]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/zfs_vnops.c
ZIL: Fix config lock deadlock.
[mirror_zfs.git] / module / zfs / zfs_vnops.c
CommitLineData
e53d678d
MM
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
1d3ba0bf 9 * or https://opensource.org/licenses/CDDL-1.0.
e53d678d
MM
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
67a1b037 27 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
e53d678d
MM
28 */
29
30/* Portions Copyright 2007 Jeremy Teo */
31/* Portions Copyright 2010 Robert Milkowski */
32
33#include <sys/types.h>
34#include <sys/param.h>
35#include <sys/time.h>
36#include <sys/sysmacros.h>
37#include <sys/vfs.h>
c0801bf3 38#include <sys/uio_impl.h>
e53d678d
MM
39#include <sys/file.h>
40#include <sys/stat.h>
41#include <sys/kmem.h>
42#include <sys/cmn_err.h>
43#include <sys/errno.h>
44#include <sys/zfs_dir.h>
45#include <sys/zfs_acl.h>
46#include <sys/zfs_ioctl.h>
47#include <sys/fs/zfs.h>
48#include <sys/dmu.h>
49#include <sys/dmu_objset.h>
50#include <sys/spa.h>
51#include <sys/txg.h>
52#include <sys/dbuf.h>
53#include <sys/policy.h>
67a1b037 54#include <sys/zfeature.h>
e53d678d
MM
55#include <sys/zfs_vnops.h>
56#include <sys/zfs_quota.h>
ab8c935e
CS
57#include <sys/zfs_vfsops.h>
58#include <sys/zfs_znode.h>
e53d678d
MM
59
60
61static ulong_t zfs_fsync_sync_cnt = 4;
62
63int
64zfs_fsync(znode_t *zp, int syncflag, cred_t *cr)
65{
768eaced 66 int error = 0;
e53d678d
MM
67 zfsvfs_t *zfsvfs = ZTOZSB(zp);
68
b9041e1f 69 (void) tsd_set(zfs_fsyncer_key, (void *)(uintptr_t)zfs_fsync_sync_cnt);
e53d678d
MM
70
71 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
768eaced
CC
72 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
73 goto out;
411f4a01 74 atomic_inc_32(&zp->z_sync_writes_cnt);
e53d678d 75 zil_commit(zfsvfs->z_log, zp->z_id);
411f4a01 76 atomic_dec_32(&zp->z_sync_writes_cnt);
768eaced 77 zfs_exit(zfsvfs, FTAG);
e53d678d 78 }
768eaced 79out:
e53d678d
MM
80 tsd_set(zfs_fsyncer_key, NULL);
81
768eaced 82 return (error);
e53d678d
MM
83}
84
8583540c
MM
85
86#if defined(SEEK_HOLE) && defined(SEEK_DATA)
87/*
88 * Lseek support for finding holes (cmd == SEEK_HOLE) and
89 * data (cmd == SEEK_DATA). "off" is an in/out parameter.
90 */
91static int
92zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off)
93{
de198f2d 94 zfs_locked_range_t *lr;
8583540c
MM
95 uint64_t noff = (uint64_t)*off; /* new offset */
96 uint64_t file_sz;
97 int error;
98 boolean_t hole;
99
100 file_sz = zp->z_size;
101 if (noff >= file_sz) {
102 return (SET_ERROR(ENXIO));
103 }
104
105 if (cmd == F_SEEK_HOLE)
106 hole = B_TRUE;
107 else
108 hole = B_FALSE;
109
de198f2d 110 /* Flush any mmap()'d data to disk */
3fc92adc 111 if (zn_has_cached_data(zp, 0, file_sz - 1))
de198f2d
BB
112 zn_flush_cached_data(zp, B_FALSE);
113
64bfa6ba 114 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_READER);
8583540c 115 error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
de198f2d 116 zfs_rangelock_exit(lr);
8583540c
MM
117
118 if (error == ESRCH)
119 return (SET_ERROR(ENXIO));
120
de198f2d 121 /* File was dirty, so fall back to using generic logic */
8583540c
MM
122 if (error == EBUSY) {
123 if (hole)
124 *off = file_sz;
125
126 return (0);
127 }
128
129 /*
130 * We could find a hole that begins after the logical end-of-file,
131 * because dmu_offset_next() only works on whole blocks. If the
132 * EOF falls mid-block, then indicate that the "virtual hole"
133 * at the end of the file begins at the logical EOF, rather than
134 * at the end of the last block.
135 */
136 if (noff > file_sz) {
137 ASSERT(hole);
138 noff = file_sz;
139 }
140
141 if (noff < *off)
142 return (error);
143 *off = noff;
144 return (error);
145}
146
147int
148zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off)
149{
150 zfsvfs_t *zfsvfs = ZTOZSB(zp);
151 int error;
152
768eaced
CC
153 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
154 return (error);
8583540c
MM
155
156 error = zfs_holey_common(zp, cmd, off);
157
768eaced 158 zfs_exit(zfsvfs, FTAG);
8583540c
MM
159 return (error);
160}
161#endif /* SEEK_HOLE && SEEK_DATA */
162
8583540c
MM
163int
164zfs_access(znode_t *zp, int mode, int flag, cred_t *cr)
165{
166 zfsvfs_t *zfsvfs = ZTOZSB(zp);
167 int error;
168
768eaced
CC
169 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
170 return (error);
8583540c
MM
171
172 if (flag & V_ACE_MASK)
f224eddf
YY
173#if defined(__linux__)
174 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
d4dc53da 175 zfs_init_idmap);
f224eddf
YY
176#else
177 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
178 NULL);
179#endif
8583540c 180 else
f224eddf 181#if defined(__linux__)
d4dc53da 182 error = zfs_zaccess_rwx(zp, mode, flag, cr, zfs_init_idmap);
f224eddf 183#else
2a068a13 184 error = zfs_zaccess_rwx(zp, mode, flag, cr, NULL);
f224eddf 185#endif
8583540c 186
768eaced 187 zfs_exit(zfsvfs, FTAG);
8583540c
MM
188 return (error);
189}
190
ab8d9c17 191static uint64_t zfs_vnops_read_chunk_size = 1024 * 1024; /* Tunable */
e53d678d
MM
192
193/*
194 * Read bytes from specified file into supplied buffer.
195 *
196 * IN: zp - inode of file to be read from.
197 * uio - structure supplying read location, range info,
198 * and return buffer.
199 * ioflag - O_SYNC flags; used to provide FRSYNC semantics.
200 * O_DIRECT flag; used to bypass page cache.
201 * cr - credentials of caller.
202 *
203 * OUT: uio - updated offset and range, buffer filled.
204 *
205 * RETURN: 0 on success, error code on failure.
206 *
207 * Side Effects:
208 * inode - atime updated if byte count > 0
209 */
e53d678d 210int
d0cd9a5c 211zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
e53d678d 212{
ef70eff1 213 (void) cr;
e53d678d
MM
214 int error = 0;
215 boolean_t frsync = B_FALSE;
216
217 zfsvfs_t *zfsvfs = ZTOZSB(zp);
768eaced
CC
218 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
219 return (error);
e53d678d
MM
220
221 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
768eaced 222 zfs_exit(zfsvfs, FTAG);
e53d678d
MM
223 return (SET_ERROR(EACCES));
224 }
225
226 /* We don't copy out anything useful for directories. */
227 if (Z_ISDIR(ZTOTYPE(zp))) {
768eaced 228 zfs_exit(zfsvfs, FTAG);
e53d678d
MM
229 return (SET_ERROR(EISDIR));
230 }
231
232 /*
233 * Validate file offset
234 */
d0cd9a5c 235 if (zfs_uio_offset(uio) < (offset_t)0) {
768eaced 236 zfs_exit(zfsvfs, FTAG);
e53d678d
MM
237 return (SET_ERROR(EINVAL));
238 }
239
240 /*
241 * Fasttrack empty reads
242 */
d0cd9a5c 243 if (zfs_uio_resid(uio) == 0) {
768eaced 244 zfs_exit(zfsvfs, FTAG);
e53d678d
MM
245 return (0);
246 }
247
248#ifdef FRSYNC
249 /*
250 * If we're in FRSYNC mode, sync out this znode before reading it.
251 * Only do this for non-snapshots.
252 *
253 * Some platforms do not support FRSYNC and instead map it
254 * to O_SYNC, which results in unnecessary calls to zil_commit. We
255 * only honor FRSYNC requests on platforms which support it.
256 */
257 frsync = !!(ioflag & FRSYNC);
258#endif
259 if (zfsvfs->z_log &&
260 (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
261 zil_commit(zfsvfs->z_log, zp->z_id);
262
263 /*
264 * Lock the range against changes.
265 */
266 zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
d0cd9a5c 267 zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER);
e53d678d
MM
268
269 /*
270 * If we are reading past end-of-file we can skip
271 * to the end; but we might still need to set atime.
272 */
d0cd9a5c 273 if (zfs_uio_offset(uio) >= zp->z_size) {
e53d678d
MM
274 error = 0;
275 goto out;
276 }
277
d0cd9a5c 278 ASSERT(zfs_uio_offset(uio) < zp->z_size);
05679465 279#if defined(__linux__)
59eab109 280 ssize_t start_offset = zfs_uio_offset(uio);
05679465 281#endif
d0cd9a5c 282 ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio));
e53d678d
MM
283 ssize_t start_resid = n;
284
285 while (n > 0) {
286 ssize_t nbytes = MIN(n, zfs_vnops_read_chunk_size -
d0cd9a5c 287 P2PHASE(zfs_uio_offset(uio), zfs_vnops_read_chunk_size));
e53d678d 288#ifdef UIO_NOCOPY
d0cd9a5c 289 if (zfs_uio_segflg(uio) == UIO_NOCOPY)
e53d678d
MM
290 error = mappedread_sf(zp, nbytes, uio);
291 else
292#endif
3fc92adc
BB
293 if (zn_has_cached_data(zp, zfs_uio_offset(uio),
294 zfs_uio_offset(uio) + nbytes - 1) && !(ioflag & O_DIRECT)) {
e53d678d
MM
295 error = mappedread(zp, nbytes, uio);
296 } else {
297 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
298 uio, nbytes);
299 }
300
301 if (error) {
302 /* convert checksum errors into IO errors */
303 if (error == ECKSUM)
304 error = SET_ERROR(EIO);
05679465
RE
305
306#if defined(__linux__)
59eab109
RE
307 /*
308 * if we actually read some bytes, bubbling EFAULT
05679465
RE
309 * up to become EAGAIN isn't what we want here...
310 *
311 * ...on Linux, at least. On FBSD, doing this breaks.
59eab109
RE
312 */
313 if (error == EFAULT &&
314 (zfs_uio_offset(uio) - start_offset) != 0)
315 error = 0;
05679465 316#endif
e53d678d
MM
317 break;
318 }
319
320 n -= nbytes;
321 }
322
323 int64_t nread = start_resid - n;
324 dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread);
325 task_io_account_read(nread);
326out:
327 zfs_rangelock_exit(lr);
328
329 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
768eaced 330 zfs_exit(zfsvfs, FTAG);
e53d678d
MM
331 return (error);
332}
333
3d244b48
PJD
334static void
335zfs_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, cred_t *cr,
336 uint64_t *clear_setid_bits_txgp, dmu_tx_t *tx)
337{
338 zilog_t *zilog = zfsvfs->z_log;
339 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
340
341 ASSERT(clear_setid_bits_txgp != NULL);
342 ASSERT(tx != NULL);
343
344 /*
345 * Clear Set-UID/Set-GID bits on successful write if not
346 * privileged and at least one of the execute bits is set.
347 *
348 * It would be nice to do this after all writes have
349 * been done, but that would still expose the ISUID/ISGID
350 * to another app after the partial write is committed.
351 *
352 * Note: we don't call zfs_fuid_map_id() here because
353 * user 0 is not an ephemeral uid.
354 */
355 mutex_enter(&zp->z_acl_lock);
356 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 &&
357 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
358 secpolicy_vnode_setid_retain(zp, cr,
359 ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
360 uint64_t newmode;
361
362 zp->z_mode &= ~(S_ISUID | S_ISGID);
363 newmode = zp->z_mode;
364 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
365 (void *)&newmode, sizeof (uint64_t), tx);
366
367 mutex_exit(&zp->z_acl_lock);
368
369 /*
370 * Make sure SUID/SGID bits will be removed when we replay the
371 * log. If the setid bits are keep coming back, don't log more
372 * than one TX_SETATTR per transaction group.
373 */
374 if (*clear_setid_bits_txgp != dmu_tx_get_txg(tx)) {
861166b0 375 vattr_t va = {0};
3d244b48 376
4d972ab5 377 va.va_mask = ATTR_MODE;
3d244b48
PJD
378 va.va_nodeid = zp->z_id;
379 va.va_mode = newmode;
4d972ab5
JL
380 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, &va,
381 ATTR_MODE, NULL);
3d244b48
PJD
382 *clear_setid_bits_txgp = dmu_tx_get_txg(tx);
383 }
384 } else {
385 mutex_exit(&zp->z_acl_lock);
386 }
387}
388
e53d678d
MM
389/*
390 * Write the bytes to a file.
391 *
392 * IN: zp - znode of file to be written to.
393 * uio - structure supplying write location, range info,
394 * and data buffer.
395 * ioflag - O_APPEND flag set if in append mode.
396 * O_DIRECT flag; used to bypass page cache.
397 * cr - credentials of caller.
398 *
399 * OUT: uio - updated offset and range.
400 *
401 * RETURN: 0 if success
402 * error code if failure
403 *
404 * Timestamps:
405 * ip - ctime|mtime updated if byte count > 0
406 */
e53d678d 407int
d0cd9a5c 408zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
e53d678d 409{
063daa83 410 int error = 0, error1;
d0cd9a5c 411 ssize_t start_resid = zfs_uio_resid(uio);
3d244b48 412 uint64_t clear_setid_bits_txg = 0;
e53d678d
MM
413
414 /*
415 * Fasttrack empty write
416 */
417 ssize_t n = start_resid;
418 if (n == 0)
419 return (0);
420
e53d678d 421 zfsvfs_t *zfsvfs = ZTOZSB(zp);
768eaced
CC
422 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
423 return (error);
e53d678d
MM
424
425 sa_bulk_attr_t bulk[4];
426 int count = 0;
427 uint64_t mtime[2], ctime[2];
428 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
429 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
430 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
431 &zp->z_size, 8);
432 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
433 &zp->z_pflags, 8);
434
435 /*
436 * Callers might not be able to detect properly that we are read-only,
437 * so check it explicitly here.
438 */
439 if (zfs_is_readonly(zfsvfs)) {
768eaced 440 zfs_exit(zfsvfs, FTAG);
e53d678d
MM
441 return (SET_ERROR(EROFS));
442 }
443
444 /*
4b2e2082
RM
445 * If immutable or not appending then return EPERM.
446 * Intentionally allow ZFS_READONLY through here.
447 * See zfs_zaccess_common()
e53d678d 448 */
4b2e2082 449 if ((zp->z_pflags & ZFS_IMMUTABLE) ||
e53d678d 450 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) &&
d0cd9a5c 451 (zfs_uio_offset(uio) < zp->z_size))) {
768eaced 452 zfs_exit(zfsvfs, FTAG);
e53d678d
MM
453 return (SET_ERROR(EPERM));
454 }
455
456 /*
457 * Validate file offset
458 */
d0cd9a5c 459 offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio);
e53d678d 460 if (woff < 0) {
768eaced 461 zfs_exit(zfsvfs, FTAG);
e53d678d
MM
462 return (SET_ERROR(EINVAL));
463 }
464
e53d678d
MM
465 /*
466 * Pre-fault the pages to ensure slow (eg NFS) pages
467 * don't hold up txg.
e53d678d 468 */
b0cbc1aa
AM
469 ssize_t pfbytes = MIN(n, DMU_MAX_ACCESS >> 1);
470 if (zfs_uio_prefaultpages(pfbytes, uio)) {
768eaced 471 zfs_exit(zfsvfs, FTAG);
e53d678d
MM
472 return (SET_ERROR(EFAULT));
473 }
474
475 /*
476 * If in append mode, set the io offset pointer to eof.
477 */
478 zfs_locked_range_t *lr;
479 if (ioflag & O_APPEND) {
480 /*
481 * Obtain an appending range lock to guarantee file append
482 * semantics. We reset the write offset once we have the lock.
483 */
484 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
485 woff = lr->lr_offset;
486 if (lr->lr_length == UINT64_MAX) {
487 /*
488 * We overlocked the file because this write will cause
489 * the file block size to increase.
490 * Note that zp_size cannot change with this lock held.
491 */
492 woff = zp->z_size;
493 }
d0cd9a5c 494 zfs_uio_setoffset(uio, woff);
e53d678d
MM
495 } else {
496 /*
497 * Note that if the file block size will change as a result of
498 * this write, then this range lock will lock the entire file
499 * so that we can re-write the block safely.
500 */
501 lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
502 }
503
67a1b037 504 if (zn_rlimit_fsize_uio(zp, uio)) {
e53d678d 505 zfs_rangelock_exit(lr);
768eaced 506 zfs_exit(zfsvfs, FTAG);
7e3617de 507 return (SET_ERROR(EFBIG));
e53d678d
MM
508 }
509
d1dd72a2
RM
510 const rlim64_t limit = MAXOFFSET_T;
511
e53d678d
MM
512 if (woff >= limit) {
513 zfs_rangelock_exit(lr);
768eaced 514 zfs_exit(zfsvfs, FTAG);
e53d678d
MM
515 return (SET_ERROR(EFBIG));
516 }
517
d1dd72a2 518 if (n > limit - woff)
e53d678d
MM
519 n = limit - woff;
520
521 uint64_t end_size = MAX(zp->z_size, woff + n);
522 zilog_t *zilog = zfsvfs->z_log;
523
eec6646e
RM
524 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
525 const uint64_t gid = KGID_TO_SGID(ZTOGID(zp));
526 const uint64_t projid = zp->z_projid;
527
e53d678d
MM
528 /*
529 * Write the file in reasonable size chunks. Each chunk is written
530 * in a separate transaction; this keeps the intent log records small
531 * and allows us to do more fine-grained space accounting.
532 */
533 while (n > 0) {
d0cd9a5c 534 woff = zfs_uio_offset(uio);
e53d678d 535
eec6646e
RM
536 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) ||
537 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) ||
538 (projid != ZFS_DEFAULT_PROJID &&
e53d678d 539 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
eec6646e 540 projid))) {
e53d678d
MM
541 error = SET_ERROR(EDQUOT);
542 break;
543 }
544
b0cbc1aa
AM
545 uint64_t blksz;
546 if (lr->lr_length == UINT64_MAX && zp->z_size <= zp->z_blksz) {
547 if (zp->z_blksz > zfsvfs->z_max_blksz &&
548 !ISP2(zp->z_blksz)) {
549 /*
550 * File's blocksize is already larger than the
551 * "recordsize" property. Only let it grow to
552 * the next power of 2.
553 */
554 blksz = 1 << highbit64(zp->z_blksz);
555 } else {
556 blksz = zfsvfs->z_max_blksz;
557 }
558 blksz = MIN(blksz, P2ROUNDUP(end_size,
559 SPA_MINBLOCKSIZE));
560 blksz = MAX(blksz, zp->z_blksz);
561 } else {
562 blksz = zp->z_blksz;
563 }
564
e53d678d 565 arc_buf_t *abuf = NULL;
b0cbc1aa
AM
566 ssize_t nbytes = n;
567 if (n >= blksz && woff >= zp->z_size &&
568 P2PHASE(woff, blksz) == 0 &&
569 (blksz >= SPA_OLD_MAXBLOCKSIZE || n < 4 * blksz)) {
e53d678d
MM
570 /*
571 * This write covers a full block. "Borrow" a buffer
572 * from the dmu so that we can fill it before we enter
573 * a transaction. This avoids the possibility of
574 * holding up the transaction if the data copy hangs
575 * up on a pagefault (e.g., from an NFS server mapping).
576 */
e53d678d 577 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
b0cbc1aa 578 blksz);
e53d678d 579 ASSERT(abuf != NULL);
b0cbc1aa
AM
580 ASSERT(arc_buf_size(abuf) == blksz);
581 if ((error = zfs_uiocopy(abuf->b_data, blksz,
582 UIO_WRITE, uio, &nbytes))) {
e53d678d
MM
583 dmu_return_arcbuf(abuf);
584 break;
585 }
b0cbc1aa
AM
586 ASSERT3S(nbytes, ==, blksz);
587 } else {
588 nbytes = MIN(n, (DMU_MAX_ACCESS >> 1) -
589 P2PHASE(woff, blksz));
590 if (pfbytes < nbytes) {
591 if (zfs_uio_prefaultpages(nbytes, uio)) {
592 error = SET_ERROR(EFAULT);
593 break;
594 }
595 pfbytes = nbytes;
596 }
e53d678d
MM
597 }
598
599 /*
600 * Start a transaction.
601 */
602 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
603 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
604 dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
605 DB_DNODE_ENTER(db);
b0cbc1aa 606 dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff, nbytes);
e53d678d
MM
607 DB_DNODE_EXIT(db);
608 zfs_sa_upgrade_txholds(tx, zp);
609 error = dmu_tx_assign(tx, TXG_WAIT);
610 if (error) {
611 dmu_tx_abort(tx);
612 if (abuf != NULL)
613 dmu_return_arcbuf(abuf);
614 break;
615 }
616
3d244b48
PJD
617 /*
618 * NB: We must call zfs_clear_setid_bits_if_necessary before
619 * committing the transaction!
620 */
621
e53d678d
MM
622 /*
623 * If rangelock_enter() over-locked we grow the blocksize
624 * and then reduce the lock range. This will only happen
625 * on the first iteration since rangelock_reduce() will
626 * shrink down lr_length to the appropriate size.
627 */
628 if (lr->lr_length == UINT64_MAX) {
b0cbc1aa 629 zfs_grow_blocksize(zp, blksz, tx);
e53d678d
MM
630 zfs_rangelock_reduce(lr, woff, n);
631 }
632
e53d678d
MM
633 ssize_t tx_bytes;
634 if (abuf == NULL) {
d0cd9a5c
BA
635 tx_bytes = zfs_uio_resid(uio);
636 zfs_uio_fault_disable(uio, B_TRUE);
e53d678d
MM
637 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
638 uio, nbytes, tx);
d0cd9a5c 639 zfs_uio_fault_disable(uio, B_FALSE);
e53d678d
MM
640#ifdef __linux__
641 if (error == EFAULT) {
3d244b48
PJD
642 zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
643 cr, &clear_setid_bits_txg, tx);
e53d678d
MM
644 dmu_tx_commit(tx);
645 /*
646 * Account for partial writes before
647 * continuing the loop.
648 * Update needs to occur before the next
d0cd9a5c 649 * zfs_uio_prefaultpages, or prefaultpages may
e53d678d
MM
650 * error, and we may break the loop early.
651 */
b0cbc1aa
AM
652 n -= tx_bytes - zfs_uio_resid(uio);
653 pfbytes -= tx_bytes - zfs_uio_resid(uio);
e53d678d
MM
654 continue;
655 }
656#endif
063daa83
MJ
657 /*
658 * On FreeBSD, EFAULT should be propagated back to the
659 * VFS, which will handle faulting and will retry.
660 */
661 if (error != 0 && error != EFAULT) {
3d244b48
PJD
662 zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
663 cr, &clear_setid_bits_txg, tx);
e53d678d
MM
664 dmu_tx_commit(tx);
665 break;
666 }
d0cd9a5c 667 tx_bytes -= zfs_uio_resid(uio);
e53d678d 668 } else {
e53d678d 669 /*
85703f61
RM
670 * Thus, we're writing a full block at a block-aligned
671 * offset and extending the file past EOF.
672 *
673 * dmu_assign_arcbuf_by_dbuf() will directly assign the
674 * arc buffer to a dbuf.
e53d678d 675 */
85703f61
RM
676 error = dmu_assign_arcbuf_by_dbuf(
677 sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
678 if (error != 0) {
3d244b48
PJD
679 /*
680 * XXX This might not be necessary if
681 * dmu_assign_arcbuf_by_dbuf is guaranteed
682 * to be atomic.
683 */
684 zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
685 cr, &clear_setid_bits_txg, tx);
85703f61
RM
686 dmu_return_arcbuf(abuf);
687 dmu_tx_commit(tx);
688 break;
e53d678d 689 }
d0cd9a5c
BA
690 ASSERT3S(nbytes, <=, zfs_uio_resid(uio));
691 zfs_uioskip(uio, nbytes);
85703f61 692 tx_bytes = nbytes;
e53d678d 693 }
3fc92adc
BB
694 if (tx_bytes &&
695 zn_has_cached_data(zp, woff, woff + tx_bytes - 1) &&
e53d678d 696 !(ioflag & O_DIRECT)) {
8a9634e2 697 update_pages(zp, woff, tx_bytes, zfsvfs->z_os);
e53d678d
MM
698 }
699
700 /*
701 * If we made no progress, we're done. If we made even
702 * partial progress, update the znode and ZIL accordingly.
703 */
704 if (tx_bytes == 0) {
705 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
706 (void *)&zp->z_size, sizeof (uint64_t), tx);
707 dmu_tx_commit(tx);
708 ASSERT(error != 0);
709 break;
710 }
711
3d244b48
PJD
712 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr,
713 &clear_setid_bits_txg, tx);
e53d678d
MM
714
715 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
716
717 /*
718 * Update the file size (zp_size) if it has changed;
719 * account for possible concurrent updates.
720 */
d0cd9a5c 721 while ((end_size = zp->z_size) < zfs_uio_offset(uio)) {
e53d678d 722 (void) atomic_cas_64(&zp->z_size, end_size,
d0cd9a5c 723 zfs_uio_offset(uio));
063daa83 724 ASSERT(error == 0 || error == EFAULT);
e53d678d
MM
725 }
726 /*
727 * If we are replaying and eof is non zero then force
728 * the file size to the specified eof. Note, there's no
729 * concurrency during replay.
730 */
731 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
732 zp->z_size = zfsvfs->z_replay_eof;
733
063daa83
MJ
734 error1 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
735 if (error1 != 0)
736 /* Avoid clobbering EFAULT. */
737 error = error1;
e53d678d 738
3d244b48
PJD
739 /*
740 * NB: During replay, the TX_SETATTR record logged by
741 * zfs_clear_setid_bits_if_necessary must precede any of
742 * the TX_WRITE records logged here.
743 */
e53d678d
MM
744 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag,
745 NULL, NULL);
3d244b48 746
e53d678d
MM
747 dmu_tx_commit(tx);
748
749 if (error != 0)
750 break;
1c2358c1 751 ASSERT3S(tx_bytes, ==, nbytes);
e53d678d 752 n -= nbytes;
b0cbc1aa 753 pfbytes -= nbytes;
e53d678d
MM
754 }
755
fc273894 756 zfs_znode_update_vfs(zp);
e53d678d
MM
757 zfs_rangelock_exit(lr);
758
759 /*
7e3617de
RM
760 * If we're in replay mode, or we made no progress, or the
761 * uio data is inaccessible return an error. Otherwise, it's
762 * at least a partial write, so it's successful.
e53d678d 763 */
d0cd9a5c 764 if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid ||
7e3617de 765 error == EFAULT) {
768eaced 766 zfs_exit(zfsvfs, FTAG);
e53d678d
MM
767 return (error);
768 }
769
770 if (ioflag & (O_SYNC | O_DSYNC) ||
771 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
772 zil_commit(zilog, zp->z_id);
773
d0cd9a5c 774 const int64_t nwritten = start_resid - zfs_uio_resid(uio);
e53d678d
MM
775 dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten);
776 task_io_account_write(nwritten);
777
768eaced 778 zfs_exit(zfsvfs, FTAG);
e53d678d
MM
779 return (0);
780}
781
e53d678d
MM
782int
783zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
784{
785 zfsvfs_t *zfsvfs = ZTOZSB(zp);
786 int error;
787 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
788
768eaced
CC
789 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
790 return (error);
e53d678d 791 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
768eaced 792 zfs_exit(zfsvfs, FTAG);
e53d678d
MM
793
794 return (error);
795}
796
e53d678d
MM
797int
798zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
799{
800 zfsvfs_t *zfsvfs = ZTOZSB(zp);
801 int error;
802 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
803 zilog_t *zilog = zfsvfs->z_log;
804
768eaced
CC
805 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
806 return (error);
e53d678d
MM
807
808 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
809
810 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
811 zil_commit(zilog, 0);
812
768eaced 813 zfs_exit(zfsvfs, FTAG);
e53d678d
MM
814 return (error);
815}
816
ab8c935e
CS
817#ifdef ZFS_DEBUG
818static int zil_fault_io = 0;
819#endif
820
821static void zfs_get_done(zgd_t *zgd, int error);
822
823/*
824 * Get data to generate a TX_WRITE intent log record.
825 */
826int
296a4a36
CC
827zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf,
828 struct lwb *lwb, zio_t *zio)
ab8c935e
CS
829{
830 zfsvfs_t *zfsvfs = arg;
831 objset_t *os = zfsvfs->z_os;
832 znode_t *zp;
833 uint64_t object = lr->lr_foid;
834 uint64_t offset = lr->lr_offset;
835 uint64_t size = lr->lr_length;
836 dmu_buf_t *db;
837 zgd_t *zgd;
838 int error = 0;
296a4a36 839 uint64_t zp_gen;
ab8c935e
CS
840
841 ASSERT3P(lwb, !=, NULL);
842 ASSERT3P(zio, !=, NULL);
843 ASSERT3U(size, !=, 0);
844
845 /*
846 * Nothing to do if the file has been removed
847 */
848 if (zfs_zget(zfsvfs, object, &zp) != 0)
849 return (SET_ERROR(ENOENT));
850 if (zp->z_unlinked) {
851 /*
852 * Release the vnode asynchronously as we currently have the
853 * txg stopped from syncing.
854 */
855 zfs_zrele_async(zp);
856 return (SET_ERROR(ENOENT));
857 }
296a4a36
CC
858 /* check if generation number matches */
859 if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
860 sizeof (zp_gen)) != 0) {
861 zfs_zrele_async(zp);
862 return (SET_ERROR(EIO));
863 }
864 if (zp_gen != gen) {
865 zfs_zrele_async(zp);
866 return (SET_ERROR(ENOENT));
867 }
ab8c935e 868
7384ec65 869 zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
ab8c935e
CS
870 zgd->zgd_lwb = lwb;
871 zgd->zgd_private = zp;
872
873 /*
874 * Write records come in two flavors: immediate and indirect.
875 * For small writes it's cheaper to store the data with the
876 * log record (immediate); for large writes it's cheaper to
877 * sync the data and get a pointer to it (indirect) so that
878 * we don't have to write the data twice.
879 */
880 if (buf != NULL) { /* immediate write */
881 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
882 offset, size, RL_READER);
883 /* test for truncation needs to be done while range locked */
884 if (offset >= zp->z_size) {
885 error = SET_ERROR(ENOENT);
886 } else {
887 error = dmu_read(os, object, offset, size, buf,
888 DMU_READ_NO_PREFETCH);
889 }
890 ASSERT(error == 0 || error == ENOENT);
891 } else { /* indirect write */
892 /*
893 * Have to lock the whole block to ensure when it's
894 * written out and its checksum is being calculated
895 * that no one can change the data. We need to re-check
896 * blocksize after we get the lock in case it's changed!
897 */
898 for (;;) {
899 uint64_t blkoff;
900 size = zp->z_blksz;
901 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
902 offset -= blkoff;
903 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
904 offset, size, RL_READER);
905 if (zp->z_blksz == size)
906 break;
907 offset += blkoff;
908 zfs_rangelock_exit(zgd->zgd_lr);
909 }
910 /* test for truncation needs to be done while range locked */
911 if (lr->lr_offset >= zp->z_size)
912 error = SET_ERROR(ENOENT);
913#ifdef ZFS_DEBUG
914 if (zil_fault_io) {
915 error = SET_ERROR(EIO);
916 zil_fault_io = 0;
917 }
918#endif
919 if (error == 0)
920 error = dmu_buf_hold(os, object, offset, zgd, &db,
921 DMU_READ_NO_PREFETCH);
922
923 if (error == 0) {
924 blkptr_t *bp = &lr->lr_blkptr;
925
926 zgd->zgd_db = db;
927 zgd->zgd_bp = bp;
928
929 ASSERT(db->db_offset == offset);
930 ASSERT(db->db_size == size);
931
932 error = dmu_sync(zio, lr->lr_common.lrc_txg,
933 zfs_get_done, zgd);
934 ASSERT(error || lr->lr_length <= size);
935
936 /*
937 * On success, we need to wait for the write I/O
938 * initiated by dmu_sync() to complete before we can
939 * release this dbuf. We will finish everything up
940 * in the zfs_get_done() callback.
941 */
942 if (error == 0)
943 return (0);
944
945 if (error == EALREADY) {
946 lr->lr_common.lrc_txtype = TX_WRITE2;
947 /*
948 * TX_WRITE2 relies on the data previously
949 * written by the TX_WRITE that caused
950 * EALREADY. We zero out the BP because
951 * it is the old, currently-on-disk BP.
952 */
953 zgd->zgd_bp = NULL;
954 BP_ZERO(bp);
955 error = 0;
956 }
957 }
958 }
959
960 zfs_get_done(zgd, error);
961
962 return (error);
963}
964
965
ab8c935e
CS
966static void
967zfs_get_done(zgd_t *zgd, int error)
968{
ef70eff1 969 (void) error;
ab8c935e
CS
970 znode_t *zp = zgd->zgd_private;
971
972 if (zgd->zgd_db)
973 dmu_buf_rele(zgd->zgd_db, zgd);
974
975 zfs_rangelock_exit(zgd->zgd_lr);
976
977 /*
978 * Release the vnode asynchronously as we currently have the
979 * txg stopped from syncing.
980 */
981 zfs_zrele_async(zp);
982
983 kmem_free(zgd, sizeof (zgd_t));
984}
985
67a1b037
PJD
986static int
987zfs_enter_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
988{
989 int error;
990
991 /* Swap. Not sure if the order of zfs_enter()s is important. */
992 if (zfsvfs1 > zfsvfs2) {
993 zfsvfs_t *tmpzfsvfs;
994
995 tmpzfsvfs = zfsvfs2;
996 zfsvfs2 = zfsvfs1;
997 zfsvfs1 = tmpzfsvfs;
998 }
999
1000 error = zfs_enter(zfsvfs1, tag);
1001 if (error != 0)
1002 return (error);
1003 if (zfsvfs1 != zfsvfs2) {
1004 error = zfs_enter(zfsvfs2, tag);
1005 if (error != 0) {
1006 zfs_exit(zfsvfs1, tag);
1007 return (error);
1008 }
1009 }
1010
1011 return (0);
1012}
1013
1014static void
1015zfs_exit_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
1016{
1017
1018 zfs_exit(zfsvfs1, tag);
1019 if (zfsvfs1 != zfsvfs2)
1020 zfs_exit(zfsvfs2, tag);
1021}
1022
1023/*
1024 * We split each clone request in chunks that can fit into a single ZIL
1025 * log entry. Each ZIL log entry can fit 130816 bytes for a block cloning
1026 * operation (see zil_max_log_data() and zfs_log_clone_range()). This gives
1027 * us room for storing 1022 block pointers.
1028 *
1029 * On success, the function return the number of bytes copied in *lenp.
1030 * Note, it doesn't return how much bytes are left to be copied.
1031 */
1032int
1033zfs_clone_range(znode_t *inzp, uint64_t *inoffp, znode_t *outzp,
1034 uint64_t *outoffp, uint64_t *lenp, cred_t *cr)
1035{
1036 zfsvfs_t *inzfsvfs, *outzfsvfs;
1037 objset_t *inos, *outos;
1038 zfs_locked_range_t *inlr, *outlr;
1039 dmu_buf_impl_t *db;
1040 dmu_tx_t *tx;
1041 zilog_t *zilog;
1042 uint64_t inoff, outoff, len, done;
1043 uint64_t outsize, size;
1044 int error;
1045 int count = 0;
1046 sa_bulk_attr_t bulk[3];
1047 uint64_t mtime[2], ctime[2];
1048 uint64_t uid, gid, projid;
1049 blkptr_t *bps;
1050 size_t maxblocks, nbps;
1051 uint_t inblksz;
1052 uint64_t clear_setid_bits_txg = 0;
1053
1054 inoff = *inoffp;
1055 outoff = *outoffp;
1056 len = *lenp;
1057 done = 0;
1058
1059 inzfsvfs = ZTOZSB(inzp);
1060 outzfsvfs = ZTOZSB(outzp);
b6d7370b
PJD
1061
1062 /*
1063 * We need to call zfs_enter() potentially on two different datasets,
1064 * so we need a dedicated function for that.
1065 */
1066 error = zfs_enter_two(inzfsvfs, outzfsvfs, FTAG);
1067 if (error != 0)
1068 return (error);
1069
67a1b037
PJD
1070 inos = inzfsvfs->z_os;
1071 outos = outzfsvfs->z_os;
1072
1073 /*
1074 * Both source and destination have to belong to the same storage pool.
1075 */
1076 if (dmu_objset_spa(inos) != dmu_objset_spa(outos)) {
1077 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1078 return (SET_ERROR(EXDEV));
1079 }
1080
67a1b037
PJD
1081 ASSERT(!outzfsvfs->z_replay);
1082
1083 error = zfs_verify_zp(inzp);
1084 if (error == 0)
1085 error = zfs_verify_zp(outzp);
1086 if (error != 0) {
1087 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1088 return (error);
1089 }
1090
1091 if (!spa_feature_is_enabled(dmu_objset_spa(outos),
1092 SPA_FEATURE_BLOCK_CLONING)) {
1093 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1094 return (SET_ERROR(EXDEV));
1095 }
1096
1097 /*
1098 * We don't copy source file's flags that's why we don't allow to clone
1099 * files that are in quarantine.
1100 */
1101 if (inzp->z_pflags & ZFS_AV_QUARANTINED) {
1102 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1103 return (SET_ERROR(EACCES));
1104 }
1105
1106 if (inoff >= inzp->z_size) {
1107 *lenp = 0;
1108 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1109 return (0);
1110 }
1111 if (len > inzp->z_size - inoff) {
1112 len = inzp->z_size - inoff;
1113 }
1114 if (len == 0) {
1115 *lenp = 0;
1116 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1117 return (0);
1118 }
1119
1120 /*
1121 * Callers might not be able to detect properly that we are read-only,
1122 * so check it explicitly here.
1123 */
1124 if (zfs_is_readonly(outzfsvfs)) {
1125 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1126 return (SET_ERROR(EROFS));
1127 }
1128
1129 /*
1130 * If immutable or not appending then return EPERM.
1131 * Intentionally allow ZFS_READONLY through here.
1132 * See zfs_zaccess_common()
1133 */
1134 if ((outzp->z_pflags & ZFS_IMMUTABLE) != 0) {
1135 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1136 return (SET_ERROR(EPERM));
1137 }
1138
1139 /*
1140 * No overlapping if we are cloning within the same file.
1141 */
1142 if (inzp == outzp) {
1143 if (inoff < outoff + len && outoff < inoff + len) {
1144 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1145 return (SET_ERROR(EINVAL));
1146 }
1147 }
1148
1149 /*
1150 * Maintain predictable lock order.
1151 */
1152 if (inzp < outzp || (inzp == outzp && inoff < outoff)) {
1153 inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
1154 RL_READER);
1155 outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
1156 RL_WRITER);
1157 } else {
1158 outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
1159 RL_WRITER);
1160 inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
1161 RL_READER);
1162 }
1163
1164 inblksz = inzp->z_blksz;
1165
1166 /*
1167 * We cannot clone into files with different block size.
1168 */
1169 if (inblksz != outzp->z_blksz && outzp->z_size > inblksz) {
1170 error = SET_ERROR(EXDEV);
1171 goto unlock;
1172 }
1173
1174 /*
1175 * Offsets and len must be at block boundries.
1176 */
1177 if ((inoff % inblksz) != 0 || (outoff % inblksz) != 0) {
1178 error = SET_ERROR(EXDEV);
1179 goto unlock;
1180 }
1181 /*
1182 * Length must be multipe of blksz, except for the end of the file.
1183 */
1184 if ((len % inblksz) != 0 &&
1185 (len < inzp->z_size - inoff || len < outzp->z_size - outoff)) {
1186 error = SET_ERROR(EXDEV);
1187 goto unlock;
1188 }
1189
1190 error = zn_rlimit_fsize(outoff + len);
1191 if (error != 0) {
1192 goto unlock;
1193 }
1194
1195 if (inoff >= MAXOFFSET_T || outoff >= MAXOFFSET_T) {
1196 error = SET_ERROR(EFBIG);
1197 goto unlock;
1198 }
1199
1200 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(outzfsvfs), NULL,
1201 &mtime, 16);
1202 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(outzfsvfs), NULL,
1203 &ctime, 16);
1204 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(outzfsvfs), NULL,
1205 &outzp->z_size, 8);
1206
1207 zilog = outzfsvfs->z_log;
1208 maxblocks = zil_max_log_data(zilog, sizeof (lr_clone_range_t)) /
1209 sizeof (bps[0]);
1210
1211 uid = KUID_TO_SUID(ZTOUID(outzp));
1212 gid = KGID_TO_SGID(ZTOGID(outzp));
1213 projid = outzp->z_projid;
1214
1215 bps = kmem_alloc(sizeof (bps[0]) * maxblocks, KM_SLEEP);
1216
1217 /*
1218 * Clone the file in reasonable size chunks. Each chunk is cloned
1219 * in a separate transaction; this keeps the intent log records small
1220 * and allows us to do more fine-grained space accounting.
1221 */
1222 while (len > 0) {
1223 size = MIN(inblksz * maxblocks, len);
1224
1225 if (zfs_id_overblockquota(outzfsvfs, DMU_USERUSED_OBJECT,
1226 uid) ||
1227 zfs_id_overblockquota(outzfsvfs, DMU_GROUPUSED_OBJECT,
1228 gid) ||
1229 (projid != ZFS_DEFAULT_PROJID &&
1230 zfs_id_overblockquota(outzfsvfs, DMU_PROJECTUSED_OBJECT,
1231 projid))) {
1232 error = SET_ERROR(EDQUOT);
1233 break;
1234 }
1235
67a1b037 1236 nbps = maxblocks;
d0d91f18 1237 error = dmu_read_l0_bps(inos, inzp->z_id, inoff, size, bps,
67a1b037
PJD
1238 &nbps);
1239 if (error != 0) {
67a1b037
PJD
1240 /*
1241 * If we are tyring to clone a block that was created
1242 * in the current transaction group. Return an error,
1243 * so the caller can fallback to just copying the data.
1244 */
1245 if (error == EAGAIN) {
1246 error = SET_ERROR(EXDEV);
1247 }
1248 break;
1249 }
1250 /*
1251 * Encrypted data is fine as long as it comes from the same
1252 * dataset.
1253 * TODO: We want to extend it in the future to allow cloning to
1254 * datasets with the same keys, like clones or to be able to
1255 * clone a file from a snapshot of an encrypted dataset into the
1256 * dataset itself.
1257 */
1258 if (BP_IS_PROTECTED(&bps[0])) {
1259 if (inzfsvfs != outzfsvfs) {
67a1b037
PJD
1260 error = SET_ERROR(EXDEV);
1261 break;
1262 }
1263 }
1264
d0d91f18
PJD
1265 /*
1266 * Start a transaction.
1267 */
1268 tx = dmu_tx_create(outos);
67a1b037
PJD
1269 dmu_tx_hold_sa(tx, outzp->z_sa_hdl, B_FALSE);
1270 db = (dmu_buf_impl_t *)sa_get_db(outzp->z_sa_hdl);
1271 DB_DNODE_ENTER(db);
1272 dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), outoff, size);
1273 DB_DNODE_EXIT(db);
1274 zfs_sa_upgrade_txholds(tx, outzp);
1275 error = dmu_tx_assign(tx, TXG_WAIT);
1276 if (error != 0) {
1277 dmu_tx_abort(tx);
1278 break;
1279 }
1280
1281 /*
1282 * Copy source znode's block size. This only happens on the
1283 * first iteration since zfs_rangelock_reduce() will shrink down
1284 * lr_len to the appropriate size.
1285 */
1286 if (outlr->lr_length == UINT64_MAX) {
1287 zfs_grow_blocksize(outzp, inblksz, tx);
1288 /*
1289 * Round range lock up to the block boundary, so we
1290 * prevent appends until we are done.
1291 */
1292 zfs_rangelock_reduce(outlr, outoff,
1293 ((len - 1) / inblksz + 1) * inblksz);
1294 }
1295
bd8c6bd6
PJD
1296 error = dmu_brt_clone(outos, outzp->z_id, outoff, size, tx,
1297 bps, nbps, B_FALSE);
1298 if (error != 0) {
1299 dmu_tx_commit(tx);
1300 break;
1301 }
67a1b037
PJD
1302
1303 zfs_clear_setid_bits_if_necessary(outzfsvfs, outzp, cr,
1304 &clear_setid_bits_txg, tx);
1305
1306 zfs_tstamp_update_setup(outzp, CONTENT_MODIFIED, mtime, ctime);
1307
1308 /*
1309 * Update the file size (zp_size) if it has changed;
1310 * account for possible concurrent updates.
1311 */
1312 while ((outsize = outzp->z_size) < outoff + size) {
1313 (void) atomic_cas_64(&outzp->z_size, outsize,
1314 outoff + size);
1315 }
1316
1317 error = sa_bulk_update(outzp->z_sa_hdl, bulk, count, tx);
1318
1319 zfs_log_clone_range(zilog, tx, TX_CLONE_RANGE, outzp, outoff,
1320 size, inblksz, bps, nbps);
1321
1322 dmu_tx_commit(tx);
1323
1324 if (error != 0)
1325 break;
1326
1327 inoff += size;
1328 outoff += size;
1329 len -= size;
1330 done += size;
1331 }
1332
1333 kmem_free(bps, sizeof (bps[0]) * maxblocks);
1334 zfs_znode_update_vfs(outzp);
1335
1336unlock:
1337 zfs_rangelock_exit(outlr);
1338 zfs_rangelock_exit(inlr);
1339
1340 if (done > 0) {
1341 /*
1342 * If we have made at least partial progress, reset the error.
1343 */
1344 error = 0;
1345
1346 ZFS_ACCESSTIME_STAMP(inzfsvfs, inzp);
1347
1348 if (outos->os_sync == ZFS_SYNC_ALWAYS) {
1349 zil_commit(zilog, outzp->z_id);
1350 }
1351
1352 *inoffp += done;
1353 *outoffp += done;
1354 *lenp = done;
1355 }
1356
1357 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1358
1359 return (error);
1360}
1361
1362/*
1363 * Usual pattern would be to call zfs_clone_range() from zfs_replay_clone(),
1364 * but we cannot do that, because when replaying we don't have source znode
1365 * available. This is why we need a dedicated replay function.
1366 */
1367int
1368zfs_clone_range_replay(znode_t *zp, uint64_t off, uint64_t len, uint64_t blksz,
1369 const blkptr_t *bps, size_t nbps)
1370{
1371 zfsvfs_t *zfsvfs;
1372 dmu_buf_impl_t *db;
1373 dmu_tx_t *tx;
1374 int error;
1375 int count = 0;
1376 sa_bulk_attr_t bulk[3];
1377 uint64_t mtime[2], ctime[2];
1378
1379 ASSERT3U(off, <, MAXOFFSET_T);
1380 ASSERT3U(len, >, 0);
1381 ASSERT3U(nbps, >, 0);
1382
1383 zfsvfs = ZTOZSB(zp);
1384
1385 ASSERT(spa_feature_is_enabled(dmu_objset_spa(zfsvfs->z_os),
1386 SPA_FEATURE_BLOCK_CLONING));
1387
1388 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1389 return (error);
1390
1391 ASSERT(zfsvfs->z_replay);
1392 ASSERT(!zfs_is_readonly(zfsvfs));
1393
1394 if ((off % blksz) != 0) {
1395 zfs_exit(zfsvfs, FTAG);
1396 return (SET_ERROR(EINVAL));
1397 }
1398
1399 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
1400 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
1401 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
1402 &zp->z_size, 8);
1403
1404 /*
1405 * Start a transaction.
1406 */
1407 tx = dmu_tx_create(zfsvfs->z_os);
1408
1409 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1410 db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
1411 DB_DNODE_ENTER(db);
1412 dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), off, len);
1413 DB_DNODE_EXIT(db);
1414 zfs_sa_upgrade_txholds(tx, zp);
1415 error = dmu_tx_assign(tx, TXG_WAIT);
1416 if (error != 0) {
1417 dmu_tx_abort(tx);
1418 zfs_exit(zfsvfs, FTAG);
1419 return (error);
1420 }
1421
1422 if (zp->z_blksz < blksz)
1423 zfs_grow_blocksize(zp, blksz, tx);
1424
1425 dmu_brt_clone(zfsvfs->z_os, zp->z_id, off, len, tx, bps, nbps, B_TRUE);
1426
1427 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
1428
1429 if (zp->z_size < off + len)
1430 zp->z_size = off + len;
1431
1432 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1433
1434 /*
1435 * zil_replaying() not only check if we are replaying ZIL, but also
1436 * updates the ZIL header to record replay progress.
1437 */
1438 VERIFY(zil_replaying(zfsvfs->z_log, tx));
1439
1440 dmu_tx_commit(tx);
1441
1442 zfs_znode_update_vfs(zp);
1443
1444 zfs_exit(zfsvfs, FTAG);
1445
1446 return (error);
1447}
1448
8583540c 1449EXPORT_SYMBOL(zfs_access);
e53d678d 1450EXPORT_SYMBOL(zfs_fsync);
8583540c 1451EXPORT_SYMBOL(zfs_holey);
e53d678d
MM
1452EXPORT_SYMBOL(zfs_read);
1453EXPORT_SYMBOL(zfs_write);
1454EXPORT_SYMBOL(zfs_getsecattr);
1455EXPORT_SYMBOL(zfs_setsecattr);
67a1b037
PJD
1456EXPORT_SYMBOL(zfs_clone_range);
1457EXPORT_SYMBOL(zfs_clone_range_replay);
e53d678d 1458
ab8d9c17 1459ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, U64, ZMOD_RW,
e53d678d 1460 "Bytes to read per chunk");