]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/zfs_vnops.c
Update contrib/initramfs/README.initramfs.markdown
[mirror_zfs.git] / module / zfs / zfs_vnops.c
CommitLineData
e53d678d
MM
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
27 */
28
29/* Portions Copyright 2007 Jeremy Teo */
30/* Portions Copyright 2010 Robert Milkowski */
31
32#include <sys/types.h>
33#include <sys/param.h>
34#include <sys/time.h>
35#include <sys/sysmacros.h>
36#include <sys/vfs.h>
c0801bf3 37#include <sys/uio_impl.h>
e53d678d
MM
38#include <sys/file.h>
39#include <sys/stat.h>
40#include <sys/kmem.h>
41#include <sys/cmn_err.h>
42#include <sys/errno.h>
43#include <sys/zfs_dir.h>
44#include <sys/zfs_acl.h>
45#include <sys/zfs_ioctl.h>
46#include <sys/fs/zfs.h>
47#include <sys/dmu.h>
48#include <sys/dmu_objset.h>
49#include <sys/spa.h>
50#include <sys/txg.h>
51#include <sys/dbuf.h>
52#include <sys/policy.h>
53#include <sys/zfs_vnops.h>
54#include <sys/zfs_quota.h>
ab8c935e
CS
55#include <sys/zfs_vfsops.h>
56#include <sys/zfs_znode.h>
e53d678d
MM
57
58
59static ulong_t zfs_fsync_sync_cnt = 4;
60
61int
62zfs_fsync(znode_t *zp, int syncflag, cred_t *cr)
63{
64 zfsvfs_t *zfsvfs = ZTOZSB(zp);
65
66 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
67
68 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
69 ZFS_ENTER(zfsvfs);
70 ZFS_VERIFY_ZP(zp);
71 zil_commit(zfsvfs->z_log, zp->z_id);
72 ZFS_EXIT(zfsvfs);
73 }
74 tsd_set(zfs_fsyncer_key, NULL);
75
76 return (0);
77}
78
8583540c
MM
79
80#if defined(SEEK_HOLE) && defined(SEEK_DATA)
81/*
82 * Lseek support for finding holes (cmd == SEEK_HOLE) and
83 * data (cmd == SEEK_DATA). "off" is an in/out parameter.
84 */
85static int
86zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off)
87{
88 uint64_t noff = (uint64_t)*off; /* new offset */
89 uint64_t file_sz;
90 int error;
91 boolean_t hole;
92
93 file_sz = zp->z_size;
94 if (noff >= file_sz) {
95 return (SET_ERROR(ENXIO));
96 }
97
98 if (cmd == F_SEEK_HOLE)
99 hole = B_TRUE;
100 else
101 hole = B_FALSE;
102
103 error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
104
105 if (error == ESRCH)
106 return (SET_ERROR(ENXIO));
107
108 /* file was dirty, so fall back to using generic logic */
109 if (error == EBUSY) {
110 if (hole)
111 *off = file_sz;
112
113 return (0);
114 }
115
116 /*
117 * We could find a hole that begins after the logical end-of-file,
118 * because dmu_offset_next() only works on whole blocks. If the
119 * EOF falls mid-block, then indicate that the "virtual hole"
120 * at the end of the file begins at the logical EOF, rather than
121 * at the end of the last block.
122 */
123 if (noff > file_sz) {
124 ASSERT(hole);
125 noff = file_sz;
126 }
127
128 if (noff < *off)
129 return (error);
130 *off = noff;
131 return (error);
132}
133
134int
135zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off)
136{
137 zfsvfs_t *zfsvfs = ZTOZSB(zp);
138 int error;
139
140 ZFS_ENTER(zfsvfs);
141 ZFS_VERIFY_ZP(zp);
142
143 error = zfs_holey_common(zp, cmd, off);
144
145 ZFS_EXIT(zfsvfs);
146 return (error);
147}
148#endif /* SEEK_HOLE && SEEK_DATA */
149
150/*ARGSUSED*/
151int
152zfs_access(znode_t *zp, int mode, int flag, cred_t *cr)
153{
154 zfsvfs_t *zfsvfs = ZTOZSB(zp);
155 int error;
156
157 ZFS_ENTER(zfsvfs);
158 ZFS_VERIFY_ZP(zp);
159
160 if (flag & V_ACE_MASK)
161 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
162 else
163 error = zfs_zaccess_rwx(zp, mode, flag, cr);
164
165 ZFS_EXIT(zfsvfs);
166 return (error);
167}
168
e53d678d
MM
169static unsigned long zfs_vnops_read_chunk_size = 1024 * 1024; /* Tunable */
170
171/*
172 * Read bytes from specified file into supplied buffer.
173 *
174 * IN: zp - inode of file to be read from.
175 * uio - structure supplying read location, range info,
176 * and return buffer.
177 * ioflag - O_SYNC flags; used to provide FRSYNC semantics.
178 * O_DIRECT flag; used to bypass page cache.
179 * cr - credentials of caller.
180 *
181 * OUT: uio - updated offset and range, buffer filled.
182 *
183 * RETURN: 0 on success, error code on failure.
184 *
185 * Side Effects:
186 * inode - atime updated if byte count > 0
187 */
188/* ARGSUSED */
189int
d0cd9a5c 190zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
e53d678d
MM
191{
192 int error = 0;
193 boolean_t frsync = B_FALSE;
194
195 zfsvfs_t *zfsvfs = ZTOZSB(zp);
196 ZFS_ENTER(zfsvfs);
197 ZFS_VERIFY_ZP(zp);
198
199 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
200 ZFS_EXIT(zfsvfs);
201 return (SET_ERROR(EACCES));
202 }
203
204 /* We don't copy out anything useful for directories. */
205 if (Z_ISDIR(ZTOTYPE(zp))) {
206 ZFS_EXIT(zfsvfs);
207 return (SET_ERROR(EISDIR));
208 }
209
210 /*
211 * Validate file offset
212 */
d0cd9a5c 213 if (zfs_uio_offset(uio) < (offset_t)0) {
e53d678d
MM
214 ZFS_EXIT(zfsvfs);
215 return (SET_ERROR(EINVAL));
216 }
217
218 /*
219 * Fasttrack empty reads
220 */
d0cd9a5c 221 if (zfs_uio_resid(uio) == 0) {
e53d678d
MM
222 ZFS_EXIT(zfsvfs);
223 return (0);
224 }
225
226#ifdef FRSYNC
227 /*
228 * If we're in FRSYNC mode, sync out this znode before reading it.
229 * Only do this for non-snapshots.
230 *
231 * Some platforms do not support FRSYNC and instead map it
232 * to O_SYNC, which results in unnecessary calls to zil_commit. We
233 * only honor FRSYNC requests on platforms which support it.
234 */
235 frsync = !!(ioflag & FRSYNC);
236#endif
237 if (zfsvfs->z_log &&
238 (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
239 zil_commit(zfsvfs->z_log, zp->z_id);
240
241 /*
242 * Lock the range against changes.
243 */
244 zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
d0cd9a5c 245 zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER);
e53d678d
MM
246
247 /*
248 * If we are reading past end-of-file we can skip
249 * to the end; but we might still need to set atime.
250 */
d0cd9a5c 251 if (zfs_uio_offset(uio) >= zp->z_size) {
e53d678d
MM
252 error = 0;
253 goto out;
254 }
255
d0cd9a5c 256 ASSERT(zfs_uio_offset(uio) < zp->z_size);
05679465 257#if defined(__linux__)
59eab109 258 ssize_t start_offset = zfs_uio_offset(uio);
05679465 259#endif
d0cd9a5c 260 ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio));
e53d678d
MM
261 ssize_t start_resid = n;
262
263 while (n > 0) {
264 ssize_t nbytes = MIN(n, zfs_vnops_read_chunk_size -
d0cd9a5c 265 P2PHASE(zfs_uio_offset(uio), zfs_vnops_read_chunk_size));
e53d678d 266#ifdef UIO_NOCOPY
d0cd9a5c 267 if (zfs_uio_segflg(uio) == UIO_NOCOPY)
e53d678d
MM
268 error = mappedread_sf(zp, nbytes, uio);
269 else
270#endif
271 if (zn_has_cached_data(zp) && !(ioflag & O_DIRECT)) {
272 error = mappedread(zp, nbytes, uio);
273 } else {
274 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
275 uio, nbytes);
276 }
277
278 if (error) {
279 /* convert checksum errors into IO errors */
280 if (error == ECKSUM)
281 error = SET_ERROR(EIO);
05679465
RE
282
283#if defined(__linux__)
59eab109
RE
284 /*
285 * if we actually read some bytes, bubbling EFAULT
05679465
RE
286 * up to become EAGAIN isn't what we want here...
287 *
288 * ...on Linux, at least. On FBSD, doing this breaks.
59eab109
RE
289 */
290 if (error == EFAULT &&
291 (zfs_uio_offset(uio) - start_offset) != 0)
292 error = 0;
05679465 293#endif
e53d678d
MM
294 break;
295 }
296
297 n -= nbytes;
298 }
299
300 int64_t nread = start_resid - n;
301 dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread);
302 task_io_account_read(nread);
303out:
304 zfs_rangelock_exit(lr);
305
306 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
307 ZFS_EXIT(zfsvfs);
308 return (error);
309}
310
311/*
312 * Write the bytes to a file.
313 *
314 * IN: zp - znode of file to be written to.
315 * uio - structure supplying write location, range info,
316 * and data buffer.
317 * ioflag - O_APPEND flag set if in append mode.
318 * O_DIRECT flag; used to bypass page cache.
319 * cr - credentials of caller.
320 *
321 * OUT: uio - updated offset and range.
322 *
323 * RETURN: 0 if success
324 * error code if failure
325 *
326 * Timestamps:
327 * ip - ctime|mtime updated if byte count > 0
328 */
329
330/* ARGSUSED */
331int
d0cd9a5c 332zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
e53d678d
MM
333{
334 int error = 0;
d0cd9a5c 335 ssize_t start_resid = zfs_uio_resid(uio);
e53d678d
MM
336
337 /*
338 * Fasttrack empty write
339 */
340 ssize_t n = start_resid;
341 if (n == 0)
342 return (0);
343
e53d678d
MM
344 zfsvfs_t *zfsvfs = ZTOZSB(zp);
345 ZFS_ENTER(zfsvfs);
346 ZFS_VERIFY_ZP(zp);
347
348 sa_bulk_attr_t bulk[4];
349 int count = 0;
350 uint64_t mtime[2], ctime[2];
351 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
352 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
353 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
354 &zp->z_size, 8);
355 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
356 &zp->z_pflags, 8);
357
358 /*
359 * Callers might not be able to detect properly that we are read-only,
360 * so check it explicitly here.
361 */
362 if (zfs_is_readonly(zfsvfs)) {
363 ZFS_EXIT(zfsvfs);
364 return (SET_ERROR(EROFS));
365 }
366
367 /*
4b2e2082
RM
368 * If immutable or not appending then return EPERM.
369 * Intentionally allow ZFS_READONLY through here.
370 * See zfs_zaccess_common()
e53d678d 371 */
4b2e2082 372 if ((zp->z_pflags & ZFS_IMMUTABLE) ||
e53d678d 373 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) &&
d0cd9a5c 374 (zfs_uio_offset(uio) < zp->z_size))) {
e53d678d
MM
375 ZFS_EXIT(zfsvfs);
376 return (SET_ERROR(EPERM));
377 }
378
379 /*
380 * Validate file offset
381 */
d0cd9a5c 382 offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio);
e53d678d
MM
383 if (woff < 0) {
384 ZFS_EXIT(zfsvfs);
385 return (SET_ERROR(EINVAL));
386 }
387
9a764716 388 const uint64_t max_blksz = zfsvfs->z_max_blksz;
e53d678d
MM
389
390 /*
391 * Pre-fault the pages to ensure slow (eg NFS) pages
392 * don't hold up txg.
393 * Skip this if uio contains loaned arc_buf.
394 */
d0cd9a5c 395 if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) {
e53d678d
MM
396 ZFS_EXIT(zfsvfs);
397 return (SET_ERROR(EFAULT));
398 }
399
400 /*
401 * If in append mode, set the io offset pointer to eof.
402 */
403 zfs_locked_range_t *lr;
404 if (ioflag & O_APPEND) {
405 /*
406 * Obtain an appending range lock to guarantee file append
407 * semantics. We reset the write offset once we have the lock.
408 */
409 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
410 woff = lr->lr_offset;
411 if (lr->lr_length == UINT64_MAX) {
412 /*
413 * We overlocked the file because this write will cause
414 * the file block size to increase.
415 * Note that zp_size cannot change with this lock held.
416 */
417 woff = zp->z_size;
418 }
d0cd9a5c 419 zfs_uio_setoffset(uio, woff);
e53d678d
MM
420 } else {
421 /*
422 * Note that if the file block size will change as a result of
423 * this write, then this range lock will lock the entire file
424 * so that we can re-write the block safely.
425 */
426 lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
427 }
428
d0cd9a5c 429 if (zn_rlimit_fsize(zp, uio)) {
e53d678d
MM
430 zfs_rangelock_exit(lr);
431 ZFS_EXIT(zfsvfs);
7e3617de 432 return (SET_ERROR(EFBIG));
e53d678d
MM
433 }
434
d1dd72a2
RM
435 const rlim64_t limit = MAXOFFSET_T;
436
e53d678d
MM
437 if (woff >= limit) {
438 zfs_rangelock_exit(lr);
439 ZFS_EXIT(zfsvfs);
440 return (SET_ERROR(EFBIG));
441 }
442
d1dd72a2 443 if (n > limit - woff)
e53d678d
MM
444 n = limit - woff;
445
446 uint64_t end_size = MAX(zp->z_size, woff + n);
447 zilog_t *zilog = zfsvfs->z_log;
448
eec6646e
RM
449 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
450 const uint64_t gid = KGID_TO_SGID(ZTOGID(zp));
451 const uint64_t projid = zp->z_projid;
452
e53d678d
MM
453 /*
454 * Write the file in reasonable size chunks. Each chunk is written
455 * in a separate transaction; this keeps the intent log records small
456 * and allows us to do more fine-grained space accounting.
457 */
458 while (n > 0) {
d0cd9a5c 459 woff = zfs_uio_offset(uio);
e53d678d 460
eec6646e
RM
461 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) ||
462 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) ||
463 (projid != ZFS_DEFAULT_PROJID &&
e53d678d 464 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
eec6646e 465 projid))) {
e53d678d
MM
466 error = SET_ERROR(EDQUOT);
467 break;
468 }
469
470 arc_buf_t *abuf = NULL;
471 if (n >= max_blksz && woff >= zp->z_size &&
472 P2PHASE(woff, max_blksz) == 0 &&
473 zp->z_blksz == max_blksz) {
474 /*
475 * This write covers a full block. "Borrow" a buffer
476 * from the dmu so that we can fill it before we enter
477 * a transaction. This avoids the possibility of
478 * holding up the transaction if the data copy hangs
479 * up on a pagefault (e.g., from an NFS server mapping).
480 */
481 size_t cbytes;
482
483 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
484 max_blksz);
485 ASSERT(abuf != NULL);
486 ASSERT(arc_buf_size(abuf) == max_blksz);
d0cd9a5c 487 if ((error = zfs_uiocopy(abuf->b_data, max_blksz,
e53d678d
MM
488 UIO_WRITE, uio, &cbytes))) {
489 dmu_return_arcbuf(abuf);
490 break;
491 }
1c2358c1 492 ASSERT3S(cbytes, ==, max_blksz);
e53d678d
MM
493 }
494
495 /*
496 * Start a transaction.
497 */
498 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
499 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
500 dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
501 DB_DNODE_ENTER(db);
502 dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff,
503 MIN(n, max_blksz));
504 DB_DNODE_EXIT(db);
505 zfs_sa_upgrade_txholds(tx, zp);
506 error = dmu_tx_assign(tx, TXG_WAIT);
507 if (error) {
508 dmu_tx_abort(tx);
509 if (abuf != NULL)
510 dmu_return_arcbuf(abuf);
511 break;
512 }
513
514 /*
515 * If rangelock_enter() over-locked we grow the blocksize
516 * and then reduce the lock range. This will only happen
517 * on the first iteration since rangelock_reduce() will
518 * shrink down lr_length to the appropriate size.
519 */
520 if (lr->lr_length == UINT64_MAX) {
521 uint64_t new_blksz;
522
523 if (zp->z_blksz > max_blksz) {
524 /*
525 * File's blocksize is already larger than the
526 * "recordsize" property. Only let it grow to
527 * the next power of 2.
528 */
529 ASSERT(!ISP2(zp->z_blksz));
530 new_blksz = MIN(end_size,
531 1 << highbit64(zp->z_blksz));
532 } else {
533 new_blksz = MIN(end_size, max_blksz);
534 }
535 zfs_grow_blocksize(zp, new_blksz, tx);
536 zfs_rangelock_reduce(lr, woff, n);
537 }
538
539 /*
540 * XXX - should we really limit each write to z_max_blksz?
541 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
542 */
85703f61
RM
543 const ssize_t nbytes =
544 MIN(n, max_blksz - P2PHASE(woff, max_blksz));
e53d678d
MM
545
546 ssize_t tx_bytes;
547 if (abuf == NULL) {
d0cd9a5c
BA
548 tx_bytes = zfs_uio_resid(uio);
549 zfs_uio_fault_disable(uio, B_TRUE);
e53d678d
MM
550 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
551 uio, nbytes, tx);
d0cd9a5c 552 zfs_uio_fault_disable(uio, B_FALSE);
e53d678d
MM
553#ifdef __linux__
554 if (error == EFAULT) {
555 dmu_tx_commit(tx);
556 /*
557 * Account for partial writes before
558 * continuing the loop.
559 * Update needs to occur before the next
d0cd9a5c 560 * zfs_uio_prefaultpages, or prefaultpages may
e53d678d
MM
561 * error, and we may break the loop early.
562 */
d0cd9a5c
BA
563 if (tx_bytes != zfs_uio_resid(uio))
564 n -= tx_bytes - zfs_uio_resid(uio);
565 if (zfs_uio_prefaultpages(MIN(n, max_blksz),
566 uio)) {
e53d678d
MM
567 break;
568 }
569 continue;
570 }
571#endif
572 if (error != 0) {
573 dmu_tx_commit(tx);
574 break;
575 }
d0cd9a5c 576 tx_bytes -= zfs_uio_resid(uio);
e53d678d 577 } else {
85703f61
RM
578 /* Implied by abuf != NULL: */
579 ASSERT3S(n, >=, max_blksz);
85703f61 580 ASSERT0(P2PHASE(woff, max_blksz));
e53d678d 581 /*
85703f61
RM
582 * We can simplify nbytes to MIN(n, max_blksz) since
583 * P2PHASE(woff, max_blksz) is 0, and knowing
584 * n >= max_blksz lets us simplify further:
e53d678d 585 */
85703f61 586 ASSERT3S(nbytes, ==, max_blksz);
e53d678d 587 /*
85703f61
RM
588 * Thus, we're writing a full block at a block-aligned
589 * offset and extending the file past EOF.
590 *
591 * dmu_assign_arcbuf_by_dbuf() will directly assign the
592 * arc buffer to a dbuf.
e53d678d 593 */
85703f61
RM
594 error = dmu_assign_arcbuf_by_dbuf(
595 sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
596 if (error != 0) {
597 dmu_return_arcbuf(abuf);
598 dmu_tx_commit(tx);
599 break;
e53d678d 600 }
d0cd9a5c
BA
601 ASSERT3S(nbytes, <=, zfs_uio_resid(uio));
602 zfs_uioskip(uio, nbytes);
85703f61 603 tx_bytes = nbytes;
e53d678d
MM
604 }
605 if (tx_bytes && zn_has_cached_data(zp) &&
606 !(ioflag & O_DIRECT)) {
8a9634e2 607 update_pages(zp, woff, tx_bytes, zfsvfs->z_os);
e53d678d
MM
608 }
609
610 /*
611 * If we made no progress, we're done. If we made even
612 * partial progress, update the znode and ZIL accordingly.
613 */
614 if (tx_bytes == 0) {
615 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
616 (void *)&zp->z_size, sizeof (uint64_t), tx);
617 dmu_tx_commit(tx);
618 ASSERT(error != 0);
619 break;
620 }
621
622 /*
623 * Clear Set-UID/Set-GID bits on successful write if not
624 * privileged and at least one of the execute bits is set.
625 *
626 * It would be nice to do this after all writes have
627 * been done, but that would still expose the ISUID/ISGID
628 * to another app after the partial write is committed.
629 *
630 * Note: we don't call zfs_fuid_map_id() here because
631 * user 0 is not an ephemeral uid.
632 */
633 mutex_enter(&zp->z_acl_lock);
e53d678d
MM
634 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
635 (S_IXUSR >> 6))) != 0 &&
636 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
637 secpolicy_vnode_setid_retain(zp, cr,
638 ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
639 uint64_t newmode;
640 zp->z_mode &= ~(S_ISUID | S_ISGID);
f8ce8aed 641 newmode = zp->z_mode;
e53d678d
MM
642 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
643 (void *)&newmode, sizeof (uint64_t), tx);
644 }
645 mutex_exit(&zp->z_acl_lock);
646
647 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
648
649 /*
650 * Update the file size (zp_size) if it has changed;
651 * account for possible concurrent updates.
652 */
d0cd9a5c 653 while ((end_size = zp->z_size) < zfs_uio_offset(uio)) {
e53d678d 654 (void) atomic_cas_64(&zp->z_size, end_size,
d0cd9a5c 655 zfs_uio_offset(uio));
e53d678d
MM
656 ASSERT(error == 0);
657 }
658 /*
659 * If we are replaying and eof is non zero then force
660 * the file size to the specified eof. Note, there's no
661 * concurrency during replay.
662 */
663 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
664 zp->z_size = zfsvfs->z_replay_eof;
665
666 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
667
668 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag,
669 NULL, NULL);
670 dmu_tx_commit(tx);
671
672 if (error != 0)
673 break;
1c2358c1 674 ASSERT3S(tx_bytes, ==, nbytes);
e53d678d
MM
675 n -= nbytes;
676
677 if (n > 0) {
d0cd9a5c 678 if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) {
7e3617de 679 error = SET_ERROR(EFAULT);
e53d678d
MM
680 break;
681 }
682 }
683 }
684
fc273894 685 zfs_znode_update_vfs(zp);
e53d678d
MM
686 zfs_rangelock_exit(lr);
687
688 /*
7e3617de
RM
689 * If we're in replay mode, or we made no progress, or the
690 * uio data is inaccessible return an error. Otherwise, it's
691 * at least a partial write, so it's successful.
e53d678d 692 */
d0cd9a5c 693 if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid ||
7e3617de 694 error == EFAULT) {
e53d678d
MM
695 ZFS_EXIT(zfsvfs);
696 return (error);
697 }
698
699 if (ioflag & (O_SYNC | O_DSYNC) ||
700 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
701 zil_commit(zilog, zp->z_id);
702
d0cd9a5c 703 const int64_t nwritten = start_resid - zfs_uio_resid(uio);
e53d678d
MM
704 dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten);
705 task_io_account_write(nwritten);
706
707 ZFS_EXIT(zfsvfs);
708 return (0);
709}
710
711/*ARGSUSED*/
712int
713zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
714{
715 zfsvfs_t *zfsvfs = ZTOZSB(zp);
716 int error;
717 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
718
719 ZFS_ENTER(zfsvfs);
720 ZFS_VERIFY_ZP(zp);
721 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
722 ZFS_EXIT(zfsvfs);
723
724 return (error);
725}
726
727/*ARGSUSED*/
728int
729zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
730{
731 zfsvfs_t *zfsvfs = ZTOZSB(zp);
732 int error;
733 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
734 zilog_t *zilog = zfsvfs->z_log;
735
736 ZFS_ENTER(zfsvfs);
737 ZFS_VERIFY_ZP(zp);
738
739 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
740
741 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
742 zil_commit(zilog, 0);
743
744 ZFS_EXIT(zfsvfs);
745 return (error);
746}
747
ab8c935e
CS
748#ifdef ZFS_DEBUG
749static int zil_fault_io = 0;
750#endif
751
752static void zfs_get_done(zgd_t *zgd, int error);
753
754/*
755 * Get data to generate a TX_WRITE intent log record.
756 */
757int
296a4a36
CC
758zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf,
759 struct lwb *lwb, zio_t *zio)
ab8c935e
CS
760{
761 zfsvfs_t *zfsvfs = arg;
762 objset_t *os = zfsvfs->z_os;
763 znode_t *zp;
764 uint64_t object = lr->lr_foid;
765 uint64_t offset = lr->lr_offset;
766 uint64_t size = lr->lr_length;
767 dmu_buf_t *db;
768 zgd_t *zgd;
769 int error = 0;
296a4a36 770 uint64_t zp_gen;
ab8c935e
CS
771
772 ASSERT3P(lwb, !=, NULL);
773 ASSERT3P(zio, !=, NULL);
774 ASSERT3U(size, !=, 0);
775
776 /*
777 * Nothing to do if the file has been removed
778 */
779 if (zfs_zget(zfsvfs, object, &zp) != 0)
780 return (SET_ERROR(ENOENT));
781 if (zp->z_unlinked) {
782 /*
783 * Release the vnode asynchronously as we currently have the
784 * txg stopped from syncing.
785 */
786 zfs_zrele_async(zp);
787 return (SET_ERROR(ENOENT));
788 }
296a4a36
CC
789 /* check if generation number matches */
790 if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
791 sizeof (zp_gen)) != 0) {
792 zfs_zrele_async(zp);
793 return (SET_ERROR(EIO));
794 }
795 if (zp_gen != gen) {
796 zfs_zrele_async(zp);
797 return (SET_ERROR(ENOENT));
798 }
ab8c935e
CS
799
800 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
801 zgd->zgd_lwb = lwb;
802 zgd->zgd_private = zp;
803
804 /*
805 * Write records come in two flavors: immediate and indirect.
806 * For small writes it's cheaper to store the data with the
807 * log record (immediate); for large writes it's cheaper to
808 * sync the data and get a pointer to it (indirect) so that
809 * we don't have to write the data twice.
810 */
811 if (buf != NULL) { /* immediate write */
812 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
813 offset, size, RL_READER);
814 /* test for truncation needs to be done while range locked */
815 if (offset >= zp->z_size) {
816 error = SET_ERROR(ENOENT);
817 } else {
818 error = dmu_read(os, object, offset, size, buf,
819 DMU_READ_NO_PREFETCH);
820 }
821 ASSERT(error == 0 || error == ENOENT);
822 } else { /* indirect write */
823 /*
824 * Have to lock the whole block to ensure when it's
825 * written out and its checksum is being calculated
826 * that no one can change the data. We need to re-check
827 * blocksize after we get the lock in case it's changed!
828 */
829 for (;;) {
830 uint64_t blkoff;
831 size = zp->z_blksz;
832 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
833 offset -= blkoff;
834 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
835 offset, size, RL_READER);
836 if (zp->z_blksz == size)
837 break;
838 offset += blkoff;
839 zfs_rangelock_exit(zgd->zgd_lr);
840 }
841 /* test for truncation needs to be done while range locked */
842 if (lr->lr_offset >= zp->z_size)
843 error = SET_ERROR(ENOENT);
844#ifdef ZFS_DEBUG
845 if (zil_fault_io) {
846 error = SET_ERROR(EIO);
847 zil_fault_io = 0;
848 }
849#endif
850 if (error == 0)
851 error = dmu_buf_hold(os, object, offset, zgd, &db,
852 DMU_READ_NO_PREFETCH);
853
854 if (error == 0) {
855 blkptr_t *bp = &lr->lr_blkptr;
856
857 zgd->zgd_db = db;
858 zgd->zgd_bp = bp;
859
860 ASSERT(db->db_offset == offset);
861 ASSERT(db->db_size == size);
862
863 error = dmu_sync(zio, lr->lr_common.lrc_txg,
864 zfs_get_done, zgd);
865 ASSERT(error || lr->lr_length <= size);
866
867 /*
868 * On success, we need to wait for the write I/O
869 * initiated by dmu_sync() to complete before we can
870 * release this dbuf. We will finish everything up
871 * in the zfs_get_done() callback.
872 */
873 if (error == 0)
874 return (0);
875
876 if (error == EALREADY) {
877 lr->lr_common.lrc_txtype = TX_WRITE2;
878 /*
879 * TX_WRITE2 relies on the data previously
880 * written by the TX_WRITE that caused
881 * EALREADY. We zero out the BP because
882 * it is the old, currently-on-disk BP.
883 */
884 zgd->zgd_bp = NULL;
885 BP_ZERO(bp);
886 error = 0;
887 }
888 }
889 }
890
891 zfs_get_done(zgd, error);
892
893 return (error);
894}
895
896
897/* ARGSUSED */
898static void
899zfs_get_done(zgd_t *zgd, int error)
900{
901 znode_t *zp = zgd->zgd_private;
902
903 if (zgd->zgd_db)
904 dmu_buf_rele(zgd->zgd_db, zgd);
905
906 zfs_rangelock_exit(zgd->zgd_lr);
907
908 /*
909 * Release the vnode asynchronously as we currently have the
910 * txg stopped from syncing.
911 */
912 zfs_zrele_async(zp);
913
914 kmem_free(zgd, sizeof (zgd_t));
915}
916
8583540c 917EXPORT_SYMBOL(zfs_access);
e53d678d 918EXPORT_SYMBOL(zfs_fsync);
8583540c 919EXPORT_SYMBOL(zfs_holey);
e53d678d
MM
920EXPORT_SYMBOL(zfs_read);
921EXPORT_SYMBOL(zfs_write);
922EXPORT_SYMBOL(zfs_getsecattr);
923EXPORT_SYMBOL(zfs_setsecattr);
924
925ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, ULONG, ZMOD_RW,
926 "Bytes to read per chunk");