]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/zfs_vnops.c
FreeBSD: Clean up the use of ioflags
[mirror_zfs.git] / module / zfs / zfs_vnops.c
CommitLineData
e53d678d
MM
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
27 */
28
29/* Portions Copyright 2007 Jeremy Teo */
30/* Portions Copyright 2010 Robert Milkowski */
31
32#include <sys/types.h>
33#include <sys/param.h>
34#include <sys/time.h>
35#include <sys/sysmacros.h>
36#include <sys/vfs.h>
c0801bf3 37#include <sys/uio_impl.h>
e53d678d
MM
38#include <sys/file.h>
39#include <sys/stat.h>
40#include <sys/kmem.h>
41#include <sys/cmn_err.h>
42#include <sys/errno.h>
43#include <sys/zfs_dir.h>
44#include <sys/zfs_acl.h>
45#include <sys/zfs_ioctl.h>
46#include <sys/fs/zfs.h>
47#include <sys/dmu.h>
48#include <sys/dmu_objset.h>
49#include <sys/spa.h>
50#include <sys/txg.h>
51#include <sys/dbuf.h>
52#include <sys/policy.h>
53#include <sys/zfs_vnops.h>
54#include <sys/zfs_quota.h>
ab8c935e
CS
55#include <sys/zfs_vfsops.h>
56#include <sys/zfs_znode.h>
e53d678d
MM
57
58
59static ulong_t zfs_fsync_sync_cnt = 4;
60
61int
62zfs_fsync(znode_t *zp, int syncflag, cred_t *cr)
63{
64 zfsvfs_t *zfsvfs = ZTOZSB(zp);
65
66 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
67
68 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
69 ZFS_ENTER(zfsvfs);
70 ZFS_VERIFY_ZP(zp);
71 zil_commit(zfsvfs->z_log, zp->z_id);
72 ZFS_EXIT(zfsvfs);
73 }
74 tsd_set(zfs_fsyncer_key, NULL);
75
76 return (0);
77}
78
8583540c
MM
79
80#if defined(SEEK_HOLE) && defined(SEEK_DATA)
81/*
82 * Lseek support for finding holes (cmd == SEEK_HOLE) and
83 * data (cmd == SEEK_DATA). "off" is an in/out parameter.
84 */
85static int
86zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off)
87{
de198f2d 88 zfs_locked_range_t *lr;
8583540c
MM
89 uint64_t noff = (uint64_t)*off; /* new offset */
90 uint64_t file_sz;
91 int error;
92 boolean_t hole;
93
94 file_sz = zp->z_size;
95 if (noff >= file_sz) {
96 return (SET_ERROR(ENXIO));
97 }
98
99 if (cmd == F_SEEK_HOLE)
100 hole = B_TRUE;
101 else
102 hole = B_FALSE;
103
de198f2d
BB
104 /* Flush any mmap()'d data to disk */
105 if (zn_has_cached_data(zp))
106 zn_flush_cached_data(zp, B_FALSE);
107
108 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, file_sz, RL_READER);
8583540c 109 error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
de198f2d 110 zfs_rangelock_exit(lr);
8583540c
MM
111
112 if (error == ESRCH)
113 return (SET_ERROR(ENXIO));
114
de198f2d 115 /* File was dirty, so fall back to using generic logic */
8583540c
MM
116 if (error == EBUSY) {
117 if (hole)
118 *off = file_sz;
119
120 return (0);
121 }
122
123 /*
124 * We could find a hole that begins after the logical end-of-file,
125 * because dmu_offset_next() only works on whole blocks. If the
126 * EOF falls mid-block, then indicate that the "virtual hole"
127 * at the end of the file begins at the logical EOF, rather than
128 * at the end of the last block.
129 */
130 if (noff > file_sz) {
131 ASSERT(hole);
132 noff = file_sz;
133 }
134
135 if (noff < *off)
136 return (error);
137 *off = noff;
138 return (error);
139}
140
141int
142zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off)
143{
144 zfsvfs_t *zfsvfs = ZTOZSB(zp);
145 int error;
146
147 ZFS_ENTER(zfsvfs);
148 ZFS_VERIFY_ZP(zp);
149
150 error = zfs_holey_common(zp, cmd, off);
151
152 ZFS_EXIT(zfsvfs);
153 return (error);
154}
155#endif /* SEEK_HOLE && SEEK_DATA */
156
8583540c
MM
157int
158zfs_access(znode_t *zp, int mode, int flag, cred_t *cr)
159{
160 zfsvfs_t *zfsvfs = ZTOZSB(zp);
161 int error;
162
163 ZFS_ENTER(zfsvfs);
164 ZFS_VERIFY_ZP(zp);
165
166 if (flag & V_ACE_MASK)
167 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
168 else
169 error = zfs_zaccess_rwx(zp, mode, flag, cr);
170
171 ZFS_EXIT(zfsvfs);
172 return (error);
173}
174
e53d678d
MM
175static unsigned long zfs_vnops_read_chunk_size = 1024 * 1024; /* Tunable */
176
177/*
178 * Read bytes from specified file into supplied buffer.
179 *
180 * IN: zp - inode of file to be read from.
181 * uio - structure supplying read location, range info,
182 * and return buffer.
183 * ioflag - O_SYNC flags; used to provide FRSYNC semantics.
184 * O_DIRECT flag; used to bypass page cache.
185 * cr - credentials of caller.
186 *
187 * OUT: uio - updated offset and range, buffer filled.
188 *
189 * RETURN: 0 on success, error code on failure.
190 *
191 * Side Effects:
192 * inode - atime updated if byte count > 0
193 */
e53d678d 194int
d0cd9a5c 195zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
e53d678d 196{
ef70eff1 197 (void) cr;
e53d678d
MM
198 int error = 0;
199 boolean_t frsync = B_FALSE;
200
201 zfsvfs_t *zfsvfs = ZTOZSB(zp);
202 ZFS_ENTER(zfsvfs);
203 ZFS_VERIFY_ZP(zp);
204
205 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
206 ZFS_EXIT(zfsvfs);
207 return (SET_ERROR(EACCES));
208 }
209
210 /* We don't copy out anything useful for directories. */
211 if (Z_ISDIR(ZTOTYPE(zp))) {
212 ZFS_EXIT(zfsvfs);
213 return (SET_ERROR(EISDIR));
214 }
215
216 /*
217 * Validate file offset
218 */
d0cd9a5c 219 if (zfs_uio_offset(uio) < (offset_t)0) {
e53d678d
MM
220 ZFS_EXIT(zfsvfs);
221 return (SET_ERROR(EINVAL));
222 }
223
224 /*
225 * Fasttrack empty reads
226 */
d0cd9a5c 227 if (zfs_uio_resid(uio) == 0) {
e53d678d
MM
228 ZFS_EXIT(zfsvfs);
229 return (0);
230 }
231
232#ifdef FRSYNC
233 /*
234 * If we're in FRSYNC mode, sync out this znode before reading it.
235 * Only do this for non-snapshots.
236 *
237 * Some platforms do not support FRSYNC and instead map it
238 * to O_SYNC, which results in unnecessary calls to zil_commit. We
239 * only honor FRSYNC requests on platforms which support it.
240 */
241 frsync = !!(ioflag & FRSYNC);
242#endif
243 if (zfsvfs->z_log &&
244 (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
245 zil_commit(zfsvfs->z_log, zp->z_id);
246
247 /*
248 * Lock the range against changes.
249 */
250 zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
d0cd9a5c 251 zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER);
e53d678d
MM
252
253 /*
254 * If we are reading past end-of-file we can skip
255 * to the end; but we might still need to set atime.
256 */
d0cd9a5c 257 if (zfs_uio_offset(uio) >= zp->z_size) {
e53d678d
MM
258 error = 0;
259 goto out;
260 }
261
d0cd9a5c 262 ASSERT(zfs_uio_offset(uio) < zp->z_size);
05679465 263#if defined(__linux__)
59eab109 264 ssize_t start_offset = zfs_uio_offset(uio);
05679465 265#endif
d0cd9a5c 266 ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio));
e53d678d
MM
267 ssize_t start_resid = n;
268
269 while (n > 0) {
270 ssize_t nbytes = MIN(n, zfs_vnops_read_chunk_size -
d0cd9a5c 271 P2PHASE(zfs_uio_offset(uio), zfs_vnops_read_chunk_size));
e53d678d 272#ifdef UIO_NOCOPY
d0cd9a5c 273 if (zfs_uio_segflg(uio) == UIO_NOCOPY)
e53d678d
MM
274 error = mappedread_sf(zp, nbytes, uio);
275 else
276#endif
277 if (zn_has_cached_data(zp) && !(ioflag & O_DIRECT)) {
278 error = mappedread(zp, nbytes, uio);
279 } else {
280 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
281 uio, nbytes);
282 }
283
284 if (error) {
285 /* convert checksum errors into IO errors */
286 if (error == ECKSUM)
287 error = SET_ERROR(EIO);
05679465
RE
288
289#if defined(__linux__)
59eab109
RE
290 /*
291 * if we actually read some bytes, bubbling EFAULT
05679465
RE
292 * up to become EAGAIN isn't what we want here...
293 *
294 * ...on Linux, at least. On FBSD, doing this breaks.
59eab109
RE
295 */
296 if (error == EFAULT &&
297 (zfs_uio_offset(uio) - start_offset) != 0)
298 error = 0;
05679465 299#endif
e53d678d
MM
300 break;
301 }
302
303 n -= nbytes;
304 }
305
306 int64_t nread = start_resid - n;
307 dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread);
308 task_io_account_read(nread);
309out:
310 zfs_rangelock_exit(lr);
311
312 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
313 ZFS_EXIT(zfsvfs);
314 return (error);
315}
316
3d244b48
PJD
317static void
318zfs_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, cred_t *cr,
319 uint64_t *clear_setid_bits_txgp, dmu_tx_t *tx)
320{
321 zilog_t *zilog = zfsvfs->z_log;
322 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
323
324 ASSERT(clear_setid_bits_txgp != NULL);
325 ASSERT(tx != NULL);
326
327 /*
328 * Clear Set-UID/Set-GID bits on successful write if not
329 * privileged and at least one of the execute bits is set.
330 *
331 * It would be nice to do this after all writes have
332 * been done, but that would still expose the ISUID/ISGID
333 * to another app after the partial write is committed.
334 *
335 * Note: we don't call zfs_fuid_map_id() here because
336 * user 0 is not an ephemeral uid.
337 */
338 mutex_enter(&zp->z_acl_lock);
339 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 &&
340 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
341 secpolicy_vnode_setid_retain(zp, cr,
342 ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
343 uint64_t newmode;
344
345 zp->z_mode &= ~(S_ISUID | S_ISGID);
346 newmode = zp->z_mode;
347 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
348 (void *)&newmode, sizeof (uint64_t), tx);
349
350 mutex_exit(&zp->z_acl_lock);
351
352 /*
353 * Make sure SUID/SGID bits will be removed when we replay the
354 * log. If the setid bits are keep coming back, don't log more
355 * than one TX_SETATTR per transaction group.
356 */
357 if (*clear_setid_bits_txgp != dmu_tx_get_txg(tx)) {
861166b0 358 vattr_t va = {0};
3d244b48 359
4d972ab5 360 va.va_mask = ATTR_MODE;
3d244b48
PJD
361 va.va_nodeid = zp->z_id;
362 va.va_mode = newmode;
4d972ab5
JL
363 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, &va,
364 ATTR_MODE, NULL);
3d244b48
PJD
365 *clear_setid_bits_txgp = dmu_tx_get_txg(tx);
366 }
367 } else {
368 mutex_exit(&zp->z_acl_lock);
369 }
370}
371
e53d678d
MM
372/*
373 * Write the bytes to a file.
374 *
375 * IN: zp - znode of file to be written to.
376 * uio - structure supplying write location, range info,
377 * and data buffer.
378 * ioflag - O_APPEND flag set if in append mode.
379 * O_DIRECT flag; used to bypass page cache.
380 * cr - credentials of caller.
381 *
382 * OUT: uio - updated offset and range.
383 *
384 * RETURN: 0 if success
385 * error code if failure
386 *
387 * Timestamps:
388 * ip - ctime|mtime updated if byte count > 0
389 */
e53d678d 390int
d0cd9a5c 391zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
e53d678d 392{
063daa83 393 int error = 0, error1;
d0cd9a5c 394 ssize_t start_resid = zfs_uio_resid(uio);
3d244b48 395 uint64_t clear_setid_bits_txg = 0;
e53d678d
MM
396
397 /*
398 * Fasttrack empty write
399 */
400 ssize_t n = start_resid;
401 if (n == 0)
402 return (0);
403
e53d678d
MM
404 zfsvfs_t *zfsvfs = ZTOZSB(zp);
405 ZFS_ENTER(zfsvfs);
406 ZFS_VERIFY_ZP(zp);
407
408 sa_bulk_attr_t bulk[4];
409 int count = 0;
410 uint64_t mtime[2], ctime[2];
411 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
412 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
413 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
414 &zp->z_size, 8);
415 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
416 &zp->z_pflags, 8);
417
418 /*
419 * Callers might not be able to detect properly that we are read-only,
420 * so check it explicitly here.
421 */
422 if (zfs_is_readonly(zfsvfs)) {
423 ZFS_EXIT(zfsvfs);
424 return (SET_ERROR(EROFS));
425 }
426
427 /*
4b2e2082
RM
428 * If immutable or not appending then return EPERM.
429 * Intentionally allow ZFS_READONLY through here.
430 * See zfs_zaccess_common()
e53d678d 431 */
4b2e2082 432 if ((zp->z_pflags & ZFS_IMMUTABLE) ||
e53d678d 433 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) &&
d0cd9a5c 434 (zfs_uio_offset(uio) < zp->z_size))) {
e53d678d
MM
435 ZFS_EXIT(zfsvfs);
436 return (SET_ERROR(EPERM));
437 }
438
439 /*
440 * Validate file offset
441 */
d0cd9a5c 442 offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio);
e53d678d
MM
443 if (woff < 0) {
444 ZFS_EXIT(zfsvfs);
445 return (SET_ERROR(EINVAL));
446 }
447
9a764716 448 const uint64_t max_blksz = zfsvfs->z_max_blksz;
e53d678d
MM
449
450 /*
451 * Pre-fault the pages to ensure slow (eg NFS) pages
452 * don't hold up txg.
453 * Skip this if uio contains loaned arc_buf.
454 */
d0cd9a5c 455 if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) {
e53d678d
MM
456 ZFS_EXIT(zfsvfs);
457 return (SET_ERROR(EFAULT));
458 }
459
460 /*
461 * If in append mode, set the io offset pointer to eof.
462 */
463 zfs_locked_range_t *lr;
464 if (ioflag & O_APPEND) {
465 /*
466 * Obtain an appending range lock to guarantee file append
467 * semantics. We reset the write offset once we have the lock.
468 */
469 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
470 woff = lr->lr_offset;
471 if (lr->lr_length == UINT64_MAX) {
472 /*
473 * We overlocked the file because this write will cause
474 * the file block size to increase.
475 * Note that zp_size cannot change with this lock held.
476 */
477 woff = zp->z_size;
478 }
d0cd9a5c 479 zfs_uio_setoffset(uio, woff);
e53d678d
MM
480 } else {
481 /*
482 * Note that if the file block size will change as a result of
483 * this write, then this range lock will lock the entire file
484 * so that we can re-write the block safely.
485 */
486 lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
487 }
488
d0cd9a5c 489 if (zn_rlimit_fsize(zp, uio)) {
e53d678d
MM
490 zfs_rangelock_exit(lr);
491 ZFS_EXIT(zfsvfs);
7e3617de 492 return (SET_ERROR(EFBIG));
e53d678d
MM
493 }
494
d1dd72a2
RM
495 const rlim64_t limit = MAXOFFSET_T;
496
e53d678d
MM
497 if (woff >= limit) {
498 zfs_rangelock_exit(lr);
499 ZFS_EXIT(zfsvfs);
500 return (SET_ERROR(EFBIG));
501 }
502
d1dd72a2 503 if (n > limit - woff)
e53d678d
MM
504 n = limit - woff;
505
506 uint64_t end_size = MAX(zp->z_size, woff + n);
507 zilog_t *zilog = zfsvfs->z_log;
508
eec6646e
RM
509 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
510 const uint64_t gid = KGID_TO_SGID(ZTOGID(zp));
511 const uint64_t projid = zp->z_projid;
512
e53d678d
MM
513 /*
514 * Write the file in reasonable size chunks. Each chunk is written
515 * in a separate transaction; this keeps the intent log records small
516 * and allows us to do more fine-grained space accounting.
517 */
518 while (n > 0) {
d0cd9a5c 519 woff = zfs_uio_offset(uio);
e53d678d 520
eec6646e
RM
521 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) ||
522 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) ||
523 (projid != ZFS_DEFAULT_PROJID &&
e53d678d 524 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
eec6646e 525 projid))) {
e53d678d
MM
526 error = SET_ERROR(EDQUOT);
527 break;
528 }
529
530 arc_buf_t *abuf = NULL;
531 if (n >= max_blksz && woff >= zp->z_size &&
532 P2PHASE(woff, max_blksz) == 0 &&
533 zp->z_blksz == max_blksz) {
534 /*
535 * This write covers a full block. "Borrow" a buffer
536 * from the dmu so that we can fill it before we enter
537 * a transaction. This avoids the possibility of
538 * holding up the transaction if the data copy hangs
539 * up on a pagefault (e.g., from an NFS server mapping).
540 */
541 size_t cbytes;
542
543 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
544 max_blksz);
545 ASSERT(abuf != NULL);
546 ASSERT(arc_buf_size(abuf) == max_blksz);
d0cd9a5c 547 if ((error = zfs_uiocopy(abuf->b_data, max_blksz,
e53d678d
MM
548 UIO_WRITE, uio, &cbytes))) {
549 dmu_return_arcbuf(abuf);
550 break;
551 }
1c2358c1 552 ASSERT3S(cbytes, ==, max_blksz);
e53d678d
MM
553 }
554
555 /*
556 * Start a transaction.
557 */
558 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
559 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
560 dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
561 DB_DNODE_ENTER(db);
562 dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff,
563 MIN(n, max_blksz));
564 DB_DNODE_EXIT(db);
565 zfs_sa_upgrade_txholds(tx, zp);
566 error = dmu_tx_assign(tx, TXG_WAIT);
567 if (error) {
568 dmu_tx_abort(tx);
569 if (abuf != NULL)
570 dmu_return_arcbuf(abuf);
571 break;
572 }
573
3d244b48
PJD
574 /*
575 * NB: We must call zfs_clear_setid_bits_if_necessary before
576 * committing the transaction!
577 */
578
e53d678d
MM
579 /*
580 * If rangelock_enter() over-locked we grow the blocksize
581 * and then reduce the lock range. This will only happen
582 * on the first iteration since rangelock_reduce() will
583 * shrink down lr_length to the appropriate size.
584 */
585 if (lr->lr_length == UINT64_MAX) {
586 uint64_t new_blksz;
587
588 if (zp->z_blksz > max_blksz) {
589 /*
590 * File's blocksize is already larger than the
591 * "recordsize" property. Only let it grow to
592 * the next power of 2.
593 */
594 ASSERT(!ISP2(zp->z_blksz));
595 new_blksz = MIN(end_size,
596 1 << highbit64(zp->z_blksz));
597 } else {
598 new_blksz = MIN(end_size, max_blksz);
599 }
600 zfs_grow_blocksize(zp, new_blksz, tx);
601 zfs_rangelock_reduce(lr, woff, n);
602 }
603
604 /*
605 * XXX - should we really limit each write to z_max_blksz?
606 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
607 */
85703f61
RM
608 const ssize_t nbytes =
609 MIN(n, max_blksz - P2PHASE(woff, max_blksz));
e53d678d
MM
610
611 ssize_t tx_bytes;
612 if (abuf == NULL) {
d0cd9a5c
BA
613 tx_bytes = zfs_uio_resid(uio);
614 zfs_uio_fault_disable(uio, B_TRUE);
e53d678d
MM
615 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
616 uio, nbytes, tx);
d0cd9a5c 617 zfs_uio_fault_disable(uio, B_FALSE);
e53d678d
MM
618#ifdef __linux__
619 if (error == EFAULT) {
3d244b48
PJD
620 zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
621 cr, &clear_setid_bits_txg, tx);
e53d678d
MM
622 dmu_tx_commit(tx);
623 /*
624 * Account for partial writes before
625 * continuing the loop.
626 * Update needs to occur before the next
d0cd9a5c 627 * zfs_uio_prefaultpages, or prefaultpages may
e53d678d
MM
628 * error, and we may break the loop early.
629 */
d0cd9a5c
BA
630 if (tx_bytes != zfs_uio_resid(uio))
631 n -= tx_bytes - zfs_uio_resid(uio);
632 if (zfs_uio_prefaultpages(MIN(n, max_blksz),
633 uio)) {
e53d678d
MM
634 break;
635 }
636 continue;
637 }
638#endif
063daa83
MJ
639 /*
640 * On FreeBSD, EFAULT should be propagated back to the
641 * VFS, which will handle faulting and will retry.
642 */
643 if (error != 0 && error != EFAULT) {
3d244b48
PJD
644 zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
645 cr, &clear_setid_bits_txg, tx);
e53d678d
MM
646 dmu_tx_commit(tx);
647 break;
648 }
d0cd9a5c 649 tx_bytes -= zfs_uio_resid(uio);
e53d678d 650 } else {
85703f61
RM
651 /* Implied by abuf != NULL: */
652 ASSERT3S(n, >=, max_blksz);
85703f61 653 ASSERT0(P2PHASE(woff, max_blksz));
e53d678d 654 /*
85703f61
RM
655 * We can simplify nbytes to MIN(n, max_blksz) since
656 * P2PHASE(woff, max_blksz) is 0, and knowing
657 * n >= max_blksz lets us simplify further:
e53d678d 658 */
85703f61 659 ASSERT3S(nbytes, ==, max_blksz);
e53d678d 660 /*
85703f61
RM
661 * Thus, we're writing a full block at a block-aligned
662 * offset and extending the file past EOF.
663 *
664 * dmu_assign_arcbuf_by_dbuf() will directly assign the
665 * arc buffer to a dbuf.
e53d678d 666 */
85703f61
RM
667 error = dmu_assign_arcbuf_by_dbuf(
668 sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
669 if (error != 0) {
3d244b48
PJD
670 /*
671 * XXX This might not be necessary if
672 * dmu_assign_arcbuf_by_dbuf is guaranteed
673 * to be atomic.
674 */
675 zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
676 cr, &clear_setid_bits_txg, tx);
85703f61
RM
677 dmu_return_arcbuf(abuf);
678 dmu_tx_commit(tx);
679 break;
e53d678d 680 }
d0cd9a5c
BA
681 ASSERT3S(nbytes, <=, zfs_uio_resid(uio));
682 zfs_uioskip(uio, nbytes);
85703f61 683 tx_bytes = nbytes;
e53d678d
MM
684 }
685 if (tx_bytes && zn_has_cached_data(zp) &&
686 !(ioflag & O_DIRECT)) {
8a9634e2 687 update_pages(zp, woff, tx_bytes, zfsvfs->z_os);
e53d678d
MM
688 }
689
690 /*
691 * If we made no progress, we're done. If we made even
692 * partial progress, update the znode and ZIL accordingly.
693 */
694 if (tx_bytes == 0) {
695 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
696 (void *)&zp->z_size, sizeof (uint64_t), tx);
697 dmu_tx_commit(tx);
698 ASSERT(error != 0);
699 break;
700 }
701
3d244b48
PJD
702 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr,
703 &clear_setid_bits_txg, tx);
e53d678d
MM
704
705 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
706
707 /*
708 * Update the file size (zp_size) if it has changed;
709 * account for possible concurrent updates.
710 */
d0cd9a5c 711 while ((end_size = zp->z_size) < zfs_uio_offset(uio)) {
e53d678d 712 (void) atomic_cas_64(&zp->z_size, end_size,
d0cd9a5c 713 zfs_uio_offset(uio));
063daa83 714 ASSERT(error == 0 || error == EFAULT);
e53d678d
MM
715 }
716 /*
717 * If we are replaying and eof is non zero then force
718 * the file size to the specified eof. Note, there's no
719 * concurrency during replay.
720 */
721 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
722 zp->z_size = zfsvfs->z_replay_eof;
723
063daa83
MJ
724 error1 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
725 if (error1 != 0)
726 /* Avoid clobbering EFAULT. */
727 error = error1;
e53d678d 728
3d244b48
PJD
729 /*
730 * NB: During replay, the TX_SETATTR record logged by
731 * zfs_clear_setid_bits_if_necessary must precede any of
732 * the TX_WRITE records logged here.
733 */
e53d678d
MM
734 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag,
735 NULL, NULL);
3d244b48 736
e53d678d
MM
737 dmu_tx_commit(tx);
738
739 if (error != 0)
740 break;
1c2358c1 741 ASSERT3S(tx_bytes, ==, nbytes);
e53d678d
MM
742 n -= nbytes;
743
744 if (n > 0) {
d0cd9a5c 745 if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) {
7e3617de 746 error = SET_ERROR(EFAULT);
e53d678d
MM
747 break;
748 }
749 }
750 }
751
fc273894 752 zfs_znode_update_vfs(zp);
e53d678d
MM
753 zfs_rangelock_exit(lr);
754
755 /*
7e3617de
RM
756 * If we're in replay mode, or we made no progress, or the
757 * uio data is inaccessible return an error. Otherwise, it's
758 * at least a partial write, so it's successful.
e53d678d 759 */
d0cd9a5c 760 if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid ||
7e3617de 761 error == EFAULT) {
e53d678d
MM
762 ZFS_EXIT(zfsvfs);
763 return (error);
764 }
765
766 if (ioflag & (O_SYNC | O_DSYNC) ||
767 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
768 zil_commit(zilog, zp->z_id);
769
d0cd9a5c 770 const int64_t nwritten = start_resid - zfs_uio_resid(uio);
e53d678d
MM
771 dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten);
772 task_io_account_write(nwritten);
773
774 ZFS_EXIT(zfsvfs);
775 return (0);
776}
777
e53d678d
MM
778int
779zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
780{
781 zfsvfs_t *zfsvfs = ZTOZSB(zp);
782 int error;
783 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
784
785 ZFS_ENTER(zfsvfs);
786 ZFS_VERIFY_ZP(zp);
787 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
788 ZFS_EXIT(zfsvfs);
789
790 return (error);
791}
792
e53d678d
MM
793int
794zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
795{
796 zfsvfs_t *zfsvfs = ZTOZSB(zp);
797 int error;
798 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
799 zilog_t *zilog = zfsvfs->z_log;
800
801 ZFS_ENTER(zfsvfs);
802 ZFS_VERIFY_ZP(zp);
803
804 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
805
806 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
807 zil_commit(zilog, 0);
808
809 ZFS_EXIT(zfsvfs);
810 return (error);
811}
812
ab8c935e
CS
813#ifdef ZFS_DEBUG
814static int zil_fault_io = 0;
815#endif
816
817static void zfs_get_done(zgd_t *zgd, int error);
818
819/*
820 * Get data to generate a TX_WRITE intent log record.
821 */
822int
296a4a36
CC
823zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf,
824 struct lwb *lwb, zio_t *zio)
ab8c935e
CS
825{
826 zfsvfs_t *zfsvfs = arg;
827 objset_t *os = zfsvfs->z_os;
828 znode_t *zp;
829 uint64_t object = lr->lr_foid;
830 uint64_t offset = lr->lr_offset;
831 uint64_t size = lr->lr_length;
832 dmu_buf_t *db;
833 zgd_t *zgd;
834 int error = 0;
296a4a36 835 uint64_t zp_gen;
ab8c935e
CS
836
837 ASSERT3P(lwb, !=, NULL);
838 ASSERT3P(zio, !=, NULL);
839 ASSERT3U(size, !=, 0);
840
841 /*
842 * Nothing to do if the file has been removed
843 */
844 if (zfs_zget(zfsvfs, object, &zp) != 0)
845 return (SET_ERROR(ENOENT));
846 if (zp->z_unlinked) {
847 /*
848 * Release the vnode asynchronously as we currently have the
849 * txg stopped from syncing.
850 */
851 zfs_zrele_async(zp);
852 return (SET_ERROR(ENOENT));
853 }
296a4a36
CC
854 /* check if generation number matches */
855 if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
856 sizeof (zp_gen)) != 0) {
857 zfs_zrele_async(zp);
858 return (SET_ERROR(EIO));
859 }
860 if (zp_gen != gen) {
861 zfs_zrele_async(zp);
862 return (SET_ERROR(ENOENT));
863 }
ab8c935e
CS
864
865 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
866 zgd->zgd_lwb = lwb;
867 zgd->zgd_private = zp;
868
869 /*
870 * Write records come in two flavors: immediate and indirect.
871 * For small writes it's cheaper to store the data with the
872 * log record (immediate); for large writes it's cheaper to
873 * sync the data and get a pointer to it (indirect) so that
874 * we don't have to write the data twice.
875 */
876 if (buf != NULL) { /* immediate write */
877 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
878 offset, size, RL_READER);
879 /* test for truncation needs to be done while range locked */
880 if (offset >= zp->z_size) {
881 error = SET_ERROR(ENOENT);
882 } else {
883 error = dmu_read(os, object, offset, size, buf,
884 DMU_READ_NO_PREFETCH);
885 }
886 ASSERT(error == 0 || error == ENOENT);
887 } else { /* indirect write */
888 /*
889 * Have to lock the whole block to ensure when it's
890 * written out and its checksum is being calculated
891 * that no one can change the data. We need to re-check
892 * blocksize after we get the lock in case it's changed!
893 */
894 for (;;) {
895 uint64_t blkoff;
896 size = zp->z_blksz;
897 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
898 offset -= blkoff;
899 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
900 offset, size, RL_READER);
901 if (zp->z_blksz == size)
902 break;
903 offset += blkoff;
904 zfs_rangelock_exit(zgd->zgd_lr);
905 }
906 /* test for truncation needs to be done while range locked */
907 if (lr->lr_offset >= zp->z_size)
908 error = SET_ERROR(ENOENT);
909#ifdef ZFS_DEBUG
910 if (zil_fault_io) {
911 error = SET_ERROR(EIO);
912 zil_fault_io = 0;
913 }
914#endif
915 if (error == 0)
916 error = dmu_buf_hold(os, object, offset, zgd, &db,
917 DMU_READ_NO_PREFETCH);
918
919 if (error == 0) {
920 blkptr_t *bp = &lr->lr_blkptr;
921
922 zgd->zgd_db = db;
923 zgd->zgd_bp = bp;
924
925 ASSERT(db->db_offset == offset);
926 ASSERT(db->db_size == size);
927
928 error = dmu_sync(zio, lr->lr_common.lrc_txg,
929 zfs_get_done, zgd);
930 ASSERT(error || lr->lr_length <= size);
931
932 /*
933 * On success, we need to wait for the write I/O
934 * initiated by dmu_sync() to complete before we can
935 * release this dbuf. We will finish everything up
936 * in the zfs_get_done() callback.
937 */
938 if (error == 0)
939 return (0);
940
941 if (error == EALREADY) {
942 lr->lr_common.lrc_txtype = TX_WRITE2;
943 /*
944 * TX_WRITE2 relies on the data previously
945 * written by the TX_WRITE that caused
946 * EALREADY. We zero out the BP because
947 * it is the old, currently-on-disk BP.
948 */
949 zgd->zgd_bp = NULL;
950 BP_ZERO(bp);
951 error = 0;
952 }
953 }
954 }
955
956 zfs_get_done(zgd, error);
957
958 return (error);
959}
960
961
ab8c935e
CS
962static void
963zfs_get_done(zgd_t *zgd, int error)
964{
ef70eff1 965 (void) error;
ab8c935e
CS
966 znode_t *zp = zgd->zgd_private;
967
968 if (zgd->zgd_db)
969 dmu_buf_rele(zgd->zgd_db, zgd);
970
971 zfs_rangelock_exit(zgd->zgd_lr);
972
973 /*
974 * Release the vnode asynchronously as we currently have the
975 * txg stopped from syncing.
976 */
977 zfs_zrele_async(zp);
978
979 kmem_free(zgd, sizeof (zgd_t));
980}
981
8583540c 982EXPORT_SYMBOL(zfs_access);
e53d678d 983EXPORT_SYMBOL(zfs_fsync);
8583540c 984EXPORT_SYMBOL(zfs_holey);
e53d678d
MM
985EXPORT_SYMBOL(zfs_read);
986EXPORT_SYMBOL(zfs_write);
987EXPORT_SYMBOL(zfs_getsecattr);
988EXPORT_SYMBOL(zfs_setsecattr);
989
990ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, ULONG, ZMOD_RW,
991 "Bytes to read per chunk");