
1152 int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
1153 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
1154 sizeof (trim_state), 1, &trim_state);
1155 ASSERT(err == 0 || err == ENOENT);
1156 vd->vdev_trim_state = trim_state;
1157
1158 uint64_t timestamp = 0;
1159 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
1160 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_ACTION_TIME,
1161 sizeof (timestamp), 1, &timestamp);
1162 ASSERT(err == 0 || err == ENOENT);
2c3a8370 1163 vd->vdev_trim_action_time = timestamp;
1b939560
BB
1164
1165 if (vd->vdev_trim_state == VDEV_TRIM_SUSPENDED ||
1166 vd->vdev_offline) {
1167 /* load progress for reporting, but don't resume */
1168 VERIFY0(vdev_trim_load(vd));
1169 } else if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE &&
1170 vdev_writeable(vd) && !vd->vdev_top->vdev_removing &&
1171 vd->vdev_trim_thread == NULL) {
1172 VERIFY0(vdev_trim_load(vd));
1173 vdev_trim(vd, vd->vdev_trim_rate,
1174 vd->vdev_trim_partial, vd->vdev_trim_secure);
1175 }
1176
1177 mutex_exit(&vd->vdev_trim_lock);
1178 }
1179
1180 for (uint64_t i = 0; i < vd->vdev_children; i++) {
1181 vdev_trim_restart(vd->vdev_child[i]);
1182 }
1183}
1184
1185/*
1186 * Used by the automatic TRIM when ZFS_DEBUG_TRIM is set to verify that
1187 * every TRIM range is contained within ms_allocatable.
1188 */
1189static void
1190vdev_trim_range_verify(void *arg, uint64_t start, uint64_t size)
1191{
1192 trim_args_t *ta = arg;
1193 metaslab_t *msp = ta->trim_msp;
1194
1195 VERIFY3B(msp->ms_loaded, ==, B_TRUE);
1196 VERIFY3U(msp->ms_disabled, >, 0);
ca577779 1197 VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
1b939560
BB
1198}
1199
1200/*
1201 * Each automatic TRIM thread is responsible for managing the trimming of a
1202 * top-level vdev in the pool. No automatic TRIM state is maintained on-disk.
1203 *
1204 * N.B. This behavior is different from a manual TRIM where a thread
1205 * is created for each leaf vdev, instead of each top-level vdev.
1206 */
460748d4 1207static __attribute__((noreturn)) void
1b939560
BB
1208vdev_autotrim_thread(void *arg)
1209{
1210 vdev_t *vd = arg;
1211 spa_t *spa = vd->vdev_spa;
1212 int shift = 0;
1213
1214 mutex_enter(&vd->vdev_autotrim_lock);
1215 ASSERT3P(vd->vdev_top, ==, vd);
1216 ASSERT3P(vd->vdev_autotrim_thread, !=, NULL);
1217 mutex_exit(&vd->vdev_autotrim_lock);
1218 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1219
1b939560
BB
1220 while (!vdev_autotrim_should_stop(vd)) {
1221 int txgs_per_trim = MAX(zfs_trim_txg_batch, 1);
7822b50f
VS
1222 uint64_t extent_bytes_max = zfs_trim_extent_bytes_max;
1223 uint64_t extent_bytes_min = zfs_trim_extent_bytes_min;
1b939560
BB
1224
1225 /*
1226 * All of the metaslabs are divided in to groups of size
1227 * num_metaslabs / zfs_trim_txg_batch. Each of these groups
1228 * is composed of metaslabs which are spread evenly over the
1229 * device.
1230 *
1231 * For example, when zfs_trim_txg_batch = 32 (default) then
1232 * group 0 will contain metaslabs 0, 32, 64, ...;
1233 * group 1 will contain metaslabs 1, 33, 65, ...;
1234 * group 2 will contain metaslabs 2, 34, 66, ...; and so on.
1235 *
1236 * On each pass through the while() loop one of these groups
1237 * is selected. This is accomplished by using a shift value
1238 * to select the starting metaslab, then striding over the
1239 * metaslabs using the zfs_trim_txg_batch size. This is
1240 * done to accomplish two things.
1241 *
1242 * 1) By dividing the metaslabs in to groups, and making sure
1243 * that each group takes a minimum of one txg to process.
1244 * Then zfs_trim_txg_batch controls the minimum number of
1245 * txgs which must occur before a metaslab is revisited.
1246 *
1247 * 2) Selecting non-consecutive metaslabs distributes the
1248 * TRIM commands for a group evenly over the entire device.
1249 * This can be advantageous for certain types of devices.
1250 */
1251 for (uint64_t i = shift % txgs_per_trim; i < vd->vdev_ms_count;
1252 i += txgs_per_trim) {
1253 metaslab_t *msp = vd->vdev_ms[i];
1254 range_tree_t *trim_tree;
65d10bd8
KJ
1255 boolean_t issued_trim = B_FALSE;
1256 boolean_t wait_aborted = B_FALSE;
1b939560
BB
1257
1258 spa_config_exit(spa, SCL_CONFIG, FTAG);
1259 metaslab_disable(msp);
1260 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1261
1262 mutex_enter(&msp->ms_lock);
1263
1264 /*
1265 * Skip the metaslab when it has never been allocated
1266 * or when there are no recent frees to trim.
1267 */
1268 if (msp->ms_sm == NULL ||
1269 range_tree_is_empty(msp->ms_trim)) {
1270 mutex_exit(&msp->ms_lock);
f09fda50 1271 metaslab_enable(msp, B_FALSE, B_FALSE);
1b939560
BB
1272 continue;
1273 }
1274
1275 /*
1276 * Skip the metaslab when it has already been disabled.
1277 * This may happen when a manual TRIM or initialize
1278 * operation is running concurrently. In the case
1279 * of a manual TRIM, the ms_trim tree will have been
1280 * vacated. Only ranges added after the manual TRIM
1281 * disabled the metaslab will be included in the tree.
1282 * These will be processed when the automatic TRIM
1283 * next revisits this metaslab.
1284 */
1285 if (msp->ms_disabled > 1) {
1286 mutex_exit(&msp->ms_lock);
f09fda50 1287 metaslab_enable(msp, B_FALSE, B_FALSE);
1b939560
BB
1288 continue;
1289 }
1290
1291 /*
1292 * Allocate an empty range tree which is swapped in
1293 * for the existing ms_trim tree while it is processed.
1294 */
ca577779
PD
1295 trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL,
1296 0, 0);
1b939560
BB
1297 range_tree_swap(&msp->ms_trim, &trim_tree);
1298 ASSERT(range_tree_is_empty(msp->ms_trim));
1299
1300 /*
1301 * There are two cases when constructing the per-vdev
1302 * trim trees for a metaslab. If the top-level vdev
1303 * has no children then it is also a leaf and should
1304 * be trimmed. Otherwise our children are the leaves
1305 * and a trim tree should be constructed for each.
1306 */
1307 trim_args_t *tap;
1308 uint64_t children = vd->vdev_children;
1309 if (children == 0) {
1310 children = 1;
1311 tap = kmem_zalloc(sizeof (trim_args_t) *
1312 children, KM_SLEEP);
1313 tap[0].trim_vdev = vd;
1314 } else {
1315 tap = kmem_zalloc(sizeof (trim_args_t) *
1316 children, KM_SLEEP);
1317
1318 for (uint64_t c = 0; c < children; c++) {
1319 tap[c].trim_vdev = vd->vdev_child[c];
1320 }
1321 }
1322
1323 for (uint64_t c = 0; c < children; c++) {
1324 trim_args_t *ta = &tap[c];
1325 vdev_t *cvd = ta->trim_vdev;
1326
1327 ta->trim_msp = msp;
1328 ta->trim_extent_bytes_max = extent_bytes_max;
1329 ta->trim_extent_bytes_min = extent_bytes_min;
1330 ta->trim_type = TRIM_TYPE_AUTO;
1331 ta->trim_flags = 0;
1332
1333 if (cvd->vdev_detached ||
1334 !vdev_writeable(cvd) ||
1335 !cvd->vdev_has_trim ||
1336 cvd->vdev_trim_thread != NULL) {
1337 continue;
1338 }
1339
1340 /*
1341 * When a device has an attached hot spare, or
1342 * is being replaced it will not be trimmed.
1343 * This is done to avoid adding additional
1344 * stress to a potentially unhealthy device,
1345 * and to minimize the required rebuild time.
1346 */
1347 if (!cvd->vdev_ops->vdev_op_leaf)
1348 continue;
1349
ca577779
PD
1350 ta->trim_tree = range_tree_create(NULL,
1351 RANGE_SEG64, NULL, 0, 0);
1b939560
BB
1352 range_tree_walk(trim_tree,
1353 vdev_trim_range_add, ta);
1354 }
1355
1356 mutex_exit(&msp->ms_lock);
1357 spa_config_exit(spa, SCL_CONFIG, FTAG);
1358
1359 /*
1360 * Issue the TRIM I/Os for all ranges covered by the
1361 * TRIM trees. These ranges are safe to TRIM because
1362 * no new allocations will be performed until the call
1363 * to metaslab_enabled() below.
1364 */
1365 for (uint64_t c = 0; c < children; c++) {
1366 trim_args_t *ta = &tap[c];
1367
1368 /*
1369 * Always yield to a manual TRIM if one has
1370 * been started for the child vdev.
1371 */
1372 if (ta->trim_tree == NULL ||
1373 ta->trim_vdev->vdev_trim_thread != NULL) {
1374 continue;
1375 }
1376
1377 /*
1378 * After this point metaslab_enable() must be
1379 * called with the sync flag set. This is done
1380 * here because vdev_trim_ranges() is allowed
1381 * to be interrupted (EINTR) before issuing all
1382 * of the required TRIM I/Os.
1383 */
1384 issued_trim = B_TRUE;
1385
1386 int error = vdev_trim_ranges(ta);
1387 if (error)
1388 break;
1389 }
1390
1391 /*
1392 * Verify every range which was trimmed is still
1393 * contained within the ms_allocatable tree.
1394 */
1395 if (zfs_flags & ZFS_DEBUG_TRIM) {
1396 mutex_enter(&msp->ms_lock);
1397 VERIFY0(metaslab_load(msp));
1398 VERIFY3P(tap[0].trim_msp, ==, msp);
1399 range_tree_walk(trim_tree,
1400 vdev_trim_range_verify, &tap[0]);
1401 mutex_exit(&msp->ms_lock);
1402 }
1403
1404 range_tree_vacate(trim_tree, NULL, NULL);
1405 range_tree_destroy(trim_tree);
1406
65d10bd8
KJ
1407 /*
1408 * Wait for couples of kicks, to ensure the trim io is
1409 * synced. If the wait is aborted due to
1410 * vdev_autotrim_exit_wanted, we need to signal
1411 * metaslab_enable() to wait for sync.
1412 */
1413 if (issued_trim) {
1414 wait_aborted = vdev_autotrim_wait_kick(vd,
1415 TXG_CONCURRENT_STATES + TXG_DEFER_SIZE);
1416 }
1417
1418 metaslab_enable(msp, wait_aborted, B_FALSE);
1b939560
BB
1419 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1420
1421 for (uint64_t c = 0; c < children; c++) {
1422 trim_args_t *ta = &tap[c];
1423
1424 if (ta->trim_tree == NULL)
1425 continue;
1426
1427 range_tree_vacate(ta->trim_tree, NULL, NULL);
1428 range_tree_destroy(ta->trim_tree);
1429 }
1430
1431 kmem_free(tap, sizeof (trim_args_t) * children);
65d10bd8
KJ
1432
1433 if (vdev_autotrim_should_stop(vd))
1434 break;
1b939560
BB
1435 }
1436
1437 spa_config_exit(spa, SCL_CONFIG, FTAG);
1438
65d10bd8 1439 vdev_autotrim_wait_kick(vd, 1);
1b939560
BB
1440
1441 shift++;
1442 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1443 }
1444
1445 for (uint64_t c = 0; c < vd->vdev_children; c++) {
1446 vdev_t *cvd = vd->vdev_child[c];
1447 mutex_enter(&cvd->vdev_trim_io_lock);
1448
1449 while (cvd->vdev_trim_inflight[1] > 0) {
1450 cv_wait(&cvd->vdev_trim_io_cv,
1451 &cvd->vdev_trim_io_lock);
1452 }
1453 mutex_exit(&cvd->vdev_trim_io_lock);
1454 }
1455
1456 spa_config_exit(spa, SCL_CONFIG, FTAG);
1457
1458 /*
1459 * When exiting because the autotrim property was set to off, then
1460 * abandon any unprocessed ms_trim ranges to reclaim the memory.
1461 */
1462 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_OFF) {
1463 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
1464 metaslab_t *msp = vd->vdev_ms[i];
1465
1466 mutex_enter(&msp->ms_lock);
1467 range_tree_vacate(msp->ms_trim, NULL, NULL);
1468 mutex_exit(&msp->ms_lock);
1469 }
1470 }
1471
1472 mutex_enter(&vd->vdev_autotrim_lock);
1473 ASSERT(vd->vdev_autotrim_thread != NULL);
1474 vd->vdev_autotrim_thread = NULL;
1475 cv_broadcast(&vd->vdev_autotrim_cv);
1476 mutex_exit(&vd->vdev_autotrim_lock);
22dcf891
MM
1477
1478 thread_exit();
1b939560
BB
1479}
1480
1481/*
1482 * Starts an autotrim thread, if needed, for each top-level vdev which can be
1483 * trimmed. A top-level vdev which has been evacuated will never be trimmed.
1484 */
1485void
1486vdev_autotrim(spa_t *spa)
1487{
1488 vdev_t *root_vd = spa->spa_root_vdev;
1489
1490 for (uint64_t i = 0; i < root_vd->vdev_children; i++) {
1491 vdev_t *tvd = root_vd->vdev_child[i];
1492
1493 mutex_enter(&tvd->vdev_autotrim_lock);
1494 if (vdev_writeable(tvd) && !tvd->vdev_removing &&
1495 tvd->vdev_autotrim_thread == NULL) {
1496 ASSERT3P(tvd->vdev_top, ==, tvd);
1497
1498 tvd->vdev_autotrim_thread = thread_create(NULL, 0,
1499 vdev_autotrim_thread, tvd, 0, &p0, TS_RUN,
1500 maxclsyspri);
1501 ASSERT(tvd->vdev_autotrim_thread != NULL);
1502 }
1503 mutex_exit(&tvd->vdev_autotrim_lock);
1504 }
1505}
1506
1507/*
1508 * Wait for the vdev_autotrim_thread associated with the passed top-level
1509 * vdev to be terminated (canceled or stopped).
1510 */
1511void
1512vdev_autotrim_stop_wait(vdev_t *tvd)
1513{
1514 mutex_enter(&tvd->vdev_autotrim_lock);
1515 if (tvd->vdev_autotrim_thread != NULL) {
1516 tvd->vdev_autotrim_exit_wanted = B_TRUE;
65d10bd8
KJ
1517 cv_broadcast(&tvd->vdev_autotrim_kick_cv);
1518 cv_wait(&tvd->vdev_autotrim_cv,
1519 &tvd->vdev_autotrim_lock);
1b939560
BB
1520
1521 ASSERT3P(tvd->vdev_autotrim_thread, ==, NULL);
1522 tvd->vdev_autotrim_exit_wanted = B_FALSE;
1523 }
1524 mutex_exit(&tvd->vdev_autotrim_lock);
1525}
1526
65d10bd8
KJ
1527void
1528vdev_autotrim_kick(spa_t *spa)
1529{
1530 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1531
1532 vdev_t *root_vd = spa->spa_root_vdev;
1533 vdev_t *tvd;
1534
1535 for (uint64_t i = 0; i < root_vd->vdev_children; i++) {
1536 tvd = root_vd->vdev_child[i];
1537
1538 mutex_enter(&tvd->vdev_autotrim_lock);
1539 if (tvd->vdev_autotrim_thread != NULL)
1540 cv_broadcast(&tvd->vdev_autotrim_kick_cv);
1541 mutex_exit(&tvd->vdev_autotrim_lock);
1542 }
1543}
1544
1b939560
BB
1545/*
1546 * Wait for all of the vdev_autotrim_thread associated with the pool to
1547 * be terminated (canceled or stopped).
1548 */
1549void
1550vdev_autotrim_stop_all(spa_t *spa)
1551{
1552 vdev_t *root_vd = spa->spa_root_vdev;
1553
1554 for (uint64_t i = 0; i < root_vd->vdev_children; i++)
1555 vdev_autotrim_stop_wait(root_vd->vdev_child[i]);
1556}
1557
1558/*
1559 * Conditionally restart all of the vdev_autotrim_thread's for the pool.
1560 */
1561void
1562vdev_autotrim_restart(spa_t *spa)
1563{
1564 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1565
1566 if (spa->spa_autotrim)
1567 vdev_autotrim(spa);
1568}
1569
460748d4 1570static __attribute__((noreturn)) void
b7654bd7
GA
1571vdev_trim_l2arc_thread(void *arg)
1572{
1573 vdev_t *vd = arg;
1574 spa_t *spa = vd->vdev_spa;
1575 l2arc_dev_t *dev = l2arc_vdev_get(vd);
861166b0 1576 trim_args_t ta = {0};
b7654bd7
GA
1577 range_seg64_t physical_rs;
1578
1579 ASSERT(vdev_is_concrete(vd));
1580 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1581
1582 vd->vdev_trim_last_offset = 0;
1583 vd->vdev_trim_rate = 0;
1584 vd->vdev_trim_partial = 0;
1585 vd->vdev_trim_secure = 0;
1586
b7654bd7
GA
1587 ta.trim_vdev = vd;
1588 ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1589 ta.trim_type = TRIM_TYPE_MANUAL;
1590 ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
1591 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
1592 ta.trim_flags = 0;
1593
1594 physical_rs.rs_start = vd->vdev_trim_bytes_done = 0;
1595 physical_rs.rs_end = vd->vdev_trim_bytes_est =
1596 vdev_get_min_asize(vd);
1597
1598 range_tree_add(ta.trim_tree, physical_rs.rs_start,
1599 physical_rs.rs_end - physical_rs.rs_start);
1600
1601 mutex_enter(&vd->vdev_trim_lock);
1602 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
1603 mutex_exit(&vd->vdev_trim_lock);
1604
1605 (void) vdev_trim_ranges(&ta);
1606
1607 spa_config_exit(spa, SCL_CONFIG, FTAG);
1608 mutex_enter(&vd->vdev_trim_io_lock);
1609 while (vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] > 0) {
1610 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
1611 }
1612 mutex_exit(&vd->vdev_trim_io_lock);
1613
1614 range_tree_vacate(ta.trim_tree, NULL, NULL);
1615 range_tree_destroy(ta.trim_tree);
1616
1617 mutex_enter(&vd->vdev_trim_lock);
1618 if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) {
1619 vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
1620 vd->vdev_trim_rate, vd->vdev_trim_partial,
1621 vd->vdev_trim_secure);
1622 }
1623 ASSERT(vd->vdev_trim_thread != NULL ||
1624 vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] == 0);
1625
1626 /*
1627 * Drop the vdev_trim_lock while we sync out the txg since it's
1628 * possible that a device might be trying to come online and
1629 * must check to see if it needs to restart a trim. That thread
1630 * will be holding the spa_config_lock which would prevent the
1631 * txg_wait_synced from completing. Same strategy as in
1632 * vdev_trim_thread().
1633 */
1634 mutex_exit(&vd->vdev_trim_lock);
1635 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
1636 mutex_enter(&vd->vdev_trim_lock);
1637
1638 /*
1639 * Update the header of the cache device here, before
1640 * broadcasting vdev_trim_cv which may lead to the removal
1641 * of the device. The same applies for setting l2ad_trim_all to
1642 * false.
1643 */
1644 spa_config_enter(vd->vdev_spa, SCL_L2ARC, vd,
1645 RW_READER);
861166b0 1646 memset(dev->l2ad_dev_hdr, 0, dev->l2ad_dev_hdr_asize);
b7654bd7
GA
1647 l2arc_dev_hdr_update(dev);
1648 spa_config_exit(vd->vdev_spa, SCL_L2ARC, vd);
1649
1650 vd->vdev_trim_thread = NULL;
1651 if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE)
1652 dev->l2ad_trim_all = B_FALSE;
1653
1654 cv_broadcast(&vd->vdev_trim_cv);
1655 mutex_exit(&vd->vdev_trim_lock);
1656
1657 thread_exit();
1658}
1659
1660/*
1661 * Punches out TRIM threads for the L2ARC devices in a spa and assigns them
1662 * to vd->vdev_trim_thread variable. This facilitates the management of
1663 * trimming the whole cache device using TRIM_TYPE_MANUAL upon addition
1664 * to a pool or pool creation or when the header of the device is invalid.
1665 */
1666void
1667vdev_trim_l2arc(spa_t *spa)
1668{
1669 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1670
1671 /*
1672 * Locate the spa's l2arc devices and kick off TRIM threads.
1673 */
1674 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1675 vdev_t *vd = spa->spa_l2cache.sav_vdevs[i];
1676 l2arc_dev_t *dev = l2arc_vdev_get(vd);
1677
1678 if (dev == NULL || !dev->l2ad_trim_all) {
1679 /*
1680 * Don't attempt TRIM if the vdev is UNAVAIL or if the
1681 * cache device was not marked for whole device TRIM
1682 * (ie l2arc_trim_ahead = 0, or the L2ARC device header
1683 * is valid with trim_state = VDEV_TRIM_COMPLETE and
1684 * l2ad_log_entries > 0).
1685 */
1686 continue;
1687 }
1688
1689 mutex_enter(&vd->vdev_trim_lock);
1690 ASSERT(vd->vdev_ops->vdev_op_leaf);
1691 ASSERT(vdev_is_concrete(vd));
1692 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1693 ASSERT(!vd->vdev_detached);
1694 ASSERT(!vd->vdev_trim_exit_wanted);
1695 ASSERT(!vd->vdev_top->vdev_removing);
1696 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
1697 vd->vdev_trim_thread = thread_create(NULL, 0,
1698 vdev_trim_l2arc_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
1699 mutex_exit(&vd->vdev_trim_lock);
1700 }
1701}
1702
1703/*
1704 * A wrapper which calls vdev_trim_ranges(). It is intended to be called
1705 * on leaf vdevs.
1706 */
1707int
1708vdev_trim_simple(vdev_t *vd, uint64_t start, uint64_t size)
1709{
861166b0
AZ
1710 trim_args_t ta = {0};
1711 range_seg64_t physical_rs;
1712 int error;
b7654bd7
GA
1713 physical_rs.rs_start = start;
1714 physical_rs.rs_end = start + size;
1715
1716 ASSERT(vdev_is_concrete(vd));
1717 ASSERT(vd->vdev_ops->vdev_op_leaf);
1718 ASSERT(!vd->vdev_detached);
1719 ASSERT(!vd->vdev_top->vdev_removing);
1720
b7654bd7
GA
1721 ta.trim_vdev = vd;
1722 ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1723 ta.trim_type = TRIM_TYPE_SIMPLE;
1724 ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
1725 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
1726 ta.trim_flags = 0;
1727
1728 ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
1729
1730 if (physical_rs.rs_end > physical_rs.rs_start) {
1731 range_tree_add(ta.trim_tree, physical_rs.rs_start,
1732 physical_rs.rs_end - physical_rs.rs_start);
1733 } else {
1734 ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
1735 }
1736
1737 error = vdev_trim_ranges(&ta);
1738
1739 mutex_enter(&vd->vdev_trim_io_lock);
1740 while (vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE] > 0) {
1741 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
1742 }
1743 mutex_exit(&vd->vdev_trim_io_lock);
1744
1745 range_tree_vacate(ta.trim_tree, NULL, NULL);
1746 range_tree_destroy(ta.trim_tree);
1747
1748 return (error);
1749}
1750
1b939560
BB
1751EXPORT_SYMBOL(vdev_trim);
1752EXPORT_SYMBOL(vdev_trim_stop);
1753EXPORT_SYMBOL(vdev_trim_stop_all);
1754EXPORT_SYMBOL(vdev_trim_stop_wait);
1755EXPORT_SYMBOL(vdev_trim_restart);
1756EXPORT_SYMBOL(vdev_autotrim);
1757EXPORT_SYMBOL(vdev_autotrim_stop_all);
1758EXPORT_SYMBOL(vdev_autotrim_stop_wait);
1759EXPORT_SYMBOL(vdev_autotrim_restart);
b7654bd7
GA
1760EXPORT_SYMBOL(vdev_trim_l2arc);
1761EXPORT_SYMBOL(vdev_trim_simple);
1b939560 1762
03fdcb9a 1763ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_max, UINT, ZMOD_RW,
7ada752a 1764 "Max size of TRIM commands, larger will be split");
1b939560 1765
03fdcb9a 1766ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_min, UINT, ZMOD_RW,
7ada752a 1767 "Min size of TRIM commands, smaller will be skipped");
1b939560 1768
03fdcb9a 1769ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, metaslab_skip, UINT, ZMOD_RW,
7ada752a 1770 "Skip metaslabs which have never been initialized");
1b939560 1771
03fdcb9a 1772ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, txg_batch, UINT, ZMOD_RW,
7ada752a 1773 "Min number of txgs to aggregate frees before issuing TRIM");
1b939560 1774
03fdcb9a 1775ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, queue_limit, UINT, ZMOD_RW,
7ada752a 1776 "Max queued TRIMs outstanding per leaf vdev");