]> git.proxmox.com Git - mirror_zfs-debian.git/blame - module/zfs/zfs_fuid.c
Rebase master to b121
[mirror_zfs-debian.git] / module / zfs / zfs_fuid.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
9babb374 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
34dc7c2f
BB
23 * Use is subject to license terms.
24 */
25
34dc7c2f
BB
26#include <sys/zfs_context.h>
27#include <sys/sunddi.h>
28#include <sys/dmu.h>
29#include <sys/avl.h>
30#include <sys/zap.h>
31#include <sys/refcount.h>
32#include <sys/nvpair.h>
33#ifdef _KERNEL
34#include <sys/kidmap.h>
35#include <sys/sid.h>
36#include <sys/zfs_vfsops.h>
37#include <sys/zfs_znode.h>
38#endif
39#include <sys/zfs_fuid.h>
40
41/*
42 * FUID Domain table(s).
43 *
44 * The FUID table is stored as a packed nvlist of an array
45 * of nvlists which contain an index, domain string and offset
46 *
47 * During file system initialization the nvlist(s) are read and
48 * two AVL trees are created. One tree is keyed by the index number
49 * and the other by the domain string. Nodes are never removed from
9babb374
BB
50 * trees, but new entries may be added. If a new entry is added then
51 * the zfsvfs->z_fuid_dirty flag is set to true and the caller will then
52 * be responsible for calling zfs_fuid_sync() to sync the changes to disk.
53 *
34dc7c2f
BB
54 */
55
56#define FUID_IDX "fuid_idx"
57#define FUID_DOMAIN "fuid_domain"
58#define FUID_OFFSET "fuid_offset"
59#define FUID_NVP_ARRAY "fuid_nvlist"
60
61typedef struct fuid_domain {
62 avl_node_t f_domnode;
63 avl_node_t f_idxnode;
64 ksiddomain_t *f_ksid;
65 uint64_t f_idx;
66} fuid_domain_t;
67
b128c09f
BB
68static char *nulldomain = "";
69
34dc7c2f
BB
70/*
71 * Compare two indexes.
72 */
73static int
74idx_compare(const void *arg1, const void *arg2)
75{
76 const fuid_domain_t *node1 = arg1;
77 const fuid_domain_t *node2 = arg2;
78
79 if (node1->f_idx < node2->f_idx)
80 return (-1);
81 else if (node1->f_idx > node2->f_idx)
82 return (1);
83 return (0);
84}
85
86/*
87 * Compare two domain strings.
88 */
89static int
90domain_compare(const void *arg1, const void *arg2)
91{
92 const fuid_domain_t *node1 = arg1;
93 const fuid_domain_t *node2 = arg2;
94 int val;
95
96 val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name);
97 if (val == 0)
98 return (0);
99 return (val > 0 ? 1 : -1);
100}
101
9babb374
BB
102void
103zfs_fuid_avl_tree_create(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
104{
105 avl_create(idx_tree, idx_compare,
106 sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_idxnode));
107 avl_create(domain_tree, domain_compare,
108 sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_domnode));
109}
110
34dc7c2f
BB
111/*
112 * load initial fuid domain and idx trees. This function is used by
113 * both the kernel and zdb.
114 */
115uint64_t
116zfs_fuid_table_load(objset_t *os, uint64_t fuid_obj, avl_tree_t *idx_tree,
117 avl_tree_t *domain_tree)
118{
119 dmu_buf_t *db;
120 uint64_t fuid_size;
121
9babb374
BB
122 ASSERT(fuid_obj != 0);
123 VERIFY(0 == dmu_bonus_hold(os, fuid_obj,
124 FTAG, &db));
34dc7c2f
BB
125 fuid_size = *(uint64_t *)db->db_data;
126 dmu_buf_rele(db, FTAG);
127
128 if (fuid_size) {
129 nvlist_t **fuidnvp;
130 nvlist_t *nvp = NULL;
131 uint_t count;
132 char *packed;
133 int i;
134
135 packed = kmem_alloc(fuid_size, KM_SLEEP);
9babb374
BB
136 VERIFY(dmu_read(os, fuid_obj, 0,
137 fuid_size, packed, DMU_READ_PREFETCH) == 0);
34dc7c2f
BB
138 VERIFY(nvlist_unpack(packed, fuid_size,
139 &nvp, 0) == 0);
140 VERIFY(nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY,
141 &fuidnvp, &count) == 0);
142
143 for (i = 0; i != count; i++) {
144 fuid_domain_t *domnode;
145 char *domain;
146 uint64_t idx;
147
148 VERIFY(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN,
149 &domain) == 0);
150 VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX,
151 &idx) == 0);
152
153 domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
154
155 domnode->f_idx = idx;
156 domnode->f_ksid = ksid_lookupdomain(domain);
157 avl_add(idx_tree, domnode);
158 avl_add(domain_tree, domnode);
159 }
160 nvlist_free(nvp);
161 kmem_free(packed, fuid_size);
162 }
163 return (fuid_size);
164}
165
166void
167zfs_fuid_table_destroy(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
168{
169 fuid_domain_t *domnode;
170 void *cookie;
171
172 cookie = NULL;
173 while (domnode = avl_destroy_nodes(domain_tree, &cookie))
174 ksiddomain_rele(domnode->f_ksid);
175
176 avl_destroy(domain_tree);
177 cookie = NULL;
178 while (domnode = avl_destroy_nodes(idx_tree, &cookie))
179 kmem_free(domnode, sizeof (fuid_domain_t));
180 avl_destroy(idx_tree);
181}
182
183char *
184zfs_fuid_idx_domain(avl_tree_t *idx_tree, uint32_t idx)
185{
186 fuid_domain_t searchnode, *findnode;
187 avl_index_t loc;
188
189 searchnode.f_idx = idx;
190
191 findnode = avl_find(idx_tree, &searchnode, &loc);
192
b128c09f 193 return (findnode ? findnode->f_ksid->kd_name : nulldomain);
34dc7c2f
BB
194}
195
196#ifdef _KERNEL
197/*
198 * Load the fuid table(s) into memory.
199 */
200static void
9babb374 201zfs_fuid_init(zfsvfs_t *zfsvfs)
34dc7c2f 202{
34dc7c2f
BB
203 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
204
205 if (zfsvfs->z_fuid_loaded) {
206 rw_exit(&zfsvfs->z_fuid_lock);
207 return;
208 }
209
9babb374 210 zfs_fuid_avl_tree_create(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
34dc7c2f 211
9babb374
BB
212 (void) zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
213 ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj);
b128c09f
BB
214 if (zfsvfs->z_fuid_obj != 0) {
215 zfsvfs->z_fuid_size = zfs_fuid_table_load(zfsvfs->z_os,
216 zfsvfs->z_fuid_obj, &zfsvfs->z_fuid_idx,
217 &zfsvfs->z_fuid_domain);
b128c09f 218 }
34dc7c2f 219
9babb374
BB
220 zfsvfs->z_fuid_loaded = B_TRUE;
221 rw_exit(&zfsvfs->z_fuid_lock);
222}
223
224/*
225 * sync out AVL trees to persistent storage.
226 */
227void
228zfs_fuid_sync(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
229{
230 nvlist_t *nvp;
231 nvlist_t **fuids;
232 size_t nvsize = 0;
233 char *packed;
234 dmu_buf_t *db;
235 fuid_domain_t *domnode;
236 int numnodes;
237 int i;
238
239 if (!zfsvfs->z_fuid_dirty) {
240 return;
241 }
242
243 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
244
245 /*
246 * First see if table needs to be created?
247 */
248 if (zfsvfs->z_fuid_obj == 0) {
249 zfsvfs->z_fuid_obj = dmu_object_alloc(zfsvfs->z_os,
250 DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE,
251 sizeof (uint64_t), tx);
252 VERIFY(zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
253 ZFS_FUID_TABLES, sizeof (uint64_t), 1,
254 &zfsvfs->z_fuid_obj, tx) == 0);
255 }
256
257 VERIFY(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
258
259 numnodes = avl_numnodes(&zfsvfs->z_fuid_idx);
260 fuids = kmem_alloc(numnodes * sizeof (void *), KM_SLEEP);
261 for (i = 0, domnode = avl_first(&zfsvfs->z_fuid_domain); domnode; i++,
262 domnode = AVL_NEXT(&zfsvfs->z_fuid_domain, domnode)) {
263 VERIFY(nvlist_alloc(&fuids[i], NV_UNIQUE_NAME, KM_SLEEP) == 0);
264 VERIFY(nvlist_add_uint64(fuids[i], FUID_IDX,
265 domnode->f_idx) == 0);
266 VERIFY(nvlist_add_uint64(fuids[i], FUID_OFFSET, 0) == 0);
267 VERIFY(nvlist_add_string(fuids[i], FUID_DOMAIN,
268 domnode->f_ksid->kd_name) == 0);
269 }
270 VERIFY(nvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY,
271 fuids, numnodes) == 0);
272 for (i = 0; i != numnodes; i++)
273 nvlist_free(fuids[i]);
274 kmem_free(fuids, numnodes * sizeof (void *));
275 VERIFY(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR) == 0);
276 packed = kmem_alloc(nvsize, KM_SLEEP);
277 VERIFY(nvlist_pack(nvp, &packed, &nvsize,
278 NV_ENCODE_XDR, KM_SLEEP) == 0);
279 nvlist_free(nvp);
280 zfsvfs->z_fuid_size = nvsize;
281 dmu_write(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0,
282 zfsvfs->z_fuid_size, packed, tx);
283 kmem_free(packed, zfsvfs->z_fuid_size);
284 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj,
285 FTAG, &db));
286 dmu_buf_will_dirty(db, tx);
287 *(uint64_t *)db->db_data = zfsvfs->z_fuid_size;
288 dmu_buf_rele(db, FTAG);
289
290 zfsvfs->z_fuid_dirty = B_FALSE;
34dc7c2f
BB
291 rw_exit(&zfsvfs->z_fuid_lock);
292}
293
294/*
295 * Query domain table for a given domain.
296 *
9babb374
BB
297 * If domain isn't found and addok is set, it is added to AVL trees and
298 * the zfsvfs->z_fuid_dirty flag will be set to TRUE. It will then be
299 * necessary for the caller or another thread to detect the dirty table
300 * and sync out the changes.
34dc7c2f
BB
301 */
302int
9babb374
BB
303zfs_fuid_find_by_domain(zfsvfs_t *zfsvfs, const char *domain,
304 char **retdomain, boolean_t addok)
34dc7c2f
BB
305{
306 fuid_domain_t searchnode, *findnode;
307 avl_index_t loc;
b128c09f 308 krw_t rw = RW_READER;
34dc7c2f
BB
309
310 /*
311 * If the dummy "nobody" domain then return an index of 0
312 * to cause the created FUID to be a standard POSIX id
313 * for the user nobody.
314 */
315 if (domain[0] == '\0') {
9babb374
BB
316 if (retdomain)
317 *retdomain = nulldomain;
34dc7c2f
BB
318 return (0);
319 }
320
321 searchnode.f_ksid = ksid_lookupdomain(domain);
9babb374 322 if (retdomain)
34dc7c2f 323 *retdomain = searchnode.f_ksid->kd_name;
34dc7c2f 324 if (!zfsvfs->z_fuid_loaded)
9babb374 325 zfs_fuid_init(zfsvfs);
34dc7c2f 326
b128c09f
BB
327retry:
328 rw_enter(&zfsvfs->z_fuid_lock, rw);
34dc7c2f 329 findnode = avl_find(&zfsvfs->z_fuid_domain, &searchnode, &loc);
34dc7c2f
BB
330
331 if (findnode) {
b128c09f 332 rw_exit(&zfsvfs->z_fuid_lock);
34dc7c2f
BB
333 ksiddomain_rele(searchnode.f_ksid);
334 return (findnode->f_idx);
9babb374 335 } else if (addok) {
34dc7c2f 336 fuid_domain_t *domnode;
34dc7c2f 337 uint64_t retidx;
34dc7c2f 338
b128c09f
BB
339 if (rw == RW_READER && !rw_tryupgrade(&zfsvfs->z_fuid_lock)) {
340 rw_exit(&zfsvfs->z_fuid_lock);
341 rw = RW_WRITER;
342 goto retry;
343 }
344
34dc7c2f
BB
345 domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
346 domnode->f_ksid = searchnode.f_ksid;
347
34dc7c2f
BB
348 retidx = domnode->f_idx = avl_numnodes(&zfsvfs->z_fuid_idx) + 1;
349
350 avl_add(&zfsvfs->z_fuid_domain, domnode);
351 avl_add(&zfsvfs->z_fuid_idx, domnode);
9babb374 352 zfsvfs->z_fuid_dirty = B_TRUE;
34dc7c2f
BB
353 rw_exit(&zfsvfs->z_fuid_lock);
354 return (retidx);
9babb374 355 } else {
45d1cae3 356 rw_exit(&zfsvfs->z_fuid_lock);
9babb374 357 return (-1);
34dc7c2f
BB
358 }
359}
360
361/*
362 * Query domain table by index, returning domain string
363 *
364 * Returns a pointer from an avl node of the domain string.
365 *
366 */
9babb374 367const char *
34dc7c2f
BB
368zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint32_t idx)
369{
370 char *domain;
371
372 if (idx == 0 || !zfsvfs->z_use_fuids)
373 return (NULL);
374
375 if (!zfsvfs->z_fuid_loaded)
9babb374 376 zfs_fuid_init(zfsvfs);
34dc7c2f
BB
377
378 rw_enter(&zfsvfs->z_fuid_lock, RW_READER);
b128c09f
BB
379
380 if (zfsvfs->z_fuid_obj)
381 domain = zfs_fuid_idx_domain(&zfsvfs->z_fuid_idx, idx);
382 else
383 domain = nulldomain;
34dc7c2f
BB
384 rw_exit(&zfsvfs->z_fuid_lock);
385
386 ASSERT(domain);
387 return (domain);
388}
389
390void
391zfs_fuid_map_ids(znode_t *zp, cred_t *cr, uid_t *uidp, uid_t *gidp)
392{
393 *uidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_phys->zp_uid,
394 cr, ZFS_OWNER);
395 *gidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_phys->zp_gid,
396 cr, ZFS_GROUP);
397}
398
399uid_t
400zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid,
401 cred_t *cr, zfs_fuid_type_t type)
402{
403 uint32_t index = FUID_INDEX(fuid);
9babb374 404 const char *domain;
34dc7c2f
BB
405 uid_t id;
406
407 if (index == 0)
408 return (fuid);
409
410 domain = zfs_fuid_find_by_idx(zfsvfs, index);
411 ASSERT(domain != NULL);
412
413 if (type == ZFS_OWNER || type == ZFS_ACE_USER) {
414 (void) kidmap_getuidbysid(crgetzone(cr), domain,
415 FUID_RID(fuid), &id);
416 } else {
417 (void) kidmap_getgidbysid(crgetzone(cr), domain,
418 FUID_RID(fuid), &id);
419 }
420 return (id);
421}
422
423/*
424 * Add a FUID node to the list of fuid's being created for this
425 * ACL
426 *
427 * If ACL has multiple domains, then keep only one copy of each unique
428 * domain.
429 */
430static void
431zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid,
432 uint64_t idx, uint64_t id, zfs_fuid_type_t type)
433{
434 zfs_fuid_t *fuid;
435 zfs_fuid_domain_t *fuid_domain;
436 zfs_fuid_info_t *fuidp;
437 uint64_t fuididx;
438 boolean_t found = B_FALSE;
439
440 if (*fuidpp == NULL)
441 *fuidpp = zfs_fuid_info_alloc();
442
443 fuidp = *fuidpp;
444 /*
445 * First find fuid domain index in linked list
446 *
447 * If one isn't found then create an entry.
448 */
449
450 for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains);
451 fuid_domain; fuid_domain = list_next(&fuidp->z_domains,
452 fuid_domain), fuididx++) {
453 if (idx == fuid_domain->z_domidx) {
454 found = B_TRUE;
455 break;
456 }
457 }
458
459 if (!found) {
460 fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP);
461 fuid_domain->z_domain = domain;
462 fuid_domain->z_domidx = idx;
463 list_insert_tail(&fuidp->z_domains, fuid_domain);
464 fuidp->z_domain_str_sz += strlen(domain) + 1;
465 fuidp->z_domain_cnt++;
466 }
467
468 if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) {
9babb374 469
34dc7c2f
BB
470 /*
471 * Now allocate fuid entry and add it on the end of the list
472 */
473
474 fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP);
475 fuid->z_id = id;
476 fuid->z_domidx = idx;
477 fuid->z_logfuid = FUID_ENCODE(fuididx, rid);
478
479 list_insert_tail(&fuidp->z_fuids, fuid);
480 fuidp->z_fuid_cnt++;
481 } else {
482 if (type == ZFS_OWNER)
483 fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid);
484 else
485 fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid);
486 }
487}
488
489/*
490 * Create a file system FUID, based on information in the users cred
491 */
492uint64_t
493zfs_fuid_create_cred(zfsvfs_t *zfsvfs, zfs_fuid_type_t type,
9babb374 494 cred_t *cr, zfs_fuid_info_t **fuidp)
34dc7c2f
BB
495{
496 uint64_t idx;
497 ksid_t *ksid;
498 uint32_t rid;
499 char *kdomain;
500 const char *domain;
501 uid_t id;
502
503 VERIFY(type == ZFS_OWNER || type == ZFS_GROUP);
504
b128c09f
BB
505 ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP);
506 if (ksid) {
507 id = ksid_getid(ksid);
508 } else {
509 if (type == ZFS_OWNER)
510 id = crgetuid(cr);
511 else
512 id = crgetgid(cr);
513 }
34dc7c2f 514
b128c09f 515 if (!zfsvfs->z_use_fuids || (!IS_EPHEMERAL(id)))
34dc7c2f
BB
516 return ((uint64_t)id);
517
34dc7c2f
BB
518 rid = ksid_getrid(ksid);
519 domain = ksid_getdomain(ksid);
520
9babb374 521 idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE);
34dc7c2f
BB
522
523 zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type);
524
525 return (FUID_ENCODE(idx, rid));
526}
527
528/*
529 * Create a file system FUID for an ACL ace
530 * or a chown/chgrp of the file.
531 * This is similar to zfs_fuid_create_cred, except that
532 * we can't find the domain + rid information in the
533 * cred. Instead we have to query Winchester for the
534 * domain and rid.
535 *
536 * During replay operations the domain+rid information is
537 * found in the zfs_fuid_info_t that the replay code has
538 * attached to the zfsvfs of the file system.
539 */
540uint64_t
541zfs_fuid_create(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr,
9babb374 542 zfs_fuid_type_t type, zfs_fuid_info_t **fuidpp)
34dc7c2f
BB
543{
544 const char *domain;
545 char *kdomain;
546 uint32_t fuid_idx = FUID_INDEX(id);
547 uint32_t rid;
548 idmap_stat status;
549 uint64_t idx;
34dc7c2f
BB
550 zfs_fuid_t *zfuid = NULL;
551 zfs_fuid_info_t *fuidp;
552
553 /*
554 * If POSIX ID, or entry is already a FUID then
555 * just return the id
556 *
557 * We may also be handed an already FUID'ized id via
558 * chmod.
559 */
560
561 if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id) || fuid_idx != 0)
562 return (id);
563
fb5f0bc8 564 if (zfsvfs->z_replay) {
34dc7c2f
BB
565 fuidp = zfsvfs->z_fuid_replay;
566
567 /*
568 * If we are passed an ephemeral id, but no
569 * fuid_info was logged then return NOBODY.
570 * This is most likely a result of idmap service
571 * not being available.
572 */
573 if (fuidp == NULL)
574 return (UID_NOBODY);
575
576 switch (type) {
577 case ZFS_ACE_USER:
578 case ZFS_ACE_GROUP:
579 zfuid = list_head(&fuidp->z_fuids);
580 rid = FUID_RID(zfuid->z_logfuid);
581 idx = FUID_INDEX(zfuid->z_logfuid);
582 break;
583 case ZFS_OWNER:
584 rid = FUID_RID(fuidp->z_fuid_owner);
585 idx = FUID_INDEX(fuidp->z_fuid_owner);
586 break;
587 case ZFS_GROUP:
588 rid = FUID_RID(fuidp->z_fuid_group);
589 idx = FUID_INDEX(fuidp->z_fuid_group);
590 break;
591 };
592 domain = fuidp->z_domain_table[idx -1];
593 } else {
594 if (type == ZFS_OWNER || type == ZFS_ACE_USER)
595 status = kidmap_getsidbyuid(crgetzone(cr), id,
596 &domain, &rid);
597 else
598 status = kidmap_getsidbygid(crgetzone(cr), id,
599 &domain, &rid);
600
601 if (status != 0) {
602 /*
603 * When returning nobody we will need to
604 * make a dummy fuid table entry for logging
605 * purposes.
606 */
607 rid = UID_NOBODY;
b128c09f 608 domain = nulldomain;
34dc7c2f
BB
609 }
610 }
611
9babb374 612 idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE);
34dc7c2f 613
fb5f0bc8 614 if (!zfsvfs->z_replay)
9babb374
BB
615 zfs_fuid_node_add(fuidpp, kdomain,
616 rid, idx, id, type);
34dc7c2f
BB
617 else if (zfuid != NULL) {
618 list_remove(&fuidp->z_fuids, zfuid);
619 kmem_free(zfuid, sizeof (zfs_fuid_t));
620 }
621 return (FUID_ENCODE(idx, rid));
622}
623
624void
625zfs_fuid_destroy(zfsvfs_t *zfsvfs)
626{
627 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
628 if (!zfsvfs->z_fuid_loaded) {
629 rw_exit(&zfsvfs->z_fuid_lock);
630 return;
631 }
632 zfs_fuid_table_destroy(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
633 rw_exit(&zfsvfs->z_fuid_lock);
634}
635
636/*
637 * Allocate zfs_fuid_info for tracking FUIDs created during
638 * zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR()
639 */
640zfs_fuid_info_t *
641zfs_fuid_info_alloc(void)
642{
643 zfs_fuid_info_t *fuidp;
644
645 fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP);
646 list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t),
647 offsetof(zfs_fuid_domain_t, z_next));
648 list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t),
649 offsetof(zfs_fuid_t, z_next));
650 return (fuidp);
651}
652
653/*
654 * Release all memory associated with zfs_fuid_info_t
655 */
656void
657zfs_fuid_info_free(zfs_fuid_info_t *fuidp)
658{
659 zfs_fuid_t *zfuid;
660 zfs_fuid_domain_t *zdomain;
661
662 while ((zfuid = list_head(&fuidp->z_fuids)) != NULL) {
663 list_remove(&fuidp->z_fuids, zfuid);
664 kmem_free(zfuid, sizeof (zfs_fuid_t));
665 }
666
667 if (fuidp->z_domain_table != NULL)
668 kmem_free(fuidp->z_domain_table,
669 (sizeof (char **)) * fuidp->z_domain_cnt);
670
671 while ((zdomain = list_head(&fuidp->z_domains)) != NULL) {
672 list_remove(&fuidp->z_domains, zdomain);
673 kmem_free(zdomain, sizeof (zfs_fuid_domain_t));
674 }
675
676 kmem_free(fuidp, sizeof (zfs_fuid_info_t));
677}
678
679/*
680 * Check to see if id is a groupmember. If cred
681 * has ksid info then sidlist is checked first
682 * and if still not found then POSIX groups are checked
683 *
684 * Will use a straight FUID compare when possible.
685 */
686boolean_t
687zfs_groupmember(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr)
688{
689 ksid_t *ksid = crgetsid(cr, KSID_GROUP);
9babb374 690 ksidlist_t *ksidlist = crgetsidlist(cr);
34dc7c2f
BB
691 uid_t gid;
692
9babb374 693 if (ksid && ksidlist) {
34dc7c2f
BB
694 int i;
695 ksid_t *ksid_groups;
34dc7c2f
BB
696 uint32_t idx = FUID_INDEX(id);
697 uint32_t rid = FUID_RID(id);
698
34dc7c2f
BB
699 ksid_groups = ksidlist->ksl_sids;
700
701 for (i = 0; i != ksidlist->ksl_nsid; i++) {
702 if (idx == 0) {
703 if (id != IDMAP_WK_CREATOR_GROUP_GID &&
704 id == ksid_groups[i].ks_id) {
705 return (B_TRUE);
706 }
707 } else {
9babb374 708 const char *domain;
34dc7c2f
BB
709
710 domain = zfs_fuid_find_by_idx(zfsvfs, idx);
711 ASSERT(domain != NULL);
712
713 if (strcmp(domain,
714 IDMAP_WK_CREATOR_SID_AUTHORITY) == 0)
715 return (B_FALSE);
716
717 if ((strcmp(domain,
718 ksid_groups[i].ks_domain->kd_name) == 0) &&
719 rid == ksid_groups[i].ks_rid)
720 return (B_TRUE);
721 }
722 }
723 }
724
725 /*
726 * Not found in ksidlist, check posix groups
727 */
728 gid = zfs_fuid_map_id(zfsvfs, id, cr, ZFS_GROUP);
729 return (groupmember(gid, cr));
730}
9babb374
BB
731
732void
733zfs_fuid_txhold(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
734{
735 if (zfsvfs->z_fuid_obj == 0) {
736 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
737 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
738 FUID_SIZE_ESTIMATE(zfsvfs));
739 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL);
740 } else {
741 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
742 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
743 FUID_SIZE_ESTIMATE(zfsvfs));
744 }
745}
34dc7c2f 746#endif