]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/zfs_fm.c
Add FAILFAST support
[mirror_zfs.git] / module / zfs / zfs_fm.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
9babb374 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
34dc7c2f
BB
23 * Use is subject to license terms.
24 */
25
34dc7c2f
BB
26#include <sys/spa.h>
27#include <sys/spa_impl.h>
28#include <sys/vdev.h>
29#include <sys/vdev_impl.h>
30#include <sys/zio.h>
428870ff 31#include <sys/zio_checksum.h>
34dc7c2f
BB
32
33#include <sys/fm/fs/zfs.h>
34#include <sys/fm/protocol.h>
35#include <sys/fm/util.h>
36#include <sys/sysevent.h>
37
38/*
39 * This general routine is responsible for generating all the different ZFS
40 * ereports. The payload is dependent on the class, and which arguments are
41 * supplied to the function:
42 *
43 * EREPORT POOL VDEV IO
44 * block X X X
45 * data X X
46 * device X X
47 * pool X
48 *
49 * If we are in a loading state, all errors are chained together by the same
b128c09f 50 * SPA-wide ENA (Error Numeric Association).
34dc7c2f
BB
51 *
52 * For isolated I/O requests, we get the ENA from the zio_t. The propagation
53 * gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want
54 * to chain together all ereports associated with a logical piece of data. For
55 * read I/Os, there are basically three 'types' of I/O, which form a roughly
56 * layered diagram:
57 *
58 * +---------------+
59 * | Aggregate I/O | No associated logical data or device
60 * +---------------+
61 * |
62 * V
63 * +---------------+ Reads associated with a piece of logical data.
64 * | Read I/O | This includes reads on behalf of RAID-Z,
65 * +---------------+ mirrors, gang blocks, retries, etc.
66 * |
67 * V
68 * +---------------+ Reads associated with a particular device, but
69 * | Physical I/O | no logical data. Issued as part of vdev caching
70 * +---------------+ and I/O aggregation.
71 *
72 * Note that 'physical I/O' here is not the same terminology as used in the rest
73 * of ZIO. Typically, 'physical I/O' simply means that there is no attached
74 * blockpointer. But I/O with no associated block pointer can still be related
75 * to a logical piece of data (i.e. RAID-Z requests).
76 *
77 * Purely physical I/O always have unique ENAs. They are not related to a
78 * particular piece of logical data, and therefore cannot be chained together.
79 * We still generate an ereport, but the DE doesn't correlate it with any
80 * logical piece of data. When such an I/O fails, the delegated I/O requests
81 * will issue a retry, which will trigger the 'real' ereport with the correct
82 * ENA.
83 *
84 * We keep track of the ENA for a ZIO chain through the 'io_logical' member.
85 * When a new logical I/O is issued, we set this to point to itself. Child I/Os
86 * then inherit this pointer, so that when it is first set subsequent failures
b128c09f
BB
87 * will use the same ENA. For vdev cache fill and queue aggregation I/O,
88 * this pointer is set to NULL, and no ereport will be generated (since it
89 * doesn't actually correspond to any particular device or piece of data,
90 * and the caller will always retry without caching or queueing anyway).
428870ff
BB
91 *
92 * For checksum errors, we want to include more information about the actual
93 * error which occurs. Accordingly, we build an ereport when the error is
94 * noticed, but instead of sending it in immediately, we hang it off of the
95 * io_cksum_report field of the logical IO. When the logical IO completes
96 * (successfully or not), zfs_ereport_finish_checksum() is called with the
97 * good and bad versions of the buffer (if available), and we annotate the
98 * ereport with information about the differences.
34dc7c2f 99 */
428870ff 100#ifdef _KERNEL
26685276
BB
101static void
102zfs_zevent_post_cb(nvlist_t *nvl, nvlist_t *detector)
103{
104 if (nvl)
105 fm_nvlist_destroy(nvl, FM_NVA_FREE);
106
107 if (detector)
108 fm_nvlist_destroy(detector, FM_NVA_FREE);
109}
110
428870ff
BB
111static void
112zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out,
113 const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio,
34dc7c2f
BB
114 uint64_t stateoroffset, uint64_t size)
115{
34dc7c2f 116 nvlist_t *ereport, *detector;
428870ff 117
34dc7c2f
BB
118 uint64_t ena;
119 char class[64];
120
121 /*
428870ff
BB
122 * If we are doing a spa_tryimport() or in recovery mode,
123 * ignore errors.
34dc7c2f 124 */
428870ff
BB
125 if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT ||
126 spa_load_state(spa) == SPA_LOAD_RECOVER)
34dc7c2f
BB
127 return;
128
129 /*
130 * If we are in the middle of opening a pool, and the previous attempt
131 * failed, don't bother logging any new ereports - we're just going to
132 * get the same diagnosis anyway.
133 */
428870ff 134 if (spa_load_state(spa) != SPA_LOAD_NONE &&
34dc7c2f
BB
135 spa->spa_last_open_failed)
136 return;
137
b128c09f
BB
138 if (zio != NULL) {
139 /*
140 * If this is not a read or write zio, ignore the error. This
141 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails.
142 */
143 if (zio->io_type != ZIO_TYPE_READ &&
144 zio->io_type != ZIO_TYPE_WRITE)
145 return;
34dc7c2f 146
9babb374
BB
147 if (vd != NULL) {
148 /*
149 * If the vdev has already been marked as failing due
150 * to a failed probe, then ignore any subsequent I/O
151 * errors, as the DE will automatically fault the vdev
152 * on the first such failure. This also catches cases
153 * where vdev_remove_wanted is set and the device has
154 * not yet been asynchronously placed into the REMOVED
155 * state.
156 */
428870ff 157 if (zio->io_vd == vd && !vdev_accessible(vd, zio))
9babb374
BB
158 return;
159
160 /*
161 * Ignore checksum errors for reads from DTL regions of
162 * leaf vdevs.
163 */
164 if (zio->io_type == ZIO_TYPE_READ &&
165 zio->io_error == ECKSUM &&
166 vd->vdev_ops->vdev_op_leaf &&
167 vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1))
168 return;
169 }
b128c09f 170 }
34dc7c2f 171
428870ff
BB
172 /*
173 * For probe failure, we want to avoid posting ereports if we've
174 * already removed the device in the meantime.
175 */
176 if (vd != NULL &&
177 strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 &&
178 (vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED))
179 return;
180
34dc7c2f
BB
181 if ((ereport = fm_nvlist_create(NULL)) == NULL)
182 return;
183
184 if ((detector = fm_nvlist_create(NULL)) == NULL) {
185 fm_nvlist_destroy(ereport, FM_NVA_FREE);
186 return;
187 }
188
189 /*
190 * Serialize ereport generation
191 */
192 mutex_enter(&spa->spa_errlist_lock);
193
194 /*
195 * Determine the ENA to use for this event. If we are in a loading
196 * state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use
197 * a root zio-wide ENA. Otherwise, simply use a unique ENA.
198 */
428870ff 199 if (spa_load_state(spa) != SPA_LOAD_NONE) {
34dc7c2f
BB
200 if (spa->spa_ena == 0)
201 spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1);
202 ena = spa->spa_ena;
203 } else if (zio != NULL && zio->io_logical != NULL) {
204 if (zio->io_logical->io_ena == 0)
205 zio->io_logical->io_ena =
206 fm_ena_generate(0, FM_ENA_FMT1);
207 ena = zio->io_logical->io_ena;
208 } else {
209 ena = fm_ena_generate(0, FM_ENA_FMT1);
210 }
211
212 /*
213 * Construct the full class, detector, and other standard FMA fields.
214 */
215 (void) snprintf(class, sizeof (class), "%s.%s",
216 ZFS_ERROR_CLASS, subclass);
217
218 fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa),
219 vd != NULL ? vd->vdev_guid : 0);
220
221 fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL);
222
223 /*
224 * Construct the per-ereport payload, depending on which parameters are
225 * passed in.
226 */
227
228 /*
229 * Generic payload members common to all ereports.
34dc7c2f
BB
230 */
231 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL,
b128c09f 232 DATA_TYPE_STRING, spa_name(spa), FM_EREPORT_PAYLOAD_ZFS_POOL_GUID,
34dc7c2f
BB
233 DATA_TYPE_UINT64, spa_guid(spa),
234 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32,
428870ff 235 spa_load_state(spa), NULL);
b128c09f
BB
236
237 if (spa != NULL) {
238 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE,
239 DATA_TYPE_STRING,
240 spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ?
241 FM_EREPORT_FAILMODE_WAIT :
242 spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ?
243 FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC,
244 NULL);
245 }
34dc7c2f
BB
246
247 if (vd != NULL) {
248 vdev_t *pvd = vd->vdev_parent;
249
250 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
251 DATA_TYPE_UINT64, vd->vdev_guid,
252 FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
253 DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL);
9babb374 254 if (vd->vdev_path != NULL)
34dc7c2f
BB
255 fm_payload_set(ereport,
256 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH,
257 DATA_TYPE_STRING, vd->vdev_path, NULL);
9babb374 258 if (vd->vdev_devid != NULL)
34dc7c2f
BB
259 fm_payload_set(ereport,
260 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID,
261 DATA_TYPE_STRING, vd->vdev_devid, NULL);
9babb374
BB
262 if (vd->vdev_fru != NULL)
263 fm_payload_set(ereport,
264 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU,
265 DATA_TYPE_STRING, vd->vdev_fru, NULL);
34dc7c2f
BB
266
267 if (pvd != NULL) {
268 fm_payload_set(ereport,
269 FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID,
270 DATA_TYPE_UINT64, pvd->vdev_guid,
271 FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE,
272 DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type,
273 NULL);
274 if (pvd->vdev_path)
275 fm_payload_set(ereport,
276 FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH,
277 DATA_TYPE_STRING, pvd->vdev_path, NULL);
278 if (pvd->vdev_devid)
279 fm_payload_set(ereport,
280 FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID,
281 DATA_TYPE_STRING, pvd->vdev_devid, NULL);
282 }
283 }
284
285 if (zio != NULL) {
286 /*
287 * Payload common to all I/Os.
288 */
289 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR,
290 DATA_TYPE_INT32, zio->io_error, NULL);
312c07ed
BB
291 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_FLAGS,
292 DATA_TYPE_INT32, zio->io_flags, NULL);
34dc7c2f
BB
293
294 /*
295 * If the 'size' parameter is non-zero, it indicates this is a
296 * RAID-Z or other I/O where the physical offset and length are
297 * provided for us, instead of within the zio_t.
298 */
299 if (vd != NULL) {
300 if (size)
301 fm_payload_set(ereport,
302 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
303 DATA_TYPE_UINT64, stateoroffset,
304 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
305 DATA_TYPE_UINT64, size, NULL);
306 else
307 fm_payload_set(ereport,
308 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
309 DATA_TYPE_UINT64, zio->io_offset,
310 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
311 DATA_TYPE_UINT64, zio->io_size, NULL);
312 }
313
314 /*
315 * Payload for I/Os with corresponding logical information.
316 */
317 if (zio->io_logical != NULL)
318 fm_payload_set(ereport,
319 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET,
320 DATA_TYPE_UINT64,
321 zio->io_logical->io_bookmark.zb_objset,
322 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT,
323 DATA_TYPE_UINT64,
324 zio->io_logical->io_bookmark.zb_object,
325 FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL,
326 DATA_TYPE_INT64,
327 zio->io_logical->io_bookmark.zb_level,
328 FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID,
329 DATA_TYPE_UINT64,
330 zio->io_logical->io_bookmark.zb_blkid, NULL);
331 } else if (vd != NULL) {
332 /*
333 * If we have a vdev but no zio, this is a device fault, and the
334 * 'stateoroffset' parameter indicates the previous state of the
335 * vdev.
336 */
337 fm_payload_set(ereport,
338 FM_EREPORT_PAYLOAD_ZFS_PREV_STATE,
339 DATA_TYPE_UINT64, stateoroffset, NULL);
340 }
428870ff 341
34dc7c2f
BB
342 mutex_exit(&spa->spa_errlist_lock);
343
428870ff
BB
344 *ereport_out = ereport;
345 *detector_out = detector;
346}
347
348/* if it's <= 128 bytes, save the corruption directly */
349#define ZFM_MAX_INLINE (128 / sizeof (uint64_t))
350
351#define MAX_RANGES 16
352
353typedef struct zfs_ecksum_info {
354 /* histograms of set and cleared bits by bit number in a 64-bit word */
355 uint16_t zei_histogram_set[sizeof (uint64_t) * NBBY];
356 uint16_t zei_histogram_cleared[sizeof (uint64_t) * NBBY];
357
358 /* inline arrays of bits set and cleared. */
359 uint64_t zei_bits_set[ZFM_MAX_INLINE];
360 uint64_t zei_bits_cleared[ZFM_MAX_INLINE];
361
362 /*
363 * for each range, the number of bits set and cleared. The Hamming
364 * distance between the good and bad buffers is the sum of them all.
365 */
366 uint32_t zei_range_sets[MAX_RANGES];
367 uint32_t zei_range_clears[MAX_RANGES];
368
369 struct zei_ranges {
370 uint32_t zr_start;
371 uint32_t zr_end;
372 } zei_ranges[MAX_RANGES];
373
374 size_t zei_range_count;
375 uint32_t zei_mingap;
376 uint32_t zei_allowed_mingap;
377
378} zfs_ecksum_info_t;
379
380static void
381update_histogram(uint64_t value_arg, uint16_t *hist, uint32_t *count)
382{
383 size_t i;
384 size_t bits = 0;
385 uint64_t value = BE_64(value_arg);
386
387 /* We store the bits in big-endian (largest-first) order */
388 for (i = 0; i < 64; i++) {
389 if (value & (1ull << i)) {
390 hist[63 - i]++;
391 ++bits;
392 }
393 }
394 /* update the count of bits changed */
395 *count += bits;
396}
397
398/*
399 * We've now filled up the range array, and need to increase "mingap" and
400 * shrink the range list accordingly. zei_mingap is always the smallest
401 * distance between array entries, so we set the new_allowed_gap to be
402 * one greater than that. We then go through the list, joining together
403 * any ranges which are closer than the new_allowed_gap.
404 *
405 * By construction, there will be at least one. We also update zei_mingap
406 * to the new smallest gap, to prepare for our next invocation.
407 */
408static void
26685276 409zei_shrink_ranges(zfs_ecksum_info_t *eip)
428870ff
BB
410{
411 uint32_t mingap = UINT32_MAX;
412 uint32_t new_allowed_gap = eip->zei_mingap + 1;
413
414 size_t idx, output;
415 size_t max = eip->zei_range_count;
416
417 struct zei_ranges *r = eip->zei_ranges;
418
419 ASSERT3U(eip->zei_range_count, >, 0);
420 ASSERT3U(eip->zei_range_count, <=, MAX_RANGES);
421
422 output = idx = 0;
423 while (idx < max - 1) {
424 uint32_t start = r[idx].zr_start;
425 uint32_t end = r[idx].zr_end;
426
427 while (idx < max - 1) {
26685276 428 uint32_t nstart, nend, gap;
428870ff 429
26685276
BB
430 idx++;
431 nstart = r[idx].zr_start;
432 nend = r[idx].zr_end;
428870ff 433
26685276 434 gap = nstart - end;
428870ff
BB
435 if (gap < new_allowed_gap) {
436 end = nend;
437 continue;
438 }
439 if (gap < mingap)
440 mingap = gap;
441 break;
442 }
443 r[output].zr_start = start;
444 r[output].zr_end = end;
445 output++;
446 }
447 ASSERT3U(output, <, eip->zei_range_count);
448 eip->zei_range_count = output;
449 eip->zei_mingap = mingap;
450 eip->zei_allowed_mingap = new_allowed_gap;
451}
452
453static void
26685276 454zei_add_range(zfs_ecksum_info_t *eip, int start, int end)
428870ff
BB
455{
456 struct zei_ranges *r = eip->zei_ranges;
457 size_t count = eip->zei_range_count;
458
459 if (count >= MAX_RANGES) {
26685276 460 zei_shrink_ranges(eip);
428870ff
BB
461 count = eip->zei_range_count;
462 }
463 if (count == 0) {
464 eip->zei_mingap = UINT32_MAX;
465 eip->zei_allowed_mingap = 1;
466 } else {
467 int gap = start - r[count - 1].zr_end;
468
469 if (gap < eip->zei_allowed_mingap) {
470 r[count - 1].zr_end = end;
471 return;
472 }
473 if (gap < eip->zei_mingap)
474 eip->zei_mingap = gap;
475 }
476 r[count].zr_start = start;
477 r[count].zr_end = end;
478 eip->zei_range_count++;
479}
480
481static size_t
26685276 482zei_range_total_size(zfs_ecksum_info_t *eip)
428870ff
BB
483{
484 struct zei_ranges *r = eip->zei_ranges;
485 size_t count = eip->zei_range_count;
486 size_t result = 0;
487 size_t idx;
488
489 for (idx = 0; idx < count; idx++)
490 result += (r[idx].zr_end - r[idx].zr_start);
491
492 return (result);
493}
494
495static zfs_ecksum_info_t *
496annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info,
497 const uint8_t *goodbuf, const uint8_t *badbuf, size_t size,
498 boolean_t drop_if_identical)
499{
500 const uint64_t *good = (const uint64_t *)goodbuf;
501 const uint64_t *bad = (const uint64_t *)badbuf;
502
503 uint64_t allset = 0;
504 uint64_t allcleared = 0;
505
506 size_t nui64s = size / sizeof (uint64_t);
507
508 size_t inline_size;
509 int no_inline = 0;
510 size_t idx;
511 size_t range;
512
513 size_t offset = 0;
514 ssize_t start = -1;
515
516 zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_SLEEP);
517
518 /* don't do any annotation for injected checksum errors */
519 if (info != NULL && info->zbc_injected)
520 return (eip);
521
522 if (info != NULL && info->zbc_has_cksum) {
523 fm_payload_set(ereport,
524 FM_EREPORT_PAYLOAD_ZFS_CKSUM_EXPECTED,
525 DATA_TYPE_UINT64_ARRAY,
526 sizeof (info->zbc_expected) / sizeof (uint64_t),
527 (uint64_t *)&info->zbc_expected,
528 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ACTUAL,
529 DATA_TYPE_UINT64_ARRAY,
530 sizeof (info->zbc_actual) / sizeof (uint64_t),
531 (uint64_t *)&info->zbc_actual,
532 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO,
533 DATA_TYPE_STRING,
534 info->zbc_checksum_name,
535 NULL);
536
537 if (info->zbc_byteswapped) {
538 fm_payload_set(ereport,
539 FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP,
540 DATA_TYPE_BOOLEAN, 1,
541 NULL);
542 }
543 }
544
545 if (badbuf == NULL || goodbuf == NULL)
546 return (eip);
547
548 ASSERT3U(nui64s, <=, UINT16_MAX);
549 ASSERT3U(size, ==, nui64s * sizeof (uint64_t));
550 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
551 ASSERT3U(size, <=, UINT32_MAX);
552
553 /* build up the range list by comparing the two buffers. */
554 for (idx = 0; idx < nui64s; idx++) {
555 if (good[idx] == bad[idx]) {
556 if (start == -1)
557 continue;
558
26685276 559 zei_add_range(eip, start, idx);
428870ff
BB
560 start = -1;
561 } else {
562 if (start != -1)
563 continue;
564
565 start = idx;
566 }
567 }
568 if (start != -1)
26685276 569 zei_add_range(eip, start, idx);
428870ff
BB
570
571 /* See if it will fit in our inline buffers */
26685276 572 inline_size = zei_range_total_size(eip);
428870ff
BB
573 if (inline_size > ZFM_MAX_INLINE)
574 no_inline = 1;
575
576 /*
577 * If there is no change and we want to drop if the buffers are
578 * identical, do so.
579 */
580 if (inline_size == 0 && drop_if_identical) {
581 kmem_free(eip, sizeof (*eip));
582 return (NULL);
583 }
584
585 /*
586 * Now walk through the ranges, filling in the details of the
587 * differences. Also convert our uint64_t-array offsets to byte
588 * offsets.
589 */
590 for (range = 0; range < eip->zei_range_count; range++) {
591 size_t start = eip->zei_ranges[range].zr_start;
592 size_t end = eip->zei_ranges[range].zr_end;
593
594 for (idx = start; idx < end; idx++) {
595 uint64_t set, cleared;
596
597 // bits set in bad, but not in good
598 set = ((~good[idx]) & bad[idx]);
599 // bits set in good, but not in bad
600 cleared = (good[idx] & (~bad[idx]));
601
602 allset |= set;
603 allcleared |= cleared;
604
605 if (!no_inline) {
606 ASSERT3U(offset, <, inline_size);
607 eip->zei_bits_set[offset] = set;
608 eip->zei_bits_cleared[offset] = cleared;
609 offset++;
610 }
611
612 update_histogram(set, eip->zei_histogram_set,
613 &eip->zei_range_sets[range]);
614 update_histogram(cleared, eip->zei_histogram_cleared,
615 &eip->zei_range_clears[range]);
616 }
617
618 /* convert to byte offsets */
619 eip->zei_ranges[range].zr_start *= sizeof (uint64_t);
620 eip->zei_ranges[range].zr_end *= sizeof (uint64_t);
621 }
622 eip->zei_allowed_mingap *= sizeof (uint64_t);
623 inline_size *= sizeof (uint64_t);
624
625 /* fill in ereport */
626 fm_payload_set(ereport,
627 FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES,
628 DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count,
629 (uint32_t *)eip->zei_ranges,
630 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP,
631 DATA_TYPE_UINT32, eip->zei_allowed_mingap,
632 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS,
633 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets,
634 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS,
635 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears,
636 NULL);
637
638 if (!no_inline) {
639 fm_payload_set(ereport,
640 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS,
641 DATA_TYPE_UINT8_ARRAY,
642 inline_size, (uint8_t *)eip->zei_bits_set,
643 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS,
644 DATA_TYPE_UINT8_ARRAY,
645 inline_size, (uint8_t *)eip->zei_bits_cleared,
646 NULL);
647 } else {
648 fm_payload_set(ereport,
649 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_HISTOGRAM,
650 DATA_TYPE_UINT16_ARRAY,
651 NBBY * sizeof (uint64_t), eip->zei_histogram_set,
652 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_HISTOGRAM,
653 DATA_TYPE_UINT16_ARRAY,
654 NBBY * sizeof (uint64_t), eip->zei_histogram_cleared,
655 NULL);
656 }
657 return (eip);
658}
659#endif
660
661void
662zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio,
663 uint64_t stateoroffset, uint64_t size)
664{
665#ifdef _KERNEL
666 nvlist_t *ereport = NULL;
667 nvlist_t *detector = NULL;
668
669 zfs_ereport_start(&ereport, &detector,
670 subclass, spa, vd, zio, stateoroffset, size);
671
672 if (ereport == NULL)
673 return;
674
26685276
BB
675 /* Cleanup is handled by the callback function */
676 zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
34dc7c2f
BB
677#endif
678}
679
428870ff
BB
680void
681zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd,
682 struct zio *zio, uint64_t offset, uint64_t length, void *arg,
683 zio_bad_cksum_t *info)
684{
685 zio_cksum_report_t *report = kmem_zalloc(sizeof (*report), KM_SLEEP);
686
687 if (zio->io_vsd != NULL)
688 zio->io_vsd_ops->vsd_cksum_report(zio, report, arg);
689 else
690 zio_vsd_default_cksum_report(zio, report, arg);
691
692 /* copy the checksum failure information if it was provided */
693 if (info != NULL) {
694 report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_SLEEP);
695 bcopy(info, report->zcr_ckinfo, sizeof (*info));
696 }
697
698 report->zcr_align = 1ULL << vd->vdev_top->vdev_ashift;
699 report->zcr_length = length;
700
701#ifdef _KERNEL
702 zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector,
703 FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio, offset, length);
704
705 if (report->zcr_ereport == NULL) {
706 report->zcr_free(report->zcr_cbdata, report->zcr_cbinfo);
707 kmem_free(report, sizeof (*report));
708 return;
709 }
710#endif
711
712 mutex_enter(&spa->spa_errlist_lock);
713 report->zcr_next = zio->io_logical->io_cksum_report;
714 zio->io_logical->io_cksum_report = report;
715 mutex_exit(&spa->spa_errlist_lock);
716}
717
718void
719zfs_ereport_finish_checksum(zio_cksum_report_t *report,
720 const void *good_data, const void *bad_data, boolean_t drop_if_identical)
721{
722#ifdef _KERNEL
723 zfs_ecksum_info_t *info = NULL;
724 info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo,
725 good_data, bad_data, report->zcr_length, drop_if_identical);
726
727 if (info != NULL)
26685276
BB
728 zfs_zevent_post(report->zcr_ereport,
729 report->zcr_detector, zfs_zevent_post_cb);
428870ff 730
428870ff 731 report->zcr_ereport = report->zcr_detector = NULL;
428870ff
BB
732 if (info != NULL)
733 kmem_free(info, sizeof (*info));
734#endif
735}
736
737void
738zfs_ereport_free_checksum(zio_cksum_report_t *rpt)
739{
740#ifdef _KERNEL
741 if (rpt->zcr_ereport != NULL) {
742 fm_nvlist_destroy(rpt->zcr_ereport,
743 FM_NVA_FREE);
744 fm_nvlist_destroy(rpt->zcr_detector,
745 FM_NVA_FREE);
746 }
747#endif
748 rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo);
749
750 if (rpt->zcr_ckinfo != NULL)
751 kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo));
752
753 kmem_free(rpt, sizeof (*rpt));
754}
755
756void
757zfs_ereport_send_interim_checksum(zio_cksum_report_t *report)
758{
759#ifdef _KERNEL
26685276 760 zfs_zevent_post(report->zcr_ereport, report->zcr_detector, NULL);
428870ff
BB
761#endif
762}
763
764void
765zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd,
766 struct zio *zio, uint64_t offset, uint64_t length,
767 const void *good_data, const void *bad_data, zio_bad_cksum_t *zbc)
768{
769#ifdef _KERNEL
770 nvlist_t *ereport = NULL;
771 nvlist_t *detector = NULL;
772 zfs_ecksum_info_t *info;
773
774 zfs_ereport_start(&ereport, &detector,
775 FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio, offset, length);
776
777 if (ereport == NULL)
778 return;
779
780 info = annotate_ecksum(ereport, zbc, good_data, bad_data, length,
781 B_FALSE);
782
26685276
BB
783 if (info != NULL) {
784 zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
428870ff 785 kmem_free(info, sizeof (*info));
26685276 786 }
428870ff
BB
787#endif
788}
789
34dc7c2f
BB
790static void
791zfs_post_common(spa_t *spa, vdev_t *vd, const char *name)
792{
793#ifdef _KERNEL
794 nvlist_t *resource;
795 char class[64];
796
428870ff
BB
797 if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT)
798 return;
799
34dc7c2f
BB
800 if ((resource = fm_nvlist_create(NULL)) == NULL)
801 return;
802
803 (void) snprintf(class, sizeof (class), "%s.%s.%s", FM_RSRC_RESOURCE,
804 ZFS_ERROR_CLASS, name);
805 VERIFY(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION) == 0);
806 VERIFY(nvlist_add_string(resource, FM_CLASS, class) == 0);
807 VERIFY(nvlist_add_uint64(resource,
808 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)) == 0);
26685276 809 if (vd) {
34dc7c2f
BB
810 VERIFY(nvlist_add_uint64(resource,
811 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid) == 0);
26685276
BB
812 VERIFY(nvlist_add_uint64(resource,
813 FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE, vd->vdev_state) == 0);
814 }
34dc7c2f 815
26685276 816 zfs_zevent_post(resource, NULL, zfs_zevent_post_cb);
34dc7c2f
BB
817#endif
818}
819
34dc7c2f
BB
820/*
821 * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev
822 * has been removed from the system. This will cause the DE to ignore any
823 * recent I/O errors, inferring that they are due to the asynchronous device
824 * removal.
825 */
826void
827zfs_post_remove(spa_t *spa, vdev_t *vd)
828{
26685276 829 zfs_post_common(spa, vd, FM_EREPORT_RESOURCE_REMOVED);
34dc7c2f
BB
830}
831
832/*
833 * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool
834 * has the 'autoreplace' property set, and therefore any broken vdevs will be
835 * handled by higher level logic, and no vdev fault should be generated.
836 */
837void
838zfs_post_autoreplace(spa_t *spa, vdev_t *vd)
839{
26685276 840 zfs_post_common(spa, vd, FM_EREPORT_RESOURCE_AUTOREPLACE);
34dc7c2f 841}
428870ff
BB
842
843/*
844 * The 'resource.fs.zfs.statechange' event is an internal signal that the
845 * given vdev has transitioned its state to DEGRADED or HEALTHY. This will
846 * cause the retire agent to repair any outstanding fault management cases
847 * open because the device was not found (fault.fs.zfs.device).
848 */
849void
850zfs_post_state_change(spa_t *spa, vdev_t *vd)
851{
26685276 852 zfs_post_common(spa, vd, FM_EREPORT_RESOURCE_STATECHANGE);
428870ff 853}
26685276
BB
854
855#if defined(_KERNEL) && defined(HAVE_SPL)
856EXPORT_SYMBOL(zfs_ereport_post);
857EXPORT_SYMBOL(zfs_ereport_post_checksum);
858EXPORT_SYMBOL(zfs_post_remove);
859EXPORT_SYMBOL(zfs_post_autoreplace);
860EXPORT_SYMBOL(zfs_post_state_change);
861#endif /* _KERNEL */