]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/zfs_vfsops.c
Rebase master to b117
[mirror_zfs.git] / module / zfs / zfs_vfsops.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
9babb374 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
34dc7c2f
BB
23 * Use is subject to license terms.
24 */
25
34dc7c2f
BB
26#include <sys/types.h>
27#include <sys/param.h>
28#include <sys/systm.h>
29#include <sys/sysmacros.h>
30#include <sys/kmem.h>
31#include <sys/pathname.h>
32#include <sys/vnode.h>
33#include <sys/vfs.h>
34#include <sys/vfs_opreg.h>
35#include <sys/mntent.h>
36#include <sys/mount.h>
37#include <sys/cmn_err.h>
38#include "fs/fs_subr.h"
39#include <sys/zfs_znode.h>
40#include <sys/zfs_dir.h>
41#include <sys/zil.h>
42#include <sys/fs/zfs.h>
43#include <sys/dmu.h>
44#include <sys/dsl_prop.h>
45#include <sys/dsl_dataset.h>
46#include <sys/dsl_deleg.h>
47#include <sys/spa.h>
48#include <sys/zap.h>
49#include <sys/varargs.h>
50#include <sys/policy.h>
51#include <sys/atomic.h>
52#include <sys/mkdev.h>
53#include <sys/modctl.h>
54#include <sys/refstr.h>
55#include <sys/zfs_ioctl.h>
56#include <sys/zfs_ctldir.h>
57#include <sys/zfs_fuid.h>
58#include <sys/bootconf.h>
59#include <sys/sunddi.h>
60#include <sys/dnlc.h>
61#include <sys/dmu_objset.h>
62#include <sys/spa_boot.h>
63
64int zfsfstype;
65vfsops_t *zfs_vfsops = NULL;
66static major_t zfs_major;
67static minor_t zfs_minor;
68static kmutex_t zfs_dev_mtx;
69
9babb374
BB
70extern int sys_shutdown;
71
34dc7c2f
BB
72static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
73static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
74static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
75static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
76static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
77static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
78static void zfs_freevfs(vfs_t *vfsp);
79
80static const fs_operation_def_t zfs_vfsops_template[] = {
81 VFSNAME_MOUNT, { .vfs_mount = zfs_mount },
82 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot },
83 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount },
84 VFSNAME_ROOT, { .vfs_root = zfs_root },
85 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs },
86 VFSNAME_SYNC, { .vfs_sync = zfs_sync },
87 VFSNAME_VGET, { .vfs_vget = zfs_vget },
88 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs },
89 NULL, NULL
90};
91
92static const fs_operation_def_t zfs_vfsops_eio_template[] = {
93 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs },
94 NULL, NULL
95};
96
97/*
98 * We need to keep a count of active fs's.
99 * This is necessary to prevent our module
100 * from being unloaded after a umount -f
101 */
102static uint32_t zfs_active_fs_count = 0;
103
104static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
105static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
106static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
107static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
108
109/*
110 * MO_DEFAULT is not used since the default value is determined
111 * by the equivalent property.
112 */
113static mntopt_t mntopts[] = {
114 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
115 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
116 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
117 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
118};
119
120static mntopts_t zfs_mntopts = {
121 sizeof (mntopts) / sizeof (mntopt_t),
122 mntopts
123};
124
125/*ARGSUSED*/
126int
127zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
128{
129 /*
130 * Data integrity is job one. We don't want a compromised kernel
131 * writing to the storage pool, so we never sync during panic.
132 */
133 if (panicstr)
134 return (0);
135
136 /*
137 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
138 * to sync metadata, which they would otherwise cache indefinitely.
139 * Semantically, the only requirement is that the sync be initiated.
140 * The DMU syncs out txgs frequently, so there's nothing to do.
141 */
142 if (flag & SYNC_ATTR)
143 return (0);
144
145 if (vfsp != NULL) {
146 /*
147 * Sync a specific filesystem.
148 */
149 zfsvfs_t *zfsvfs = vfsp->vfs_data;
9babb374 150 dsl_pool_t *dp;
34dc7c2f
BB
151
152 ZFS_ENTER(zfsvfs);
9babb374
BB
153 dp = dmu_objset_pool(zfsvfs->z_os);
154
155 /*
156 * If the system is shutting down, then skip any
157 * filesystems which may exist on a suspended pool.
158 */
159 if (sys_shutdown && spa_suspended(dp->dp_spa)) {
160 ZFS_EXIT(zfsvfs);
161 return (0);
162 }
163
34dc7c2f
BB
164 if (zfsvfs->z_log != NULL)
165 zil_commit(zfsvfs->z_log, UINT64_MAX, 0);
166 else
9babb374 167 txg_wait_synced(dp, 0);
34dc7c2f
BB
168 ZFS_EXIT(zfsvfs);
169 } else {
170 /*
171 * Sync all ZFS filesystems. This is what happens when you
172 * run sync(1M). Unlike other filesystems, ZFS honors the
173 * request by waiting for all pools to commit all dirty data.
174 */
175 spa_sync_allpools();
176 }
177
178 return (0);
179}
180
181static int
182zfs_create_unique_device(dev_t *dev)
183{
184 major_t new_major;
185
186 do {
187 ASSERT3U(zfs_minor, <=, MAXMIN32);
188 minor_t start = zfs_minor;
189 do {
190 mutex_enter(&zfs_dev_mtx);
191 if (zfs_minor >= MAXMIN32) {
192 /*
193 * If we're still using the real major
194 * keep out of /dev/zfs and /dev/zvol minor
195 * number space. If we're using a getudev()'ed
196 * major number, we can use all of its minors.
197 */
198 if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
199 zfs_minor = ZFS_MIN_MINOR;
200 else
201 zfs_minor = 0;
202 } else {
203 zfs_minor++;
204 }
205 *dev = makedevice(zfs_major, zfs_minor);
206 mutex_exit(&zfs_dev_mtx);
207 } while (vfs_devismounted(*dev) && zfs_minor != start);
208 if (zfs_minor == start) {
209 /*
210 * We are using all ~262,000 minor numbers for the
211 * current major number. Create a new major number.
212 */
213 if ((new_major = getudev()) == (major_t)-1) {
214 cmn_err(CE_WARN,
215 "zfs_mount: Can't get unique major "
216 "device number.");
217 return (-1);
218 }
219 mutex_enter(&zfs_dev_mtx);
220 zfs_major = new_major;
221 zfs_minor = 0;
222
223 mutex_exit(&zfs_dev_mtx);
224 } else {
225 break;
226 }
227 /* CONSTANTCONDITION */
228 } while (1);
229
230 return (0);
231}
232
233static void
234atime_changed_cb(void *arg, uint64_t newval)
235{
236 zfsvfs_t *zfsvfs = arg;
237
238 if (newval == TRUE) {
239 zfsvfs->z_atime = TRUE;
240 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
241 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
242 } else {
243 zfsvfs->z_atime = FALSE;
244 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
245 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
246 }
247}
248
249static void
250xattr_changed_cb(void *arg, uint64_t newval)
251{
252 zfsvfs_t *zfsvfs = arg;
253
254 if (newval == TRUE) {
255 /* XXX locking on vfs_flag? */
256 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
257 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
258 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
259 } else {
260 /* XXX locking on vfs_flag? */
261 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
262 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
263 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
264 }
265}
266
267static void
268blksz_changed_cb(void *arg, uint64_t newval)
269{
270 zfsvfs_t *zfsvfs = arg;
271
272 if (newval < SPA_MINBLOCKSIZE ||
273 newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
274 newval = SPA_MAXBLOCKSIZE;
275
276 zfsvfs->z_max_blksz = newval;
277 zfsvfs->z_vfs->vfs_bsize = newval;
278}
279
280static void
281readonly_changed_cb(void *arg, uint64_t newval)
282{
283 zfsvfs_t *zfsvfs = arg;
284
285 if (newval) {
286 /* XXX locking on vfs_flag? */
287 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
288 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
289 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
290 } else {
291 /* XXX locking on vfs_flag? */
292 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
293 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
294 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
295 }
296}
297
298static void
299devices_changed_cb(void *arg, uint64_t newval)
300{
301 zfsvfs_t *zfsvfs = arg;
302
303 if (newval == FALSE) {
304 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
305 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
306 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
307 } else {
308 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
309 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
310 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
311 }
312}
313
314static void
315setuid_changed_cb(void *arg, uint64_t newval)
316{
317 zfsvfs_t *zfsvfs = arg;
318
319 if (newval == FALSE) {
320 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
321 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
322 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
323 } else {
324 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
325 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
326 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
327 }
328}
329
330static void
331exec_changed_cb(void *arg, uint64_t newval)
332{
333 zfsvfs_t *zfsvfs = arg;
334
335 if (newval == FALSE) {
336 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
337 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
338 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
339 } else {
340 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
341 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
342 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
343 }
344}
345
346/*
347 * The nbmand mount option can be changed at mount time.
348 * We can't allow it to be toggled on live file systems or incorrect
349 * behavior may be seen from cifs clients
350 *
351 * This property isn't registered via dsl_prop_register(), but this callback
352 * will be called when a file system is first mounted
353 */
354static void
355nbmand_changed_cb(void *arg, uint64_t newval)
356{
357 zfsvfs_t *zfsvfs = arg;
358 if (newval == FALSE) {
359 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
360 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
361 } else {
362 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
363 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
364 }
365}
366
367static void
368snapdir_changed_cb(void *arg, uint64_t newval)
369{
370 zfsvfs_t *zfsvfs = arg;
371
372 zfsvfs->z_show_ctldir = newval;
373}
374
375static void
376vscan_changed_cb(void *arg, uint64_t newval)
377{
378 zfsvfs_t *zfsvfs = arg;
379
380 zfsvfs->z_vscan = newval;
381}
382
383static void
384acl_mode_changed_cb(void *arg, uint64_t newval)
385{
386 zfsvfs_t *zfsvfs = arg;
387
388 zfsvfs->z_acl_mode = newval;
389}
390
391static void
392acl_inherit_changed_cb(void *arg, uint64_t newval)
393{
394 zfsvfs_t *zfsvfs = arg;
395
396 zfsvfs->z_acl_inherit = newval;
397}
398
399static int
400zfs_register_callbacks(vfs_t *vfsp)
401{
402 struct dsl_dataset *ds = NULL;
403 objset_t *os = NULL;
404 zfsvfs_t *zfsvfs = NULL;
405 uint64_t nbmand;
406 int readonly, do_readonly = B_FALSE;
407 int setuid, do_setuid = B_FALSE;
408 int exec, do_exec = B_FALSE;
409 int devices, do_devices = B_FALSE;
410 int xattr, do_xattr = B_FALSE;
411 int atime, do_atime = B_FALSE;
412 int error = 0;
413
414 ASSERT(vfsp);
415 zfsvfs = vfsp->vfs_data;
416 ASSERT(zfsvfs);
417 os = zfsvfs->z_os;
418
419 /*
420 * The act of registering our callbacks will destroy any mount
421 * options we may have. In order to enable temporary overrides
422 * of mount options, we stash away the current values and
423 * restore them after we register the callbacks.
424 */
425 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) {
426 readonly = B_TRUE;
427 do_readonly = B_TRUE;
428 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
429 readonly = B_FALSE;
430 do_readonly = B_TRUE;
431 }
432 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
433 devices = B_FALSE;
434 setuid = B_FALSE;
435 do_devices = B_TRUE;
436 do_setuid = B_TRUE;
437 } else {
438 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
439 devices = B_FALSE;
440 do_devices = B_TRUE;
441 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
442 devices = B_TRUE;
443 do_devices = B_TRUE;
444 }
445
446 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
447 setuid = B_FALSE;
448 do_setuid = B_TRUE;
449 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
450 setuid = B_TRUE;
451 do_setuid = B_TRUE;
452 }
453 }
454 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
455 exec = B_FALSE;
456 do_exec = B_TRUE;
457 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
458 exec = B_TRUE;
459 do_exec = B_TRUE;
460 }
461 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
462 xattr = B_FALSE;
463 do_xattr = B_TRUE;
464 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
465 xattr = B_TRUE;
466 do_xattr = B_TRUE;
467 }
468 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
469 atime = B_FALSE;
470 do_atime = B_TRUE;
471 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
472 atime = B_TRUE;
473 do_atime = B_TRUE;
474 }
475
476 /*
477 * nbmand is a special property. It can only be changed at
478 * mount time.
479 *
480 * This is weird, but it is documented to only be changeable
481 * at mount time.
482 */
483 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
484 nbmand = B_FALSE;
485 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
486 nbmand = B_TRUE;
487 } else {
488 char osname[MAXNAMELEN];
489
490 dmu_objset_name(os, osname);
491 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
b128c09f
BB
492 NULL)) {
493 return (error);
494 }
34dc7c2f
BB
495 }
496
497 /*
498 * Register property callbacks.
499 *
500 * It would probably be fine to just check for i/o error from
501 * the first prop_register(), but I guess I like to go
502 * overboard...
503 */
504 ds = dmu_objset_ds(os);
505 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
506 error = error ? error : dsl_prop_register(ds,
507 "xattr", xattr_changed_cb, zfsvfs);
508 error = error ? error : dsl_prop_register(ds,
509 "recordsize", blksz_changed_cb, zfsvfs);
510 error = error ? error : dsl_prop_register(ds,
511 "readonly", readonly_changed_cb, zfsvfs);
512 error = error ? error : dsl_prop_register(ds,
513 "devices", devices_changed_cb, zfsvfs);
514 error = error ? error : dsl_prop_register(ds,
515 "setuid", setuid_changed_cb, zfsvfs);
516 error = error ? error : dsl_prop_register(ds,
517 "exec", exec_changed_cb, zfsvfs);
518 error = error ? error : dsl_prop_register(ds,
519 "snapdir", snapdir_changed_cb, zfsvfs);
520 error = error ? error : dsl_prop_register(ds,
521 "aclmode", acl_mode_changed_cb, zfsvfs);
522 error = error ? error : dsl_prop_register(ds,
523 "aclinherit", acl_inherit_changed_cb, zfsvfs);
524 error = error ? error : dsl_prop_register(ds,
525 "vscan", vscan_changed_cb, zfsvfs);
526 if (error)
527 goto unregister;
528
529 /*
530 * Invoke our callbacks to restore temporary mount options.
531 */
532 if (do_readonly)
533 readonly_changed_cb(zfsvfs, readonly);
534 if (do_setuid)
535 setuid_changed_cb(zfsvfs, setuid);
536 if (do_exec)
537 exec_changed_cb(zfsvfs, exec);
538 if (do_devices)
539 devices_changed_cb(zfsvfs, devices);
540 if (do_xattr)
541 xattr_changed_cb(zfsvfs, xattr);
542 if (do_atime)
543 atime_changed_cb(zfsvfs, atime);
544
545 nbmand_changed_cb(zfsvfs, nbmand);
546
547 return (0);
548
549unregister:
550 /*
551 * We may attempt to unregister some callbacks that are not
552 * registered, but this is OK; it will simply return ENOMSG,
553 * which we will ignore.
554 */
555 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
556 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
557 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
558 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
559 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs);
560 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
561 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
562 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
563 (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs);
564 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
565 zfsvfs);
566 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs);
567 return (error);
568
569}
570
9babb374
BB
571static void
572uidacct(objset_t *os, boolean_t isgroup, uint64_t fuid,
573 int64_t delta, dmu_tx_t *tx)
574{
575 uint64_t used = 0;
576 char buf[32];
577 int err;
578 uint64_t obj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
579
580 if (delta == 0)
581 return;
582
583 (void) snprintf(buf, sizeof (buf), "%llx", (longlong_t)fuid);
584 err = zap_lookup(os, obj, buf, 8, 1, &used);
585 ASSERT(err == 0 || err == ENOENT);
586 /* no underflow/overflow */
587 ASSERT(delta > 0 || used >= -delta);
588 ASSERT(delta < 0 || used + delta > used);
589 used += delta;
590 if (used == 0)
591 err = zap_remove(os, obj, buf, tx);
592 else
593 err = zap_update(os, obj, buf, 8, 1, &used, tx);
594 ASSERT(err == 0);
595}
596
597static void
598zfs_space_delta_cb(objset_t *os, dmu_object_type_t bonustype,
599 void *oldbonus, void *newbonus,
600 uint64_t oldused, uint64_t newused, dmu_tx_t *tx)
601{
602 znode_phys_t *oldznp = oldbonus;
603 znode_phys_t *newznp = newbonus;
604
605 if (bonustype != DMU_OT_ZNODE)
606 return;
607
608 /* We charge 512 for the dnode (if it's allocated). */
609 if (oldznp->zp_gen != 0)
610 oldused += DNODE_SIZE;
611 if (newznp->zp_gen != 0)
612 newused += DNODE_SIZE;
613
614 if (oldznp->zp_uid == newznp->zp_uid) {
615 uidacct(os, B_FALSE, oldznp->zp_uid, newused-oldused, tx);
616 } else {
617 uidacct(os, B_FALSE, oldznp->zp_uid, -oldused, tx);
618 uidacct(os, B_FALSE, newznp->zp_uid, newused, tx);
619 }
620
621 if (oldznp->zp_gid == newznp->zp_gid) {
622 uidacct(os, B_TRUE, oldznp->zp_gid, newused-oldused, tx);
623 } else {
624 uidacct(os, B_TRUE, oldznp->zp_gid, -oldused, tx);
625 uidacct(os, B_TRUE, newznp->zp_gid, newused, tx);
626 }
627}
628
629static void
630fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
631 char *domainbuf, int buflen, uid_t *ridp)
632{
633 extern uint64_t strtonum(const char *str, char **nptr);
634 uint64_t fuid;
635 const char *domain;
636
637 fuid = strtonum(fuidstr, NULL);
638
639 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
640 if (domain)
641 (void) strlcpy(domainbuf, domain, buflen);
642 else
643 domainbuf[0] = '\0';
644 *ridp = FUID_RID(fuid);
645}
646
647static uint64_t
648zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
649{
650 switch (type) {
651 case ZFS_PROP_USERUSED:
652 return (DMU_USERUSED_OBJECT);
653 case ZFS_PROP_GROUPUSED:
654 return (DMU_GROUPUSED_OBJECT);
655 case ZFS_PROP_USERQUOTA:
656 return (zfsvfs->z_userquota_obj);
657 case ZFS_PROP_GROUPQUOTA:
658 return (zfsvfs->z_groupquota_obj);
659 }
660 return (0);
661}
662
663int
664zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
665 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
666{
667 int error;
668 zap_cursor_t zc;
669 zap_attribute_t za;
670 zfs_useracct_t *buf = vbuf;
671 uint64_t obj;
672
673 if (!dmu_objset_userspace_present(zfsvfs->z_os))
674 return (ENOTSUP);
675
676 obj = zfs_userquota_prop_to_obj(zfsvfs, type);
677 if (obj == 0) {
678 *bufsizep = 0;
679 return (0);
680 }
681
682 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
683 (error = zap_cursor_retrieve(&zc, &za)) == 0;
684 zap_cursor_advance(&zc)) {
685 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
686 *bufsizep)
687 break;
688
689 fuidstr_to_sid(zfsvfs, za.za_name,
690 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
691
692 buf->zu_space = za.za_first_integer;
693 buf++;
694 }
695 if (error == ENOENT)
696 error = 0;
697
698 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
699 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
700 *cookiep = zap_cursor_serialize(&zc);
701 zap_cursor_fini(&zc);
702 return (error);
703}
704
705/*
706 * buf must be big enough (eg, 32 bytes)
707 */
708static int
709id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
710 char *buf, boolean_t addok)
711{
712 uint64_t fuid;
713 int domainid = 0;
714
715 if (domain && domain[0]) {
716 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
717 if (domainid == -1)
718 return (ENOENT);
719 }
720 fuid = FUID_ENCODE(domainid, rid);
721 (void) sprintf(buf, "%llx", (longlong_t)fuid);
722 return (0);
723}
724
725int
726zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
727 const char *domain, uint64_t rid, uint64_t *valp)
728{
729 char buf[32];
730 int err;
731 uint64_t obj;
732
733 *valp = 0;
734
735 if (!dmu_objset_userspace_present(zfsvfs->z_os))
736 return (ENOTSUP);
737
738 obj = zfs_userquota_prop_to_obj(zfsvfs, type);
739 if (obj == 0)
740 return (0);
741
742 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
743 if (err)
744 return (err);
745
746 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
747 if (err == ENOENT)
748 err = 0;
749 return (err);
750}
751
752int
753zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
754 const char *domain, uint64_t rid, uint64_t quota)
755{
756 char buf[32];
757 int err;
758 dmu_tx_t *tx;
759 uint64_t *objp;
760 boolean_t fuid_dirtied;
761
762 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
763 return (EINVAL);
764
765 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
766 return (ENOTSUP);
767
768 objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
769 &zfsvfs->z_groupquota_obj;
770
771 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
772 if (err)
773 return (err);
774 fuid_dirtied = zfsvfs->z_fuid_dirty;
775
776 tx = dmu_tx_create(zfsvfs->z_os);
777 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
778 if (*objp == 0) {
779 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
780 zfs_userquota_prop_prefixes[type]);
781 }
782 if (fuid_dirtied)
783 zfs_fuid_txhold(zfsvfs, tx);
784 err = dmu_tx_assign(tx, TXG_WAIT);
785 if (err) {
786 dmu_tx_abort(tx);
787 return (err);
788 }
789
790 mutex_enter(&zfsvfs->z_lock);
791 if (*objp == 0) {
792 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
793 DMU_OT_NONE, 0, tx);
794 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
795 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
796 }
797 mutex_exit(&zfsvfs->z_lock);
798
799 if (quota == 0) {
800 err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
801 if (err == ENOENT)
802 err = 0;
803 } else {
804 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
805 }
806 ASSERT(err == 0);
807 if (fuid_dirtied)
808 zfs_fuid_sync(zfsvfs, tx);
809 dmu_tx_commit(tx);
810 return (err);
811}
812
813boolean_t
814zfs_usergroup_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
815{
816 char buf[32];
817 uint64_t used, quota, usedobj, quotaobj;
818 int err;
819
820 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
821 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
822
823 if (quotaobj == 0 || zfsvfs->z_replay)
824 return (B_FALSE);
825
826 (void) sprintf(buf, "%llx", (longlong_t)fuid);
827 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
828 if (err != 0)
829 return (B_FALSE);
830
831 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
832 if (err != 0)
833 return (B_FALSE);
834 return (used >= quota);
835}
836
837int
838zfsvfs_create(const char *osname, int mode, zfsvfs_t **zvp)
839{
840 objset_t *os;
841 zfsvfs_t *zfsvfs;
842 uint64_t zval;
843 int i, error;
844
845 if (error = dsl_prop_get_integer(osname, "readonly", &zval, NULL))
846 return (error);
847 if (zval)
848 mode |= DS_MODE_READONLY;
849
850 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &os);
851 if (error == EROFS) {
852 mode |= DS_MODE_READONLY;
853 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &os);
854 }
855 if (error)
856 return (error);
857
858 /*
859 * Initialize the zfs-specific filesystem structure.
860 * Should probably make this a kmem cache, shuffle fields,
861 * and just bzero up to z_hold_mtx[].
862 */
863 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
864 zfsvfs->z_vfs = NULL;
865 zfsvfs->z_parent = zfsvfs;
866 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
867 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
868 zfsvfs->z_os = os;
869
870 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
871 if (error) {
872 goto out;
873 } else if (zfsvfs->z_version > ZPL_VERSION) {
874 (void) printf("Mismatched versions: File system "
875 "is version %llu on-disk format, which is "
876 "incompatible with this software version %lld!",
877 (u_longlong_t)zfsvfs->z_version, ZPL_VERSION);
878 error = ENOTSUP;
879 goto out;
880 }
881
882 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
883 goto out;
884 zfsvfs->z_norm = (int)zval;
885
886 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
887 goto out;
888 zfsvfs->z_utf8 = (zval != 0);
889
890 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
891 goto out;
892 zfsvfs->z_case = (uint_t)zval;
893
894 /*
895 * Fold case on file systems that are always or sometimes case
896 * insensitive.
897 */
898 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
899 zfsvfs->z_case == ZFS_CASE_MIXED)
900 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
901
902 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
903
904 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
905 &zfsvfs->z_root);
906 if (error)
907 goto out;
908 ASSERT(zfsvfs->z_root != 0);
909
910 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
911 &zfsvfs->z_unlinkedobj);
912 if (error)
913 goto out;
914
915 error = zap_lookup(os, MASTER_NODE_OBJ,
916 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
917 8, 1, &zfsvfs->z_userquota_obj);
918 if (error && error != ENOENT)
919 goto out;
920
921 error = zap_lookup(os, MASTER_NODE_OBJ,
922 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
923 8, 1, &zfsvfs->z_groupquota_obj);
924 if (error && error != ENOENT)
925 goto out;
926
927 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
928 &zfsvfs->z_fuid_obj);
929 if (error && error != ENOENT)
930 goto out;
931
932 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
933 &zfsvfs->z_shares_dir);
934 if (error && error != ENOENT)
935 goto out;
936
937 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
938 mutex_init(&zfsvfs->z_online_recv_lock, NULL, MUTEX_DEFAULT, NULL);
939 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
940 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
941 offsetof(znode_t, z_link_node));
942 rrw_init(&zfsvfs->z_teardown_lock);
943 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
944 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
945 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
946 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
947
948 *zvp = zfsvfs;
949 return (0);
950
951out:
952 dmu_objset_close(os);
953 *zvp = NULL;
954 kmem_free(zfsvfs, sizeof (zfsvfs_t));
955 return (error);
956}
957
34dc7c2f
BB
958static int
959zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
960{
34dc7c2f
BB
961 int error;
962
963 error = zfs_register_callbacks(zfsvfs->z_vfs);
964 if (error)
965 return (error);
966
967 /*
968 * Set the objset user_ptr to track its zfsvfs.
969 */
970 mutex_enter(&zfsvfs->z_os->os->os_user_ptr_lock);
971 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
972 mutex_exit(&zfsvfs->z_os->os->os_user_ptr_lock);
973
9babb374
BB
974 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
975 if (zil_disable) {
976 zil_destroy(zfsvfs->z_log, 0);
977 zfsvfs->z_log = NULL;
978 }
979
34dc7c2f
BB
980 /*
981 * If we are not mounting (ie: online recv), then we don't
982 * have to worry about replaying the log as we blocked all
983 * operations out since we closed the ZIL.
984 */
985 if (mounting) {
b128c09f
BB
986 boolean_t readonly;
987
34dc7c2f
BB
988 /*
989 * During replay we remove the read only flag to
990 * allow replays to succeed.
991 */
992 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
fb5f0bc8
BB
993 if (readonly != 0)
994 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
995 else
996 zfs_unlinked_drain(zfsvfs);
34dc7c2f 997
9babb374 998 if (zfsvfs->z_log) {
fb5f0bc8
BB
999 /*
1000 * Parse and replay the intent log.
1001 *
1002 * Because of ziltest, this must be done after
1003 * zfs_unlinked_drain(). (Further note: ziltest
1004 * doesn't use readonly mounts, where
1005 * zfs_unlinked_drain() isn't called.) This is because
1006 * ziltest causes spa_sync() to think it's committed,
1007 * but actually it is not, so the intent log contains
1008 * many txg's worth of changes.
1009 *
1010 * In particular, if object N is in the unlinked set in
1011 * the last txg to actually sync, then it could be
1012 * actually freed in a later txg and then reallocated
1013 * in a yet later txg. This would write a "create
1014 * object N" record to the intent log. Normally, this
1015 * would be fine because the spa_sync() would have
1016 * written out the fact that object N is free, before
1017 * we could write the "create object N" intent log
1018 * record.
1019 *
1020 * But when we are in ziltest mode, we advance the "open
1021 * txg" without actually spa_sync()-ing the changes to
1022 * disk. So we would see that object N is still
1023 * allocated and in the unlinked set, and there is an
1024 * intent log record saying to allocate it.
1025 */
1026 zfsvfs->z_replay = B_TRUE;
1027 zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector);
1028 zfsvfs->z_replay = B_FALSE;
1029 }
34dc7c2f
BB
1030 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1031 }
1032
34dc7c2f
BB
1033 return (0);
1034}
1035
9babb374
BB
1036void
1037zfsvfs_free(zfsvfs_t *zfsvfs)
34dc7c2f 1038{
9babb374
BB
1039 int i;
1040 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1041
1042 /*
1043 * This is a barrier to prevent the filesystem from going away in
1044 * zfs_znode_move() until we can safely ensure that the filesystem is
1045 * not unmounted. We consider the filesystem valid before the barrier
1046 * and invalid after the barrier.
1047 */
1048 rw_enter(&zfsvfs_lock, RW_READER);
1049 rw_exit(&zfsvfs_lock);
1050
1051 zfs_fuid_destroy(zfsvfs);
1052
34dc7c2f
BB
1053 mutex_destroy(&zfsvfs->z_znodes_lock);
1054 mutex_destroy(&zfsvfs->z_online_recv_lock);
9babb374 1055 mutex_destroy(&zfsvfs->z_lock);
34dc7c2f
BB
1056 list_destroy(&zfsvfs->z_all_znodes);
1057 rrw_destroy(&zfsvfs->z_teardown_lock);
1058 rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1059 rw_destroy(&zfsvfs->z_fuid_lock);
9babb374
BB
1060 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1061 mutex_destroy(&zfsvfs->z_hold_mtx[i]);
34dc7c2f
BB
1062 kmem_free(zfsvfs, sizeof (zfsvfs_t));
1063}
1064
9babb374
BB
1065static void
1066zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1067{
1068 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1069 if (zfsvfs->z_use_fuids && zfsvfs->z_vfs) {
1070 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1071 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1072 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1073 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1074 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1075 }
1076}
1077
34dc7c2f 1078static int
b128c09f 1079zfs_domount(vfs_t *vfsp, char *osname)
34dc7c2f
BB
1080{
1081 dev_t mount_dev;
9babb374 1082 uint64_t recordsize, fsid_guid;
34dc7c2f 1083 int error = 0;
34dc7c2f 1084 zfsvfs_t *zfsvfs;
34dc7c2f
BB
1085
1086 ASSERT(vfsp);
1087 ASSERT(osname);
1088
9babb374
BB
1089 error = zfsvfs_create(osname, DS_MODE_OWNER, &zfsvfs);
1090 if (error)
1091 return (error);
34dc7c2f 1092 zfsvfs->z_vfs = vfsp;
34dc7c2f
BB
1093
1094 /* Initialize the generic filesystem structure. */
1095 vfsp->vfs_bcount = 0;
1096 vfsp->vfs_data = NULL;
1097
1098 if (zfs_create_unique_device(&mount_dev) == -1) {
1099 error = ENODEV;
1100 goto out;
1101 }
1102 ASSERT(vfs_devismounted(mount_dev) == 0);
1103
1104 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1105 NULL))
1106 goto out;
1107
1108 vfsp->vfs_dev = mount_dev;
1109 vfsp->vfs_fstype = zfsfstype;
1110 vfsp->vfs_bsize = recordsize;
1111 vfsp->vfs_flag |= VFS_NOTRUNC;
1112 vfsp->vfs_data = zfsvfs;
1113
9babb374
BB
1114 /*
1115 * The fsid is 64 bits, composed of an 8-bit fs type, which
1116 * separates our fsid from any other filesystem types, and a
1117 * 56-bit objset unique ID. The objset unique ID is unique to
1118 * all objsets open on this system, provided by unique_create().
1119 * The 8-bit fs type must be put in the low bits of fsid[1]
1120 * because that's where other Solaris filesystems put it.
1121 */
1122 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1123 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1124 vfsp->vfs_fsid.val[0] = fsid_guid;
1125 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1126 zfsfstype & 0xFF;
34dc7c2f
BB
1127
1128 /*
1129 * Set features for file system.
1130 */
9babb374 1131 zfs_set_fuid_feature(zfsvfs);
34dc7c2f
BB
1132 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1133 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1134 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1135 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1136 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1137 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1138 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1139 }
1140
1141 if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1142 uint64_t pval;
1143
34dc7c2f
BB
1144 atime_changed_cb(zfsvfs, B_FALSE);
1145 readonly_changed_cb(zfsvfs, B_TRUE);
1146 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1147 goto out;
1148 xattr_changed_cb(zfsvfs, pval);
1149 zfsvfs->z_issnap = B_TRUE;
9babb374
BB
1150
1151 mutex_enter(&zfsvfs->z_os->os->os_user_ptr_lock);
1152 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1153 mutex_exit(&zfsvfs->z_os->os->os_user_ptr_lock);
34dc7c2f
BB
1154 } else {
1155 error = zfsvfs_setup(zfsvfs, B_TRUE);
1156 }
1157
1158 if (!zfsvfs->z_issnap)
1159 zfsctl_create(zfsvfs);
1160out:
1161 if (error) {
9babb374
BB
1162 dmu_objset_close(zfsvfs->z_os);
1163 zfsvfs_free(zfsvfs);
34dc7c2f
BB
1164 } else {
1165 atomic_add_32(&zfs_active_fs_count, 1);
1166 }
1167
1168 return (error);
1169}
1170
1171void
1172zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1173{
1174 objset_t *os = zfsvfs->z_os;
1175 struct dsl_dataset *ds;
1176
1177 /*
1178 * Unregister properties.
1179 */
1180 if (!dmu_objset_is_snapshot(os)) {
1181 ds = dmu_objset_ds(os);
1182 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1183 zfsvfs) == 0);
1184
1185 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1186 zfsvfs) == 0);
1187
1188 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1189 zfsvfs) == 0);
1190
1191 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1192 zfsvfs) == 0);
1193
1194 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
1195 zfsvfs) == 0);
1196
1197 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1198 zfsvfs) == 0);
1199
1200 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1201 zfsvfs) == 0);
1202
1203 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1204 zfsvfs) == 0);
1205
1206 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
1207 zfsvfs) == 0);
1208
1209 VERIFY(dsl_prop_unregister(ds, "aclinherit",
1210 acl_inherit_changed_cb, zfsvfs) == 0);
1211
1212 VERIFY(dsl_prop_unregister(ds, "vscan",
1213 vscan_changed_cb, zfsvfs) == 0);
1214 }
1215}
1216
1217/*
1218 * Convert a decimal digit string to a uint64_t integer.
1219 */
1220static int
1221str_to_uint64(char *str, uint64_t *objnum)
1222{
1223 uint64_t num = 0;
1224
1225 while (*str) {
1226 if (*str < '0' || *str > '9')
1227 return (EINVAL);
1228
1229 num = num*10 + *str++ - '0';
1230 }
1231
1232 *objnum = num;
1233 return (0);
1234}
1235
1236/*
1237 * The boot path passed from the boot loader is in the form of
1238 * "rootpool-name/root-filesystem-object-number'. Convert this
1239 * string to a dataset name: "rootpool-name/root-filesystem-name".
1240 */
1241static int
1242zfs_parse_bootfs(char *bpath, char *outpath)
1243{
1244 char *slashp;
1245 uint64_t objnum;
1246 int error;
1247
1248 if (*bpath == 0 || *bpath == '/')
1249 return (EINVAL);
1250
b128c09f
BB
1251 (void) strcpy(outpath, bpath);
1252
34dc7c2f
BB
1253 slashp = strchr(bpath, '/');
1254
1255 /* if no '/', just return the pool name */
1256 if (slashp == NULL) {
34dc7c2f
BB
1257 return (0);
1258 }
1259
b128c09f
BB
1260 /* if not a number, just return the root dataset name */
1261 if (str_to_uint64(slashp+1, &objnum)) {
1262 return (0);
1263 }
34dc7c2f
BB
1264
1265 *slashp = '\0';
1266 error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1267 *slashp = '/';
1268
1269 return (error);
1270}
1271
1272static int
1273zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1274{
1275 int error = 0;
1276 static int zfsrootdone = 0;
1277 zfsvfs_t *zfsvfs = NULL;
1278 znode_t *zp = NULL;
1279 vnode_t *vp = NULL;
1280 char *zfs_bootfs;
b128c09f 1281 char *zfs_devid;
34dc7c2f
BB
1282
1283 ASSERT(vfsp);
1284
1285 /*
1286 * The filesystem that we mount as root is defined in the
1287 * boot property "zfs-bootfs" with a format of
1288 * "poolname/root-dataset-objnum".
1289 */
1290 if (why == ROOT_INIT) {
1291 if (zfsrootdone++)
1292 return (EBUSY);
1293 /*
1294 * the process of doing a spa_load will require the
1295 * clock to be set before we could (for example) do
1296 * something better by looking at the timestamp on
1297 * an uberblock, so just set it to -1.
1298 */
1299 clkset(-1);
1300
b128c09f
BB
1301 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1302 cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1303 "bootfs name");
34dc7c2f
BB
1304 return (EINVAL);
1305 }
b128c09f
BB
1306 zfs_devid = spa_get_bootprop("diskdevid");
1307 error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1308 if (zfs_devid)
1309 spa_free_bootprop(zfs_devid);
1310 if (error) {
1311 spa_free_bootprop(zfs_bootfs);
1312 cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
34dc7c2f
BB
1313 error);
1314 return (error);
1315 }
34dc7c2f 1316 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
b128c09f
BB
1317 spa_free_bootprop(zfs_bootfs);
1318 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
34dc7c2f
BB
1319 error);
1320 return (error);
1321 }
1322
b128c09f 1323 spa_free_bootprop(zfs_bootfs);
34dc7c2f
BB
1324
1325 if (error = vfs_lock(vfsp))
1326 return (error);
1327
b128c09f
BB
1328 if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1329 cmn_err(CE_NOTE, "zfs_domount: error %d", error);
34dc7c2f
BB
1330 goto out;
1331 }
1332
1333 zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1334 ASSERT(zfsvfs);
1335 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
b128c09f 1336 cmn_err(CE_NOTE, "zfs_zget: error %d", error);
34dc7c2f
BB
1337 goto out;
1338 }
1339
1340 vp = ZTOV(zp);
1341 mutex_enter(&vp->v_lock);
1342 vp->v_flag |= VROOT;
1343 mutex_exit(&vp->v_lock);
1344 rootvp = vp;
1345
1346 /*
b128c09f 1347 * Leave rootvp held. The root file system is never unmounted.
34dc7c2f 1348 */
34dc7c2f
BB
1349
1350 vfs_add((struct vnode *)0, vfsp,
1351 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1352out:
1353 vfs_unlock(vfsp);
1354 return (error);
1355 } else if (why == ROOT_REMOUNT) {
1356 readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1357 vfsp->vfs_flag |= VFS_REMOUNT;
1358
1359 /* refresh mount options */
1360 zfs_unregister_callbacks(vfsp->vfs_data);
1361 return (zfs_register_callbacks(vfsp));
1362
1363 } else if (why == ROOT_UNMOUNT) {
1364 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1365 (void) zfs_sync(vfsp, 0, 0);
1366 return (0);
1367 }
1368
1369 /*
1370 * if "why" is equal to anything else other than ROOT_INIT,
1371 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1372 */
1373 return (ENOTSUP);
1374}
1375
1376/*ARGSUSED*/
1377static int
1378zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
1379{
1380 char *osname;
1381 pathname_t spn;
1382 int error = 0;
1383 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ?
1384 UIO_SYSSPACE : UIO_USERSPACE;
1385 int canwrite;
1386
1387 if (mvp->v_type != VDIR)
1388 return (ENOTDIR);
1389
1390 mutex_enter(&mvp->v_lock);
1391 if ((uap->flags & MS_REMOUNT) == 0 &&
1392 (uap->flags & MS_OVERLAY) == 0 &&
1393 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1394 mutex_exit(&mvp->v_lock);
1395 return (EBUSY);
1396 }
1397 mutex_exit(&mvp->v_lock);
1398
1399 /*
1400 * ZFS does not support passing unparsed data in via MS_DATA.
1401 * Users should use the MS_OPTIONSTR interface; this means
1402 * that all option parsing is already done and the options struct
1403 * can be interrogated.
1404 */
1405 if ((uap->flags & MS_DATA) && uap->datalen > 0)
1406 return (EINVAL);
1407
1408 /*
1409 * Get the objset name (the "special" mount argument).
1410 */
1411 if (error = pn_get(uap->spec, fromspace, &spn))
1412 return (error);
1413
1414 osname = spn.pn_path;
1415
1416 /*
1417 * Check for mount privilege?
1418 *
1419 * If we don't have privilege then see if
1420 * we have local permission to allow it
1421 */
1422 error = secpolicy_fs_mount(cr, mvp, vfsp);
1423 if (error) {
1424 error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr);
1425 if (error == 0) {
1426 vattr_t vattr;
1427
1428 /*
1429 * Make sure user is the owner of the mount point
1430 * or has sufficient privileges.
1431 */
1432
1433 vattr.va_mask = AT_UID;
1434
1435 if (error = VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
1436 goto out;
1437 }
1438
1439 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1440 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) {
1441 error = EPERM;
1442 goto out;
1443 }
1444
1445 secpolicy_fs_mount_clearopts(cr, vfsp);
1446 } else {
1447 goto out;
1448 }
1449 }
1450
1451 /*
1452 * Refuse to mount a filesystem if we are in a local zone and the
1453 * dataset is not visible.
1454 */
1455 if (!INGLOBALZONE(curproc) &&
1456 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1457 error = EPERM;
1458 goto out;
1459 }
1460
1461 /*
1462 * When doing a remount, we simply refresh our temporary properties
1463 * according to those options set in the current VFS options.
1464 */
1465 if (uap->flags & MS_REMOUNT) {
1466 /* refresh mount options */
1467 zfs_unregister_callbacks(vfsp->vfs_data);
1468 error = zfs_register_callbacks(vfsp);
1469 goto out;
1470 }
1471
b128c09f 1472 error = zfs_domount(vfsp, osname);
34dc7c2f 1473
9babb374
BB
1474 /*
1475 * Add an extra VFS_HOLD on our parent vfs so that it can't
1476 * disappear due to a forced unmount.
1477 */
1478 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1479 VFS_HOLD(mvp->v_vfsp);
1480
34dc7c2f
BB
1481out:
1482 pn_free(&spn);
1483 return (error);
1484}
1485
1486static int
1487zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
1488{
1489 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1490 dev32_t d32;
1491 uint64_t refdbytes, availbytes, usedobjs, availobjs;
1492
1493 ZFS_ENTER(zfsvfs);
1494
1495 dmu_objset_space(zfsvfs->z_os,
1496 &refdbytes, &availbytes, &usedobjs, &availobjs);
1497
1498 /*
1499 * The underlying storage pool actually uses multiple block sizes.
1500 * We report the fragsize as the smallest block size we support,
1501 * and we report our blocksize as the filesystem's maximum blocksize.
1502 */
1503 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
1504 statp->f_bsize = zfsvfs->z_max_blksz;
1505
1506 /*
1507 * The following report "total" blocks of various kinds in the
1508 * file system, but reported in terms of f_frsize - the
1509 * "fragment" size.
1510 */
1511
1512 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1513 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
1514 statp->f_bavail = statp->f_bfree; /* no root reservation */
1515
1516 /*
1517 * statvfs() should really be called statufs(), because it assumes
1518 * static metadata. ZFS doesn't preallocate files, so the best
1519 * we can do is report the max that could possibly fit in f_files,
1520 * and that minus the number actually used in f_ffree.
1521 * For f_ffree, report the smaller of the number of object available
1522 * and the number of blocks (each object will take at least a block).
1523 */
1524 statp->f_ffree = MIN(availobjs, statp->f_bfree);
1525 statp->f_favail = statp->f_ffree; /* no "root reservation" */
1526 statp->f_files = statp->f_ffree + usedobjs;
1527
1528 (void) cmpldev(&d32, vfsp->vfs_dev);
1529 statp->f_fsid = d32;
1530
1531 /*
1532 * We're a zfs filesystem.
1533 */
1534 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1535
1536 statp->f_flag = vf_to_stf(vfsp->vfs_flag);
1537
1538 statp->f_namemax = ZFS_MAXNAMELEN;
1539
1540 /*
1541 * We have all of 32 characters to stuff a string here.
1542 * Is there anything useful we could/should provide?
1543 */
1544 bzero(statp->f_fstr, sizeof (statp->f_fstr));
1545
1546 ZFS_EXIT(zfsvfs);
1547 return (0);
1548}
1549
1550static int
1551zfs_root(vfs_t *vfsp, vnode_t **vpp)
1552{
1553 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1554 znode_t *rootzp;
1555 int error;
1556
1557 ZFS_ENTER(zfsvfs);
1558
1559 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1560 if (error == 0)
1561 *vpp = ZTOV(rootzp);
1562
1563 ZFS_EXIT(zfsvfs);
1564 return (error);
1565}
1566
1567/*
1568 * Teardown the zfsvfs::z_os.
1569 *
1570 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1571 * and 'z_teardown_inactive_lock' held.
1572 */
1573static int
1574zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1575{
1576 znode_t *zp;
1577
1578 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1579
1580 if (!unmounting) {
1581 /*
1582 * We purge the parent filesystem's vfsp as the parent
1583 * filesystem and all of its snapshots have their vnode's
1584 * v_vfsp set to the parent's filesystem's vfsp. Note,
1585 * 'z_parent' is self referential for non-snapshots.
1586 */
1587 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1588 }
1589
1590 /*
1591 * Close the zil. NB: Can't close the zil while zfs_inactive
1592 * threads are blocked as zil_close can call zfs_inactive.
1593 */
1594 if (zfsvfs->z_log) {
1595 zil_close(zfsvfs->z_log);
1596 zfsvfs->z_log = NULL;
1597 }
1598
1599 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1600
1601 /*
1602 * If we are not unmounting (ie: online recv) and someone already
1603 * unmounted this file system while we were doing the switcheroo,
1604 * or a reopen of z_os failed then just bail out now.
1605 */
1606 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1607 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1608 rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1609 return (EIO);
1610 }
1611
1612 /*
1613 * At this point there are no vops active, and any new vops will
1614 * fail with EIO since we have z_teardown_lock for writer (only
1615 * relavent for forced unmount).
1616 *
1617 * Release all holds on dbufs.
1618 */
1619 mutex_enter(&zfsvfs->z_znodes_lock);
1620 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1621 zp = list_next(&zfsvfs->z_all_znodes, zp))
1622 if (zp->z_dbuf) {
1623 ASSERT(ZTOV(zp)->v_count > 0);
1624 zfs_znode_dmu_fini(zp);
1625 }
1626 mutex_exit(&zfsvfs->z_znodes_lock);
1627
1628 /*
1629 * If we are unmounting, set the unmounted flag and let new vops
1630 * unblock. zfs_inactive will have the unmounted behavior, and all
1631 * other vops will fail with EIO.
1632 */
1633 if (unmounting) {
1634 zfsvfs->z_unmounted = B_TRUE;
1635 rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1636 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1637 }
1638
1639 /*
1640 * z_os will be NULL if there was an error in attempting to reopen
1641 * zfsvfs, so just return as the properties had already been
1642 * unregistered and cached data had been evicted before.
1643 */
1644 if (zfsvfs->z_os == NULL)
1645 return (0);
1646
1647 /*
1648 * Unregister properties.
1649 */
1650 zfs_unregister_callbacks(zfsvfs);
1651
1652 /*
1653 * Evict cached data
1654 */
1655 if (dmu_objset_evict_dbufs(zfsvfs->z_os)) {
1656 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1657 (void) dmu_objset_evict_dbufs(zfsvfs->z_os);
1658 }
1659
1660 return (0);
1661}
1662
1663/*ARGSUSED*/
1664static int
1665zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
1666{
1667 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1668 objset_t *os;
1669 int ret;
1670
1671 ret = secpolicy_fs_unmount(cr, vfsp);
1672 if (ret) {
1673 ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1674 ZFS_DELEG_PERM_MOUNT, cr);
1675 if (ret)
1676 return (ret);
1677 }
1678
1679 /*
1680 * We purge the parent filesystem's vfsp as the parent filesystem
1681 * and all of its snapshots have their vnode's v_vfsp set to the
1682 * parent's filesystem's vfsp. Note, 'z_parent' is self
1683 * referential for non-snapshots.
1684 */
1685 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1686
1687 /*
1688 * Unmount any snapshots mounted under .zfs before unmounting the
1689 * dataset itself.
1690 */
1691 if (zfsvfs->z_ctldir != NULL &&
1692 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
1693 return (ret);
1694 }
1695
1696 if (!(fflag & MS_FORCE)) {
1697 /*
1698 * Check the number of active vnodes in the file system.
1699 * Our count is maintained in the vfs structure, but the
1700 * number is off by 1 to indicate a hold on the vfs
1701 * structure itself.
1702 *
1703 * The '.zfs' directory maintains a reference of its
1704 * own, and any active references underneath are
1705 * reflected in the vnode count.
1706 */
1707 if (zfsvfs->z_ctldir == NULL) {
1708 if (vfsp->vfs_count > 1)
1709 return (EBUSY);
1710 } else {
1711 if (vfsp->vfs_count > 2 ||
1712 zfsvfs->z_ctldir->v_count > 1)
1713 return (EBUSY);
1714 }
1715 }
1716
1717 vfsp->vfs_flag |= VFS_UNMOUNTED;
1718
1719 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1720 os = zfsvfs->z_os;
1721
1722 /*
1723 * z_os will be NULL if there was an error in
1724 * attempting to reopen zfsvfs.
1725 */
1726 if (os != NULL) {
1727 /*
1728 * Unset the objset user_ptr.
1729 */
1730 mutex_enter(&os->os->os_user_ptr_lock);
1731 dmu_objset_set_user(os, NULL);
1732 mutex_exit(&os->os->os_user_ptr_lock);
1733
1734 /*
b128c09f 1735 * Finally release the objset
34dc7c2f
BB
1736 */
1737 dmu_objset_close(os);
1738 }
1739
1740 /*
1741 * We can now safely destroy the '.zfs' directory node.
1742 */
1743 if (zfsvfs->z_ctldir != NULL)
1744 zfsctl_destroy(zfsvfs);
1745
1746 return (0);
1747}
1748
1749static int
1750zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
1751{
1752 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1753 znode_t *zp;
1754 uint64_t object = 0;
1755 uint64_t fid_gen = 0;
1756 uint64_t gen_mask;
1757 uint64_t zp_gen;
1758 int i, err;
1759
1760 *vpp = NULL;
1761
1762 ZFS_ENTER(zfsvfs);
1763
1764 if (fidp->fid_len == LONG_FID_LEN) {
1765 zfid_long_t *zlfid = (zfid_long_t *)fidp;
1766 uint64_t objsetid = 0;
1767 uint64_t setgen = 0;
1768
1769 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1770 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1771
1772 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1773 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1774
1775 ZFS_EXIT(zfsvfs);
1776
1777 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1778 if (err)
1779 return (EINVAL);
1780 ZFS_ENTER(zfsvfs);
1781 }
1782
1783 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1784 zfid_short_t *zfid = (zfid_short_t *)fidp;
1785
1786 for (i = 0; i < sizeof (zfid->zf_object); i++)
1787 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1788
1789 for (i = 0; i < sizeof (zfid->zf_gen); i++)
1790 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1791 } else {
1792 ZFS_EXIT(zfsvfs);
1793 return (EINVAL);
1794 }
1795
1796 /* A zero fid_gen means we are in the .zfs control directories */
1797 if (fid_gen == 0 &&
1798 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1799 *vpp = zfsvfs->z_ctldir;
1800 ASSERT(*vpp != NULL);
1801 if (object == ZFSCTL_INO_SNAPDIR) {
1802 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
1803 0, NULL, NULL, NULL, NULL, NULL) == 0);
1804 } else {
1805 VN_HOLD(*vpp);
1806 }
1807 ZFS_EXIT(zfsvfs);
1808 return (0);
1809 }
1810
1811 gen_mask = -1ULL >> (64 - 8 * i);
1812
1813 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1814 if (err = zfs_zget(zfsvfs, object, &zp)) {
1815 ZFS_EXIT(zfsvfs);
1816 return (err);
1817 }
1818 zp_gen = zp->z_phys->zp_gen & gen_mask;
1819 if (zp_gen == 0)
1820 zp_gen = 1;
1821 if (zp->z_unlinked || zp_gen != fid_gen) {
1822 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
1823 VN_RELE(ZTOV(zp));
1824 ZFS_EXIT(zfsvfs);
1825 return (EINVAL);
1826 }
1827
1828 *vpp = ZTOV(zp);
1829 ZFS_EXIT(zfsvfs);
1830 return (0);
1831}
1832
1833/*
1834 * Block out VOPs and close zfsvfs_t::z_os
1835 *
1836 * Note, if successful, then we return with the 'z_teardown_lock' and
1837 * 'z_teardown_inactive_lock' write held.
1838 */
1839int
9babb374 1840zfs_suspend_fs(zfsvfs_t *zfsvfs, char *name, int *modep)
34dc7c2f
BB
1841{
1842 int error;
1843
1844 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
1845 return (error);
1846
9babb374
BB
1847 *modep = zfsvfs->z_os->os_mode;
1848 if (name)
1849 dmu_objset_name(zfsvfs->z_os, name);
34dc7c2f
BB
1850 dmu_objset_close(zfsvfs->z_os);
1851
1852 return (0);
1853}
1854
1855/*
1856 * Reopen zfsvfs_t::z_os and release VOPs.
1857 */
1858int
1859zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname, int mode)
1860{
1861 int err;
1862
1863 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
1864 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1865
1866 err = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os);
1867 if (err) {
1868 zfsvfs->z_os = NULL;
1869 } else {
1870 znode_t *zp;
1871
1872 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
1873
1874 /*
1875 * Attempt to re-establish all the active znodes with
1876 * their dbufs. If a zfs_rezget() fails, then we'll let
1877 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
1878 * when they try to use their znode.
1879 */
1880 mutex_enter(&zfsvfs->z_znodes_lock);
1881 for (zp = list_head(&zfsvfs->z_all_znodes); zp;
1882 zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1883 (void) zfs_rezget(zp);
1884 }
1885 mutex_exit(&zfsvfs->z_znodes_lock);
1886
1887 }
1888
1889 /* release the VOPs */
1890 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1891 rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1892
1893 if (err) {
1894 /*
1895 * Since we couldn't reopen zfsvfs::z_os, force
1896 * unmount this file system.
1897 */
1898 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
1899 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
1900 }
1901 return (err);
1902}
1903
1904static void
1905zfs_freevfs(vfs_t *vfsp)
1906{
1907 zfsvfs_t *zfsvfs = vfsp->vfs_data;
34dc7c2f 1908
9babb374
BB
1909 /*
1910 * If this is a snapshot, we have an extra VFS_HOLD on our parent
1911 * from zfs_mount(). Release it here.
1912 */
1913 if (zfsvfs->z_issnap)
1914 VFS_RELE(zfsvfs->z_parent->z_vfs);
34dc7c2f 1915
9babb374 1916 zfsvfs_free(zfsvfs);
34dc7c2f
BB
1917
1918 atomic_add_32(&zfs_active_fs_count, -1);
1919}
1920
1921/*
1922 * VFS_INIT() initialization. Note that there is no VFS_FINI(),
1923 * so we can't safely do any non-idempotent initialization here.
1924 * Leave that to zfs_init() and zfs_fini(), which are called
1925 * from the module's _init() and _fini() entry points.
1926 */
1927/*ARGSUSED*/
1928static int
1929zfs_vfsinit(int fstype, char *name)
1930{
1931 int error;
1932
1933 zfsfstype = fstype;
1934
1935 /*
1936 * Setup vfsops and vnodeops tables.
1937 */
1938 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
1939 if (error != 0) {
1940 cmn_err(CE_WARN, "zfs: bad vfs ops template");
1941 }
1942
1943 error = zfs_create_op_tables();
1944 if (error) {
1945 zfs_remove_op_tables();
1946 cmn_err(CE_WARN, "zfs: bad vnode ops template");
1947 (void) vfs_freevfsops_by_type(zfsfstype);
1948 return (error);
1949 }
1950
1951 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
1952
1953 /*
1954 * Unique major number for all zfs mounts.
1955 * If we run out of 32-bit minors, we'll getudev() another major.
1956 */
1957 zfs_major = ddi_name_to_major(ZFS_DRIVER);
1958 zfs_minor = ZFS_MIN_MINOR;
1959
1960 return (0);
1961}
1962
1963void
1964zfs_init(void)
1965{
1966 /*
1967 * Initialize .zfs directory structures
1968 */
1969 zfsctl_init();
1970
1971 /*
1972 * Initialize znode cache, vnode ops, etc...
1973 */
1974 zfs_znode_init();
9babb374
BB
1975
1976 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
34dc7c2f
BB
1977}
1978
1979void
1980zfs_fini(void)
1981{
1982 zfsctl_fini();
1983 zfs_znode_fini();
1984}
1985
1986int
1987zfs_busy(void)
1988{
1989 return (zfs_active_fs_count != 0);
1990}
1991
1992int
9babb374 1993zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
34dc7c2f
BB
1994{
1995 int error;
9babb374 1996 objset_t *os = zfsvfs->z_os;
34dc7c2f 1997 dmu_tx_t *tx;
34dc7c2f
BB
1998
1999 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2000 return (EINVAL);
2001
9babb374
BB
2002 if (newvers < zfsvfs->z_version)
2003 return (EINVAL);
34dc7c2f
BB
2004
2005 tx = dmu_tx_create(os);
9babb374 2006 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
34dc7c2f
BB
2007 error = dmu_tx_assign(tx, TXG_WAIT);
2008 if (error) {
2009 dmu_tx_abort(tx);
9babb374
BB
2010 return (error);
2011 }
2012 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2013 8, 1, &newvers, tx);
2014
2015 if (error) {
2016 dmu_tx_commit(tx);
2017 return (error);
34dc7c2f 2018 }
34dc7c2f
BB
2019
2020 spa_history_internal_log(LOG_DS_UPGRADE,
2021 dmu_objset_spa(os), tx, CRED(),
9babb374
BB
2022 "oldver=%llu newver=%llu dataset = %llu",
2023 zfsvfs->z_version, newvers, dmu_objset_id(os));
2024
34dc7c2f
BB
2025 dmu_tx_commit(tx);
2026
9babb374
BB
2027 zfsvfs->z_version = newvers;
2028
2029 if (zfsvfs->z_version >= ZPL_VERSION_FUID)
2030 zfs_set_fuid_feature(zfsvfs);
2031
2032 return (0);
34dc7c2f
BB
2033}
2034
2035/*
2036 * Read a property stored within the master node.
2037 */
2038int
2039zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2040{
2041 const char *pname;
b128c09f 2042 int error = ENOENT;
34dc7c2f
BB
2043
2044 /*
2045 * Look up the file system's value for the property. For the
2046 * version property, we look up a slightly different string.
2047 */
2048 if (prop == ZFS_PROP_VERSION)
2049 pname = ZPL_VERSION_STR;
2050 else
2051 pname = zfs_prop_to_name(prop);
2052
b128c09f
BB
2053 if (os != NULL)
2054 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
34dc7c2f
BB
2055
2056 if (error == ENOENT) {
2057 /* No value set, use the default value */
2058 switch (prop) {
2059 case ZFS_PROP_VERSION:
2060 *value = ZPL_VERSION;
2061 break;
2062 case ZFS_PROP_NORMALIZE:
2063 case ZFS_PROP_UTF8ONLY:
2064 *value = 0;
2065 break;
2066 case ZFS_PROP_CASE:
2067 *value = ZFS_CASE_SENSITIVE;
2068 break;
2069 default:
2070 return (error);
2071 }
2072 error = 0;
2073 }
2074 return (error);
2075}
2076
2077static vfsdef_t vfw = {
2078 VFSDEF_VERSION,
2079 MNTTYPE_ZFS,
2080 zfs_vfsinit,
2081 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
2082 VSW_XID,
2083 &zfs_mntopts
2084};
2085
2086struct modlfs zfs_modlfs = {
2087 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
2088};