]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/zcp.c
Fix 'zfs remap <poolname@snapname>'
[mirror_zfs.git] / module / zfs / zcp.c
CommitLineData
d99a0153
CW
1/*
2 * CDDL HEADER START
3 *
4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
7 * 1.0 of the CDDL.
8 *
9 * A full copy of the text of the CDDL should have accompanied this
10 * source. A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
12 *
13 * CDDL HEADER END
14 */
15
16/*
234c91c5 17 * Copyright (c) 2016, 2017 by Delphix. All rights reserved.
d99a0153
CW
18 */
19
20/*
21 * ZFS Channel Programs (ZCP)
22 *
23 * The ZCP interface allows various ZFS commands and operations ZFS
24 * administrative operations (e.g. creating and destroying snapshots, typically
25 * performed via an ioctl to /dev/zfs by the zfs(8) command and
26 * libzfs/libzfs_core) to be run * programmatically as a Lua script. A ZCP
27 * script is run as a dsl_sync_task and fully executed during one transaction
28 * group sync. This ensures that no other changes can be written concurrently
29 * with a running Lua script. Combining multiple calls to the exposed ZFS
30 * functions into one script gives a number of benefits:
31 *
32 * 1. Atomicity. For some compound or iterative operations, it's useful to be
33 * able to guarantee that the state of a pool has not changed between calls to
34 * ZFS.
35 *
36 * 2. Performance. If a large number of changes need to be made (e.g. deleting
37 * many filesystems), there can be a significant performance penalty as a
38 * result of the need to wait for a transaction group sync to pass for every
39 * single operation. When expressed as a single ZCP script, all these changes
40 * can be performed at once in one txg sync.
41 *
42 * A modified version of the Lua 5.2 interpreter is used to run channel program
43 * scripts. The Lua 5.2 manual can be found at:
44 *
45 * http://www.lua.org/manual/5.2/
46 *
47 * If being run by a user (via an ioctl syscall), executing a ZCP script
48 * requires root privileges in the global zone.
49 *
50 * Scripts are passed to zcp_eval() as a string, then run in a synctask by
51 * zcp_eval_sync(). Arguments can be passed into the Lua script as an nvlist,
52 * which will be converted to a Lua table. Similarly, values returned from
53 * a ZCP script will be converted to an nvlist. See zcp_lua_to_nvlist_impl()
54 * for details on exact allowed types and conversion.
55 *
56 * ZFS functionality is exposed to a ZCP script as a library of function calls.
57 * These calls are sorted into submodules, such as zfs.list and zfs.sync, for
58 * iterators and synctasks, respectively. Each of these submodules resides in
59 * its own source file, with a zcp_*_info structure describing each library
60 * call in the submodule.
61 *
62 * Error handling in ZCP scripts is handled by a number of different methods
63 * based on severity:
64 *
65 * 1. Memory and time limits are in place to prevent a channel program from
66 * consuming excessive system or running forever. If one of these limits is
67 * hit, the channel program will be stopped immediately and return from
68 * zcp_eval() with an error code. No attempt will be made to roll back or undo
69 * any changes made by the channel program before the error occured.
70 * Consumers invoking zcp_eval() from elsewhere in the kernel may pass a time
71 * limit of 0, disabling the time limit.
72 *
73 * 2. Internal Lua errors can occur as a result of a syntax error, calling a
74 * library function with incorrect arguments, invoking the error() function,
75 * failing an assert(), or other runtime errors. In these cases the channel
76 * program will stop executing and return from zcp_eval() with an error code.
77 * In place of a return value, an error message will also be returned in the
78 * 'result' nvlist containing information about the error. No attempt will be
79 * made to roll back or undo any changes made by the channel program before the
80 * error occured.
81 *
82 * 3. If an error occurs inside a ZFS library call which returns an error code,
83 * the error is returned to the Lua script to be handled as desired.
84 *
85 * In the first two cases, Lua's error-throwing mechanism is used, which
86 * longjumps out of the script execution with luaL_error() and returns with the
87 * error.
88 *
89 * See zfs-program(8) for more information on high level usage.
90 */
91
92#include <sys/lua/lua.h>
93#include <sys/lua/lualib.h>
94#include <sys/lua/lauxlib.h>
95
96#include <sys/dsl_prop.h>
97#include <sys/dsl_synctask.h>
98#include <sys/dsl_dataset.h>
99#include <sys/zcp.h>
100#include <sys/zcp_iter.h>
101#include <sys/zcp_prop.h>
102#include <sys/zcp_global.h>
103#include <util/sscanf.h>
104
105#ifndef KM_NORMALPRI
106#define KM_NORMALPRI 0
107#endif
108
234c91c5
CW
109#define ZCP_NVLIST_MAX_DEPTH 20
110
d99a0153
CW
111uint64_t zfs_lua_check_instrlimit_interval = 100;
112uint64_t zfs_lua_max_instrlimit = ZCP_MAX_INSTRLIMIT;
113uint64_t zfs_lua_max_memlimit = ZCP_MAX_MEMLIMIT;
114
234c91c5
CW
115/*
116 * Forward declarations for mutually recursive functions
117 */
d99a0153
CW
118static int zcp_nvpair_value_to_lua(lua_State *, nvpair_t *, char *, int);
119static int zcp_lua_to_nvlist_impl(lua_State *, int, nvlist_t *, const char *,
120 int);
121
122typedef struct zcp_alloc_arg {
123 boolean_t aa_must_succeed;
124 int64_t aa_alloc_remaining;
125 int64_t aa_alloc_limit;
126} zcp_alloc_arg_t;
127
128typedef struct zcp_eval_arg {
129 lua_State *ea_state;
130 zcp_alloc_arg_t *ea_allocargs;
131 cred_t *ea_cred;
132 nvlist_t *ea_outnvl;
133 int ea_result;
134 uint64_t ea_instrlimit;
135} zcp_eval_arg_t;
136
d99a0153
CW
137/*
138 * The outer-most error callback handler for use with lua_pcall(). On
139 * error Lua will call this callback with a single argument that
140 * represents the error value. In most cases this will be a string
141 * containing an error message, but channel programs can use Lua's
142 * error() function to return arbitrary objects as errors. This callback
143 * returns (on the Lua stack) the original error object along with a traceback.
144 *
145 * Fatal Lua errors can occur while resources are held, so we also call any
146 * registered cleanup function here.
147 */
148static int
149zcp_error_handler(lua_State *state)
150{
151 const char *msg;
152
153 zcp_cleanup(state);
154
155 VERIFY3U(1, ==, lua_gettop(state));
156 msg = lua_tostring(state, 1);
157 luaL_traceback(state, state, msg, 1);
158 return (1);
159}
160
161int
162zcp_argerror(lua_State *state, int narg, const char *msg, ...)
163{
164 va_list alist;
165
166 va_start(alist, msg);
167 const char *buf = lua_pushvfstring(state, msg, alist);
168 va_end(alist);
169
170 return (luaL_argerror(state, narg, buf));
171}
172
173/*
174 * Install a new cleanup function, which will be invoked with the given
175 * opaque argument if a fatal error causes the Lua interpreter to longjump out
176 * of a function call.
177 *
178 * If an error occurs, the cleanup function will be invoked exactly once and
179 * then unreigstered.
5b72a38d
SD
180 *
181 * Returns the registered cleanup handler so the caller can deregister it
182 * if no error occurs.
d99a0153 183 */
5b72a38d 184zcp_cleanup_handler_t *
d99a0153
CW
185zcp_register_cleanup(lua_State *state, zcp_cleanup_t cleanfunc, void *cleanarg)
186{
187 zcp_run_info_t *ri = zcp_run_info(state);
d99a0153 188
5b72a38d
SD
189 zcp_cleanup_handler_t *zch = kmem_alloc(sizeof (*zch), KM_SLEEP);
190 zch->zch_cleanup_func = cleanfunc;
191 zch->zch_cleanup_arg = cleanarg;
192 list_insert_head(&ri->zri_cleanup_handlers, zch);
193
194 return (zch);
d99a0153
CW
195}
196
197void
5b72a38d 198zcp_deregister_cleanup(lua_State *state, zcp_cleanup_handler_t *zch)
d99a0153
CW
199{
200 zcp_run_info_t *ri = zcp_run_info(state);
5b72a38d
SD
201 list_remove(&ri->zri_cleanup_handlers, zch);
202 kmem_free(zch, sizeof (*zch));
d99a0153
CW
203}
204
205/*
5b72a38d
SD
206 * Execute the currently registered cleanup handlers then free them and
207 * destroy the handler list.
d99a0153
CW
208 */
209void
210zcp_cleanup(lua_State *state)
211{
212 zcp_run_info_t *ri = zcp_run_info(state);
213
5b72a38d
SD
214 for (zcp_cleanup_handler_t *zch =
215 list_remove_head(&ri->zri_cleanup_handlers); zch != NULL;
216 zch = list_remove_head(&ri->zri_cleanup_handlers)) {
217 zch->zch_cleanup_func(zch->zch_cleanup_arg);
218 kmem_free(zch, sizeof (*zch));
d99a0153
CW
219 }
220}
221
d99a0153
CW
222/*
223 * Convert the lua table at the given index on the Lua stack to an nvlist
224 * and return it.
225 *
226 * If the table can not be converted for any reason, NULL is returned and
227 * an error message is pushed onto the Lua stack.
228 */
229static nvlist_t *
230zcp_table_to_nvlist(lua_State *state, int index, int depth)
231{
232 nvlist_t *nvl;
233 /*
234 * Converting a Lua table to an nvlist with key uniqueness checking is
235 * O(n^2) in the number of keys in the nvlist, which can take a long
236 * time when we return a large table from a channel program.
237 * Furthermore, Lua's table interface *almost* guarantees unique keys
238 * on its own (details below). Therefore, we don't use fnvlist_alloc()
239 * here to avoid the built-in uniqueness checking.
240 *
241 * The *almost* is because it's possible to have key collisions between
242 * e.g. the string "1" and the number 1, or the string "true" and the
243 * boolean true, so we explicitly check that when we're looking at a
244 * key which is an integer / boolean or a string that can be parsed as
245 * one of those types. In the worst case this could still devolve into
246 * O(n^2), so we only start doing these checks on boolean/integer keys
247 * once we've seen a string key which fits this weird usage pattern.
248 *
249 * Ultimately, we still want callers to know that the keys in this
250 * nvlist are unique, so before we return this we set the nvlist's
251 * flags to reflect that.
252 */
253 VERIFY0(nvlist_alloc(&nvl, 0, KM_SLEEP));
254
255 /*
256 * Push an empty stack slot where lua_next() will store each
257 * table key.
258 */
259 lua_pushnil(state);
260 boolean_t saw_str_could_collide = B_FALSE;
261 while (lua_next(state, index) != 0) {
262 /*
263 * The next key-value pair from the table at index is
264 * now on the stack, with the key at stack slot -2 and
265 * the value at slot -1.
266 */
267 int err = 0;
268 char buf[32];
269 const char *key = NULL;
270 boolean_t key_could_collide = B_FALSE;
271
272 switch (lua_type(state, -2)) {
273 case LUA_TSTRING:
274 key = lua_tostring(state, -2);
275
276 /* check if this could collide with a number or bool */
277 long long tmp;
278 int parselen;
279 if ((sscanf(key, "%lld%n", &tmp, &parselen) > 0 &&
280 parselen == strlen(key)) ||
281 strcmp(key, "true") == 0 ||
282 strcmp(key, "false") == 0) {
283 key_could_collide = B_TRUE;
284 saw_str_could_collide = B_TRUE;
285 }
286 break;
287 case LUA_TBOOLEAN:
288 key = (lua_toboolean(state, -2) == B_TRUE ?
289 "true" : "false");
290 if (saw_str_could_collide) {
291 key_could_collide = B_TRUE;
292 }
293 break;
294 case LUA_TNUMBER:
295 VERIFY3U(sizeof (buf), >,
296 snprintf(buf, sizeof (buf), "%lld",
297 (longlong_t)lua_tonumber(state, -2)));
298 key = buf;
299 if (saw_str_could_collide) {
300 key_could_collide = B_TRUE;
301 }
302 break;
303 default:
304 fnvlist_free(nvl);
305 (void) lua_pushfstring(state, "Invalid key "
306 "type '%s' in table",
307 lua_typename(state, lua_type(state, -2)));
308 return (NULL);
309 }
310 /*
311 * Check for type-mismatched key collisions, and throw an error.
312 */
313 if (key_could_collide && nvlist_exists(nvl, key)) {
314 fnvlist_free(nvl);
315 (void) lua_pushfstring(state, "Collision of "
316 "key '%s' in table", key);
317 return (NULL);
318 }
319 /*
320 * Recursively convert the table value and insert into
321 * the new nvlist with the parsed key. To prevent
322 * stack overflow on circular or heavily nested tables,
323 * we track the current nvlist depth.
324 */
325 if (depth >= ZCP_NVLIST_MAX_DEPTH) {
326 fnvlist_free(nvl);
327 (void) lua_pushfstring(state, "Maximum table "
328 "depth (%d) exceeded for table",
329 ZCP_NVLIST_MAX_DEPTH);
330 return (NULL);
331 }
332 err = zcp_lua_to_nvlist_impl(state, -1, nvl, key,
333 depth + 1);
334 if (err != 0) {
335 fnvlist_free(nvl);
336 /*
337 * Error message has been pushed to the lua
338 * stack by the recursive call.
339 */
340 return (NULL);
341 }
342 /*
343 * Pop the value pushed by lua_next().
344 */
345 lua_pop(state, 1);
346 }
347
348 /*
349 * Mark the nvlist as having unique keys. This is a little ugly, but we
350 * ensured above that there are no duplicate keys in the nvlist.
351 */
352 nvl->nvl_nvflag |= NV_UNIQUE_NAME;
353
354 return (nvl);
355}
356
357/*
358 * Convert a value from the given index into the lua stack to an nvpair, adding
359 * it to an nvlist with the given key.
360 *
361 * Values are converted as follows:
362 *
363 * string -> string
364 * number -> int64
365 * boolean -> boolean
366 * nil -> boolean (no value)
367 *
368 * Lua tables are converted to nvlists and then inserted. The table's keys
369 * are converted to strings then used as keys in the nvlist to store each table
370 * element. Keys are converted as follows:
371 *
372 * string -> no change
373 * number -> "%lld"
374 * boolean -> "true" | "false"
375 * nil -> error
376 *
377 * In the case of a key collision, an error is thrown.
378 *
379 * If an error is encountered, a nonzero error code is returned, and an error
380 * string will be pushed onto the Lua stack.
381 */
382static int
383zcp_lua_to_nvlist_impl(lua_State *state, int index, nvlist_t *nvl,
384 const char *key, int depth)
385{
386 /*
387 * Verify that we have enough remaining space in the lua stack to parse
388 * a key-value pair and push an error.
389 */
390 if (!lua_checkstack(state, 3)) {
391 (void) lua_pushstring(state, "Lua stack overflow");
392 return (1);
393 }
394
395 index = lua_absindex(state, index);
396
397 switch (lua_type(state, index)) {
398 case LUA_TNIL:
399 fnvlist_add_boolean(nvl, key);
400 break;
401 case LUA_TBOOLEAN:
402 fnvlist_add_boolean_value(nvl, key,
403 lua_toboolean(state, index));
404 break;
405 case LUA_TNUMBER:
406 fnvlist_add_int64(nvl, key, lua_tonumber(state, index));
407 break;
408 case LUA_TSTRING:
409 fnvlist_add_string(nvl, key, lua_tostring(state, index));
410 break;
411 case LUA_TTABLE: {
412 nvlist_t *value_nvl = zcp_table_to_nvlist(state, index, depth);
413 if (value_nvl == NULL)
414 return (EINVAL);
415
416 fnvlist_add_nvlist(nvl, key, value_nvl);
417 fnvlist_free(value_nvl);
418 break;
419 }
420 default:
421 (void) lua_pushfstring(state,
422 "Invalid value type '%s' for key '%s'",
423 lua_typename(state, lua_type(state, index)), key);
424 return (EINVAL);
425 }
426
427 return (0);
428}
429
430/*
431 * Convert a lua value to an nvpair, adding it to an nvlist with the given key.
432 */
433void
434zcp_lua_to_nvlist(lua_State *state, int index, nvlist_t *nvl, const char *key)
435{
436 /*
437 * On error, zcp_lua_to_nvlist_impl pushes an error string onto the Lua
438 * stack before returning with a nonzero error code. If an error is
439 * returned, throw a fatal lua error with the given string.
440 */
441 if (zcp_lua_to_nvlist_impl(state, index, nvl, key, 0) != 0)
442 (void) lua_error(state);
443}
444
445int
446zcp_lua_to_nvlist_helper(lua_State *state)
447{
448 nvlist_t *nv = (nvlist_t *)lua_touserdata(state, 2);
449 const char *key = (const char *)lua_touserdata(state, 1);
450 zcp_lua_to_nvlist(state, 3, nv, key);
451 return (0);
452}
453
454void
455zcp_convert_return_values(lua_State *state, nvlist_t *nvl,
456 const char *key, zcp_eval_arg_t *evalargs)
457{
458 int err;
459 lua_pushcfunction(state, zcp_lua_to_nvlist_helper);
460 lua_pushlightuserdata(state, (char *)key);
461 lua_pushlightuserdata(state, nvl);
462 lua_pushvalue(state, 1);
463 lua_remove(state, 1);
464 err = lua_pcall(state, 3, 0, 0); /* zcp_lua_to_nvlist_helper */
465 if (err != 0) {
466 zcp_lua_to_nvlist(state, 1, nvl, ZCP_RET_ERROR);
467 evalargs->ea_result = SET_ERROR(ECHRNG);
468 }
469}
470
471/*
472 * Push a Lua table representing nvl onto the stack. If it can't be
473 * converted, return EINVAL, fill in errbuf, and push nothing. errbuf may
474 * be specified as NULL, in which case no error string will be output.
475 *
476 * Most nvlists are converted as simple key->value Lua tables, but we make
477 * an exception for the case where all nvlist entries are BOOLEANs (a string
478 * key without a value). In Lua, a table key pointing to a value of Nil
479 * (no value) is equivalent to the key not existing, so a BOOLEAN nvlist
480 * entry can't be directly converted to a Lua table entry. Nvlists of entirely
481 * BOOLEAN entries are frequently used to pass around lists of datasets, so for
482 * convenience we check for this case, and convert it to a simple Lua array of
483 * strings.
484 */
485int
486zcp_nvlist_to_lua(lua_State *state, nvlist_t *nvl,
487 char *errbuf, int errbuf_len)
488{
489 nvpair_t *pair;
490 lua_newtable(state);
491 boolean_t has_values = B_FALSE;
492 /*
493 * If the list doesn't have any values, just convert it to a string
494 * array.
495 */
496 for (pair = nvlist_next_nvpair(nvl, NULL);
497 pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
498 if (nvpair_type(pair) != DATA_TYPE_BOOLEAN) {
499 has_values = B_TRUE;
500 break;
501 }
502 }
503 if (!has_values) {
504 int i = 1;
505 for (pair = nvlist_next_nvpair(nvl, NULL);
506 pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
507 (void) lua_pushinteger(state, i);
508 (void) lua_pushstring(state, nvpair_name(pair));
509 (void) lua_settable(state, -3);
510 i++;
511 }
512 } else {
513 for (pair = nvlist_next_nvpair(nvl, NULL);
514 pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
515 int err = zcp_nvpair_value_to_lua(state, pair,
516 errbuf, errbuf_len);
517 if (err != 0) {
518 lua_pop(state, 1);
519 return (err);
520 }
521 (void) lua_setfield(state, -2, nvpair_name(pair));
522 }
523 }
524 return (0);
525}
526
527/*
528 * Push a Lua object representing the value of "pair" onto the stack.
529 *
530 * Only understands boolean_value, string, int64, nvlist,
531 * string_array, and int64_array type values. For other
532 * types, returns EINVAL, fills in errbuf, and pushes nothing.
533 */
534static int
535zcp_nvpair_value_to_lua(lua_State *state, nvpair_t *pair,
536 char *errbuf, int errbuf_len)
537{
538 int err = 0;
539
540 if (pair == NULL) {
541 lua_pushnil(state);
542 return (0);
543 }
544
545 switch (nvpair_type(pair)) {
546 case DATA_TYPE_BOOLEAN_VALUE:
547 (void) lua_pushboolean(state,
548 fnvpair_value_boolean_value(pair));
549 break;
550 case DATA_TYPE_STRING:
551 (void) lua_pushstring(state, fnvpair_value_string(pair));
552 break;
553 case DATA_TYPE_INT64:
554 (void) lua_pushinteger(state, fnvpair_value_int64(pair));
555 break;
556 case DATA_TYPE_NVLIST:
557 err = zcp_nvlist_to_lua(state,
558 fnvpair_value_nvlist(pair), errbuf, errbuf_len);
559 break;
560 case DATA_TYPE_STRING_ARRAY: {
561 char **strarr;
562 uint_t nelem;
563 (void) nvpair_value_string_array(pair, &strarr, &nelem);
564 lua_newtable(state);
565 for (int i = 0; i < nelem; i++) {
566 (void) lua_pushinteger(state, i + 1);
567 (void) lua_pushstring(state, strarr[i]);
568 (void) lua_settable(state, -3);
569 }
570 break;
571 }
572 case DATA_TYPE_UINT64_ARRAY: {
573 uint64_t *intarr;
574 uint_t nelem;
575 (void) nvpair_value_uint64_array(pair, &intarr, &nelem);
576 lua_newtable(state);
577 for (int i = 0; i < nelem; i++) {
578 (void) lua_pushinteger(state, i + 1);
579 (void) lua_pushinteger(state, intarr[i]);
580 (void) lua_settable(state, -3);
581 }
582 break;
583 }
584 case DATA_TYPE_INT64_ARRAY: {
585 int64_t *intarr;
586 uint_t nelem;
587 (void) nvpair_value_int64_array(pair, &intarr, &nelem);
588 lua_newtable(state);
589 for (int i = 0; i < nelem; i++) {
590 (void) lua_pushinteger(state, i + 1);
591 (void) lua_pushinteger(state, intarr[i]);
592 (void) lua_settable(state, -3);
593 }
594 break;
595 }
596 default: {
597 if (errbuf != NULL) {
598 (void) snprintf(errbuf, errbuf_len,
599 "Unhandled nvpair type %d for key '%s'",
600 nvpair_type(pair), nvpair_name(pair));
601 }
602 return (EINVAL);
603 }
604 }
605 return (err);
606}
607
608int
609zcp_dataset_hold_error(lua_State *state, dsl_pool_t *dp, const char *dsname,
610 int error)
611{
612 if (error == ENOENT) {
613 (void) zcp_argerror(state, 1, "no such dataset '%s'", dsname);
614 return (0); /* not reached; zcp_argerror will longjmp */
615 } else if (error == EXDEV) {
616 (void) zcp_argerror(state, 1,
617 "dataset '%s' is not in the target pool '%s'",
618 dsname, spa_name(dp->dp_spa));
619 return (0); /* not reached; zcp_argerror will longjmp */
620 } else if (error == EIO) {
621 (void) luaL_error(state,
622 "I/O error while accessing dataset '%s'", dsname);
623 return (0); /* not reached; luaL_error will longjmp */
624 } else if (error != 0) {
625 (void) luaL_error(state,
626 "unexpected error %d while accessing dataset '%s'",
627 error, dsname);
628 return (0); /* not reached; luaL_error will longjmp */
629 }
630 return (0);
631}
632
633/*
634 * Note: will longjmp (via lua_error()) on error.
635 * Assumes that the dsname is argument #1 (for error reporting purposes).
636 */
637dsl_dataset_t *
638zcp_dataset_hold(lua_State *state, dsl_pool_t *dp, const char *dsname,
639 void *tag)
640{
641 dsl_dataset_t *ds;
642 int error = dsl_dataset_hold(dp, dsname, tag, &ds);
643 (void) zcp_dataset_hold_error(state, dp, dsname, error);
644 return (ds);
645}
646
647static int zcp_debug(lua_State *);
648static zcp_lib_info_t zcp_debug_info = {
649 .name = "debug",
650 .func = zcp_debug,
651 .pargs = {
652 { .za_name = "debug string", .za_lua_type = LUA_TSTRING},
653 {NULL, 0}
654 },
655 .kwargs = {
656 {NULL, 0}
657 }
658};
659
660static int
661zcp_debug(lua_State *state)
662{
663 const char *dbgstring;
664 zcp_run_info_t *ri = zcp_run_info(state);
665 zcp_lib_info_t *libinfo = &zcp_debug_info;
666
667 zcp_parse_args(state, libinfo->name, libinfo->pargs, libinfo->kwargs);
668
669 dbgstring = lua_tostring(state, 1);
670
671 zfs_dbgmsg("txg %lld ZCP: %s", ri->zri_tx->tx_txg, dbgstring);
672
673 return (0);
674}
675
676static int zcp_exists(lua_State *);
677static zcp_lib_info_t zcp_exists_info = {
678 .name = "exists",
679 .func = zcp_exists,
680 .pargs = {
681 { .za_name = "dataset", .za_lua_type = LUA_TSTRING},
682 {NULL, 0}
683 },
684 .kwargs = {
685 {NULL, 0}
686 }
687};
688
689static int
690zcp_exists(lua_State *state)
691{
692 zcp_run_info_t *ri = zcp_run_info(state);
693 dsl_pool_t *dp = ri->zri_pool;
694 zcp_lib_info_t *libinfo = &zcp_exists_info;
695
696 zcp_parse_args(state, libinfo->name, libinfo->pargs, libinfo->kwargs);
697
698 const char *dsname = lua_tostring(state, 1);
699
700 dsl_dataset_t *ds;
701 int error = dsl_dataset_hold(dp, dsname, FTAG, &ds);
702 if (error == 0) {
703 dsl_dataset_rele(ds, FTAG);
704 lua_pushboolean(state, B_TRUE);
705 } else if (error == ENOENT) {
706 lua_pushboolean(state, B_FALSE);
707 } else if (error == EXDEV) {
708 return (luaL_error(state, "dataset '%s' is not in the "
709 "target pool", dsname));
710 } else if (error == EIO) {
711 return (luaL_error(state, "I/O error opening dataset '%s'",
712 dsname));
713 } else if (error != 0) {
714 return (luaL_error(state, "unexpected error %d", error));
715 }
716
475eca49 717 return (1);
d99a0153
CW
718}
719
720/*
721 * Allocate/realloc/free a buffer for the lua interpreter.
722 *
723 * When nsize is 0, behaves as free() and returns NULL.
724 *
725 * If ptr is NULL, behaves as malloc() and returns an allocated buffer of size
726 * at least nsize.
727 *
728 * Otherwise, behaves as realloc(), changing the allocation from osize to nsize.
729 * Shrinking the buffer size never fails.
730 *
731 * The original allocated buffer size is stored as a uint64 at the beginning of
732 * the buffer to avoid actually reallocating when shrinking a buffer, since lua
733 * requires that this operation never fail.
734 */
735static void *
736zcp_lua_alloc(void *ud, void *ptr, size_t osize, size_t nsize)
737{
738 zcp_alloc_arg_t *allocargs = ud;
739 int flags = (allocargs->aa_must_succeed) ?
740 KM_SLEEP : (KM_NOSLEEP | KM_NORMALPRI);
741
742 if (nsize == 0) {
743 if (ptr != NULL) {
744 int64_t *allocbuf = (int64_t *)ptr - 1;
745 int64_t allocsize = *allocbuf;
746 ASSERT3S(allocsize, >, 0);
747 ASSERT3S(allocargs->aa_alloc_remaining + allocsize, <=,
748 allocargs->aa_alloc_limit);
749 allocargs->aa_alloc_remaining += allocsize;
750 vmem_free(allocbuf, allocsize);
751 }
752 return (NULL);
753 } else if (ptr == NULL) {
754 int64_t *allocbuf;
755 int64_t allocsize = nsize + sizeof (int64_t);
756
757 if (!allocargs->aa_must_succeed &&
758 (allocsize <= 0 ||
759 allocsize > allocargs->aa_alloc_remaining)) {
760 return (NULL);
761 }
762
763 allocbuf = vmem_alloc(allocsize, flags);
764 if (allocbuf == NULL) {
765 return (NULL);
766 }
767 allocargs->aa_alloc_remaining -= allocsize;
768
769 *allocbuf = allocsize;
770 return (allocbuf + 1);
771 } else if (nsize <= osize) {
772 /*
773 * If shrinking the buffer, lua requires that the reallocation
774 * never fail.
775 */
776 return (ptr);
777 } else {
778 ASSERT3U(nsize, >, osize);
779
780 uint64_t *luabuf = zcp_lua_alloc(ud, NULL, 0, nsize);
781 if (luabuf == NULL) {
782 return (NULL);
783 }
784 (void) memcpy(luabuf, ptr, osize);
785 VERIFY3P(zcp_lua_alloc(ud, ptr, osize, 0), ==, NULL);
786 return (luabuf);
787 }
788}
789
790/* ARGSUSED */
791static void
792zcp_lua_counthook(lua_State *state, lua_Debug *ar)
793{
794 /*
795 * If we're called, check how many instructions the channel program has
796 * executed so far, and compare against the limit.
797 */
798 lua_getfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
799 zcp_run_info_t *ri = lua_touserdata(state, -1);
800
801 ri->zri_curinstrs += zfs_lua_check_instrlimit_interval;
802 if (ri->zri_maxinstrs != 0 && ri->zri_curinstrs > ri->zri_maxinstrs) {
803 ri->zri_timed_out = B_TRUE;
804 (void) lua_pushstring(state,
805 "Channel program timed out.");
806 (void) lua_error(state);
807 }
808}
809
810static int
811zcp_panic_cb(lua_State *state)
812{
813 panic("unprotected error in call to Lua API (%s)\n",
814 lua_tostring(state, -1));
815 return (0);
816}
817
818static void
5b72a38d 819zcp_eval_impl(dmu_tx_t *tx, boolean_t sync, zcp_eval_arg_t *evalargs)
d99a0153
CW
820{
821 int err;
822 zcp_run_info_t ri;
d99a0153
CW
823 lua_State *state = evalargs->ea_state;
824
d99a0153
CW
825 VERIFY3U(3, ==, lua_gettop(state));
826
827 /*
828 * Store the zcp_run_info_t struct for this run in the Lua registry.
829 * Registry entries are not directly accessible by the Lua scripts but
830 * can be accessed by our callbacks.
831 */
832 ri.zri_space_used = 0;
833 ri.zri_pool = dmu_tx_pool(tx);
834 ri.zri_cred = evalargs->ea_cred;
835 ri.zri_tx = tx;
836 ri.zri_timed_out = B_FALSE;
5b72a38d
SD
837 ri.zri_sync = sync;
838 list_create(&ri.zri_cleanup_handlers, sizeof (zcp_cleanup_handler_t),
839 offsetof(zcp_cleanup_handler_t, zch_node));
d99a0153
CW
840 ri.zri_curinstrs = 0;
841 ri.zri_maxinstrs = evalargs->ea_instrlimit;
842
843 lua_pushlightuserdata(state, &ri);
844 lua_setfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
845 VERIFY3U(3, ==, lua_gettop(state));
846
847 /*
848 * Tell the Lua interpreter to call our handler every count
849 * instructions. Channel programs that execute too many instructions
850 * should die with ETIME.
851 */
852 (void) lua_sethook(state, zcp_lua_counthook, LUA_MASKCOUNT,
853 zfs_lua_check_instrlimit_interval);
854
855 /*
856 * Tell the Lua memory allocator to stop using KM_SLEEP before handing
857 * off control to the channel program. Channel programs that use too
858 * much memory should die with ENOSPC.
859 */
860 evalargs->ea_allocargs->aa_must_succeed = B_FALSE;
861
862 /*
863 * Call the Lua function that open-context passed us. This pops the
864 * function and its input from the stack and pushes any return
865 * or error values.
866 */
867 err = lua_pcall(state, 1, LUA_MULTRET, 1);
868
869 /*
870 * Let Lua use KM_SLEEP while we interpret the return values.
871 */
872 evalargs->ea_allocargs->aa_must_succeed = B_TRUE;
873
874 /*
875 * Remove the error handler callback from the stack. At this point,
5b72a38d
SD
876 * there shouldn't be any cleanup handler registered in the handler
877 * list (zri_cleanup_handlers), regardless of whether it ran or not.
d99a0153 878 */
5b72a38d 879 list_destroy(&ri.zri_cleanup_handlers);
d99a0153
CW
880 lua_remove(state, 1);
881
882 switch (err) {
883 case LUA_OK: {
884 /*
885 * Lua supports returning multiple values in a single return
886 * statement. Return values will have been pushed onto the
887 * stack:
888 * 1: Return value 1
889 * 2: Return value 2
890 * 3: etc...
891 * To simplify the process of retrieving a return value from a
892 * channel program, we disallow returning more than one value
893 * to ZFS from the Lua script, yielding a singleton return
894 * nvlist of the form { "return": Return value 1 }.
895 */
896 int return_count = lua_gettop(state);
897
898 if (return_count == 1) {
899 evalargs->ea_result = 0;
900 zcp_convert_return_values(state, evalargs->ea_outnvl,
901 ZCP_RET_RETURN, evalargs);
902 } else if (return_count > 1) {
903 evalargs->ea_result = SET_ERROR(ECHRNG);
904 (void) lua_pushfstring(state, "Multiple return "
905 "values not supported");
906 zcp_convert_return_values(state, evalargs->ea_outnvl,
907 ZCP_RET_ERROR, evalargs);
908 }
909 break;
910 }
911 case LUA_ERRRUN:
912 case LUA_ERRGCMM: {
913 /*
914 * The channel program encountered a fatal error within the
915 * script, such as failing an assertion, or calling a function
916 * with incompatible arguments. The error value and the
917 * traceback generated by zcp_error_handler() should be on the
918 * stack.
919 */
920 VERIFY3U(1, ==, lua_gettop(state));
921 if (ri.zri_timed_out) {
922 evalargs->ea_result = SET_ERROR(ETIME);
923 } else {
924 evalargs->ea_result = SET_ERROR(ECHRNG);
925 }
926
927 zcp_convert_return_values(state, evalargs->ea_outnvl,
928 ZCP_RET_ERROR, evalargs);
929
930 if (evalargs->ea_result == ETIME &&
931 evalargs->ea_outnvl != NULL) {
932 (void) nvlist_add_uint64(evalargs->ea_outnvl,
933 ZCP_ARG_INSTRLIMIT, ri.zri_curinstrs);
934 }
935 break;
936 }
937 case LUA_ERRERR: {
938 /*
939 * The channel program encountered a fatal error within the
940 * script, and we encountered another error while trying to
941 * compute the traceback in zcp_error_handler(). We can only
942 * return the error message.
943 */
944 VERIFY3U(1, ==, lua_gettop(state));
945 if (ri.zri_timed_out) {
946 evalargs->ea_result = SET_ERROR(ETIME);
947 } else {
948 evalargs->ea_result = SET_ERROR(ECHRNG);
949 }
950
951 zcp_convert_return_values(state, evalargs->ea_outnvl,
952 ZCP_RET_ERROR, evalargs);
953 break;
954 }
955 case LUA_ERRMEM:
956 /*
957 * Lua ran out of memory while running the channel program.
958 * There's not much we can do.
959 */
960 evalargs->ea_result = SET_ERROR(ENOSPC);
961 break;
962 default:
963 VERIFY0(err);
964 }
965}
966
5b72a38d
SD
967static void
968zcp_pool_error(zcp_eval_arg_t *evalargs, const char *poolname)
969{
970 evalargs->ea_result = SET_ERROR(ECHRNG);
971 (void) lua_pushfstring(evalargs->ea_state, "Could not open pool: %s",
972 poolname);
973 zcp_convert_return_values(evalargs->ea_state, evalargs->ea_outnvl,
974 ZCP_RET_ERROR, evalargs);
975
976}
977
978static void
979zcp_eval_sync(void *arg, dmu_tx_t *tx)
980{
981 zcp_eval_arg_t *evalargs = arg;
982
983 /*
984 * Open context should have setup the stack to contain:
985 * 1: Error handler callback
986 * 2: Script to run (converted to a Lua function)
987 * 3: nvlist input to function (converted to Lua table or nil)
988 */
989 VERIFY3U(3, ==, lua_gettop(evalargs->ea_state));
990
991 zcp_eval_impl(tx, B_TRUE, evalargs);
992}
993
994static void
995zcp_eval_open(zcp_eval_arg_t *evalargs, const char *poolname)
996{
997
998 int error;
999 dsl_pool_t *dp;
1000 dmu_tx_t *tx;
1001
1002 /*
1003 * See comment from the same assertion in zcp_eval_sync().
1004 */
1005 VERIFY3U(3, ==, lua_gettop(evalargs->ea_state));
1006
1007 error = dsl_pool_hold(poolname, FTAG, &dp);
1008 if (error != 0) {
1009 zcp_pool_error(evalargs, poolname);
1010 return;
1011 }
1012
1013 /*
1014 * As we are running in open-context, we have no transaction associated
1015 * with the channel program. At the same time, functions from the
1016 * zfs.check submodule need to be associated with a transaction as
1017 * they are basically dry-runs of their counterparts in the zfs.sync
1018 * submodule. These functions should be able to run in open-context.
1019 * Therefore we create a new transaction that we later abort once
1020 * the channel program has been evaluated.
1021 */
1022 tx = dmu_tx_create_dd(dp->dp_mos_dir);
1023
1024 zcp_eval_impl(tx, B_FALSE, evalargs);
1025
1026 dmu_tx_abort(tx);
1027
1028 dsl_pool_rele(dp, FTAG);
1029}
1030
d99a0153 1031int
5b72a38d
SD
1032zcp_eval(const char *poolname, const char *program, boolean_t sync,
1033 uint64_t instrlimit, uint64_t memlimit, nvpair_t *nvarg, nvlist_t *outnvl)
d99a0153
CW
1034{
1035 int err;
1036 lua_State *state;
1037 zcp_eval_arg_t evalargs;
1038
1039 if (instrlimit > zfs_lua_max_instrlimit)
1040 return (SET_ERROR(EINVAL));
1041 if (memlimit == 0 || memlimit > zfs_lua_max_memlimit)
1042 return (SET_ERROR(EINVAL));
1043
1044 zcp_alloc_arg_t allocargs = {
1045 .aa_must_succeed = B_TRUE,
1046 .aa_alloc_remaining = (int64_t)memlimit,
1047 .aa_alloc_limit = (int64_t)memlimit,
1048 };
1049
1050 /*
1051 * Creates a Lua state with a memory allocator that uses KM_SLEEP.
1052 * This should never fail.
1053 */
1054 state = lua_newstate(zcp_lua_alloc, &allocargs);
1055 VERIFY(state != NULL);
1056 (void) lua_atpanic(state, zcp_panic_cb);
1057
1058 /*
1059 * Load core Lua libraries we want access to.
1060 */
1061 VERIFY3U(1, ==, luaopen_base(state));
1062 lua_pop(state, 1);
1063 VERIFY3U(1, ==, luaopen_coroutine(state));
1064 lua_setglobal(state, LUA_COLIBNAME);
1065 VERIFY0(lua_gettop(state));
1066 VERIFY3U(1, ==, luaopen_string(state));
1067 lua_setglobal(state, LUA_STRLIBNAME);
1068 VERIFY0(lua_gettop(state));
1069 VERIFY3U(1, ==, luaopen_table(state));
1070 lua_setglobal(state, LUA_TABLIBNAME);
1071 VERIFY0(lua_gettop(state));
1072
1073 /*
1074 * Load globally visible variables such as errno aliases.
1075 */
1076 zcp_load_globals(state);
1077 VERIFY0(lua_gettop(state));
1078
1079 /*
1080 * Load ZFS-specific modules.
1081 */
1082 lua_newtable(state);
1083 VERIFY3U(1, ==, zcp_load_list_lib(state));
1084 lua_setfield(state, -2, "list");
1085 VERIFY3U(1, ==, zcp_load_synctask_lib(state, B_FALSE));
1086 lua_setfield(state, -2, "check");
1087 VERIFY3U(1, ==, zcp_load_synctask_lib(state, B_TRUE));
1088 lua_setfield(state, -2, "sync");
1089 VERIFY3U(1, ==, zcp_load_get_lib(state));
1090 lua_pushcclosure(state, zcp_debug_info.func, 0);
1091 lua_setfield(state, -2, zcp_debug_info.name);
1092 lua_pushcclosure(state, zcp_exists_info.func, 0);
1093 lua_setfield(state, -2, zcp_exists_info.name);
1094 lua_setglobal(state, "zfs");
1095 VERIFY0(lua_gettop(state));
1096
1097 /*
1098 * Push the error-callback that calculates Lua stack traces on
1099 * unexpected failures.
1100 */
1101 lua_pushcfunction(state, zcp_error_handler);
1102 VERIFY3U(1, ==, lua_gettop(state));
1103
1104 /*
1105 * Load the actual script as a function onto the stack as text ("t").
1106 * The only valid error condition is a syntax error in the script.
1107 * ERRMEM should not be possible because our allocator is using
1108 * KM_SLEEP. ERRGCMM should not be possible because we have not added
1109 * any objects with __gc metamethods to the interpreter that could
1110 * fail.
1111 */
1112 err = luaL_loadbufferx(state, program, strlen(program),
1113 "channel program", "t");
1114 if (err == LUA_ERRSYNTAX) {
1115 fnvlist_add_string(outnvl, ZCP_RET_ERROR,
1116 lua_tostring(state, -1));
1117 lua_close(state);
1118 return (SET_ERROR(EINVAL));
1119 }
1120 VERIFY0(err);
1121 VERIFY3U(2, ==, lua_gettop(state));
1122
1123 /*
1124 * Convert the input nvlist to a Lua object and put it on top of the
1125 * stack.
1126 */
1127 char errmsg[128];
1128 err = zcp_nvpair_value_to_lua(state, nvarg,
1129 errmsg, sizeof (errmsg));
1130 if (err != 0) {
1131 fnvlist_add_string(outnvl, ZCP_RET_ERROR, errmsg);
1132 lua_close(state);
1133 return (SET_ERROR(EINVAL));
1134 }
1135 VERIFY3U(3, ==, lua_gettop(state));
1136
1137 evalargs.ea_state = state;
1138 evalargs.ea_allocargs = &allocargs;
1139 evalargs.ea_instrlimit = instrlimit;
1140 evalargs.ea_cred = CRED();
1141 evalargs.ea_outnvl = outnvl;
1142 evalargs.ea_result = 0;
1143
5b72a38d
SD
1144 if (sync) {
1145 err = dsl_sync_task(poolname, NULL,
1146 zcp_eval_sync, &evalargs, 0, ZFS_SPACE_CHECK_NONE);
1147 if (err != 0)
1148 zcp_pool_error(&evalargs, poolname);
1149 } else {
1150 zcp_eval_open(&evalargs, poolname);
1151 }
d99a0153
CW
1152 lua_close(state);
1153
1154 return (evalargs.ea_result);
1155}
1156
1157/*
1158 * Retrieve metadata about the currently running channel program.
1159 */
1160zcp_run_info_t *
1161zcp_run_info(lua_State *state)
1162{
1163 zcp_run_info_t *ri;
1164
1165 lua_getfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
1166 ri = lua_touserdata(state, -1);
1167 lua_pop(state, 1);
1168 return (ri);
1169}
1170
1171/*
1172 * Argument Parsing
1173 * ================
1174 *
1175 * The Lua language allows methods to be called with any number
1176 * of arguments of any type. When calling back into ZFS we need to sanitize
1177 * arguments from channel programs to make sure unexpected arguments or
1178 * arguments of the wrong type result in clear error messages. To do this
1179 * in a uniform way all callbacks from channel programs should use the
1180 * zcp_parse_args() function to interpret inputs.
1181 *
1182 * Positional vs Keyword Arguments
1183 * ===============================
1184 *
1185 * Every callback function takes a fixed set of required positional arguments
1186 * and optional keyword arguments. For example, the destroy function takes
1187 * a single positional string argument (the name of the dataset to destroy)
1188 * and an optional "defer" keyword boolean argument. When calling lua functions
1189 * with parentheses, only positional arguments can be used:
1190 *
1191 * zfs.sync.snapshot("rpool@snap")
1192 *
1193 * To use keyword arguments functions should be called with a single argument
1194 * that is a lua table containing mappings of integer -> positional arguments
1195 * and string -> keyword arguments:
1196 *
1197 * zfs.sync.snapshot({1="rpool@snap", defer=true})
1198 *
1199 * The lua language allows curly braces to be used in place of parenthesis as
1200 * syntactic sugar for this calling convention:
1201 *
1202 * zfs.sync.snapshot{"rpool@snap", defer=true}
1203 */
1204
1205/*
1206 * Throw an error and print the given arguments. If there are too many
1207 * arguments to fit in the output buffer, only the error format string is
1208 * output.
1209 */
1210static void
1211zcp_args_error(lua_State *state, const char *fname, const zcp_arg_t *pargs,
1212 const zcp_arg_t *kwargs, const char *fmt, ...)
1213{
1214 int i;
1215 char errmsg[512];
1216 size_t len = sizeof (errmsg);
1217 size_t msglen = 0;
1218 va_list argp;
1219
1220 va_start(argp, fmt);
1221 VERIFY3U(len, >, vsnprintf(errmsg, len, fmt, argp));
1222 va_end(argp);
1223
1224 /*
1225 * Calculate the total length of the final string, including extra
1226 * formatting characters. If the argument dump would be too large,
1227 * only print the error string.
1228 */
1229 msglen = strlen(errmsg);
1230 msglen += strlen(fname) + 4; /* : + {} + null terminator */
1231 for (i = 0; pargs[i].za_name != NULL; i++) {
1232 msglen += strlen(pargs[i].za_name);
1233 msglen += strlen(lua_typename(state, pargs[i].za_lua_type));
1234 if (pargs[i + 1].za_name != NULL || kwargs[0].za_name != NULL)
1235 msglen += 5; /* < + ( + )> + , */
1236 else
1237 msglen += 4; /* < + ( + )> */
1238 }
1239 for (i = 0; kwargs[i].za_name != NULL; i++) {
1240 msglen += strlen(kwargs[i].za_name);
1241 msglen += strlen(lua_typename(state, kwargs[i].za_lua_type));
1242 if (kwargs[i + 1].za_name != NULL)
1243 msglen += 4; /* =( + ) + , */
1244 else
1245 msglen += 3; /* =( + ) */
1246 }
1247
1248 if (msglen >= len)
1249 (void) luaL_error(state, errmsg);
1250
1251 VERIFY3U(len, >, strlcat(errmsg, ": ", len));
1252 VERIFY3U(len, >, strlcat(errmsg, fname, len));
1253 VERIFY3U(len, >, strlcat(errmsg, "{", len));
1254 for (i = 0; pargs[i].za_name != NULL; i++) {
1255 VERIFY3U(len, >, strlcat(errmsg, "<", len));
1256 VERIFY3U(len, >, strlcat(errmsg, pargs[i].za_name, len));
1257 VERIFY3U(len, >, strlcat(errmsg, "(", len));
1258 VERIFY3U(len, >, strlcat(errmsg,
1259 lua_typename(state, pargs[i].za_lua_type), len));
1260 VERIFY3U(len, >, strlcat(errmsg, ")>", len));
1261 if (pargs[i + 1].za_name != NULL || kwargs[0].za_name != NULL) {
1262 VERIFY3U(len, >, strlcat(errmsg, ", ", len));
1263 }
1264 }
1265 for (i = 0; kwargs[i].za_name != NULL; i++) {
1266 VERIFY3U(len, >, strlcat(errmsg, kwargs[i].za_name, len));
1267 VERIFY3U(len, >, strlcat(errmsg, "=(", len));
1268 VERIFY3U(len, >, strlcat(errmsg,
1269 lua_typename(state, kwargs[i].za_lua_type), len));
1270 VERIFY3U(len, >, strlcat(errmsg, ")", len));
1271 if (kwargs[i + 1].za_name != NULL) {
1272 VERIFY3U(len, >, strlcat(errmsg, ", ", len));
1273 }
1274 }
1275 VERIFY3U(len, >, strlcat(errmsg, "}", len));
1276
1277 (void) luaL_error(state, errmsg);
1278 panic("unreachable code");
1279}
1280
1281static void
1282zcp_parse_table_args(lua_State *state, const char *fname,
1283 const zcp_arg_t *pargs, const zcp_arg_t *kwargs)
1284{
1285 int i;
1286 int type;
1287
1288 for (i = 0; pargs[i].za_name != NULL; i++) {
1289 /*
1290 * Check the table for this positional argument, leaving it
1291 * on the top of the stack once we finish validating it.
1292 */
1293 lua_pushinteger(state, i + 1);
1294 lua_gettable(state, 1);
1295
1296 type = lua_type(state, -1);
1297 if (type == LUA_TNIL) {
1298 zcp_args_error(state, fname, pargs, kwargs,
1299 "too few arguments");
1300 panic("unreachable code");
1301 } else if (type != pargs[i].za_lua_type) {
1302 zcp_args_error(state, fname, pargs, kwargs,
1303 "arg %d wrong type (is '%s', expected '%s')",
1304 i + 1, lua_typename(state, type),
1305 lua_typename(state, pargs[i].za_lua_type));
1306 panic("unreachable code");
1307 }
1308
1309 /*
1310 * Remove the positional argument from the table.
1311 */
1312 lua_pushinteger(state, i + 1);
1313 lua_pushnil(state);
1314 lua_settable(state, 1);
1315 }
1316
1317 for (i = 0; kwargs[i].za_name != NULL; i++) {
1318 /*
1319 * Check the table for this keyword argument, which may be
1320 * nil if it was omitted. Leave the value on the top of
1321 * the stack after validating it.
1322 */
1323 lua_getfield(state, 1, kwargs[i].za_name);
1324
1325 type = lua_type(state, -1);
1326 if (type != LUA_TNIL && type != kwargs[i].za_lua_type) {
1327 zcp_args_error(state, fname, pargs, kwargs,
1328 "kwarg '%s' wrong type (is '%s', expected '%s')",
1329 kwargs[i].za_name, lua_typename(state, type),
1330 lua_typename(state, kwargs[i].za_lua_type));
1331 panic("unreachable code");
1332 }
1333
1334 /*
1335 * Remove the keyword argument from the table.
1336 */
1337 lua_pushnil(state);
1338 lua_setfield(state, 1, kwargs[i].za_name);
1339 }
1340
1341 /*
1342 * Any entries remaining in the table are invalid inputs, print
1343 * an error message based on what the entry is.
1344 */
1345 lua_pushnil(state);
1346 if (lua_next(state, 1)) {
1347 if (lua_isnumber(state, -2) && lua_tointeger(state, -2) > 0) {
1348 zcp_args_error(state, fname, pargs, kwargs,
1349 "too many positional arguments");
1350 } else if (lua_isstring(state, -2)) {
1351 zcp_args_error(state, fname, pargs, kwargs,
1352 "invalid kwarg '%s'", lua_tostring(state, -2));
1353 } else {
1354 zcp_args_error(state, fname, pargs, kwargs,
1355 "kwarg keys must be strings");
1356 }
1357 panic("unreachable code");
1358 }
1359
1360 lua_remove(state, 1);
1361}
1362
1363static void
1364zcp_parse_pos_args(lua_State *state, const char *fname, const zcp_arg_t *pargs,
1365 const zcp_arg_t *kwargs)
1366{
1367 int i;
1368 int type;
1369
1370 for (i = 0; pargs[i].za_name != NULL; i++) {
1371 type = lua_type(state, i + 1);
1372 if (type == LUA_TNONE) {
1373 zcp_args_error(state, fname, pargs, kwargs,
1374 "too few arguments");
1375 panic("unreachable code");
1376 } else if (type != pargs[i].za_lua_type) {
1377 zcp_args_error(state, fname, pargs, kwargs,
1378 "arg %d wrong type (is '%s', expected '%s')",
1379 i + 1, lua_typename(state, type),
1380 lua_typename(state, pargs[i].za_lua_type));
1381 panic("unreachable code");
1382 }
1383 }
1384 if (lua_gettop(state) != i) {
1385 zcp_args_error(state, fname, pargs, kwargs,
1386 "too many positional arguments");
1387 panic("unreachable code");
1388 }
1389
1390 for (i = 0; kwargs[i].za_name != NULL; i++) {
1391 lua_pushnil(state);
1392 }
1393}
1394
1395/*
1396 * Checks the current Lua stack against an expected set of positional and
1397 * keyword arguments. If the stack does not match the expected arguments
1398 * aborts the current channel program with a useful error message, otherwise
1399 * it re-arranges the stack so that it contains the positional arguments
1400 * followed by the keyword argument values in declaration order. Any missing
1401 * keyword argument will be represented by a nil value on the stack.
1402 *
1403 * If the stack contains exactly one argument of type LUA_TTABLE the curly
1404 * braces calling convention is assumed, otherwise the stack is parsed for
1405 * positional arguments only.
1406 *
1407 * This function should be used by every function callback. It should be called
1408 * before the callback manipulates the Lua stack as it assumes the stack
1409 * represents the function arguments.
1410 */
1411void
1412zcp_parse_args(lua_State *state, const char *fname, const zcp_arg_t *pargs,
1413 const zcp_arg_t *kwargs)
1414{
1415 if (lua_gettop(state) == 1 && lua_istable(state, 1)) {
1416 zcp_parse_table_args(state, fname, pargs, kwargs);
1417 } else {
1418 zcp_parse_pos_args(state, fname, pargs, kwargs);
1419 }
1420}