]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/zfs_vfsops.c
Fix minor compiler warnings
[mirror_zfs.git] / module / zfs / zfs_vfsops.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
34dc7c2f
BB
23 */
24
428870ff
BB
25/* Portions Copyright 2010 Robert Milkowski */
26
34dc7c2f
BB
27#include <sys/types.h>
28#include <sys/param.h>
29#include <sys/systm.h>
30#include <sys/sysmacros.h>
31#include <sys/kmem.h>
32#include <sys/pathname.h>
33#include <sys/vnode.h>
34#include <sys/vfs.h>
35#include <sys/vfs_opreg.h>
36#include <sys/mntent.h>
37#include <sys/mount.h>
38#include <sys/cmn_err.h>
39#include "fs/fs_subr.h"
40#include <sys/zfs_znode.h>
41#include <sys/zfs_dir.h>
42#include <sys/zil.h>
43#include <sys/fs/zfs.h>
44#include <sys/dmu.h>
45#include <sys/dsl_prop.h>
46#include <sys/dsl_dataset.h>
47#include <sys/dsl_deleg.h>
48#include <sys/spa.h>
49#include <sys/zap.h>
428870ff 50#include <sys/sa.h>
34dc7c2f
BB
51#include <sys/varargs.h>
52#include <sys/policy.h>
53#include <sys/atomic.h>
54#include <sys/mkdev.h>
55#include <sys/modctl.h>
56#include <sys/refstr.h>
57#include <sys/zfs_ioctl.h>
58#include <sys/zfs_ctldir.h>
59#include <sys/zfs_fuid.h>
60#include <sys/bootconf.h>
61#include <sys/sunddi.h>
62#include <sys/dnlc.h>
63#include <sys/dmu_objset.h>
64#include <sys/spa_boot.h>
428870ff
BB
65#include <sys/sa.h>
66#include "zfs_comutil.h"
34dc7c2f 67
60101509 68#ifdef HAVE_ZPL
34dc7c2f
BB
69int zfsfstype;
70vfsops_t *zfs_vfsops = NULL;
71static major_t zfs_major;
72static minor_t zfs_minor;
73static kmutex_t zfs_dev_mtx;
74
9babb374
BB
75extern int sys_shutdown;
76
34dc7c2f
BB
77static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
78static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
79static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
80static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
81static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
82static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
83static void zfs_freevfs(vfs_t *vfsp);
84
85static const fs_operation_def_t zfs_vfsops_template[] = {
86 VFSNAME_MOUNT, { .vfs_mount = zfs_mount },
87 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot },
88 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount },
89 VFSNAME_ROOT, { .vfs_root = zfs_root },
90 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs },
91 VFSNAME_SYNC, { .vfs_sync = zfs_sync },
92 VFSNAME_VGET, { .vfs_vget = zfs_vget },
93 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs },
94 NULL, NULL
95};
96
97static const fs_operation_def_t zfs_vfsops_eio_template[] = {
98 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs },
99 NULL, NULL
100};
101
102/*
103 * We need to keep a count of active fs's.
104 * This is necessary to prevent our module
105 * from being unloaded after a umount -f
106 */
107static uint32_t zfs_active_fs_count = 0;
108
109static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
110static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
111static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
112static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
113
114/*
115 * MO_DEFAULT is not used since the default value is determined
116 * by the equivalent property.
117 */
118static mntopt_t mntopts[] = {
119 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
120 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
121 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
122 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
123};
124
125static mntopts_t zfs_mntopts = {
126 sizeof (mntopts) / sizeof (mntopt_t),
127 mntopts
128};
129
130/*ARGSUSED*/
131int
132zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
133{
134 /*
135 * Data integrity is job one. We don't want a compromised kernel
136 * writing to the storage pool, so we never sync during panic.
137 */
138 if (panicstr)
139 return (0);
140
141 /*
142 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
143 * to sync metadata, which they would otherwise cache indefinitely.
144 * Semantically, the only requirement is that the sync be initiated.
145 * The DMU syncs out txgs frequently, so there's nothing to do.
146 */
147 if (flag & SYNC_ATTR)
148 return (0);
149
150 if (vfsp != NULL) {
151 /*
152 * Sync a specific filesystem.
153 */
154 zfsvfs_t *zfsvfs = vfsp->vfs_data;
9babb374 155 dsl_pool_t *dp;
34dc7c2f
BB
156
157 ZFS_ENTER(zfsvfs);
9babb374
BB
158 dp = dmu_objset_pool(zfsvfs->z_os);
159
160 /*
161 * If the system is shutting down, then skip any
162 * filesystems which may exist on a suspended pool.
163 */
164 if (sys_shutdown && spa_suspended(dp->dp_spa)) {
165 ZFS_EXIT(zfsvfs);
166 return (0);
167 }
168
34dc7c2f 169 if (zfsvfs->z_log != NULL)
572e2857 170 zil_commit(zfsvfs->z_log, 0);
428870ff 171
34dc7c2f
BB
172 ZFS_EXIT(zfsvfs);
173 } else {
174 /*
175 * Sync all ZFS filesystems. This is what happens when you
176 * run sync(1M). Unlike other filesystems, ZFS honors the
177 * request by waiting for all pools to commit all dirty data.
178 */
179 spa_sync_allpools();
180 }
181
182 return (0);
183}
184
185static int
186zfs_create_unique_device(dev_t *dev)
187{
188 major_t new_major;
189
190 do {
191 ASSERT3U(zfs_minor, <=, MAXMIN32);
192 minor_t start = zfs_minor;
193 do {
194 mutex_enter(&zfs_dev_mtx);
195 if (zfs_minor >= MAXMIN32) {
196 /*
197 * If we're still using the real major
198 * keep out of /dev/zfs and /dev/zvol minor
199 * number space. If we're using a getudev()'ed
200 * major number, we can use all of its minors.
201 */
202 if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
203 zfs_minor = ZFS_MIN_MINOR;
204 else
205 zfs_minor = 0;
206 } else {
207 zfs_minor++;
208 }
209 *dev = makedevice(zfs_major, zfs_minor);
210 mutex_exit(&zfs_dev_mtx);
211 } while (vfs_devismounted(*dev) && zfs_minor != start);
212 if (zfs_minor == start) {
213 /*
214 * We are using all ~262,000 minor numbers for the
215 * current major number. Create a new major number.
216 */
217 if ((new_major = getudev()) == (major_t)-1) {
218 cmn_err(CE_WARN,
219 "zfs_mount: Can't get unique major "
220 "device number.");
221 return (-1);
222 }
223 mutex_enter(&zfs_dev_mtx);
224 zfs_major = new_major;
225 zfs_minor = 0;
226
227 mutex_exit(&zfs_dev_mtx);
228 } else {
229 break;
230 }
231 /* CONSTANTCONDITION */
232 } while (1);
233
234 return (0);
235}
236
237static void
238atime_changed_cb(void *arg, uint64_t newval)
239{
240 zfsvfs_t *zfsvfs = arg;
241
242 if (newval == TRUE) {
243 zfsvfs->z_atime = TRUE;
244 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
245 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
246 } else {
247 zfsvfs->z_atime = FALSE;
248 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
249 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
250 }
251}
252
253static void
254xattr_changed_cb(void *arg, uint64_t newval)
255{
256 zfsvfs_t *zfsvfs = arg;
257
258 if (newval == TRUE) {
259 /* XXX locking on vfs_flag? */
260 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
261 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
262 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
263 } else {
264 /* XXX locking on vfs_flag? */
265 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
266 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
267 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
268 }
269}
270
271static void
272blksz_changed_cb(void *arg, uint64_t newval)
273{
274 zfsvfs_t *zfsvfs = arg;
275
276 if (newval < SPA_MINBLOCKSIZE ||
277 newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
278 newval = SPA_MAXBLOCKSIZE;
279
280 zfsvfs->z_max_blksz = newval;
281 zfsvfs->z_vfs->vfs_bsize = newval;
282}
283
284static void
285readonly_changed_cb(void *arg, uint64_t newval)
286{
287 zfsvfs_t *zfsvfs = arg;
288
289 if (newval) {
290 /* XXX locking on vfs_flag? */
291 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
292 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
293 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
294 } else {
295 /* XXX locking on vfs_flag? */
296 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
297 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
298 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
299 }
300}
301
302static void
303devices_changed_cb(void *arg, uint64_t newval)
304{
305 zfsvfs_t *zfsvfs = arg;
306
307 if (newval == FALSE) {
308 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
309 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
310 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
311 } else {
312 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
313 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
314 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
315 }
316}
317
318static void
319setuid_changed_cb(void *arg, uint64_t newval)
320{
321 zfsvfs_t *zfsvfs = arg;
322
323 if (newval == FALSE) {
324 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
325 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
326 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
327 } else {
328 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
329 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
330 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
331 }
332}
333
334static void
335exec_changed_cb(void *arg, uint64_t newval)
336{
337 zfsvfs_t *zfsvfs = arg;
338
339 if (newval == FALSE) {
340 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
341 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
342 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
343 } else {
344 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
345 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
346 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
347 }
348}
349
350/*
351 * The nbmand mount option can be changed at mount time.
352 * We can't allow it to be toggled on live file systems or incorrect
353 * behavior may be seen from cifs clients
354 *
355 * This property isn't registered via dsl_prop_register(), but this callback
356 * will be called when a file system is first mounted
357 */
358static void
359nbmand_changed_cb(void *arg, uint64_t newval)
360{
361 zfsvfs_t *zfsvfs = arg;
362 if (newval == FALSE) {
363 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
364 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
365 } else {
366 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
367 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
368 }
369}
370
371static void
372snapdir_changed_cb(void *arg, uint64_t newval)
373{
374 zfsvfs_t *zfsvfs = arg;
375
376 zfsvfs->z_show_ctldir = newval;
377}
378
379static void
380vscan_changed_cb(void *arg, uint64_t newval)
381{
382 zfsvfs_t *zfsvfs = arg;
383
384 zfsvfs->z_vscan = newval;
385}
386
34dc7c2f
BB
387static void
388acl_inherit_changed_cb(void *arg, uint64_t newval)
389{
390 zfsvfs_t *zfsvfs = arg;
391
392 zfsvfs->z_acl_inherit = newval;
393}
394
395static int
396zfs_register_callbacks(vfs_t *vfsp)
397{
398 struct dsl_dataset *ds = NULL;
399 objset_t *os = NULL;
400 zfsvfs_t *zfsvfs = NULL;
401 uint64_t nbmand;
402 int readonly, do_readonly = B_FALSE;
403 int setuid, do_setuid = B_FALSE;
404 int exec, do_exec = B_FALSE;
405 int devices, do_devices = B_FALSE;
406 int xattr, do_xattr = B_FALSE;
407 int atime, do_atime = B_FALSE;
408 int error = 0;
409
410 ASSERT(vfsp);
411 zfsvfs = vfsp->vfs_data;
412 ASSERT(zfsvfs);
413 os = zfsvfs->z_os;
414
415 /*
416 * The act of registering our callbacks will destroy any mount
417 * options we may have. In order to enable temporary overrides
418 * of mount options, we stash away the current values and
419 * restore them after we register the callbacks.
420 */
572e2857
BB
421 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
422 !spa_writeable(dmu_objset_spa(os))) {
34dc7c2f
BB
423 readonly = B_TRUE;
424 do_readonly = B_TRUE;
425 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
426 readonly = B_FALSE;
427 do_readonly = B_TRUE;
428 }
429 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
430 devices = B_FALSE;
431 setuid = B_FALSE;
432 do_devices = B_TRUE;
433 do_setuid = B_TRUE;
434 } else {
435 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
436 devices = B_FALSE;
437 do_devices = B_TRUE;
438 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
439 devices = B_TRUE;
440 do_devices = B_TRUE;
441 }
442
443 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
444 setuid = B_FALSE;
445 do_setuid = B_TRUE;
446 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
447 setuid = B_TRUE;
448 do_setuid = B_TRUE;
449 }
450 }
451 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
452 exec = B_FALSE;
453 do_exec = B_TRUE;
454 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
455 exec = B_TRUE;
456 do_exec = B_TRUE;
457 }
458 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
459 xattr = B_FALSE;
460 do_xattr = B_TRUE;
461 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
462 xattr = B_TRUE;
463 do_xattr = B_TRUE;
464 }
465 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
466 atime = B_FALSE;
467 do_atime = B_TRUE;
468 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
469 atime = B_TRUE;
470 do_atime = B_TRUE;
471 }
472
473 /*
474 * nbmand is a special property. It can only be changed at
475 * mount time.
476 *
477 * This is weird, but it is documented to only be changeable
478 * at mount time.
479 */
480 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
481 nbmand = B_FALSE;
482 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
483 nbmand = B_TRUE;
484 } else {
485 char osname[MAXNAMELEN];
486
487 dmu_objset_name(os, osname);
149e873a
BB
488 if ((error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
489 NULL))) {
b128c09f
BB
490 return (error);
491 }
34dc7c2f
BB
492 }
493
494 /*
495 * Register property callbacks.
496 *
497 * It would probably be fine to just check for i/o error from
498 * the first prop_register(), but I guess I like to go
499 * overboard...
500 */
501 ds = dmu_objset_ds(os);
502 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
503 error = error ? error : dsl_prop_register(ds,
504 "xattr", xattr_changed_cb, zfsvfs);
505 error = error ? error : dsl_prop_register(ds,
506 "recordsize", blksz_changed_cb, zfsvfs);
507 error = error ? error : dsl_prop_register(ds,
508 "readonly", readonly_changed_cb, zfsvfs);
509 error = error ? error : dsl_prop_register(ds,
510 "devices", devices_changed_cb, zfsvfs);
511 error = error ? error : dsl_prop_register(ds,
512 "setuid", setuid_changed_cb, zfsvfs);
513 error = error ? error : dsl_prop_register(ds,
514 "exec", exec_changed_cb, zfsvfs);
515 error = error ? error : dsl_prop_register(ds,
516 "snapdir", snapdir_changed_cb, zfsvfs);
34dc7c2f
BB
517 error = error ? error : dsl_prop_register(ds,
518 "aclinherit", acl_inherit_changed_cb, zfsvfs);
519 error = error ? error : dsl_prop_register(ds,
520 "vscan", vscan_changed_cb, zfsvfs);
521 if (error)
522 goto unregister;
523
524 /*
525 * Invoke our callbacks to restore temporary mount options.
526 */
527 if (do_readonly)
528 readonly_changed_cb(zfsvfs, readonly);
529 if (do_setuid)
530 setuid_changed_cb(zfsvfs, setuid);
531 if (do_exec)
532 exec_changed_cb(zfsvfs, exec);
533 if (do_devices)
534 devices_changed_cb(zfsvfs, devices);
535 if (do_xattr)
536 xattr_changed_cb(zfsvfs, xattr);
537 if (do_atime)
538 atime_changed_cb(zfsvfs, atime);
539
540 nbmand_changed_cb(zfsvfs, nbmand);
541
542 return (0);
543
544unregister:
545 /*
546 * We may attempt to unregister some callbacks that are not
547 * registered, but this is OK; it will simply return ENOMSG,
548 * which we will ignore.
549 */
550 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
551 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
552 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
553 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
554 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs);
555 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
556 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
557 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
34dc7c2f
BB
558 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
559 zfsvfs);
560 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs);
561 return (error);
562
563}
0151834d 564#endif /* HAVE_ZPL */
34dc7c2f 565
428870ff
BB
566static int
567zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
568 uint64_t *userp, uint64_t *groupp)
9babb374 569{
428870ff
BB
570 znode_phys_t *znp = data;
571 int error = 0;
9babb374 572
428870ff
BB
573 /*
574 * Is it a valid type of object to track?
575 */
576 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
577 return (ENOENT);
9babb374 578
428870ff
BB
579 /*
580 * If we have a NULL data pointer
581 * then assume the id's aren't changing and
582 * return EEXIST to the dmu to let it know to
583 * use the same ids
584 */
585 if (data == NULL)
586 return (EEXIST);
9babb374 587
428870ff
BB
588 if (bonustype == DMU_OT_ZNODE) {
589 *userp = znp->zp_uid;
590 *groupp = znp->zp_gid;
9babb374 591 } else {
428870ff 592 int hdrsize;
9babb374 593
428870ff
BB
594 ASSERT(bonustype == DMU_OT_SA);
595 hdrsize = sa_hdrsize(data);
596
597 if (hdrsize != 0) {
598 *userp = *((uint64_t *)((uintptr_t)data + hdrsize +
599 SA_UID_OFFSET));
600 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
601 SA_GID_OFFSET));
602 } else {
603 /*
604 * This should only happen for newly created
605 * files that haven't had the znode data filled
606 * in yet.
607 */
608 *userp = 0;
609 *groupp = 0;
610 }
9babb374 611 }
428870ff 612 return (error);
9babb374
BB
613}
614
0151834d 615#ifdef HAVE_ZPL
9babb374
BB
616static void
617fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
618 char *domainbuf, int buflen, uid_t *ridp)
619{
9babb374
BB
620 uint64_t fuid;
621 const char *domain;
622
623 fuid = strtonum(fuidstr, NULL);
624
625 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
626 if (domain)
627 (void) strlcpy(domainbuf, domain, buflen);
628 else
629 domainbuf[0] = '\0';
630 *ridp = FUID_RID(fuid);
631}
632
633static uint64_t
634zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
635{
636 switch (type) {
637 case ZFS_PROP_USERUSED:
638 return (DMU_USERUSED_OBJECT);
639 case ZFS_PROP_GROUPUSED:
640 return (DMU_GROUPUSED_OBJECT);
641 case ZFS_PROP_USERQUOTA:
642 return (zfsvfs->z_userquota_obj);
643 case ZFS_PROP_GROUPQUOTA:
644 return (zfsvfs->z_groupquota_obj);
149e873a
BB
645 default:
646 return (ENOTSUP);
9babb374
BB
647 }
648 return (0);
649}
650
651int
652zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
653 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
654{
655 int error;
656 zap_cursor_t zc;
657 zap_attribute_t za;
658 zfs_useracct_t *buf = vbuf;
659 uint64_t obj;
660
661 if (!dmu_objset_userspace_present(zfsvfs->z_os))
662 return (ENOTSUP);
663
664 obj = zfs_userquota_prop_to_obj(zfsvfs, type);
665 if (obj == 0) {
666 *bufsizep = 0;
667 return (0);
668 }
669
670 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
671 (error = zap_cursor_retrieve(&zc, &za)) == 0;
672 zap_cursor_advance(&zc)) {
673 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
674 *bufsizep)
675 break;
676
677 fuidstr_to_sid(zfsvfs, za.za_name,
678 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
679
680 buf->zu_space = za.za_first_integer;
681 buf++;
682 }
683 if (error == ENOENT)
684 error = 0;
685
686 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
687 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
688 *cookiep = zap_cursor_serialize(&zc);
689 zap_cursor_fini(&zc);
690 return (error);
691}
692
693/*
694 * buf must be big enough (eg, 32 bytes)
695 */
696static int
697id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
698 char *buf, boolean_t addok)
699{
700 uint64_t fuid;
701 int domainid = 0;
702
703 if (domain && domain[0]) {
704 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
705 if (domainid == -1)
706 return (ENOENT);
707 }
708 fuid = FUID_ENCODE(domainid, rid);
709 (void) sprintf(buf, "%llx", (longlong_t)fuid);
710 return (0);
711}
712
713int
714zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
715 const char *domain, uint64_t rid, uint64_t *valp)
716{
717 char buf[32];
718 int err;
719 uint64_t obj;
720
721 *valp = 0;
722
723 if (!dmu_objset_userspace_present(zfsvfs->z_os))
724 return (ENOTSUP);
725
726 obj = zfs_userquota_prop_to_obj(zfsvfs, type);
727 if (obj == 0)
728 return (0);
729
730 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
731 if (err)
732 return (err);
733
734 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
735 if (err == ENOENT)
736 err = 0;
737 return (err);
738}
739
740int
741zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
742 const char *domain, uint64_t rid, uint64_t quota)
743{
744 char buf[32];
745 int err;
746 dmu_tx_t *tx;
747 uint64_t *objp;
748 boolean_t fuid_dirtied;
749
750 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
751 return (EINVAL);
752
753 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
754 return (ENOTSUP);
755
756 objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
757 &zfsvfs->z_groupquota_obj;
758
759 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
760 if (err)
761 return (err);
762 fuid_dirtied = zfsvfs->z_fuid_dirty;
763
764 tx = dmu_tx_create(zfsvfs->z_os);
765 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
766 if (*objp == 0) {
767 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
768 zfs_userquota_prop_prefixes[type]);
769 }
770 if (fuid_dirtied)
771 zfs_fuid_txhold(zfsvfs, tx);
772 err = dmu_tx_assign(tx, TXG_WAIT);
773 if (err) {
774 dmu_tx_abort(tx);
775 return (err);
776 }
777
778 mutex_enter(&zfsvfs->z_lock);
779 if (*objp == 0) {
780 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
781 DMU_OT_NONE, 0, tx);
782 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
783 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
784 }
785 mutex_exit(&zfsvfs->z_lock);
786
787 if (quota == 0) {
788 err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
789 if (err == ENOENT)
790 err = 0;
791 } else {
792 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
793 }
794 ASSERT(err == 0);
795 if (fuid_dirtied)
796 zfs_fuid_sync(zfsvfs, tx);
797 dmu_tx_commit(tx);
798 return (err);
799}
800
801boolean_t
428870ff 802zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
9babb374
BB
803{
804 char buf[32];
805 uint64_t used, quota, usedobj, quotaobj;
806 int err;
807
808 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
809 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
810
811 if (quotaobj == 0 || zfsvfs->z_replay)
812 return (B_FALSE);
813
814 (void) sprintf(buf, "%llx", (longlong_t)fuid);
815 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
816 if (err != 0)
817 return (B_FALSE);
818
819 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
820 if (err != 0)
821 return (B_FALSE);
822 return (used >= quota);
823}
824
428870ff
BB
825boolean_t
826zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
827{
828 uint64_t fuid;
829 uint64_t quotaobj;
428870ff
BB
830
831 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
832
572e2857 833 fuid = isgroup ? zp->z_gid : zp->z_uid;
428870ff
BB
834
835 if (quotaobj == 0 || zfsvfs->z_replay)
836 return (B_FALSE);
837
428870ff
BB
838 return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
839}
840
9babb374 841int
428870ff 842zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
9babb374
BB
843{
844 objset_t *os;
845 zfsvfs_t *zfsvfs;
846 uint64_t zval;
847 int i, error;
428870ff 848 uint64_t sa_obj;
9babb374 849
428870ff 850 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
9babb374 851
428870ff
BB
852 /*
853 * We claim to always be readonly so we can open snapshots;
854 * other ZPL code will prevent us from writing to snapshots.
855 */
856 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
857 if (error) {
858 kmem_free(zfsvfs, sizeof (zfsvfs_t));
9babb374 859 return (error);
428870ff 860 }
9babb374
BB
861
862 /*
863 * Initialize the zfs-specific filesystem structure.
864 * Should probably make this a kmem cache, shuffle fields,
865 * and just bzero up to z_hold_mtx[].
866 */
9babb374
BB
867 zfsvfs->z_vfs = NULL;
868 zfsvfs->z_parent = zfsvfs;
869 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
870 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
871 zfsvfs->z_os = os;
872
873 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
874 if (error) {
875 goto out;
428870ff
BB
876 } else if (zfsvfs->z_version >
877 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
149e873a 878 (void) printk("Can't mount a version %lld file system "
428870ff
BB
879 "on a version %lld pool\n. Pool must be upgraded to mount "
880 "this file system.", (u_longlong_t)zfsvfs->z_version,
881 (u_longlong_t)spa_version(dmu_objset_spa(os)));
9babb374
BB
882 error = ENOTSUP;
883 goto out;
884 }
9babb374
BB
885 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
886 goto out;
887 zfsvfs->z_norm = (int)zval;
888
889 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
890 goto out;
891 zfsvfs->z_utf8 = (zval != 0);
892
893 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
894 goto out;
895 zfsvfs->z_case = (uint_t)zval;
896
897 /*
898 * Fold case on file systems that are always or sometimes case
899 * insensitive.
900 */
901 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
902 zfsvfs->z_case == ZFS_CASE_MIXED)
903 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
904
905 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
428870ff
BB
906 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
907
908 if (zfsvfs->z_use_sa) {
909 /* should either have both of these objects or none */
910 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
911 &sa_obj);
912 if (error)
913 return (error);
914 } else {
915 /*
916 * Pre SA versions file systems should never touch
917 * either the attribute registration or layout objects.
918 */
919 sa_obj = 0;
920 }
921
572e2857
BB
922 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
923 &zfsvfs->z_attr_table);
924 if (error)
925 goto out;
428870ff
BB
926
927 if (zfsvfs->z_version >= ZPL_VERSION_SA)
928 sa_register_update_callback(os, zfs_sa_upgrade);
9babb374
BB
929
930 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
931 &zfsvfs->z_root);
932 if (error)
933 goto out;
934 ASSERT(zfsvfs->z_root != 0);
935
936 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
937 &zfsvfs->z_unlinkedobj);
938 if (error)
939 goto out;
940
941 error = zap_lookup(os, MASTER_NODE_OBJ,
942 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
943 8, 1, &zfsvfs->z_userquota_obj);
944 if (error && error != ENOENT)
945 goto out;
946
947 error = zap_lookup(os, MASTER_NODE_OBJ,
948 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
949 8, 1, &zfsvfs->z_groupquota_obj);
950 if (error && error != ENOENT)
951 goto out;
952
953 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
954 &zfsvfs->z_fuid_obj);
955 if (error && error != ENOENT)
956 goto out;
957
958 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
959 &zfsvfs->z_shares_dir);
960 if (error && error != ENOENT)
961 goto out;
962
963 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
9babb374
BB
964 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
965 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
966 offsetof(znode_t, z_link_node));
967 rrw_init(&zfsvfs->z_teardown_lock);
968 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
969 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
970 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
971 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
972
428870ff 973 *zfvp = zfsvfs;
9babb374
BB
974 return (0);
975
976out:
428870ff
BB
977 dmu_objset_disown(os, zfsvfs);
978 *zfvp = NULL;
9babb374
BB
979 kmem_free(zfsvfs, sizeof (zfsvfs_t));
980 return (error);
981}
982
34dc7c2f
BB
983static int
984zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
985{
34dc7c2f
BB
986 int error;
987
988 error = zfs_register_callbacks(zfsvfs->z_vfs);
989 if (error)
990 return (error);
991
992 /*
993 * Set the objset user_ptr to track its zfsvfs.
994 */
428870ff 995 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
34dc7c2f 996 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
428870ff 997 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
34dc7c2f 998
9babb374 999 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
9babb374 1000
34dc7c2f
BB
1001 /*
1002 * If we are not mounting (ie: online recv), then we don't
1003 * have to worry about replaying the log as we blocked all
1004 * operations out since we closed the ZIL.
1005 */
1006 if (mounting) {
b128c09f
BB
1007 boolean_t readonly;
1008
34dc7c2f
BB
1009 /*
1010 * During replay we remove the read only flag to
1011 * allow replays to succeed.
1012 */
1013 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
fb5f0bc8
BB
1014 if (readonly != 0)
1015 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1016 else
1017 zfs_unlinked_drain(zfsvfs);
34dc7c2f 1018
428870ff
BB
1019 /*
1020 * Parse and replay the intent log.
1021 *
1022 * Because of ziltest, this must be done after
1023 * zfs_unlinked_drain(). (Further note: ziltest
1024 * doesn't use readonly mounts, where
1025 * zfs_unlinked_drain() isn't called.) This is because
1026 * ziltest causes spa_sync() to think it's committed,
1027 * but actually it is not, so the intent log contains
1028 * many txg's worth of changes.
1029 *
1030 * In particular, if object N is in the unlinked set in
1031 * the last txg to actually sync, then it could be
1032 * actually freed in a later txg and then reallocated
1033 * in a yet later txg. This would write a "create
1034 * object N" record to the intent log. Normally, this
1035 * would be fine because the spa_sync() would have
1036 * written out the fact that object N is free, before
1037 * we could write the "create object N" intent log
1038 * record.
1039 *
1040 * But when we are in ziltest mode, we advance the "open
1041 * txg" without actually spa_sync()-ing the changes to
1042 * disk. So we would see that object N is still
1043 * allocated and in the unlinked set, and there is an
1044 * intent log record saying to allocate it.
1045 */
572e2857
BB
1046 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1047 if (zil_replay_disable) {
1048 zil_destroy(zfsvfs->z_log, B_FALSE);
1049 } else {
1050 zfsvfs->z_replay = B_TRUE;
1051 zil_replay(zfsvfs->z_os, zfsvfs,
1052 zfs_replay_vector);
1053 zfsvfs->z_replay = B_FALSE;
1054 }
fb5f0bc8 1055 }
34dc7c2f
BB
1056 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1057 }
1058
34dc7c2f
BB
1059 return (0);
1060}
1061
9babb374
BB
1062void
1063zfsvfs_free(zfsvfs_t *zfsvfs)
34dc7c2f 1064{
9babb374
BB
1065 int i;
1066 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1067
1068 /*
1069 * This is a barrier to prevent the filesystem from going away in
1070 * zfs_znode_move() until we can safely ensure that the filesystem is
1071 * not unmounted. We consider the filesystem valid before the barrier
1072 * and invalid after the barrier.
1073 */
1074 rw_enter(&zfsvfs_lock, RW_READER);
1075 rw_exit(&zfsvfs_lock);
1076
1077 zfs_fuid_destroy(zfsvfs);
1078
34dc7c2f 1079 mutex_destroy(&zfsvfs->z_znodes_lock);
9babb374 1080 mutex_destroy(&zfsvfs->z_lock);
34dc7c2f
BB
1081 list_destroy(&zfsvfs->z_all_znodes);
1082 rrw_destroy(&zfsvfs->z_teardown_lock);
1083 rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1084 rw_destroy(&zfsvfs->z_fuid_lock);
9babb374
BB
1085 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1086 mutex_destroy(&zfsvfs->z_hold_mtx[i]);
34dc7c2f
BB
1087 kmem_free(zfsvfs, sizeof (zfsvfs_t));
1088}
1089
9babb374
BB
1090static void
1091zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1092{
1093 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1094 if (zfsvfs->z_use_fuids && zfsvfs->z_vfs) {
1095 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1096 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1097 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1098 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1099 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
428870ff 1100 vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
9babb374 1101 }
428870ff 1102 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
9babb374
BB
1103}
1104
34dc7c2f 1105static int
b128c09f 1106zfs_domount(vfs_t *vfsp, char *osname)
34dc7c2f
BB
1107{
1108 dev_t mount_dev;
9babb374 1109 uint64_t recordsize, fsid_guid;
34dc7c2f 1110 int error = 0;
34dc7c2f 1111 zfsvfs_t *zfsvfs;
34dc7c2f
BB
1112
1113 ASSERT(vfsp);
1114 ASSERT(osname);
1115
428870ff 1116 error = zfsvfs_create(osname, &zfsvfs);
9babb374
BB
1117 if (error)
1118 return (error);
34dc7c2f 1119 zfsvfs->z_vfs = vfsp;
34dc7c2f
BB
1120
1121 /* Initialize the generic filesystem structure. */
1122 vfsp->vfs_bcount = 0;
1123 vfsp->vfs_data = NULL;
1124
1125 if (zfs_create_unique_device(&mount_dev) == -1) {
1126 error = ENODEV;
1127 goto out;
1128 }
1129 ASSERT(vfs_devismounted(mount_dev) == 0);
1130
149e873a
BB
1131 if ((error = dsl_prop_get_integer(osname, "recordsize",
1132 &recordsize, NULL)))
34dc7c2f
BB
1133 goto out;
1134
1135 vfsp->vfs_dev = mount_dev;
1136 vfsp->vfs_fstype = zfsfstype;
1137 vfsp->vfs_bsize = recordsize;
1138 vfsp->vfs_flag |= VFS_NOTRUNC;
1139 vfsp->vfs_data = zfsvfs;
1140
9babb374
BB
1141 /*
1142 * The fsid is 64 bits, composed of an 8-bit fs type, which
1143 * separates our fsid from any other filesystem types, and a
1144 * 56-bit objset unique ID. The objset unique ID is unique to
1145 * all objsets open on this system, provided by unique_create().
1146 * The 8-bit fs type must be put in the low bits of fsid[1]
1147 * because that's where other Solaris filesystems put it.
1148 */
1149 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1150 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1151 vfsp->vfs_fsid.val[0] = fsid_guid;
1152 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1153 zfsfstype & 0xFF;
34dc7c2f
BB
1154
1155 /*
1156 * Set features for file system.
1157 */
9babb374 1158 zfs_set_fuid_feature(zfsvfs);
34dc7c2f
BB
1159 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1160 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1161 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1162 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1163 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1164 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1165 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1166 }
428870ff 1167 vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
34dc7c2f
BB
1168
1169 if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1170 uint64_t pval;
1171
34dc7c2f
BB
1172 atime_changed_cb(zfsvfs, B_FALSE);
1173 readonly_changed_cb(zfsvfs, B_TRUE);
149e873a 1174 if ((error = dsl_prop_get_integer(osname,"xattr",&pval,NULL)))
34dc7c2f
BB
1175 goto out;
1176 xattr_changed_cb(zfsvfs, pval);
1177 zfsvfs->z_issnap = B_TRUE;
572e2857 1178 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
9babb374 1179
428870ff 1180 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
9babb374 1181 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
428870ff 1182 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
34dc7c2f
BB
1183 } else {
1184 error = zfsvfs_setup(zfsvfs, B_TRUE);
1185 }
1186
1187 if (!zfsvfs->z_issnap)
1188 zfsctl_create(zfsvfs);
1189out:
1190 if (error) {
428870ff 1191 dmu_objset_disown(zfsvfs->z_os, zfsvfs);
9babb374 1192 zfsvfs_free(zfsvfs);
34dc7c2f
BB
1193 } else {
1194 atomic_add_32(&zfs_active_fs_count, 1);
1195 }
1196
1197 return (error);
1198}
1199
1200void
1201zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1202{
1203 objset_t *os = zfsvfs->z_os;
1204 struct dsl_dataset *ds;
1205
1206 /*
1207 * Unregister properties.
1208 */
1209 if (!dmu_objset_is_snapshot(os)) {
1210 ds = dmu_objset_ds(os);
1211 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1212 zfsvfs) == 0);
1213
1214 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1215 zfsvfs) == 0);
1216
1217 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1218 zfsvfs) == 0);
1219
1220 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1221 zfsvfs) == 0);
1222
1223 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
1224 zfsvfs) == 0);
1225
1226 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1227 zfsvfs) == 0);
1228
1229 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1230 zfsvfs) == 0);
1231
1232 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1233 zfsvfs) == 0);
1234
34dc7c2f
BB
1235 VERIFY(dsl_prop_unregister(ds, "aclinherit",
1236 acl_inherit_changed_cb, zfsvfs) == 0);
1237
1238 VERIFY(dsl_prop_unregister(ds, "vscan",
1239 vscan_changed_cb, zfsvfs) == 0);
1240 }
1241}
1242
1243/*
1244 * Convert a decimal digit string to a uint64_t integer.
1245 */
1246static int
1247str_to_uint64(char *str, uint64_t *objnum)
1248{
1249 uint64_t num = 0;
1250
1251 while (*str) {
1252 if (*str < '0' || *str > '9')
1253 return (EINVAL);
1254
1255 num = num*10 + *str++ - '0';
1256 }
1257
1258 *objnum = num;
1259 return (0);
1260}
1261
1262/*
1263 * The boot path passed from the boot loader is in the form of
1264 * "rootpool-name/root-filesystem-object-number'. Convert this
1265 * string to a dataset name: "rootpool-name/root-filesystem-name".
1266 */
1267static int
1268zfs_parse_bootfs(char *bpath, char *outpath)
1269{
1270 char *slashp;
1271 uint64_t objnum;
1272 int error;
1273
1274 if (*bpath == 0 || *bpath == '/')
1275 return (EINVAL);
1276
b128c09f
BB
1277 (void) strcpy(outpath, bpath);
1278
34dc7c2f
BB
1279 slashp = strchr(bpath, '/');
1280
1281 /* if no '/', just return the pool name */
1282 if (slashp == NULL) {
34dc7c2f
BB
1283 return (0);
1284 }
1285
b128c09f
BB
1286 /* if not a number, just return the root dataset name */
1287 if (str_to_uint64(slashp+1, &objnum)) {
1288 return (0);
1289 }
34dc7c2f
BB
1290
1291 *slashp = '\0';
1292 error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1293 *slashp = '/';
1294
1295 return (error);
1296}
1297
428870ff
BB
1298/*
1299 * zfs_check_global_label:
1300 * Check that the hex label string is appropriate for the dataset
1301 * being mounted into the global_zone proper.
1302 *
1303 * Return an error if the hex label string is not default or
1304 * admin_low/admin_high. For admin_low labels, the corresponding
1305 * dataset must be readonly.
1306 */
1307int
1308zfs_check_global_label(const char *dsname, const char *hexsl)
1309{
1310 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1311 return (0);
1312 if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1313 return (0);
1314 if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1315 /* must be readonly */
1316 uint64_t rdonly;
1317
1318 if (dsl_prop_get_integer(dsname,
1319 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1320 return (EACCES);
1321 return (rdonly ? 0 : EACCES);
1322 }
1323 return (EACCES);
1324}
1325
1326/*
1327 * zfs_mount_label_policy:
1328 * Determine whether the mount is allowed according to MAC check.
1329 * by comparing (where appropriate) label of the dataset against
1330 * the label of the zone being mounted into. If the dataset has
1331 * no label, create one.
1332 *
1333 * Returns:
1334 * 0 : access allowed
1335 * >0 : error code, such as EACCES
1336 */
1337static int
1338zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1339{
1340 int error, retv;
1341 zone_t *mntzone = NULL;
1342 ts_label_t *mnt_tsl;
1343 bslabel_t *mnt_sl;
1344 bslabel_t ds_sl;
1345 char ds_hexsl[MAXNAMELEN];
1346
1347 retv = EACCES; /* assume the worst */
1348
1349 /*
1350 * Start by getting the dataset label if it exists.
1351 */
1352 error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1353 1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1354 if (error)
1355 return (EACCES);
1356
1357 /*
1358 * If labeling is NOT enabled, then disallow the mount of datasets
1359 * which have a non-default label already. No other label checks
1360 * are needed.
1361 */
1362 if (!is_system_labeled()) {
1363 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1364 return (0);
1365 return (EACCES);
1366 }
1367
1368 /*
1369 * Get the label of the mountpoint. If mounting into the global
1370 * zone (i.e. mountpoint is not within an active zone and the
1371 * zoned property is off), the label must be default or
1372 * admin_low/admin_high only; no other checks are needed.
1373 */
1374 mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1375 if (mntzone->zone_id == GLOBAL_ZONEID) {
1376 uint64_t zoned;
1377
1378 zone_rele(mntzone);
1379
1380 if (dsl_prop_get_integer(osname,
1381 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1382 return (EACCES);
1383 if (!zoned)
1384 return (zfs_check_global_label(osname, ds_hexsl));
1385 else
1386 /*
1387 * This is the case of a zone dataset being mounted
1388 * initially, before the zone has been fully created;
1389 * allow this mount into global zone.
1390 */
1391 return (0);
1392 }
1393
1394 mnt_tsl = mntzone->zone_slabel;
1395 ASSERT(mnt_tsl != NULL);
1396 label_hold(mnt_tsl);
1397 mnt_sl = label2bslabel(mnt_tsl);
1398
1399 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1400 /*
1401 * The dataset doesn't have a real label, so fabricate one.
1402 */
1403 char *str = NULL;
1404
1405 if (l_to_str_internal(mnt_sl, &str) == 0 &&
1406 dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1407 ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0)
1408 retv = 0;
1409 if (str != NULL)
1410 kmem_free(str, strlen(str) + 1);
1411 } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1412 /*
1413 * Now compare labels to complete the MAC check. If the
1414 * labels are equal then allow access. If the mountpoint
1415 * label dominates the dataset label, allow readonly access.
1416 * Otherwise, access is denied.
1417 */
1418 if (blequal(mnt_sl, &ds_sl))
1419 retv = 0;
1420 else if (bldominates(mnt_sl, &ds_sl)) {
1421 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1422 retv = 0;
1423 }
1424 }
1425
1426 label_rele(mnt_tsl);
1427 zone_rele(mntzone);
1428 return (retv);
1429}
1430
34dc7c2f
BB
1431static int
1432zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1433{
1434 int error = 0;
1435 static int zfsrootdone = 0;
1436 zfsvfs_t *zfsvfs = NULL;
1437 znode_t *zp = NULL;
1438 vnode_t *vp = NULL;
1439 char *zfs_bootfs;
b128c09f 1440 char *zfs_devid;
34dc7c2f
BB
1441
1442 ASSERT(vfsp);
1443
1444 /*
1445 * The filesystem that we mount as root is defined in the
1446 * boot property "zfs-bootfs" with a format of
1447 * "poolname/root-dataset-objnum".
1448 */
1449 if (why == ROOT_INIT) {
1450 if (zfsrootdone++)
1451 return (EBUSY);
1452 /*
1453 * the process of doing a spa_load will require the
1454 * clock to be set before we could (for example) do
1455 * something better by looking at the timestamp on
1456 * an uberblock, so just set it to -1.
1457 */
1458 clkset(-1);
1459
b128c09f
BB
1460 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1461 cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1462 "bootfs name");
34dc7c2f
BB
1463 return (EINVAL);
1464 }
b128c09f
BB
1465 zfs_devid = spa_get_bootprop("diskdevid");
1466 error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1467 if (zfs_devid)
1468 spa_free_bootprop(zfs_devid);
1469 if (error) {
1470 spa_free_bootprop(zfs_bootfs);
1471 cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
34dc7c2f
BB
1472 error);
1473 return (error);
1474 }
34dc7c2f 1475 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
b128c09f
BB
1476 spa_free_bootprop(zfs_bootfs);
1477 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
34dc7c2f
BB
1478 error);
1479 return (error);
1480 }
1481
b128c09f 1482 spa_free_bootprop(zfs_bootfs);
34dc7c2f
BB
1483
1484 if (error = vfs_lock(vfsp))
1485 return (error);
1486
b128c09f
BB
1487 if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1488 cmn_err(CE_NOTE, "zfs_domount: error %d", error);
34dc7c2f
BB
1489 goto out;
1490 }
1491
1492 zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1493 ASSERT(zfsvfs);
1494 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
b128c09f 1495 cmn_err(CE_NOTE, "zfs_zget: error %d", error);
34dc7c2f
BB
1496 goto out;
1497 }
1498
1499 vp = ZTOV(zp);
1500 mutex_enter(&vp->v_lock);
1501 vp->v_flag |= VROOT;
1502 mutex_exit(&vp->v_lock);
1503 rootvp = vp;
1504
1505 /*
b128c09f 1506 * Leave rootvp held. The root file system is never unmounted.
34dc7c2f 1507 */
34dc7c2f
BB
1508
1509 vfs_add((struct vnode *)0, vfsp,
1510 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1511out:
1512 vfs_unlock(vfsp);
1513 return (error);
1514 } else if (why == ROOT_REMOUNT) {
1515 readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1516 vfsp->vfs_flag |= VFS_REMOUNT;
1517
1518 /* refresh mount options */
1519 zfs_unregister_callbacks(vfsp->vfs_data);
1520 return (zfs_register_callbacks(vfsp));
1521
1522 } else if (why == ROOT_UNMOUNT) {
1523 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1524 (void) zfs_sync(vfsp, 0, 0);
1525 return (0);
1526 }
1527
1528 /*
1529 * if "why" is equal to anything else other than ROOT_INIT,
1530 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1531 */
1532 return (ENOTSUP);
1533}
1534
1535/*ARGSUSED*/
1536static int
1537zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
1538{
1539 char *osname;
1540 pathname_t spn;
1541 int error = 0;
1542 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ?
1543 UIO_SYSSPACE : UIO_USERSPACE;
1544 int canwrite;
1545
1546 if (mvp->v_type != VDIR)
1547 return (ENOTDIR);
1548
1549 mutex_enter(&mvp->v_lock);
1550 if ((uap->flags & MS_REMOUNT) == 0 &&
1551 (uap->flags & MS_OVERLAY) == 0 &&
1552 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1553 mutex_exit(&mvp->v_lock);
1554 return (EBUSY);
1555 }
1556 mutex_exit(&mvp->v_lock);
1557
1558 /*
1559 * ZFS does not support passing unparsed data in via MS_DATA.
1560 * Users should use the MS_OPTIONSTR interface; this means
1561 * that all option parsing is already done and the options struct
1562 * can be interrogated.
1563 */
1564 if ((uap->flags & MS_DATA) && uap->datalen > 0)
1565 return (EINVAL);
1566
1567 /*
1568 * Get the objset name (the "special" mount argument).
1569 */
149e873a 1570 if ((error = pn_get(uap->spec, fromspace, &spn)))
34dc7c2f
BB
1571 return (error);
1572
1573 osname = spn.pn_path;
1574
1575 /*
1576 * Check for mount privilege?
1577 *
1578 * If we don't have privilege then see if
1579 * we have local permission to allow it
1580 */
1581 error = secpolicy_fs_mount(cr, mvp, vfsp);
1582 if (error) {
428870ff 1583 if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) {
34dc7c2f
BB
1584 vattr_t vattr;
1585
1586 /*
1587 * Make sure user is the owner of the mount point
1588 * or has sufficient privileges.
1589 */
1590
1591 vattr.va_mask = AT_UID;
1592
428870ff 1593 if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
34dc7c2f
BB
1594 goto out;
1595 }
1596
1597 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1598 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) {
34dc7c2f
BB
1599 goto out;
1600 }
34dc7c2f
BB
1601 secpolicy_fs_mount_clearopts(cr, vfsp);
1602 } else {
1603 goto out;
1604 }
1605 }
1606
1607 /*
1608 * Refuse to mount a filesystem if we are in a local zone and the
1609 * dataset is not visible.
1610 */
1611 if (!INGLOBALZONE(curproc) &&
1612 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1613 error = EPERM;
1614 goto out;
1615 }
1616
428870ff
BB
1617 error = zfs_mount_label_policy(vfsp, osname);
1618 if (error)
1619 goto out;
1620
34dc7c2f
BB
1621 /*
1622 * When doing a remount, we simply refresh our temporary properties
1623 * according to those options set in the current VFS options.
1624 */
1625 if (uap->flags & MS_REMOUNT) {
1626 /* refresh mount options */
1627 zfs_unregister_callbacks(vfsp->vfs_data);
1628 error = zfs_register_callbacks(vfsp);
1629 goto out;
1630 }
1631
b128c09f 1632 error = zfs_domount(vfsp, osname);
34dc7c2f 1633
9babb374
BB
1634 /*
1635 * Add an extra VFS_HOLD on our parent vfs so that it can't
1636 * disappear due to a forced unmount.
1637 */
1638 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1639 VFS_HOLD(mvp->v_vfsp);
1640
34dc7c2f
BB
1641out:
1642 pn_free(&spn);
1643 return (error);
1644}
1645
1646static int
1647zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
1648{
1649 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1650 dev32_t d32;
1651 uint64_t refdbytes, availbytes, usedobjs, availobjs;
1652
1653 ZFS_ENTER(zfsvfs);
1654
1655 dmu_objset_space(zfsvfs->z_os,
1656 &refdbytes, &availbytes, &usedobjs, &availobjs);
1657
1658 /*
1659 * The underlying storage pool actually uses multiple block sizes.
1660 * We report the fragsize as the smallest block size we support,
1661 * and we report our blocksize as the filesystem's maximum blocksize.
1662 */
1663 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
1664 statp->f_bsize = zfsvfs->z_max_blksz;
1665
1666 /*
1667 * The following report "total" blocks of various kinds in the
1668 * file system, but reported in terms of f_frsize - the
1669 * "fragment" size.
1670 */
1671
1672 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1673 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
1674 statp->f_bavail = statp->f_bfree; /* no root reservation */
1675
1676 /*
1677 * statvfs() should really be called statufs(), because it assumes
1678 * static metadata. ZFS doesn't preallocate files, so the best
1679 * we can do is report the max that could possibly fit in f_files,
1680 * and that minus the number actually used in f_ffree.
1681 * For f_ffree, report the smaller of the number of object available
1682 * and the number of blocks (each object will take at least a block).
1683 */
1684 statp->f_ffree = MIN(availobjs, statp->f_bfree);
1685 statp->f_favail = statp->f_ffree; /* no "root reservation" */
1686 statp->f_files = statp->f_ffree + usedobjs;
1687
1688 (void) cmpldev(&d32, vfsp->vfs_dev);
1689 statp->f_fsid = d32;
1690
1691 /*
1692 * We're a zfs filesystem.
1693 */
1694 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1695
1696 statp->f_flag = vf_to_stf(vfsp->vfs_flag);
1697
1698 statp->f_namemax = ZFS_MAXNAMELEN;
1699
1700 /*
1701 * We have all of 32 characters to stuff a string here.
1702 * Is there anything useful we could/should provide?
1703 */
1704 bzero(statp->f_fstr, sizeof (statp->f_fstr));
1705
1706 ZFS_EXIT(zfsvfs);
1707 return (0);
1708}
1709
1710static int
1711zfs_root(vfs_t *vfsp, vnode_t **vpp)
1712{
1713 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1714 znode_t *rootzp;
1715 int error;
1716
1717 ZFS_ENTER(zfsvfs);
1718
1719 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1720 if (error == 0)
1721 *vpp = ZTOV(rootzp);
1722
1723 ZFS_EXIT(zfsvfs);
1724 return (error);
1725}
1726
1727/*
1728 * Teardown the zfsvfs::z_os.
1729 *
1730 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1731 * and 'z_teardown_inactive_lock' held.
1732 */
1733static int
1734zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1735{
1736 znode_t *zp;
1737
1738 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1739
1740 if (!unmounting) {
1741 /*
1742 * We purge the parent filesystem's vfsp as the parent
1743 * filesystem and all of its snapshots have their vnode's
1744 * v_vfsp set to the parent's filesystem's vfsp. Note,
1745 * 'z_parent' is self referential for non-snapshots.
1746 */
1747 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1748 }
1749
1750 /*
1751 * Close the zil. NB: Can't close the zil while zfs_inactive
1752 * threads are blocked as zil_close can call zfs_inactive.
1753 */
1754 if (zfsvfs->z_log) {
1755 zil_close(zfsvfs->z_log);
1756 zfsvfs->z_log = NULL;
1757 }
1758
1759 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1760
1761 /*
1762 * If we are not unmounting (ie: online recv) and someone already
1763 * unmounted this file system while we were doing the switcheroo,
1764 * or a reopen of z_os failed then just bail out now.
1765 */
1766 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1767 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1768 rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1769 return (EIO);
1770 }
1771
1772 /*
1773 * At this point there are no vops active, and any new vops will
1774 * fail with EIO since we have z_teardown_lock for writer (only
1775 * relavent for forced unmount).
1776 *
1777 * Release all holds on dbufs.
1778 */
1779 mutex_enter(&zfsvfs->z_znodes_lock);
1780 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1781 zp = list_next(&zfsvfs->z_all_znodes, zp))
428870ff 1782 if (zp->z_sa_hdl) {
34dc7c2f
BB
1783 ASSERT(ZTOV(zp)->v_count > 0);
1784 zfs_znode_dmu_fini(zp);
1785 }
1786 mutex_exit(&zfsvfs->z_znodes_lock);
1787
1788 /*
1789 * If we are unmounting, set the unmounted flag and let new vops
1790 * unblock. zfs_inactive will have the unmounted behavior, and all
1791 * other vops will fail with EIO.
1792 */
1793 if (unmounting) {
1794 zfsvfs->z_unmounted = B_TRUE;
1795 rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1796 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1797 }
1798
1799 /*
1800 * z_os will be NULL if there was an error in attempting to reopen
1801 * zfsvfs, so just return as the properties had already been
1802 * unregistered and cached data had been evicted before.
1803 */
1804 if (zfsvfs->z_os == NULL)
1805 return (0);
1806
1807 /*
1808 * Unregister properties.
1809 */
1810 zfs_unregister_callbacks(zfsvfs);
1811
1812 /*
1813 * Evict cached data
1814 */
572e2857
BB
1815 if (dmu_objset_is_dirty_anywhere(zfsvfs->z_os))
1816 if (!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
1817 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1818 (void) dmu_objset_evict_dbufs(zfsvfs->z_os);
34dc7c2f
BB
1819
1820 return (0);
1821}
1822
1823/*ARGSUSED*/
1824static int
1825zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
1826{
1827 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1828 objset_t *os;
1829 int ret;
1830
1831 ret = secpolicy_fs_unmount(cr, vfsp);
1832 if (ret) {
428870ff
BB
1833 if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1834 ZFS_DELEG_PERM_MOUNT, cr))
34dc7c2f
BB
1835 return (ret);
1836 }
1837
1838 /*
1839 * We purge the parent filesystem's vfsp as the parent filesystem
1840 * and all of its snapshots have their vnode's v_vfsp set to the
1841 * parent's filesystem's vfsp. Note, 'z_parent' is self
1842 * referential for non-snapshots.
1843 */
1844 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1845
1846 /*
1847 * Unmount any snapshots mounted under .zfs before unmounting the
1848 * dataset itself.
1849 */
1850 if (zfsvfs->z_ctldir != NULL &&
1851 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
1852 return (ret);
1853 }
1854
1855 if (!(fflag & MS_FORCE)) {
1856 /*
1857 * Check the number of active vnodes in the file system.
1858 * Our count is maintained in the vfs structure, but the
1859 * number is off by 1 to indicate a hold on the vfs
1860 * structure itself.
1861 *
1862 * The '.zfs' directory maintains a reference of its
1863 * own, and any active references underneath are
1864 * reflected in the vnode count.
1865 */
1866 if (zfsvfs->z_ctldir == NULL) {
1867 if (vfsp->vfs_count > 1)
1868 return (EBUSY);
1869 } else {
1870 if (vfsp->vfs_count > 2 ||
1871 zfsvfs->z_ctldir->v_count > 1)
1872 return (EBUSY);
1873 }
1874 }
1875
1876 vfsp->vfs_flag |= VFS_UNMOUNTED;
1877
1878 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1879 os = zfsvfs->z_os;
1880
1881 /*
1882 * z_os will be NULL if there was an error in
1883 * attempting to reopen zfsvfs.
1884 */
1885 if (os != NULL) {
1886 /*
1887 * Unset the objset user_ptr.
1888 */
428870ff 1889 mutex_enter(&os->os_user_ptr_lock);
34dc7c2f 1890 dmu_objset_set_user(os, NULL);
428870ff 1891 mutex_exit(&os->os_user_ptr_lock);
34dc7c2f
BB
1892
1893 /*
b128c09f 1894 * Finally release the objset
34dc7c2f 1895 */
428870ff 1896 dmu_objset_disown(os, zfsvfs);
34dc7c2f
BB
1897 }
1898
1899 /*
1900 * We can now safely destroy the '.zfs' directory node.
1901 */
1902 if (zfsvfs->z_ctldir != NULL)
1903 zfsctl_destroy(zfsvfs);
1904
1905 return (0);
1906}
1907
1908static int
1909zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
1910{
1911 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1912 znode_t *zp;
1913 uint64_t object = 0;
1914 uint64_t fid_gen = 0;
1915 uint64_t gen_mask;
1916 uint64_t zp_gen;
1917 int i, err;
1918
1919 *vpp = NULL;
1920
1921 ZFS_ENTER(zfsvfs);
1922
1923 if (fidp->fid_len == LONG_FID_LEN) {
1924 zfid_long_t *zlfid = (zfid_long_t *)fidp;
1925 uint64_t objsetid = 0;
1926 uint64_t setgen = 0;
1927
1928 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1929 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1930
1931 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1932 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1933
1934 ZFS_EXIT(zfsvfs);
1935
1936 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1937 if (err)
1938 return (EINVAL);
1939 ZFS_ENTER(zfsvfs);
1940 }
1941
1942 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1943 zfid_short_t *zfid = (zfid_short_t *)fidp;
1944
1945 for (i = 0; i < sizeof (zfid->zf_object); i++)
1946 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1947
1948 for (i = 0; i < sizeof (zfid->zf_gen); i++)
1949 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1950 } else {
1951 ZFS_EXIT(zfsvfs);
1952 return (EINVAL);
1953 }
1954
1955 /* A zero fid_gen means we are in the .zfs control directories */
1956 if (fid_gen == 0 &&
1957 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1958 *vpp = zfsvfs->z_ctldir;
1959 ASSERT(*vpp != NULL);
1960 if (object == ZFSCTL_INO_SNAPDIR) {
1961 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
1962 0, NULL, NULL, NULL, NULL, NULL) == 0);
1963 } else {
1964 VN_HOLD(*vpp);
1965 }
1966 ZFS_EXIT(zfsvfs);
1967 return (0);
1968 }
1969
1970 gen_mask = -1ULL >> (64 - 8 * i);
1971
1972 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
149e873a 1973 if ((err = zfs_zget(zfsvfs, object, &zp))) {
34dc7c2f
BB
1974 ZFS_EXIT(zfsvfs);
1975 return (err);
1976 }
428870ff
BB
1977 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1978 sizeof (uint64_t));
1979 zp_gen = zp_gen & gen_mask;
34dc7c2f
BB
1980 if (zp_gen == 0)
1981 zp_gen = 1;
1982 if (zp->z_unlinked || zp_gen != fid_gen) {
1983 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
1984 VN_RELE(ZTOV(zp));
1985 ZFS_EXIT(zfsvfs);
1986 return (EINVAL);
1987 }
1988
1989 *vpp = ZTOV(zp);
1990 ZFS_EXIT(zfsvfs);
1991 return (0);
1992}
1993
1994/*
1995 * Block out VOPs and close zfsvfs_t::z_os
1996 *
1997 * Note, if successful, then we return with the 'z_teardown_lock' and
1998 * 'z_teardown_inactive_lock' write held.
1999 */
2000int
428870ff 2001zfs_suspend_fs(zfsvfs_t *zfsvfs)
34dc7c2f
BB
2002{
2003 int error;
2004
2005 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2006 return (error);
428870ff 2007 dmu_objset_disown(zfsvfs->z_os, zfsvfs);
34dc7c2f
BB
2008
2009 return (0);
2010}
2011
2012/*
2013 * Reopen zfsvfs_t::z_os and release VOPs.
2014 */
2015int
428870ff 2016zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
34dc7c2f 2017{
428870ff 2018 int err, err2;
34dc7c2f
BB
2019
2020 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
2021 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2022
428870ff
BB
2023 err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs,
2024 &zfsvfs->z_os);
34dc7c2f
BB
2025 if (err) {
2026 zfsvfs->z_os = NULL;
2027 } else {
2028 znode_t *zp;
428870ff
BB
2029 uint64_t sa_obj = 0;
2030
2031 err2 = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
2032 ZFS_SA_ATTRS, 8, 1, &sa_obj);
2033
2034 if ((err || err2) && zfsvfs->z_version >= ZPL_VERSION_SA)
2035 goto bail;
2036
2037
572e2857
BB
2038 if ((err = sa_setup(zfsvfs->z_os, sa_obj,
2039 zfs_attr_table, ZPL_END, &zfsvfs->z_attr_table)) != 0)
2040 goto bail;
34dc7c2f
BB
2041
2042 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2043
2044 /*
2045 * Attempt to re-establish all the active znodes with
2046 * their dbufs. If a zfs_rezget() fails, then we'll let
2047 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2048 * when they try to use their znode.
2049 */
2050 mutex_enter(&zfsvfs->z_znodes_lock);
2051 for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2052 zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2053 (void) zfs_rezget(zp);
2054 }
2055 mutex_exit(&zfsvfs->z_znodes_lock);
2056
2057 }
2058
428870ff 2059bail:
34dc7c2f
BB
2060 /* release the VOPs */
2061 rw_exit(&zfsvfs->z_teardown_inactive_lock);
2062 rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
2063
2064 if (err) {
2065 /*
2066 * Since we couldn't reopen zfsvfs::z_os, force
2067 * unmount this file system.
2068 */
2069 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2070 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
2071 }
2072 return (err);
2073}
2074
2075static void
2076zfs_freevfs(vfs_t *vfsp)
2077{
2078 zfsvfs_t *zfsvfs = vfsp->vfs_data;
34dc7c2f 2079
9babb374
BB
2080 /*
2081 * If this is a snapshot, we have an extra VFS_HOLD on our parent
428870ff
BB
2082 * from zfs_mount(). Release it here. If we came through
2083 * zfs_mountroot() instead, we didn't grab an extra hold, so
2084 * skip the VFS_RELE for rootvfs.
9babb374 2085 */
428870ff 2086 if (zfsvfs->z_issnap && (vfsp != rootvfs))
9babb374 2087 VFS_RELE(zfsvfs->z_parent->z_vfs);
34dc7c2f 2088
9babb374 2089 zfsvfs_free(zfsvfs);
34dc7c2f
BB
2090
2091 atomic_add_32(&zfs_active_fs_count, -1);
2092}
2093
2094/*
2095 * VFS_INIT() initialization. Note that there is no VFS_FINI(),
2096 * so we can't safely do any non-idempotent initialization here.
2097 * Leave that to zfs_init() and zfs_fini(), which are called
2098 * from the module's _init() and _fini() entry points.
2099 */
2100/*ARGSUSED*/
2101static int
2102zfs_vfsinit(int fstype, char *name)
2103{
2104 int error;
2105
2106 zfsfstype = fstype;
2107
2108 /*
2109 * Setup vfsops and vnodeops tables.
2110 */
2111 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
2112 if (error != 0) {
2113 cmn_err(CE_WARN, "zfs: bad vfs ops template");
2114 }
2115
2116 error = zfs_create_op_tables();
2117 if (error) {
2118 zfs_remove_op_tables();
2119 cmn_err(CE_WARN, "zfs: bad vnode ops template");
2120 (void) vfs_freevfsops_by_type(zfsfstype);
2121 return (error);
2122 }
2123
2124 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
2125
2126 /*
2127 * Unique major number for all zfs mounts.
2128 * If we run out of 32-bit minors, we'll getudev() another major.
2129 */
2130 zfs_major = ddi_name_to_major(ZFS_DRIVER);
2131 zfs_minor = ZFS_MIN_MINOR;
2132
2133 return (0);
2134}
60101509 2135#endif /* HAVE_ZPL */
34dc7c2f
BB
2136
2137void
2138zfs_init(void)
2139{
60101509 2140#ifdef HAVE_ZPL
34dc7c2f
BB
2141 /*
2142 * Initialize .zfs directory structures
2143 */
2144 zfsctl_init();
2145
2146 /*
2147 * Initialize znode cache, vnode ops, etc...
2148 */
2149 zfs_znode_init();
0151834d 2150#endif /* HAVE_ZPL */
9babb374
BB
2151
2152 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
34dc7c2f
BB
2153}
2154
2155void
2156zfs_fini(void)
2157{
60101509 2158#ifdef HAVE_ZPL
34dc7c2f
BB
2159 zfsctl_fini();
2160 zfs_znode_fini();
60101509 2161#endif /* HAVE_ZPL */
34dc7c2f
BB
2162}
2163
60101509 2164#ifdef HAVE_ZPL
34dc7c2f 2165int
9babb374 2166zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
34dc7c2f
BB
2167{
2168 int error;
9babb374 2169 objset_t *os = zfsvfs->z_os;
34dc7c2f 2170 dmu_tx_t *tx;
34dc7c2f
BB
2171
2172 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2173 return (EINVAL);
2174
9babb374
BB
2175 if (newvers < zfsvfs->z_version)
2176 return (EINVAL);
34dc7c2f 2177
428870ff
BB
2178 if (zfs_spa_version_map(newvers) >
2179 spa_version(dmu_objset_spa(zfsvfs->z_os)))
2180 return (ENOTSUP);
2181
34dc7c2f 2182 tx = dmu_tx_create(os);
9babb374 2183 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
428870ff
BB
2184 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2185 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2186 ZFS_SA_ATTRS);
2187 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2188 }
34dc7c2f
BB
2189 error = dmu_tx_assign(tx, TXG_WAIT);
2190 if (error) {
2191 dmu_tx_abort(tx);
9babb374
BB
2192 return (error);
2193 }
428870ff 2194
9babb374
BB
2195 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2196 8, 1, &newvers, tx);
2197
2198 if (error) {
2199 dmu_tx_commit(tx);
2200 return (error);
34dc7c2f 2201 }
34dc7c2f 2202
428870ff
BB
2203 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2204 uint64_t sa_obj;
2205
2206 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2207 SPA_VERSION_SA);
2208 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2209 DMU_OT_NONE, 0, tx);
2210
2211 error = zap_add(os, MASTER_NODE_OBJ,
2212 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2213 ASSERT3U(error, ==, 0);
2214
2215 VERIFY(0 == sa_set_sa_object(os, sa_obj));
2216 sa_register_update_callback(os, zfs_sa_upgrade);
2217 }
2218
2219 spa_history_log_internal(LOG_DS_UPGRADE,
2220 dmu_objset_spa(os), tx, "oldver=%llu newver=%llu dataset = %llu",
9babb374
BB
2221 zfsvfs->z_version, newvers, dmu_objset_id(os));
2222
34dc7c2f
BB
2223 dmu_tx_commit(tx);
2224
9babb374
BB
2225 zfsvfs->z_version = newvers;
2226
2227 if (zfsvfs->z_version >= ZPL_VERSION_FUID)
2228 zfs_set_fuid_feature(zfsvfs);
2229
2230 return (0);
34dc7c2f 2231}
60101509 2232#endif /* HAVE_ZPL */
34dc7c2f
BB
2233
2234/*
2235 * Read a property stored within the master node.
2236 */
2237int
2238zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2239{
2240 const char *pname;
b128c09f 2241 int error = ENOENT;
34dc7c2f
BB
2242
2243 /*
2244 * Look up the file system's value for the property. For the
2245 * version property, we look up a slightly different string.
2246 */
2247 if (prop == ZFS_PROP_VERSION)
2248 pname = ZPL_VERSION_STR;
2249 else
2250 pname = zfs_prop_to_name(prop);
2251
b128c09f
BB
2252 if (os != NULL)
2253 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
34dc7c2f
BB
2254
2255 if (error == ENOENT) {
2256 /* No value set, use the default value */
2257 switch (prop) {
2258 case ZFS_PROP_VERSION:
2259 *value = ZPL_VERSION;
2260 break;
2261 case ZFS_PROP_NORMALIZE:
2262 case ZFS_PROP_UTF8ONLY:
2263 *value = 0;
2264 break;
2265 case ZFS_PROP_CASE:
2266 *value = ZFS_CASE_SENSITIVE;
2267 break;
2268 default:
2269 return (error);
2270 }
2271 error = 0;
2272 }
2273 return (error);
2274}
2275
60101509 2276#ifdef HAVE_ZPL
34dc7c2f
BB
2277static vfsdef_t vfw = {
2278 VFSDEF_VERSION,
2279 MNTTYPE_ZFS,
2280 zfs_vfsinit,
2281 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
572e2857 2282 VSW_XID|VSW_ZMOUNT,
34dc7c2f
BB
2283 &zfs_mntopts
2284};
2285
2286struct modlfs zfs_modlfs = {
2287 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
2288};
60101509 2289#endif /* HAVE_ZPL */