]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/zfs_vnops.c
FreeBSD: Move uio_prefaultpages def to uio.h
[mirror_zfs.git] / module / zfs / zfs_vnops.c
CommitLineData
e53d678d
MM
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
27 */
28
29/* Portions Copyright 2007 Jeremy Teo */
30/* Portions Copyright 2010 Robert Milkowski */
31
32#include <sys/types.h>
33#include <sys/param.h>
34#include <sys/time.h>
35#include <sys/sysmacros.h>
36#include <sys/vfs.h>
37#include <sys/uio.h>
38#include <sys/file.h>
39#include <sys/stat.h>
40#include <sys/kmem.h>
41#include <sys/cmn_err.h>
42#include <sys/errno.h>
43#include <sys/zfs_dir.h>
44#include <sys/zfs_acl.h>
45#include <sys/zfs_ioctl.h>
46#include <sys/fs/zfs.h>
47#include <sys/dmu.h>
48#include <sys/dmu_objset.h>
49#include <sys/spa.h>
50#include <sys/txg.h>
51#include <sys/dbuf.h>
52#include <sys/policy.h>
53#include <sys/zfs_vnops.h>
54#include <sys/zfs_quota.h>
ab8c935e
CS
55#include <sys/zfs_vfsops.h>
56#include <sys/zfs_znode.h>
e53d678d
MM
57
58
59static ulong_t zfs_fsync_sync_cnt = 4;
60
61int
62zfs_fsync(znode_t *zp, int syncflag, cred_t *cr)
63{
64 zfsvfs_t *zfsvfs = ZTOZSB(zp);
65
66 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
67
68 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
69 ZFS_ENTER(zfsvfs);
70 ZFS_VERIFY_ZP(zp);
71 zil_commit(zfsvfs->z_log, zp->z_id);
72 ZFS_EXIT(zfsvfs);
73 }
74 tsd_set(zfs_fsyncer_key, NULL);
75
76 return (0);
77}
78
8583540c
MM
79
80#if defined(SEEK_HOLE) && defined(SEEK_DATA)
81/*
82 * Lseek support for finding holes (cmd == SEEK_HOLE) and
83 * data (cmd == SEEK_DATA). "off" is an in/out parameter.
84 */
85static int
86zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off)
87{
88 uint64_t noff = (uint64_t)*off; /* new offset */
89 uint64_t file_sz;
90 int error;
91 boolean_t hole;
92
93 file_sz = zp->z_size;
94 if (noff >= file_sz) {
95 return (SET_ERROR(ENXIO));
96 }
97
98 if (cmd == F_SEEK_HOLE)
99 hole = B_TRUE;
100 else
101 hole = B_FALSE;
102
103 error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
104
105 if (error == ESRCH)
106 return (SET_ERROR(ENXIO));
107
108 /* file was dirty, so fall back to using generic logic */
109 if (error == EBUSY) {
110 if (hole)
111 *off = file_sz;
112
113 return (0);
114 }
115
116 /*
117 * We could find a hole that begins after the logical end-of-file,
118 * because dmu_offset_next() only works on whole blocks. If the
119 * EOF falls mid-block, then indicate that the "virtual hole"
120 * at the end of the file begins at the logical EOF, rather than
121 * at the end of the last block.
122 */
123 if (noff > file_sz) {
124 ASSERT(hole);
125 noff = file_sz;
126 }
127
128 if (noff < *off)
129 return (error);
130 *off = noff;
131 return (error);
132}
133
134int
135zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off)
136{
137 zfsvfs_t *zfsvfs = ZTOZSB(zp);
138 int error;
139
140 ZFS_ENTER(zfsvfs);
141 ZFS_VERIFY_ZP(zp);
142
143 error = zfs_holey_common(zp, cmd, off);
144
145 ZFS_EXIT(zfsvfs);
146 return (error);
147}
148#endif /* SEEK_HOLE && SEEK_DATA */
149
150/*ARGSUSED*/
151int
152zfs_access(znode_t *zp, int mode, int flag, cred_t *cr)
153{
154 zfsvfs_t *zfsvfs = ZTOZSB(zp);
155 int error;
156
157 ZFS_ENTER(zfsvfs);
158 ZFS_VERIFY_ZP(zp);
159
160 if (flag & V_ACE_MASK)
161 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
162 else
163 error = zfs_zaccess_rwx(zp, mode, flag, cr);
164
165 ZFS_EXIT(zfsvfs);
166 return (error);
167}
168
e53d678d
MM
169static unsigned long zfs_vnops_read_chunk_size = 1024 * 1024; /* Tunable */
170
171/*
172 * Read bytes from specified file into supplied buffer.
173 *
174 * IN: zp - inode of file to be read from.
175 * uio - structure supplying read location, range info,
176 * and return buffer.
177 * ioflag - O_SYNC flags; used to provide FRSYNC semantics.
178 * O_DIRECT flag; used to bypass page cache.
179 * cr - credentials of caller.
180 *
181 * OUT: uio - updated offset and range, buffer filled.
182 *
183 * RETURN: 0 on success, error code on failure.
184 *
185 * Side Effects:
186 * inode - atime updated if byte count > 0
187 */
188/* ARGSUSED */
189int
190zfs_read(struct znode *zp, uio_t *uio, int ioflag, cred_t *cr)
191{
192 int error = 0;
193 boolean_t frsync = B_FALSE;
194
195 zfsvfs_t *zfsvfs = ZTOZSB(zp);
196 ZFS_ENTER(zfsvfs);
197 ZFS_VERIFY_ZP(zp);
198
199 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
200 ZFS_EXIT(zfsvfs);
201 return (SET_ERROR(EACCES));
202 }
203
204 /* We don't copy out anything useful for directories. */
205 if (Z_ISDIR(ZTOTYPE(zp))) {
206 ZFS_EXIT(zfsvfs);
207 return (SET_ERROR(EISDIR));
208 }
209
210 /*
211 * Validate file offset
212 */
213 if (uio->uio_loffset < (offset_t)0) {
214 ZFS_EXIT(zfsvfs);
215 return (SET_ERROR(EINVAL));
216 }
217
218 /*
219 * Fasttrack empty reads
220 */
221 if (uio->uio_resid == 0) {
222 ZFS_EXIT(zfsvfs);
223 return (0);
224 }
225
226#ifdef FRSYNC
227 /*
228 * If we're in FRSYNC mode, sync out this znode before reading it.
229 * Only do this for non-snapshots.
230 *
231 * Some platforms do not support FRSYNC and instead map it
232 * to O_SYNC, which results in unnecessary calls to zil_commit. We
233 * only honor FRSYNC requests on platforms which support it.
234 */
235 frsync = !!(ioflag & FRSYNC);
236#endif
237 if (zfsvfs->z_log &&
238 (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
239 zil_commit(zfsvfs->z_log, zp->z_id);
240
241 /*
242 * Lock the range against changes.
243 */
244 zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
245 uio->uio_loffset, uio->uio_resid, RL_READER);
246
247 /*
248 * If we are reading past end-of-file we can skip
249 * to the end; but we might still need to set atime.
250 */
251 if (uio->uio_loffset >= zp->z_size) {
252 error = 0;
253 goto out;
254 }
255
256 ASSERT(uio->uio_loffset < zp->z_size);
257 ssize_t n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
258 ssize_t start_resid = n;
259
260 while (n > 0) {
261 ssize_t nbytes = MIN(n, zfs_vnops_read_chunk_size -
262 P2PHASE(uio->uio_loffset, zfs_vnops_read_chunk_size));
263#ifdef UIO_NOCOPY
264 if (uio->uio_segflg == UIO_NOCOPY)
265 error = mappedread_sf(zp, nbytes, uio);
266 else
267#endif
268 if (zn_has_cached_data(zp) && !(ioflag & O_DIRECT)) {
269 error = mappedread(zp, nbytes, uio);
270 } else {
271 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
272 uio, nbytes);
273 }
274
275 if (error) {
276 /* convert checksum errors into IO errors */
277 if (error == ECKSUM)
278 error = SET_ERROR(EIO);
279 break;
280 }
281
282 n -= nbytes;
283 }
284
285 int64_t nread = start_resid - n;
286 dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread);
287 task_io_account_read(nread);
288out:
289 zfs_rangelock_exit(lr);
290
291 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
292 ZFS_EXIT(zfsvfs);
293 return (error);
294}
295
296/*
297 * Write the bytes to a file.
298 *
299 * IN: zp - znode of file to be written to.
300 * uio - structure supplying write location, range info,
301 * and data buffer.
302 * ioflag - O_APPEND flag set if in append mode.
303 * O_DIRECT flag; used to bypass page cache.
304 * cr - credentials of caller.
305 *
306 * OUT: uio - updated offset and range.
307 *
308 * RETURN: 0 if success
309 * error code if failure
310 *
311 * Timestamps:
312 * ip - ctime|mtime updated if byte count > 0
313 */
314
315/* ARGSUSED */
316int
317zfs_write(znode_t *zp, uio_t *uio, int ioflag, cred_t *cr)
318{
319 int error = 0;
320 ssize_t start_resid = uio->uio_resid;
321
322 /*
323 * Fasttrack empty write
324 */
325 ssize_t n = start_resid;
326 if (n == 0)
327 return (0);
328
329 rlim64_t limit = MAXOFFSET_T;
330
331 zfsvfs_t *zfsvfs = ZTOZSB(zp);
332 ZFS_ENTER(zfsvfs);
333 ZFS_VERIFY_ZP(zp);
334
335 sa_bulk_attr_t bulk[4];
336 int count = 0;
337 uint64_t mtime[2], ctime[2];
338 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
339 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
340 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
341 &zp->z_size, 8);
342 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
343 &zp->z_pflags, 8);
344
345 /*
346 * Callers might not be able to detect properly that we are read-only,
347 * so check it explicitly here.
348 */
349 if (zfs_is_readonly(zfsvfs)) {
350 ZFS_EXIT(zfsvfs);
351 return (SET_ERROR(EROFS));
352 }
353
354 /*
355 * If immutable or not appending then return EPERM
356 */
357 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
358 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) &&
359 (uio->uio_loffset < zp->z_size))) {
360 ZFS_EXIT(zfsvfs);
361 return (SET_ERROR(EPERM));
362 }
363
364 /*
365 * Validate file offset
366 */
367 offset_t woff = ioflag & O_APPEND ? zp->z_size : uio->uio_loffset;
368 if (woff < 0) {
369 ZFS_EXIT(zfsvfs);
370 return (SET_ERROR(EINVAL));
371 }
372
373 int max_blksz = zfsvfs->z_max_blksz;
374
375 /*
376 * Pre-fault the pages to ensure slow (eg NFS) pages
377 * don't hold up txg.
378 * Skip this if uio contains loaned arc_buf.
379 */
380 if (uio_prefaultpages(MIN(n, max_blksz), uio)) {
381 ZFS_EXIT(zfsvfs);
382 return (SET_ERROR(EFAULT));
383 }
384
385 /*
386 * If in append mode, set the io offset pointer to eof.
387 */
388 zfs_locked_range_t *lr;
389 if (ioflag & O_APPEND) {
390 /*
391 * Obtain an appending range lock to guarantee file append
392 * semantics. We reset the write offset once we have the lock.
393 */
394 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
395 woff = lr->lr_offset;
396 if (lr->lr_length == UINT64_MAX) {
397 /*
398 * We overlocked the file because this write will cause
399 * the file block size to increase.
400 * Note that zp_size cannot change with this lock held.
401 */
402 woff = zp->z_size;
403 }
404 uio->uio_loffset = woff;
405 } else {
406 /*
407 * Note that if the file block size will change as a result of
408 * this write, then this range lock will lock the entire file
409 * so that we can re-write the block safely.
410 */
411 lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
412 }
413
414 if (zn_rlimit_fsize(zp, uio, uio->uio_td)) {
415 zfs_rangelock_exit(lr);
416 ZFS_EXIT(zfsvfs);
417 return (EFBIG);
418 }
419
420 if (woff >= limit) {
421 zfs_rangelock_exit(lr);
422 ZFS_EXIT(zfsvfs);
423 return (SET_ERROR(EFBIG));
424 }
425
426 if ((woff + n) > limit || woff > (limit - n))
427 n = limit - woff;
428
429 uint64_t end_size = MAX(zp->z_size, woff + n);
430 zilog_t *zilog = zfsvfs->z_log;
431
eec6646e
RM
432 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
433 const uint64_t gid = KGID_TO_SGID(ZTOGID(zp));
434 const uint64_t projid = zp->z_projid;
435
e53d678d
MM
436 /*
437 * Write the file in reasonable size chunks. Each chunk is written
438 * in a separate transaction; this keeps the intent log records small
439 * and allows us to do more fine-grained space accounting.
440 */
441 while (n > 0) {
442 woff = uio->uio_loffset;
443
eec6646e
RM
444 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) ||
445 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) ||
446 (projid != ZFS_DEFAULT_PROJID &&
e53d678d 447 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
eec6646e 448 projid))) {
e53d678d
MM
449 error = SET_ERROR(EDQUOT);
450 break;
451 }
452
453 arc_buf_t *abuf = NULL;
454 if (n >= max_blksz && woff >= zp->z_size &&
455 P2PHASE(woff, max_blksz) == 0 &&
456 zp->z_blksz == max_blksz) {
457 /*
458 * This write covers a full block. "Borrow" a buffer
459 * from the dmu so that we can fill it before we enter
460 * a transaction. This avoids the possibility of
461 * holding up the transaction if the data copy hangs
462 * up on a pagefault (e.g., from an NFS server mapping).
463 */
464 size_t cbytes;
465
466 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
467 max_blksz);
468 ASSERT(abuf != NULL);
469 ASSERT(arc_buf_size(abuf) == max_blksz);
470 if ((error = uiocopy(abuf->b_data, max_blksz,
471 UIO_WRITE, uio, &cbytes))) {
472 dmu_return_arcbuf(abuf);
473 break;
474 }
475 ASSERT(cbytes == max_blksz);
476 }
477
478 /*
479 * Start a transaction.
480 */
481 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
482 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
483 dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
484 DB_DNODE_ENTER(db);
485 dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff,
486 MIN(n, max_blksz));
487 DB_DNODE_EXIT(db);
488 zfs_sa_upgrade_txholds(tx, zp);
489 error = dmu_tx_assign(tx, TXG_WAIT);
490 if (error) {
491 dmu_tx_abort(tx);
492 if (abuf != NULL)
493 dmu_return_arcbuf(abuf);
494 break;
495 }
496
497 /*
498 * If rangelock_enter() over-locked we grow the blocksize
499 * and then reduce the lock range. This will only happen
500 * on the first iteration since rangelock_reduce() will
501 * shrink down lr_length to the appropriate size.
502 */
503 if (lr->lr_length == UINT64_MAX) {
504 uint64_t new_blksz;
505
506 if (zp->z_blksz > max_blksz) {
507 /*
508 * File's blocksize is already larger than the
509 * "recordsize" property. Only let it grow to
510 * the next power of 2.
511 */
512 ASSERT(!ISP2(zp->z_blksz));
513 new_blksz = MIN(end_size,
514 1 << highbit64(zp->z_blksz));
515 } else {
516 new_blksz = MIN(end_size, max_blksz);
517 }
518 zfs_grow_blocksize(zp, new_blksz, tx);
519 zfs_rangelock_reduce(lr, woff, n);
520 }
521
522 /*
523 * XXX - should we really limit each write to z_max_blksz?
524 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
525 */
526 ssize_t nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
527
528 ssize_t tx_bytes;
529 if (abuf == NULL) {
530 tx_bytes = uio->uio_resid;
531 uio_fault_disable(uio, B_TRUE);
532 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
533 uio, nbytes, tx);
534 uio_fault_disable(uio, B_FALSE);
535#ifdef __linux__
536 if (error == EFAULT) {
537 dmu_tx_commit(tx);
538 /*
539 * Account for partial writes before
540 * continuing the loop.
541 * Update needs to occur before the next
542 * uio_prefaultpages, or prefaultpages may
543 * error, and we may break the loop early.
544 */
545 if (tx_bytes != uio->uio_resid)
546 n -= tx_bytes - uio->uio_resid;
547 if (uio_prefaultpages(MIN(n, max_blksz), uio)) {
548 break;
549 }
550 continue;
551 }
552#endif
553 if (error != 0) {
554 dmu_tx_commit(tx);
555 break;
556 }
557 tx_bytes -= uio->uio_resid;
558 } else {
559 /*
560 * Is this block ever reached?
561 */
562 tx_bytes = nbytes;
563 /*
564 * If this is not a full block write, but we are
565 * extending the file past EOF and this data starts
566 * block-aligned, use assign_arcbuf(). Otherwise,
567 * write via dmu_write().
568 */
569
570 if (tx_bytes == max_blksz) {
571 error = dmu_assign_arcbuf_by_dbuf(
572 sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
573 if (error != 0) {
574 dmu_return_arcbuf(abuf);
575 dmu_tx_commit(tx);
576 break;
577 }
578 }
579 ASSERT(tx_bytes <= uio->uio_resid);
580 uioskip(uio, tx_bytes);
581 }
582 if (tx_bytes && zn_has_cached_data(zp) &&
583 !(ioflag & O_DIRECT)) {
8a9634e2 584 update_pages(zp, woff, tx_bytes, zfsvfs->z_os);
e53d678d
MM
585 }
586
587 /*
588 * If we made no progress, we're done. If we made even
589 * partial progress, update the znode and ZIL accordingly.
590 */
591 if (tx_bytes == 0) {
592 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
593 (void *)&zp->z_size, sizeof (uint64_t), tx);
594 dmu_tx_commit(tx);
595 ASSERT(error != 0);
596 break;
597 }
598
599 /*
600 * Clear Set-UID/Set-GID bits on successful write if not
601 * privileged and at least one of the execute bits is set.
602 *
603 * It would be nice to do this after all writes have
604 * been done, but that would still expose the ISUID/ISGID
605 * to another app after the partial write is committed.
606 *
607 * Note: we don't call zfs_fuid_map_id() here because
608 * user 0 is not an ephemeral uid.
609 */
610 mutex_enter(&zp->z_acl_lock);
e53d678d
MM
611 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
612 (S_IXUSR >> 6))) != 0 &&
613 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
614 secpolicy_vnode_setid_retain(zp, cr,
615 ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
616 uint64_t newmode;
617 zp->z_mode &= ~(S_ISUID | S_ISGID);
618 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
619 (void *)&newmode, sizeof (uint64_t), tx);
620 }
621 mutex_exit(&zp->z_acl_lock);
622
623 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
624
625 /*
626 * Update the file size (zp_size) if it has changed;
627 * account for possible concurrent updates.
628 */
629 while ((end_size = zp->z_size) < uio->uio_loffset) {
630 (void) atomic_cas_64(&zp->z_size, end_size,
631 uio->uio_loffset);
632 ASSERT(error == 0);
633 }
634 /*
635 * If we are replaying and eof is non zero then force
636 * the file size to the specified eof. Note, there's no
637 * concurrency during replay.
638 */
639 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
640 zp->z_size = zfsvfs->z_replay_eof;
641
642 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
643
644 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag,
645 NULL, NULL);
646 dmu_tx_commit(tx);
647
648 if (error != 0)
649 break;
650 ASSERT(tx_bytes == nbytes);
651 n -= nbytes;
652
653 if (n > 0) {
654 if (uio_prefaultpages(MIN(n, max_blksz), uio)) {
655 error = EFAULT;
656 break;
657 }
658 }
659 }
660
661 zfs_inode_update(zp);
662 zfs_rangelock_exit(lr);
663
664 /*
665 * If we're in replay mode, or we made no progress, return error.
666 * Otherwise, it's at least a partial write, so it's successful.
667 */
668 if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
669 ZFS_EXIT(zfsvfs);
670 return (error);
671 }
672
673 if (ioflag & (O_SYNC | O_DSYNC) ||
674 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
675 zil_commit(zilog, zp->z_id);
676
677 int64_t nwritten = start_resid - uio->uio_resid;
678 dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten);
679 task_io_account_write(nwritten);
680
681 ZFS_EXIT(zfsvfs);
682 return (0);
683}
684
685/*ARGSUSED*/
686int
687zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
688{
689 zfsvfs_t *zfsvfs = ZTOZSB(zp);
690 int error;
691 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
692
693 ZFS_ENTER(zfsvfs);
694 ZFS_VERIFY_ZP(zp);
695 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
696 ZFS_EXIT(zfsvfs);
697
698 return (error);
699}
700
701/*ARGSUSED*/
702int
703zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
704{
705 zfsvfs_t *zfsvfs = ZTOZSB(zp);
706 int error;
707 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
708 zilog_t *zilog = zfsvfs->z_log;
709
710 ZFS_ENTER(zfsvfs);
711 ZFS_VERIFY_ZP(zp);
712
713 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
714
715 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
716 zil_commit(zilog, 0);
717
718 ZFS_EXIT(zfsvfs);
719 return (error);
720}
721
ab8c935e
CS
722#ifdef ZFS_DEBUG
723static int zil_fault_io = 0;
724#endif
725
726static void zfs_get_done(zgd_t *zgd, int error);
727
728/*
729 * Get data to generate a TX_WRITE intent log record.
730 */
731int
732zfs_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio)
733{
734 zfsvfs_t *zfsvfs = arg;
735 objset_t *os = zfsvfs->z_os;
736 znode_t *zp;
737 uint64_t object = lr->lr_foid;
738 uint64_t offset = lr->lr_offset;
739 uint64_t size = lr->lr_length;
740 dmu_buf_t *db;
741 zgd_t *zgd;
742 int error = 0;
743
744 ASSERT3P(lwb, !=, NULL);
745 ASSERT3P(zio, !=, NULL);
746 ASSERT3U(size, !=, 0);
747
748 /*
749 * Nothing to do if the file has been removed
750 */
751 if (zfs_zget(zfsvfs, object, &zp) != 0)
752 return (SET_ERROR(ENOENT));
753 if (zp->z_unlinked) {
754 /*
755 * Release the vnode asynchronously as we currently have the
756 * txg stopped from syncing.
757 */
758 zfs_zrele_async(zp);
759 return (SET_ERROR(ENOENT));
760 }
761
762 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
763 zgd->zgd_lwb = lwb;
764 zgd->zgd_private = zp;
765
766 /*
767 * Write records come in two flavors: immediate and indirect.
768 * For small writes it's cheaper to store the data with the
769 * log record (immediate); for large writes it's cheaper to
770 * sync the data and get a pointer to it (indirect) so that
771 * we don't have to write the data twice.
772 */
773 if (buf != NULL) { /* immediate write */
774 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
775 offset, size, RL_READER);
776 /* test for truncation needs to be done while range locked */
777 if (offset >= zp->z_size) {
778 error = SET_ERROR(ENOENT);
779 } else {
780 error = dmu_read(os, object, offset, size, buf,
781 DMU_READ_NO_PREFETCH);
782 }
783 ASSERT(error == 0 || error == ENOENT);
784 } else { /* indirect write */
785 /*
786 * Have to lock the whole block to ensure when it's
787 * written out and its checksum is being calculated
788 * that no one can change the data. We need to re-check
789 * blocksize after we get the lock in case it's changed!
790 */
791 for (;;) {
792 uint64_t blkoff;
793 size = zp->z_blksz;
794 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
795 offset -= blkoff;
796 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
797 offset, size, RL_READER);
798 if (zp->z_blksz == size)
799 break;
800 offset += blkoff;
801 zfs_rangelock_exit(zgd->zgd_lr);
802 }
803 /* test for truncation needs to be done while range locked */
804 if (lr->lr_offset >= zp->z_size)
805 error = SET_ERROR(ENOENT);
806#ifdef ZFS_DEBUG
807 if (zil_fault_io) {
808 error = SET_ERROR(EIO);
809 zil_fault_io = 0;
810 }
811#endif
812 if (error == 0)
813 error = dmu_buf_hold(os, object, offset, zgd, &db,
814 DMU_READ_NO_PREFETCH);
815
816 if (error == 0) {
817 blkptr_t *bp = &lr->lr_blkptr;
818
819 zgd->zgd_db = db;
820 zgd->zgd_bp = bp;
821
822 ASSERT(db->db_offset == offset);
823 ASSERT(db->db_size == size);
824
825 error = dmu_sync(zio, lr->lr_common.lrc_txg,
826 zfs_get_done, zgd);
827 ASSERT(error || lr->lr_length <= size);
828
829 /*
830 * On success, we need to wait for the write I/O
831 * initiated by dmu_sync() to complete before we can
832 * release this dbuf. We will finish everything up
833 * in the zfs_get_done() callback.
834 */
835 if (error == 0)
836 return (0);
837
838 if (error == EALREADY) {
839 lr->lr_common.lrc_txtype = TX_WRITE2;
840 /*
841 * TX_WRITE2 relies on the data previously
842 * written by the TX_WRITE that caused
843 * EALREADY. We zero out the BP because
844 * it is the old, currently-on-disk BP.
845 */
846 zgd->zgd_bp = NULL;
847 BP_ZERO(bp);
848 error = 0;
849 }
850 }
851 }
852
853 zfs_get_done(zgd, error);
854
855 return (error);
856}
857
858
859/* ARGSUSED */
860static void
861zfs_get_done(zgd_t *zgd, int error)
862{
863 znode_t *zp = zgd->zgd_private;
864
865 if (zgd->zgd_db)
866 dmu_buf_rele(zgd->zgd_db, zgd);
867
868 zfs_rangelock_exit(zgd->zgd_lr);
869
870 /*
871 * Release the vnode asynchronously as we currently have the
872 * txg stopped from syncing.
873 */
874 zfs_zrele_async(zp);
875
876 kmem_free(zgd, sizeof (zgd_t));
877}
878
8583540c 879EXPORT_SYMBOL(zfs_access);
e53d678d 880EXPORT_SYMBOL(zfs_fsync);
8583540c 881EXPORT_SYMBOL(zfs_holey);
e53d678d
MM
882EXPORT_SYMBOL(zfs_read);
883EXPORT_SYMBOL(zfs_write);
884EXPORT_SYMBOL(zfs_getsecattr);
885EXPORT_SYMBOL(zfs_setsecattr);
886
887ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, ULONG, ZMOD_RW,
888 "Bytes to read per chunk");