]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/zfs_vnops.c
Rebase master to b108
[mirror_zfs.git] / module / zfs / zfs_vnops.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
d164b209 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
34dc7c2f
BB
23 * Use is subject to license terms.
24 */
25
26/* Portions Copyright 2007 Jeremy Teo */
27
34dc7c2f
BB
28#include <sys/types.h>
29#include <sys/param.h>
30#include <sys/time.h>
31#include <sys/systm.h>
32#include <sys/sysmacros.h>
33#include <sys/resource.h>
34#include <sys/vfs.h>
35#include <sys/vfs_opreg.h>
36#include <sys/vnode.h>
37#include <sys/file.h>
38#include <sys/stat.h>
39#include <sys/kmem.h>
40#include <sys/taskq.h>
41#include <sys/uio.h>
42#include <sys/vmsystm.h>
43#include <sys/atomic.h>
44#include <sys/vm.h>
45#include <vm/seg_vn.h>
46#include <vm/pvn.h>
47#include <vm/as.h>
b128c09f
BB
48#include <vm/kpm.h>
49#include <vm/seg_kpm.h>
34dc7c2f
BB
50#include <sys/mman.h>
51#include <sys/pathname.h>
52#include <sys/cmn_err.h>
53#include <sys/errno.h>
54#include <sys/unistd.h>
55#include <sys/zfs_dir.h>
56#include <sys/zfs_acl.h>
57#include <sys/zfs_ioctl.h>
58#include <sys/fs/zfs.h>
59#include <sys/dmu.h>
60#include <sys/spa.h>
61#include <sys/txg.h>
62#include <sys/dbuf.h>
63#include <sys/zap.h>
64#include <sys/dirent.h>
65#include <sys/policy.h>
66#include <sys/sunddi.h>
67#include <sys/filio.h>
b128c09f 68#include <sys/sid.h>
34dc7c2f
BB
69#include "fs/fs_subr.h"
70#include <sys/zfs_ctldir.h>
71#include <sys/zfs_fuid.h>
72#include <sys/dnlc.h>
73#include <sys/zfs_rlock.h>
74#include <sys/extdirent.h>
75#include <sys/kidmap.h>
76#include <sys/cred_impl.h>
77#include <sys/attr.h>
78
79/*
80 * Programming rules.
81 *
82 * Each vnode op performs some logical unit of work. To do this, the ZPL must
83 * properly lock its in-core state, create a DMU transaction, do the work,
84 * record this work in the intent log (ZIL), commit the DMU transaction,
85 * and wait for the intent log to commit if it is a synchronous operation.
86 * Moreover, the vnode ops must work in both normal and log replay context.
87 * The ordering of events is important to avoid deadlocks and references
88 * to freed memory. The example below illustrates the following Big Rules:
89 *
90 * (1) A check must be made in each zfs thread for a mounted file system.
91 * This is done avoiding races using ZFS_ENTER(zfsvfs).
92 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes
93 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
94 * can return EIO from the calling function.
95 *
96 * (2) VN_RELE() should always be the last thing except for zil_commit()
97 * (if necessary) and ZFS_EXIT(). This is for 3 reasons:
98 * First, if it's the last reference, the vnode/znode
99 * can be freed, so the zp may point to freed memory. Second, the last
100 * reference will call zfs_zinactive(), which may induce a lot of work --
101 * pushing cached pages (which acquires range locks) and syncing out
102 * cached atime changes. Third, zfs_zinactive() may require a new tx,
103 * which could deadlock the system if you were already holding one.
104 *
105 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
106 * as they can span dmu_tx_assign() calls.
107 *
fb5f0bc8 108 * (4) Always pass TXG_NOWAIT as the second argument to dmu_tx_assign().
34dc7c2f
BB
109 * This is critical because we don't want to block while holding locks.
110 * Note, in particular, that if a lock is sometimes acquired before
111 * the tx assigns, and sometimes after (e.g. z_lock), then failing to
112 * use a non-blocking assign can deadlock the system. The scenario:
113 *
114 * Thread A has grabbed a lock before calling dmu_tx_assign().
115 * Thread B is in an already-assigned tx, and blocks for this lock.
116 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
117 * forever, because the previous txg can't quiesce until B's tx commits.
118 *
119 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
120 * then drop all locks, call dmu_tx_wait(), and try again.
121 *
122 * (5) If the operation succeeded, generate the intent log entry for it
123 * before dropping locks. This ensures that the ordering of events
124 * in the intent log matches the order in which they actually occurred.
fb5f0bc8
BB
125 * During ZIL replay the zfs_log_* functions will update the sequence
126 * number to indicate the zil transaction has replayed.
34dc7c2f
BB
127 *
128 * (6) At the end of each vnode op, the DMU tx must always commit,
129 * regardless of whether there were any errors.
130 *
131 * (7) After dropping all locks, invoke zil_commit(zilog, seq, foid)
132 * to ensure that synchronous semantics are provided when necessary.
133 *
134 * In general, this is how things should be ordered in each vnode op:
135 *
136 * ZFS_ENTER(zfsvfs); // exit if unmounted
137 * top:
138 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD())
139 * rw_enter(...); // grab any other locks you need
140 * tx = dmu_tx_create(...); // get DMU tx
141 * dmu_tx_hold_*(); // hold each object you might modify
fb5f0bc8 142 * error = dmu_tx_assign(tx, TXG_NOWAIT); // try to assign
34dc7c2f
BB
143 * if (error) {
144 * rw_exit(...); // drop locks
145 * zfs_dirent_unlock(dl); // unlock directory entry
146 * VN_RELE(...); // release held vnodes
fb5f0bc8 147 * if (error == ERESTART) {
34dc7c2f
BB
148 * dmu_tx_wait(tx);
149 * dmu_tx_abort(tx);
150 * goto top;
151 * }
152 * dmu_tx_abort(tx); // abort DMU tx
153 * ZFS_EXIT(zfsvfs); // finished in zfs
154 * return (error); // really out of space
155 * }
156 * error = do_real_work(); // do whatever this VOP does
157 * if (error == 0)
158 * zfs_log_*(...); // on success, make ZIL entry
159 * dmu_tx_commit(tx); // commit DMU tx -- error or not
160 * rw_exit(...); // drop locks
161 * zfs_dirent_unlock(dl); // unlock directory entry
162 * VN_RELE(...); // release held vnodes
163 * zil_commit(zilog, seq, foid); // synchronous when necessary
164 * ZFS_EXIT(zfsvfs); // finished in zfs
165 * return (error); // done, report error
166 */
167
168/* ARGSUSED */
169static int
170zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
171{
172 znode_t *zp = VTOZ(*vpp);
b128c09f
BB
173 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
174
175 ZFS_ENTER(zfsvfs);
176 ZFS_VERIFY_ZP(zp);
34dc7c2f
BB
177
178 if ((flag & FWRITE) && (zp->z_phys->zp_flags & ZFS_APPENDONLY) &&
179 ((flag & FAPPEND) == 0)) {
b128c09f 180 ZFS_EXIT(zfsvfs);
34dc7c2f
BB
181 return (EPERM);
182 }
183
184 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
185 ZTOV(zp)->v_type == VREG &&
186 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) &&
b128c09f
BB
187 zp->z_phys->zp_size > 0) {
188 if (fs_vscan(*vpp, cr, 0) != 0) {
189 ZFS_EXIT(zfsvfs);
34dc7c2f 190 return (EACCES);
b128c09f
BB
191 }
192 }
34dc7c2f
BB
193
194 /* Keep a count of the synchronous opens in the znode */
195 if (flag & (FSYNC | FDSYNC))
196 atomic_inc_32(&zp->z_sync_cnt);
197
b128c09f 198 ZFS_EXIT(zfsvfs);
34dc7c2f
BB
199 return (0);
200}
201
202/* ARGSUSED */
203static int
204zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
205 caller_context_t *ct)
206{
207 znode_t *zp = VTOZ(vp);
b128c09f
BB
208 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
209
210 ZFS_ENTER(zfsvfs);
211 ZFS_VERIFY_ZP(zp);
34dc7c2f
BB
212
213 /* Decrement the synchronous opens in the znode */
214 if ((flag & (FSYNC | FDSYNC)) && (count == 1))
215 atomic_dec_32(&zp->z_sync_cnt);
216
217 /*
218 * Clean up any locks held by this process on the vp.
219 */
220 cleanlocks(vp, ddi_get_pid(), 0);
221 cleanshares(vp, ddi_get_pid());
222
223 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
224 ZTOV(zp)->v_type == VREG &&
225 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) &&
226 zp->z_phys->zp_size > 0)
227 VERIFY(fs_vscan(vp, cr, 1) == 0);
228
b128c09f 229 ZFS_EXIT(zfsvfs);
34dc7c2f
BB
230 return (0);
231}
232
233/*
234 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
235 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
236 */
237static int
238zfs_holey(vnode_t *vp, int cmd, offset_t *off)
239{
240 znode_t *zp = VTOZ(vp);
241 uint64_t noff = (uint64_t)*off; /* new offset */
242 uint64_t file_sz;
243 int error;
244 boolean_t hole;
245
246 file_sz = zp->z_phys->zp_size;
247 if (noff >= file_sz) {
248 return (ENXIO);
249 }
250
251 if (cmd == _FIO_SEEK_HOLE)
252 hole = B_TRUE;
253 else
254 hole = B_FALSE;
255
256 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
257
258 /* end of file? */
259 if ((error == ESRCH) || (noff > file_sz)) {
260 /*
261 * Handle the virtual hole at the end of file.
262 */
263 if (hole) {
264 *off = file_sz;
265 return (0);
266 }
267 return (ENXIO);
268 }
269
270 if (noff < *off)
271 return (error);
272 *off = noff;
273 return (error);
274}
275
276/* ARGSUSED */
277static int
278zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
279 int *rvalp, caller_context_t *ct)
280{
281 offset_t off;
282 int error;
283 zfsvfs_t *zfsvfs;
284 znode_t *zp;
285
286 switch (com) {
287 case _FIOFFS:
288 return (zfs_sync(vp->v_vfsp, 0, cred));
289
290 /*
291 * The following two ioctls are used by bfu. Faking out,
292 * necessary to avoid bfu errors.
293 */
294 case _FIOGDIO:
295 case _FIOSDIO:
296 return (0);
297
298 case _FIO_SEEK_DATA:
299 case _FIO_SEEK_HOLE:
300 if (ddi_copyin((void *)data, &off, sizeof (off), flag))
301 return (EFAULT);
302
303 zp = VTOZ(vp);
304 zfsvfs = zp->z_zfsvfs;
305 ZFS_ENTER(zfsvfs);
306 ZFS_VERIFY_ZP(zp);
307
308 /* offset parameter is in/out */
309 error = zfs_holey(vp, com, &off);
310 ZFS_EXIT(zfsvfs);
311 if (error)
312 return (error);
313 if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
314 return (EFAULT);
315 return (0);
316 }
317 return (ENOTTY);
318}
319
b128c09f
BB
320/*
321 * Utility functions to map and unmap a single physical page. These
322 * are used to manage the mappable copies of ZFS file data, and therefore
323 * do not update ref/mod bits.
324 */
325caddr_t
326zfs_map_page(page_t *pp, enum seg_rw rw)
327{
328 if (kpm_enable)
329 return (hat_kpm_mapin(pp, 0));
330 ASSERT(rw == S_READ || rw == S_WRITE);
331 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
332 (caddr_t)-1));
333}
334
335void
336zfs_unmap_page(page_t *pp, caddr_t addr)
337{
338 if (kpm_enable) {
339 hat_kpm_mapout(pp, 0, addr);
340 } else {
341 ppmapout(addr);
342 }
343}
344
34dc7c2f
BB
345/*
346 * When a file is memory mapped, we must keep the IO data synchronized
347 * between the DMU cache and the memory mapped pages. What this means:
348 *
349 * On Write: If we find a memory mapped page, we write to *both*
350 * the page and the dmu buffer.
34dc7c2f 351 */
d164b209
BB
352static void
353update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
34dc7c2f 354{
d164b209 355 int64_t off;
34dc7c2f 356
34dc7c2f
BB
357 off = start & PAGEOFFSET;
358 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
359 page_t *pp;
d164b209 360 uint64_t nbytes = MIN(PAGESIZE - off, len);
34dc7c2f 361
34dc7c2f
BB
362 if (pp = page_lookup(vp, start, SE_SHARED)) {
363 caddr_t va;
364
b128c09f 365 va = zfs_map_page(pp, S_WRITE);
d164b209 366 (void) dmu_read(os, oid, start+off, nbytes, va+off);
b128c09f 367 zfs_unmap_page(pp, va);
34dc7c2f 368 page_unlock(pp);
34dc7c2f 369 }
d164b209 370 len -= nbytes;
34dc7c2f 371 off = 0;
34dc7c2f 372 }
34dc7c2f
BB
373}
374
375/*
376 * When a file is memory mapped, we must keep the IO data synchronized
377 * between the DMU cache and the memory mapped pages. What this means:
378 *
379 * On Read: We "read" preferentially from memory mapped pages,
380 * else we default from the dmu buffer.
381 *
382 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
383 * the file is memory mapped.
384 */
385static int
386mappedread(vnode_t *vp, int nbytes, uio_t *uio)
387{
388 znode_t *zp = VTOZ(vp);
389 objset_t *os = zp->z_zfsvfs->z_os;
390 int64_t start, off;
391 int len = nbytes;
392 int error = 0;
393
394 start = uio->uio_loffset;
395 off = start & PAGEOFFSET;
396 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
397 page_t *pp;
398 uint64_t bytes = MIN(PAGESIZE - off, len);
399
400 if (pp = page_lookup(vp, start, SE_SHARED)) {
401 caddr_t va;
402
b128c09f 403 va = zfs_map_page(pp, S_READ);
34dc7c2f 404 error = uiomove(va + off, bytes, UIO_READ, uio);
b128c09f 405 zfs_unmap_page(pp, va);
34dc7c2f
BB
406 page_unlock(pp);
407 } else {
408 error = dmu_read_uio(os, zp->z_id, uio, bytes);
409 }
410 len -= bytes;
411 off = 0;
412 if (error)
413 break;
414 }
415 return (error);
416}
417
418offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
419
420/*
421 * Read bytes from specified file into supplied buffer.
422 *
423 * IN: vp - vnode of file to be read from.
424 * uio - structure supplying read location, range info,
425 * and return buffer.
426 * ioflag - SYNC flags; used to provide FRSYNC semantics.
427 * cr - credentials of caller.
428 * ct - caller context
429 *
430 * OUT: uio - updated offset and range, buffer filled.
431 *
432 * RETURN: 0 if success
433 * error code if failure
434 *
435 * Side Effects:
436 * vp - atime updated if byte count > 0
437 */
438/* ARGSUSED */
439static int
440zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
441{
442 znode_t *zp = VTOZ(vp);
443 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
444 objset_t *os;
445 ssize_t n, nbytes;
446 int error;
447 rl_t *rl;
448
449 ZFS_ENTER(zfsvfs);
450 ZFS_VERIFY_ZP(zp);
451 os = zfsvfs->z_os;
452
453 if (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) {
454 ZFS_EXIT(zfsvfs);
455 return (EACCES);
456 }
457
458 /*
459 * Validate file offset
460 */
461 if (uio->uio_loffset < (offset_t)0) {
462 ZFS_EXIT(zfsvfs);
463 return (EINVAL);
464 }
465
466 /*
467 * Fasttrack empty reads
468 */
469 if (uio->uio_resid == 0) {
470 ZFS_EXIT(zfsvfs);
471 return (0);
472 }
473
474 /*
475 * Check for mandatory locks
476 */
477 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) {
478 if (error = chklock(vp, FREAD,
479 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
480 ZFS_EXIT(zfsvfs);
481 return (error);
482 }
483 }
484
485 /*
486 * If we're in FRSYNC mode, sync out this znode before reading it.
487 */
488 if (ioflag & FRSYNC)
489 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id);
490
491 /*
492 * Lock the range against changes.
493 */
494 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
495
496 /*
497 * If we are reading past end-of-file we can skip
498 * to the end; but we might still need to set atime.
499 */
500 if (uio->uio_loffset >= zp->z_phys->zp_size) {
501 error = 0;
502 goto out;
503 }
504
505 ASSERT(uio->uio_loffset < zp->z_phys->zp_size);
506 n = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset);
507
508 while (n > 0) {
509 nbytes = MIN(n, zfs_read_chunk_size -
510 P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
511
512 if (vn_has_cached_data(vp))
513 error = mappedread(vp, nbytes, uio);
514 else
515 error = dmu_read_uio(os, zp->z_id, uio, nbytes);
b128c09f
BB
516 if (error) {
517 /* convert checksum errors into IO errors */
518 if (error == ECKSUM)
519 error = EIO;
34dc7c2f 520 break;
b128c09f 521 }
34dc7c2f
BB
522
523 n -= nbytes;
524 }
525
526out:
527 zfs_range_unlock(rl);
528
529 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
530 ZFS_EXIT(zfsvfs);
531 return (error);
532}
533
34dc7c2f
BB
534/*
535 * Write the bytes to a file.
536 *
537 * IN: vp - vnode of file to be written to.
538 * uio - structure supplying write location, range info,
539 * and data buffer.
540 * ioflag - FAPPEND flag set if in append mode.
541 * cr - credentials of caller.
542 * ct - caller context (NFS/CIFS fem monitor only)
543 *
544 * OUT: uio - updated offset and range.
545 *
546 * RETURN: 0 if success
547 * error code if failure
548 *
549 * Timestamps:
550 * vp - ctime|mtime updated if byte count > 0
551 */
552/* ARGSUSED */
553static int
554zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
555{
556 znode_t *zp = VTOZ(vp);
557 rlim64_t limit = uio->uio_llimit;
558 ssize_t start_resid = uio->uio_resid;
559 ssize_t tx_bytes;
560 uint64_t end_size;
561 dmu_tx_t *tx;
562 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
563 zilog_t *zilog;
564 offset_t woff;
565 ssize_t n, nbytes;
566 rl_t *rl;
567 int max_blksz = zfsvfs->z_max_blksz;
b128c09f 568 uint64_t pflags;
34dc7c2f
BB
569 int error;
570
34dc7c2f
BB
571 /*
572 * Fasttrack empty write
573 */
574 n = start_resid;
575 if (n == 0)
576 return (0);
577
578 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
579 limit = MAXOFFSET_T;
580
581 ZFS_ENTER(zfsvfs);
582 ZFS_VERIFY_ZP(zp);
b128c09f
BB
583
584 /*
585 * If immutable or not appending then return EPERM
586 */
587 pflags = zp->z_phys->zp_flags;
588 if ((pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
589 ((pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
590 (uio->uio_loffset < zp->z_phys->zp_size))) {
591 ZFS_EXIT(zfsvfs);
592 return (EPERM);
593 }
594
34dc7c2f
BB
595 zilog = zfsvfs->z_log;
596
597 /*
598 * Pre-fault the pages to ensure slow (eg NFS) pages
599 * don't hold up txg.
600 */
b128c09f 601 uio_prefaultpages(n, uio);
34dc7c2f
BB
602
603 /*
604 * If in append mode, set the io offset pointer to eof.
605 */
606 if (ioflag & FAPPEND) {
607 /*
608 * Range lock for a file append:
609 * The value for the start of range will be determined by
610 * zfs_range_lock() (to guarantee append semantics).
611 * If this write will cause the block size to increase,
612 * zfs_range_lock() will lock the entire file, so we must
613 * later reduce the range after we grow the block size.
614 */
615 rl = zfs_range_lock(zp, 0, n, RL_APPEND);
616 if (rl->r_len == UINT64_MAX) {
617 /* overlocked, zp_size can't change */
618 woff = uio->uio_loffset = zp->z_phys->zp_size;
619 } else {
620 woff = uio->uio_loffset = rl->r_off;
621 }
622 } else {
623 woff = uio->uio_loffset;
624 /*
625 * Validate file offset
626 */
627 if (woff < 0) {
628 ZFS_EXIT(zfsvfs);
629 return (EINVAL);
630 }
631
632 /*
633 * If we need to grow the block size then zfs_range_lock()
634 * will lock a wider range than we request here.
635 * Later after growing the block size we reduce the range.
636 */
637 rl = zfs_range_lock(zp, woff, n, RL_WRITER);
638 }
639
640 if (woff >= limit) {
641 zfs_range_unlock(rl);
642 ZFS_EXIT(zfsvfs);
643 return (EFBIG);
644 }
645
646 if ((woff + n) > limit || woff > (limit - n))
647 n = limit - woff;
648
649 /*
650 * Check for mandatory locks
651 */
652 if (MANDMODE((mode_t)zp->z_phys->zp_mode) &&
653 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
654 zfs_range_unlock(rl);
655 ZFS_EXIT(zfsvfs);
656 return (error);
657 }
658 end_size = MAX(zp->z_phys->zp_size, woff + n);
659
660 /*
661 * Write the file in reasonable size chunks. Each chunk is written
662 * in a separate transaction; this keeps the intent log records small
663 * and allows us to do more fine-grained space accounting.
664 */
665 while (n > 0) {
666 /*
667 * Start a transaction.
668 */
669 woff = uio->uio_loffset;
670 tx = dmu_tx_create(zfsvfs->z_os);
671 dmu_tx_hold_bonus(tx, zp->z_id);
672 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
fb5f0bc8 673 error = dmu_tx_assign(tx, TXG_NOWAIT);
34dc7c2f 674 if (error) {
fb5f0bc8 675 if (error == ERESTART) {
34dc7c2f
BB
676 dmu_tx_wait(tx);
677 dmu_tx_abort(tx);
678 continue;
679 }
680 dmu_tx_abort(tx);
681 break;
682 }
683
684 /*
685 * If zfs_range_lock() over-locked we grow the blocksize
686 * and then reduce the lock range. This will only happen
687 * on the first iteration since zfs_range_reduce() will
688 * shrink down r_len to the appropriate size.
689 */
690 if (rl->r_len == UINT64_MAX) {
691 uint64_t new_blksz;
692
693 if (zp->z_blksz > max_blksz) {
694 ASSERT(!ISP2(zp->z_blksz));
695 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
696 } else {
697 new_blksz = MIN(end_size, max_blksz);
698 }
699 zfs_grow_blocksize(zp, new_blksz, tx);
700 zfs_range_reduce(rl, woff, n);
701 }
702
703 /*
704 * XXX - should we really limit each write to z_max_blksz?
705 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
706 */
707 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
34dc7c2f
BB
708
709 tx_bytes = uio->uio_resid;
d164b209 710 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, uio, nbytes, tx);
34dc7c2f 711 tx_bytes -= uio->uio_resid;
d164b209
BB
712 if (tx_bytes && vn_has_cached_data(vp))
713 update_pages(vp, woff,
714 tx_bytes, zfsvfs->z_os, zp->z_id);
34dc7c2f
BB
715
716 /*
717 * If we made no progress, we're done. If we made even
718 * partial progress, update the znode and ZIL accordingly.
719 */
720 if (tx_bytes == 0) {
721 dmu_tx_commit(tx);
722 ASSERT(error != 0);
723 break;
724 }
725
726 /*
727 * Clear Set-UID/Set-GID bits on successful write if not
728 * privileged and at least one of the excute bits is set.
729 *
730 * It would be nice to to this after all writes have
731 * been done, but that would still expose the ISUID/ISGID
732 * to another app after the partial write is committed.
733 *
734 * Note: we don't call zfs_fuid_map_id() here because
735 * user 0 is not an ephemeral uid.
736 */
737 mutex_enter(&zp->z_acl_lock);
738 if ((zp->z_phys->zp_mode & (S_IXUSR | (S_IXUSR >> 3) |
739 (S_IXUSR >> 6))) != 0 &&
740 (zp->z_phys->zp_mode & (S_ISUID | S_ISGID)) != 0 &&
741 secpolicy_vnode_setid_retain(cr,
742 (zp->z_phys->zp_mode & S_ISUID) != 0 &&
743 zp->z_phys->zp_uid == 0) != 0) {
744 zp->z_phys->zp_mode &= ~(S_ISUID | S_ISGID);
745 }
746 mutex_exit(&zp->z_acl_lock);
747
748 /*
749 * Update time stamp. NOTE: This marks the bonus buffer as
750 * dirty, so we don't have to do it again for zp_size.
751 */
752 zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
753
754 /*
755 * Update the file size (zp_size) if it has changed;
756 * account for possible concurrent updates.
757 */
758 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset)
759 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size,
760 uio->uio_loffset);
761 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
762 dmu_tx_commit(tx);
763
764 if (error != 0)
765 break;
766 ASSERT(tx_bytes == nbytes);
767 n -= nbytes;
768 }
769
770 zfs_range_unlock(rl);
771
772 /*
773 * If we're in replay mode, or we made no progress, return error.
774 * Otherwise, it's at least a partial write, so it's successful.
775 */
fb5f0bc8 776 if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
34dc7c2f
BB
777 ZFS_EXIT(zfsvfs);
778 return (error);
779 }
780
781 if (ioflag & (FSYNC | FDSYNC))
782 zil_commit(zilog, zp->z_last_itx, zp->z_id);
783
784 ZFS_EXIT(zfsvfs);
785 return (0);
786}
787
788void
789zfs_get_done(dmu_buf_t *db, void *vzgd)
790{
791 zgd_t *zgd = (zgd_t *)vzgd;
792 rl_t *rl = zgd->zgd_rl;
793 vnode_t *vp = ZTOV(rl->r_zp);
794
795 dmu_buf_rele(db, vzgd);
796 zfs_range_unlock(rl);
797 VN_RELE(vp);
798 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
799 kmem_free(zgd, sizeof (zgd_t));
800}
801
802/*
803 * Get data to generate a TX_WRITE intent log record.
804 */
805int
806zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
807{
808 zfsvfs_t *zfsvfs = arg;
809 objset_t *os = zfsvfs->z_os;
810 znode_t *zp;
811 uint64_t off = lr->lr_offset;
812 dmu_buf_t *db;
813 rl_t *rl;
814 zgd_t *zgd;
815 int dlen = lr->lr_length; /* length of user data */
816 int error = 0;
817
818 ASSERT(zio);
819 ASSERT(dlen != 0);
820
821 /*
822 * Nothing to do if the file has been removed
823 */
824 if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0)
825 return (ENOENT);
826 if (zp->z_unlinked) {
827 VN_RELE(ZTOV(zp));
828 return (ENOENT);
829 }
830
831 /*
832 * Write records come in two flavors: immediate and indirect.
833 * For small writes it's cheaper to store the data with the
834 * log record (immediate); for large writes it's cheaper to
835 * sync the data and get a pointer to it (indirect) so that
836 * we don't have to write the data twice.
837 */
838 if (buf != NULL) { /* immediate write */
839 rl = zfs_range_lock(zp, off, dlen, RL_READER);
840 /* test for truncation needs to be done while range locked */
841 if (off >= zp->z_phys->zp_size) {
842 error = ENOENT;
843 goto out;
844 }
845 VERIFY(0 == dmu_read(os, lr->lr_foid, off, dlen, buf));
846 } else { /* indirect write */
847 uint64_t boff; /* block starting offset */
848
849 /*
850 * Have to lock the whole block to ensure when it's
851 * written out and it's checksum is being calculated
852 * that no one can change the data. We need to re-check
853 * blocksize after we get the lock in case it's changed!
854 */
855 for (;;) {
856 if (ISP2(zp->z_blksz)) {
857 boff = P2ALIGN_TYPED(off, zp->z_blksz,
858 uint64_t);
859 } else {
860 boff = 0;
861 }
862 dlen = zp->z_blksz;
863 rl = zfs_range_lock(zp, boff, dlen, RL_READER);
864 if (zp->z_blksz == dlen)
865 break;
866 zfs_range_unlock(rl);
867 }
868 /* test for truncation needs to be done while range locked */
869 if (off >= zp->z_phys->zp_size) {
870 error = ENOENT;
871 goto out;
872 }
873 zgd = (zgd_t *)kmem_alloc(sizeof (zgd_t), KM_SLEEP);
874 zgd->zgd_rl = rl;
875 zgd->zgd_zilog = zfsvfs->z_log;
876 zgd->zgd_bp = &lr->lr_blkptr;
877 VERIFY(0 == dmu_buf_hold(os, lr->lr_foid, boff, zgd, &db));
878 ASSERT(boff == db->db_offset);
879 lr->lr_blkoff = off - boff;
880 error = dmu_sync(zio, db, &lr->lr_blkptr,
881 lr->lr_common.lrc_txg, zfs_get_done, zgd);
882 ASSERT((error && error != EINPROGRESS) ||
883 lr->lr_length <= zp->z_blksz);
884 if (error == 0)
885 zil_add_block(zfsvfs->z_log, &lr->lr_blkptr);
886 /*
887 * If we get EINPROGRESS, then we need to wait for a
888 * write IO initiated by dmu_sync() to complete before
889 * we can release this dbuf. We will finish everything
890 * up in the zfs_get_done() callback.
891 */
892 if (error == EINPROGRESS)
893 return (0);
894 dmu_buf_rele(db, zgd);
895 kmem_free(zgd, sizeof (zgd_t));
896 }
897out:
898 zfs_range_unlock(rl);
899 VN_RELE(ZTOV(zp));
900 return (error);
901}
902
903/*ARGSUSED*/
904static int
905zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
906 caller_context_t *ct)
907{
908 znode_t *zp = VTOZ(vp);
909 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
910 int error;
911
912 ZFS_ENTER(zfsvfs);
913 ZFS_VERIFY_ZP(zp);
914
915 if (flag & V_ACE_MASK)
916 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
917 else
918 error = zfs_zaccess_rwx(zp, mode, flag, cr);
919
920 ZFS_EXIT(zfsvfs);
921 return (error);
922}
923
924/*
925 * Lookup an entry in a directory, or an extended attribute directory.
926 * If it exists, return a held vnode reference for it.
927 *
928 * IN: dvp - vnode of directory to search.
929 * nm - name of entry to lookup.
930 * pnp - full pathname to lookup [UNUSED].
931 * flags - LOOKUP_XATTR set if looking for an attribute.
932 * rdir - root directory vnode [UNUSED].
933 * cr - credentials of caller.
934 * ct - caller context
935 * direntflags - directory lookup flags
936 * realpnp - returned pathname.
937 *
938 * OUT: vpp - vnode of located entry, NULL if not found.
939 *
940 * RETURN: 0 if success
941 * error code if failure
942 *
943 * Timestamps:
944 * NA
945 */
946/* ARGSUSED */
947static int
948zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
949 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
950 int *direntflags, pathname_t *realpnp)
951{
952 znode_t *zdp = VTOZ(dvp);
953 zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
954 int error;
955
956 ZFS_ENTER(zfsvfs);
957 ZFS_VERIFY_ZP(zdp);
958
959 *vpp = NULL;
960
961 if (flags & LOOKUP_XATTR) {
962 /*
963 * If the xattr property is off, refuse the lookup request.
964 */
965 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
966 ZFS_EXIT(zfsvfs);
967 return (EINVAL);
968 }
969
970 /*
971 * We don't allow recursive attributes..
972 * Maybe someday we will.
973 */
974 if (zdp->z_phys->zp_flags & ZFS_XATTR) {
975 ZFS_EXIT(zfsvfs);
976 return (EINVAL);
977 }
978
979 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
980 ZFS_EXIT(zfsvfs);
981 return (error);
982 }
983
984 /*
985 * Do we have permission to get into attribute directory?
986 */
987
988 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
989 B_FALSE, cr)) {
990 VN_RELE(*vpp);
991 *vpp = NULL;
992 }
993
994 ZFS_EXIT(zfsvfs);
995 return (error);
996 }
997
998 if (dvp->v_type != VDIR) {
999 ZFS_EXIT(zfsvfs);
1000 return (ENOTDIR);
1001 }
1002
1003 /*
1004 * Check accessibility of directory.
1005 */
1006
1007 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1008 ZFS_EXIT(zfsvfs);
1009 return (error);
1010 }
1011
1012 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1013 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1014 ZFS_EXIT(zfsvfs);
1015 return (EILSEQ);
1016 }
1017
1018 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1019 if (error == 0) {
1020 /*
1021 * Convert device special files
1022 */
1023 if (IS_DEVVP(*vpp)) {
1024 vnode_t *svp;
1025
1026 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1027 VN_RELE(*vpp);
1028 if (svp == NULL)
1029 error = ENOSYS;
1030 else
1031 *vpp = svp;
1032 }
1033 }
1034
1035 ZFS_EXIT(zfsvfs);
1036 return (error);
1037}
1038
1039/*
1040 * Attempt to create a new entry in a directory. If the entry
1041 * already exists, truncate the file if permissible, else return
1042 * an error. Return the vp of the created or trunc'd file.
1043 *
1044 * IN: dvp - vnode of directory to put new file entry in.
1045 * name - name of new file entry.
1046 * vap - attributes of new file.
1047 * excl - flag indicating exclusive or non-exclusive mode.
1048 * mode - mode to open file with.
1049 * cr - credentials of caller.
1050 * flag - large file flag [UNUSED].
1051 * ct - caller context
1052 * vsecp - ACL to be set
1053 *
1054 * OUT: vpp - vnode of created or trunc'd entry.
1055 *
1056 * RETURN: 0 if success
1057 * error code if failure
1058 *
1059 * Timestamps:
1060 * dvp - ctime|mtime updated if new entry created
1061 * vp - ctime|mtime always, atime if new
1062 */
1063
1064/* ARGSUSED */
1065static int
1066zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1067 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1068 vsecattr_t *vsecp)
1069{
1070 znode_t *zp, *dzp = VTOZ(dvp);
1071 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1072 zilog_t *zilog;
1073 objset_t *os;
1074 zfs_dirlock_t *dl;
1075 dmu_tx_t *tx;
1076 int error;
1077 zfs_acl_t *aclp = NULL;
1078 zfs_fuid_info_t *fuidp = NULL;
b128c09f
BB
1079 ksid_t *ksid;
1080 uid_t uid;
1081 gid_t gid = crgetgid(cr);
34dc7c2f
BB
1082
1083 /*
1084 * If we have an ephemeral id, ACL, or XVATTR then
1085 * make sure file system is at proper version
1086 */
1087
b128c09f
BB
1088 ksid = crgetsid(cr, KSID_OWNER);
1089 if (ksid)
1090 uid = ksid_getid(ksid);
1091 else
1092 uid = crgetuid(cr);
1093
34dc7c2f
BB
1094 if (zfsvfs->z_use_fuids == B_FALSE &&
1095 (vsecp || (vap->va_mask & AT_XVATTR) ||
b128c09f 1096 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
34dc7c2f
BB
1097 return (EINVAL);
1098
1099 ZFS_ENTER(zfsvfs);
1100 ZFS_VERIFY_ZP(dzp);
1101 os = zfsvfs->z_os;
1102 zilog = zfsvfs->z_log;
1103
1104 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1105 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1106 ZFS_EXIT(zfsvfs);
1107 return (EILSEQ);
1108 }
1109
1110 if (vap->va_mask & AT_XVATTR) {
1111 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1112 crgetuid(cr), cr, vap->va_type)) != 0) {
1113 ZFS_EXIT(zfsvfs);
1114 return (error);
1115 }
1116 }
1117top:
1118 *vpp = NULL;
1119
1120 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1121 vap->va_mode &= ~VSVTX;
1122
1123 if (*name == '\0') {
1124 /*
1125 * Null component name refers to the directory itself.
1126 */
1127 VN_HOLD(dvp);
1128 zp = dzp;
1129 dl = NULL;
1130 error = 0;
1131 } else {
1132 /* possible VN_HOLD(zp) */
1133 int zflg = 0;
1134
1135 if (flag & FIGNORECASE)
1136 zflg |= ZCILOOK;
1137
1138 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1139 NULL, NULL);
1140 if (error) {
1141 if (strcmp(name, "..") == 0)
1142 error = EISDIR;
1143 ZFS_EXIT(zfsvfs);
1144 if (aclp)
1145 zfs_acl_free(aclp);
1146 return (error);
1147 }
1148 }
1149 if (vsecp && aclp == NULL) {
1150 error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, &aclp);
1151 if (error) {
1152 ZFS_EXIT(zfsvfs);
1153 if (dl)
1154 zfs_dirent_unlock(dl);
1155 return (error);
1156 }
1157 }
1158
1159 if (zp == NULL) {
1160 uint64_t txtype;
1161
1162 /*
1163 * Create a new file object and update the directory
1164 * to reference it.
1165 */
1166 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1167 goto out;
1168 }
1169
1170 /*
1171 * We only support the creation of regular files in
1172 * extended attribute directories.
1173 */
1174 if ((dzp->z_phys->zp_flags & ZFS_XATTR) &&
1175 (vap->va_type != VREG)) {
1176 error = EINVAL;
1177 goto out;
1178 }
1179
1180 tx = dmu_tx_create(os);
1181 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
b128c09f
BB
1182 if ((aclp && aclp->z_has_fuids) || IS_EPHEMERAL(uid) ||
1183 IS_EPHEMERAL(gid)) {
34dc7c2f
BB
1184 if (zfsvfs->z_fuid_obj == 0) {
1185 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1186 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1187 FUID_SIZE_ESTIMATE(zfsvfs));
1188 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ,
1189 FALSE, NULL);
1190 } else {
1191 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
1192 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
1193 FUID_SIZE_ESTIMATE(zfsvfs));
1194 }
1195 }
1196 dmu_tx_hold_bonus(tx, dzp->z_id);
1197 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1198 if ((dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) || aclp) {
1199 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1200 0, SPA_MAXBLOCKSIZE);
1201 }
fb5f0bc8 1202 error = dmu_tx_assign(tx, TXG_NOWAIT);
34dc7c2f
BB
1203 if (error) {
1204 zfs_dirent_unlock(dl);
fb5f0bc8 1205 if (error == ERESTART) {
34dc7c2f
BB
1206 dmu_tx_wait(tx);
1207 dmu_tx_abort(tx);
1208 goto top;
1209 }
1210 dmu_tx_abort(tx);
1211 ZFS_EXIT(zfsvfs);
1212 if (aclp)
1213 zfs_acl_free(aclp);
1214 return (error);
1215 }
1216 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, aclp, &fuidp);
1217 (void) zfs_link_create(dl, zp, tx, ZNEW);
1218 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1219 if (flag & FIGNORECASE)
1220 txtype |= TX_CI;
1221 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1222 vsecp, fuidp, vap);
1223 if (fuidp)
1224 zfs_fuid_info_free(fuidp);
1225 dmu_tx_commit(tx);
1226 } else {
1227 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1228
1229 /*
1230 * A directory entry already exists for this name.
1231 */
1232 /*
1233 * Can't truncate an existing file if in exclusive mode.
1234 */
1235 if (excl == EXCL) {
1236 error = EEXIST;
1237 goto out;
1238 }
1239 /*
1240 * Can't open a directory for writing.
1241 */
1242 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1243 error = EISDIR;
1244 goto out;
1245 }
1246 /*
1247 * Verify requested access to file.
1248 */
1249 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1250 goto out;
1251 }
1252
1253 mutex_enter(&dzp->z_lock);
1254 dzp->z_seq++;
1255 mutex_exit(&dzp->z_lock);
1256
1257 /*
1258 * Truncate regular files if requested.
1259 */
1260 if ((ZTOV(zp)->v_type == VREG) &&
1261 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
b128c09f
BB
1262 /* we can't hold any locks when calling zfs_freesp() */
1263 zfs_dirent_unlock(dl);
1264 dl = NULL;
34dc7c2f 1265 error = zfs_freesp(zp, 0, 0, mode, TRUE);
34dc7c2f
BB
1266 if (error == 0) {
1267 vnevent_create(ZTOV(zp), ct);
1268 }
1269 }
1270 }
1271out:
1272
1273 if (dl)
1274 zfs_dirent_unlock(dl);
1275
1276 if (error) {
1277 if (zp)
1278 VN_RELE(ZTOV(zp));
1279 } else {
1280 *vpp = ZTOV(zp);
1281 /*
1282 * If vnode is for a device return a specfs vnode instead.
1283 */
1284 if (IS_DEVVP(*vpp)) {
1285 struct vnode *svp;
1286
1287 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1288 VN_RELE(*vpp);
1289 if (svp == NULL) {
1290 error = ENOSYS;
1291 }
1292 *vpp = svp;
1293 }
1294 }
1295 if (aclp)
1296 zfs_acl_free(aclp);
1297
1298 ZFS_EXIT(zfsvfs);
1299 return (error);
1300}
1301
1302/*
1303 * Remove an entry from a directory.
1304 *
1305 * IN: dvp - vnode of directory to remove entry from.
1306 * name - name of entry to remove.
1307 * cr - credentials of caller.
1308 * ct - caller context
1309 * flags - case flags
1310 *
1311 * RETURN: 0 if success
1312 * error code if failure
1313 *
1314 * Timestamps:
1315 * dvp - ctime|mtime
1316 * vp - ctime (if nlink > 0)
1317 */
1318/*ARGSUSED*/
1319static int
1320zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1321 int flags)
1322{
1323 znode_t *zp, *dzp = VTOZ(dvp);
1324 znode_t *xzp = NULL;
1325 vnode_t *vp;
1326 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1327 zilog_t *zilog;
1328 uint64_t acl_obj, xattr_obj;
1329 zfs_dirlock_t *dl;
1330 dmu_tx_t *tx;
1331 boolean_t may_delete_now, delete_now = FALSE;
b128c09f 1332 boolean_t unlinked, toobig = FALSE;
34dc7c2f
BB
1333 uint64_t txtype;
1334 pathname_t *realnmp = NULL;
1335 pathname_t realnm;
1336 int error;
1337 int zflg = ZEXISTS;
1338
1339 ZFS_ENTER(zfsvfs);
1340 ZFS_VERIFY_ZP(dzp);
1341 zilog = zfsvfs->z_log;
1342
1343 if (flags & FIGNORECASE) {
1344 zflg |= ZCILOOK;
1345 pn_alloc(&realnm);
1346 realnmp = &realnm;
1347 }
1348
1349top:
1350 /*
1351 * Attempt to lock directory; fail if entry doesn't exist.
1352 */
1353 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1354 NULL, realnmp)) {
1355 if (realnmp)
1356 pn_free(realnmp);
1357 ZFS_EXIT(zfsvfs);
1358 return (error);
1359 }
1360
1361 vp = ZTOV(zp);
1362
1363 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1364 goto out;
1365 }
1366
1367 /*
1368 * Need to use rmdir for removing directories.
1369 */
1370 if (vp->v_type == VDIR) {
1371 error = EPERM;
1372 goto out;
1373 }
1374
1375 vnevent_remove(vp, dvp, name, ct);
1376
1377 if (realnmp)
1378 dnlc_remove(dvp, realnmp->pn_buf);
1379 else
1380 dnlc_remove(dvp, name);
1381
1382 mutex_enter(&vp->v_lock);
1383 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1384 mutex_exit(&vp->v_lock);
1385
1386 /*
1387 * We may delete the znode now, or we may put it in the unlinked set;
1388 * it depends on whether we're the last link, and on whether there are
1389 * other holds on the vnode. So we dmu_tx_hold() the right things to
1390 * allow for either case.
1391 */
1392 tx = dmu_tx_create(zfsvfs->z_os);
1393 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1394 dmu_tx_hold_bonus(tx, zp->z_id);
b128c09f
BB
1395 if (may_delete_now) {
1396 toobig =
1397 zp->z_phys->zp_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1398 /* if the file is too big, only hold_free a token amount */
1399 dmu_tx_hold_free(tx, zp->z_id, 0,
1400 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1401 }
34dc7c2f
BB
1402
1403 /* are there any extended attributes? */
1404 if ((xattr_obj = zp->z_phys->zp_xattr) != 0) {
1405 /* XXX - do we need this if we are deleting? */
1406 dmu_tx_hold_bonus(tx, xattr_obj);
1407 }
1408
1409 /* are there any additional acls */
1410 if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 &&
1411 may_delete_now)
1412 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1413
1414 /* charge as an update -- would be nice not to charge at all */
1415 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1416
fb5f0bc8 1417 error = dmu_tx_assign(tx, TXG_NOWAIT);
34dc7c2f
BB
1418 if (error) {
1419 zfs_dirent_unlock(dl);
1420 VN_RELE(vp);
fb5f0bc8 1421 if (error == ERESTART) {
34dc7c2f
BB
1422 dmu_tx_wait(tx);
1423 dmu_tx_abort(tx);
1424 goto top;
1425 }
1426 if (realnmp)
1427 pn_free(realnmp);
1428 dmu_tx_abort(tx);
1429 ZFS_EXIT(zfsvfs);
1430 return (error);
1431 }
1432
1433 /*
1434 * Remove the directory entry.
1435 */
1436 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1437
1438 if (error) {
1439 dmu_tx_commit(tx);
1440 goto out;
1441 }
1442
1443 if (unlinked) {
1444 mutex_enter(&vp->v_lock);
b128c09f 1445 delete_now = may_delete_now && !toobig &&
34dc7c2f
BB
1446 vp->v_count == 1 && !vn_has_cached_data(vp) &&
1447 zp->z_phys->zp_xattr == xattr_obj &&
1448 zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj;
1449 mutex_exit(&vp->v_lock);
1450 }
1451
1452 if (delete_now) {
1453 if (zp->z_phys->zp_xattr) {
1454 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp);
1455 ASSERT3U(error, ==, 0);
1456 ASSERT3U(xzp->z_phys->zp_links, ==, 2);
1457 dmu_buf_will_dirty(xzp->z_dbuf, tx);
1458 mutex_enter(&xzp->z_lock);
1459 xzp->z_unlinked = 1;
1460 xzp->z_phys->zp_links = 0;
1461 mutex_exit(&xzp->z_lock);
1462 zfs_unlinked_add(xzp, tx);
1463 zp->z_phys->zp_xattr = 0; /* probably unnecessary */
1464 }
1465 mutex_enter(&zp->z_lock);
1466 mutex_enter(&vp->v_lock);
1467 vp->v_count--;
1468 ASSERT3U(vp->v_count, ==, 0);
1469 mutex_exit(&vp->v_lock);
1470 mutex_exit(&zp->z_lock);
1471 zfs_znode_delete(zp, tx);
1472 } else if (unlinked) {
1473 zfs_unlinked_add(zp, tx);
1474 }
1475
1476 txtype = TX_REMOVE;
1477 if (flags & FIGNORECASE)
1478 txtype |= TX_CI;
1479 zfs_log_remove(zilog, tx, txtype, dzp, name);
1480
1481 dmu_tx_commit(tx);
1482out:
1483 if (realnmp)
1484 pn_free(realnmp);
1485
1486 zfs_dirent_unlock(dl);
1487
1488 if (!delete_now) {
1489 VN_RELE(vp);
1490 } else if (xzp) {
b128c09f 1491 /* this rele is delayed to prevent nesting transactions */
34dc7c2f
BB
1492 VN_RELE(ZTOV(xzp));
1493 }
1494
1495 ZFS_EXIT(zfsvfs);
1496 return (error);
1497}
1498
1499/*
1500 * Create a new directory and insert it into dvp using the name
1501 * provided. Return a pointer to the inserted directory.
1502 *
1503 * IN: dvp - vnode of directory to add subdir to.
1504 * dirname - name of new directory.
1505 * vap - attributes of new directory.
1506 * cr - credentials of caller.
1507 * ct - caller context
1508 * vsecp - ACL to be set
1509 *
1510 * OUT: vpp - vnode of created directory.
1511 *
1512 * RETURN: 0 if success
1513 * error code if failure
1514 *
1515 * Timestamps:
1516 * dvp - ctime|mtime updated
1517 * vp - ctime|mtime|atime updated
1518 */
1519/*ARGSUSED*/
1520static int
1521zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1522 caller_context_t *ct, int flags, vsecattr_t *vsecp)
1523{
1524 znode_t *zp, *dzp = VTOZ(dvp);
1525 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1526 zilog_t *zilog;
1527 zfs_dirlock_t *dl;
1528 uint64_t txtype;
1529 dmu_tx_t *tx;
1530 int error;
1531 zfs_acl_t *aclp = NULL;
1532 zfs_fuid_info_t *fuidp = NULL;
1533 int zf = ZNEW;
b128c09f
BB
1534 ksid_t *ksid;
1535 uid_t uid;
1536 gid_t gid = crgetgid(cr);
34dc7c2f
BB
1537
1538 ASSERT(vap->va_type == VDIR);
1539
1540 /*
1541 * If we have an ephemeral id, ACL, or XVATTR then
1542 * make sure file system is at proper version
1543 */
1544
b128c09f
BB
1545 ksid = crgetsid(cr, KSID_OWNER);
1546 if (ksid)
1547 uid = ksid_getid(ksid);
1548 else
1549 uid = crgetuid(cr);
34dc7c2f 1550 if (zfsvfs->z_use_fuids == B_FALSE &&
b128c09f
BB
1551 (vsecp || (vap->va_mask & AT_XVATTR) ||
1552 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
34dc7c2f
BB
1553 return (EINVAL);
1554
1555 ZFS_ENTER(zfsvfs);
1556 ZFS_VERIFY_ZP(dzp);
1557 zilog = zfsvfs->z_log;
1558
1559 if (dzp->z_phys->zp_flags & ZFS_XATTR) {
1560 ZFS_EXIT(zfsvfs);
1561 return (EINVAL);
1562 }
1563
1564 if (zfsvfs->z_utf8 && u8_validate(dirname,
1565 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1566 ZFS_EXIT(zfsvfs);
1567 return (EILSEQ);
1568 }
1569 if (flags & FIGNORECASE)
1570 zf |= ZCILOOK;
1571
1572 if (vap->va_mask & AT_XVATTR)
1573 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1574 crgetuid(cr), cr, vap->va_type)) != 0) {
1575 ZFS_EXIT(zfsvfs);
1576 return (error);
1577 }
1578
1579 /*
1580 * First make sure the new directory doesn't exist.
1581 */
1582top:
1583 *vpp = NULL;
1584
1585 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1586 NULL, NULL)) {
1587 ZFS_EXIT(zfsvfs);
1588 return (error);
1589 }
1590
1591 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1592 zfs_dirent_unlock(dl);
1593 ZFS_EXIT(zfsvfs);
1594 return (error);
1595 }
1596
1597 if (vsecp && aclp == NULL) {
1598 error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, &aclp);
1599 if (error) {
1600 zfs_dirent_unlock(dl);
1601 ZFS_EXIT(zfsvfs);
1602 return (error);
1603 }
1604 }
1605 /*
1606 * Add a new entry to the directory.
1607 */
1608 tx = dmu_tx_create(zfsvfs->z_os);
1609 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1610 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
b128c09f
BB
1611 if ((aclp && aclp->z_has_fuids) || IS_EPHEMERAL(uid) ||
1612 IS_EPHEMERAL(gid)) {
34dc7c2f
BB
1613 if (zfsvfs->z_fuid_obj == 0) {
1614 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1615 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1616 FUID_SIZE_ESTIMATE(zfsvfs));
1617 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL);
1618 } else {
1619 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
1620 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
1621 FUID_SIZE_ESTIMATE(zfsvfs));
1622 }
1623 }
1624 if ((dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) || aclp)
1625 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1626 0, SPA_MAXBLOCKSIZE);
fb5f0bc8 1627 error = dmu_tx_assign(tx, TXG_NOWAIT);
34dc7c2f
BB
1628 if (error) {
1629 zfs_dirent_unlock(dl);
fb5f0bc8 1630 if (error == ERESTART) {
34dc7c2f
BB
1631 dmu_tx_wait(tx);
1632 dmu_tx_abort(tx);
1633 goto top;
1634 }
1635 dmu_tx_abort(tx);
1636 ZFS_EXIT(zfsvfs);
1637 if (aclp)
1638 zfs_acl_free(aclp);
1639 return (error);
1640 }
1641
1642 /*
1643 * Create new node.
1644 */
1645 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, aclp, &fuidp);
1646
1647 if (aclp)
1648 zfs_acl_free(aclp);
1649
1650 /*
1651 * Now put new name in parent dir.
1652 */
1653 (void) zfs_link_create(dl, zp, tx, ZNEW);
1654
1655 *vpp = ZTOV(zp);
1656
1657 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1658 if (flags & FIGNORECASE)
1659 txtype |= TX_CI;
1660 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, fuidp, vap);
1661
1662 if (fuidp)
1663 zfs_fuid_info_free(fuidp);
1664 dmu_tx_commit(tx);
1665
1666 zfs_dirent_unlock(dl);
1667
1668 ZFS_EXIT(zfsvfs);
1669 return (0);
1670}
1671
1672/*
1673 * Remove a directory subdir entry. If the current working
1674 * directory is the same as the subdir to be removed, the
1675 * remove will fail.
1676 *
1677 * IN: dvp - vnode of directory to remove from.
1678 * name - name of directory to be removed.
1679 * cwd - vnode of current working directory.
1680 * cr - credentials of caller.
1681 * ct - caller context
1682 * flags - case flags
1683 *
1684 * RETURN: 0 if success
1685 * error code if failure
1686 *
1687 * Timestamps:
1688 * dvp - ctime|mtime updated
1689 */
1690/*ARGSUSED*/
1691static int
1692zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
1693 caller_context_t *ct, int flags)
1694{
1695 znode_t *dzp = VTOZ(dvp);
1696 znode_t *zp;
1697 vnode_t *vp;
1698 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1699 zilog_t *zilog;
1700 zfs_dirlock_t *dl;
1701 dmu_tx_t *tx;
1702 int error;
1703 int zflg = ZEXISTS;
1704
1705 ZFS_ENTER(zfsvfs);
1706 ZFS_VERIFY_ZP(dzp);
1707 zilog = zfsvfs->z_log;
1708
1709 if (flags & FIGNORECASE)
1710 zflg |= ZCILOOK;
1711top:
1712 zp = NULL;
1713
1714 /*
1715 * Attempt to lock directory; fail if entry doesn't exist.
1716 */
1717 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1718 NULL, NULL)) {
1719 ZFS_EXIT(zfsvfs);
1720 return (error);
1721 }
1722
1723 vp = ZTOV(zp);
1724
1725 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1726 goto out;
1727 }
1728
1729 if (vp->v_type != VDIR) {
1730 error = ENOTDIR;
1731 goto out;
1732 }
1733
1734 if (vp == cwd) {
1735 error = EINVAL;
1736 goto out;
1737 }
1738
1739 vnevent_rmdir(vp, dvp, name, ct);
1740
1741 /*
1742 * Grab a lock on the directory to make sure that noone is
1743 * trying to add (or lookup) entries while we are removing it.
1744 */
1745 rw_enter(&zp->z_name_lock, RW_WRITER);
1746
1747 /*
1748 * Grab a lock on the parent pointer to make sure we play well
1749 * with the treewalk and directory rename code.
1750 */
1751 rw_enter(&zp->z_parent_lock, RW_WRITER);
1752
1753 tx = dmu_tx_create(zfsvfs->z_os);
1754 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1755 dmu_tx_hold_bonus(tx, zp->z_id);
1756 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
fb5f0bc8 1757 error = dmu_tx_assign(tx, TXG_NOWAIT);
34dc7c2f
BB
1758 if (error) {
1759 rw_exit(&zp->z_parent_lock);
1760 rw_exit(&zp->z_name_lock);
1761 zfs_dirent_unlock(dl);
1762 VN_RELE(vp);
fb5f0bc8 1763 if (error == ERESTART) {
34dc7c2f
BB
1764 dmu_tx_wait(tx);
1765 dmu_tx_abort(tx);
1766 goto top;
1767 }
1768 dmu_tx_abort(tx);
1769 ZFS_EXIT(zfsvfs);
1770 return (error);
1771 }
1772
1773 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
1774
1775 if (error == 0) {
1776 uint64_t txtype = TX_RMDIR;
1777 if (flags & FIGNORECASE)
1778 txtype |= TX_CI;
1779 zfs_log_remove(zilog, tx, txtype, dzp, name);
1780 }
1781
1782 dmu_tx_commit(tx);
1783
1784 rw_exit(&zp->z_parent_lock);
1785 rw_exit(&zp->z_name_lock);
1786out:
1787 zfs_dirent_unlock(dl);
1788
1789 VN_RELE(vp);
1790
1791 ZFS_EXIT(zfsvfs);
1792 return (error);
1793}
1794
1795/*
1796 * Read as many directory entries as will fit into the provided
1797 * buffer from the given directory cursor position (specified in
1798 * the uio structure.
1799 *
1800 * IN: vp - vnode of directory to read.
1801 * uio - structure supplying read location, range info,
1802 * and return buffer.
1803 * cr - credentials of caller.
1804 * ct - caller context
1805 * flags - case flags
1806 *
1807 * OUT: uio - updated offset and range, buffer filled.
1808 * eofp - set to true if end-of-file detected.
1809 *
1810 * RETURN: 0 if success
1811 * error code if failure
1812 *
1813 * Timestamps:
1814 * vp - atime updated
1815 *
1816 * Note that the low 4 bits of the cookie returned by zap is always zero.
1817 * This allows us to use the low range for "special" directory entries:
1818 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
1819 * we use the offset 2 for the '.zfs' directory.
1820 */
1821/* ARGSUSED */
1822static int
1823zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
1824 caller_context_t *ct, int flags)
1825{
1826 znode_t *zp = VTOZ(vp);
1827 iovec_t *iovp;
1828 edirent_t *eodp;
1829 dirent64_t *odp;
1830 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1831 objset_t *os;
1832 caddr_t outbuf;
1833 size_t bufsize;
1834 zap_cursor_t zc;
1835 zap_attribute_t zap;
1836 uint_t bytes_wanted;
1837 uint64_t offset; /* must be unsigned; checks for < 1 */
1838 int local_eof;
1839 int outcount;
1840 int error;
1841 uint8_t prefetch;
1842 boolean_t check_sysattrs;
1843
1844 ZFS_ENTER(zfsvfs);
1845 ZFS_VERIFY_ZP(zp);
1846
1847 /*
1848 * If we are not given an eof variable,
1849 * use a local one.
1850 */
1851 if (eofp == NULL)
1852 eofp = &local_eof;
1853
1854 /*
1855 * Check for valid iov_len.
1856 */
1857 if (uio->uio_iov->iov_len <= 0) {
1858 ZFS_EXIT(zfsvfs);
1859 return (EINVAL);
1860 }
1861
1862 /*
1863 * Quit if directory has been removed (posix)
1864 */
1865 if ((*eofp = zp->z_unlinked) != 0) {
1866 ZFS_EXIT(zfsvfs);
1867 return (0);
1868 }
1869
1870 error = 0;
1871 os = zfsvfs->z_os;
1872 offset = uio->uio_loffset;
1873 prefetch = zp->z_zn_prefetch;
1874
1875 /*
1876 * Initialize the iterator cursor.
1877 */
1878 if (offset <= 3) {
1879 /*
1880 * Start iteration from the beginning of the directory.
1881 */
1882 zap_cursor_init(&zc, os, zp->z_id);
1883 } else {
1884 /*
1885 * The offset is a serialized cursor.
1886 */
1887 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
1888 }
1889
1890 /*
1891 * Get space to change directory entries into fs independent format.
1892 */
1893 iovp = uio->uio_iov;
1894 bytes_wanted = iovp->iov_len;
1895 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
1896 bufsize = bytes_wanted;
1897 outbuf = kmem_alloc(bufsize, KM_SLEEP);
1898 odp = (struct dirent64 *)outbuf;
1899 } else {
1900 bufsize = bytes_wanted;
1901 odp = (struct dirent64 *)iovp->iov_base;
1902 }
1903 eodp = (struct edirent *)odp;
1904
1905 /*
b128c09f
BB
1906 * If this VFS supports the system attribute view interface; and
1907 * we're looking at an extended attribute directory; and we care
1908 * about normalization conflicts on this vfs; then we must check
1909 * for normalization conflicts with the sysattr name space.
34dc7c2f 1910 */
b128c09f 1911 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
34dc7c2f
BB
1912 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
1913 (flags & V_RDDIR_ENTFLAGS);
1914
1915 /*
1916 * Transform to file-system independent format
1917 */
1918 outcount = 0;
1919 while (outcount < bytes_wanted) {
1920 ino64_t objnum;
1921 ushort_t reclen;
1922 off64_t *next;
1923
1924 /*
1925 * Special case `.', `..', and `.zfs'.
1926 */
1927 if (offset == 0) {
1928 (void) strcpy(zap.za_name, ".");
1929 zap.za_normalization_conflict = 0;
1930 objnum = zp->z_id;
1931 } else if (offset == 1) {
1932 (void) strcpy(zap.za_name, "..");
1933 zap.za_normalization_conflict = 0;
1934 objnum = zp->z_phys->zp_parent;
1935 } else if (offset == 2 && zfs_show_ctldir(zp)) {
1936 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
1937 zap.za_normalization_conflict = 0;
1938 objnum = ZFSCTL_INO_ROOT;
1939 } else {
1940 /*
1941 * Grab next entry.
1942 */
1943 if (error = zap_cursor_retrieve(&zc, &zap)) {
1944 if ((*eofp = (error == ENOENT)) != 0)
1945 break;
1946 else
1947 goto update;
1948 }
1949
1950 if (zap.za_integer_length != 8 ||
1951 zap.za_num_integers != 1) {
1952 cmn_err(CE_WARN, "zap_readdir: bad directory "
1953 "entry, obj = %lld, offset = %lld\n",
1954 (u_longlong_t)zp->z_id,
1955 (u_longlong_t)offset);
1956 error = ENXIO;
1957 goto update;
1958 }
1959
1960 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
1961 /*
1962 * MacOS X can extract the object type here such as:
1963 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
1964 */
1965
1966 if (check_sysattrs && !zap.za_normalization_conflict) {
1967 zap.za_normalization_conflict =
1968 xattr_sysattr_casechk(zap.za_name);
1969 }
1970 }
1971
1972 if (flags & V_RDDIR_ENTFLAGS)
1973 reclen = EDIRENT_RECLEN(strlen(zap.za_name));
1974 else
1975 reclen = DIRENT64_RECLEN(strlen(zap.za_name));
1976
1977 /*
1978 * Will this entry fit in the buffer?
1979 */
1980 if (outcount + reclen > bufsize) {
1981 /*
1982 * Did we manage to fit anything in the buffer?
1983 */
1984 if (!outcount) {
1985 error = EINVAL;
1986 goto update;
1987 }
1988 break;
1989 }
1990 if (flags & V_RDDIR_ENTFLAGS) {
1991 /*
1992 * Add extended flag entry:
1993 */
1994 eodp->ed_ino = objnum;
1995 eodp->ed_reclen = reclen;
1996 /* NOTE: ed_off is the offset for the *next* entry */
1997 next = &(eodp->ed_off);
1998 eodp->ed_eflags = zap.za_normalization_conflict ?
1999 ED_CASE_CONFLICT : 0;
2000 (void) strncpy(eodp->ed_name, zap.za_name,
2001 EDIRENT_NAMELEN(reclen));
2002 eodp = (edirent_t *)((intptr_t)eodp + reclen);
2003 } else {
2004 /*
2005 * Add normal entry:
2006 */
2007 odp->d_ino = objnum;
2008 odp->d_reclen = reclen;
2009 /* NOTE: d_off is the offset for the *next* entry */
2010 next = &(odp->d_off);
2011 (void) strncpy(odp->d_name, zap.za_name,
2012 DIRENT64_NAMELEN(reclen));
2013 odp = (dirent64_t *)((intptr_t)odp + reclen);
2014 }
2015 outcount += reclen;
2016
2017 ASSERT(outcount <= bufsize);
2018
2019 /* Prefetch znode */
2020 if (prefetch)
2021 dmu_prefetch(os, objnum, 0, 0);
2022
2023 /*
2024 * Move to the next entry, fill in the previous offset.
2025 */
2026 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2027 zap_cursor_advance(&zc);
2028 offset = zap_cursor_serialize(&zc);
2029 } else {
2030 offset += 1;
2031 }
2032 *next = offset;
2033 }
2034 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2035
2036 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2037 iovp->iov_base += outcount;
2038 iovp->iov_len -= outcount;
2039 uio->uio_resid -= outcount;
2040 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2041 /*
2042 * Reset the pointer.
2043 */
2044 offset = uio->uio_loffset;
2045 }
2046
2047update:
2048 zap_cursor_fini(&zc);
2049 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2050 kmem_free(outbuf, bufsize);
2051
2052 if (error == ENOENT)
2053 error = 0;
2054
2055 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2056
2057 uio->uio_loffset = offset;
2058 ZFS_EXIT(zfsvfs);
2059 return (error);
2060}
2061
2062ulong_t zfs_fsync_sync_cnt = 4;
2063
2064static int
2065zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2066{
2067 znode_t *zp = VTOZ(vp);
2068 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2069
2070 /*
2071 * Regardless of whether this is required for standards conformance,
2072 * this is the logical behavior when fsync() is called on a file with
2073 * dirty pages. We use B_ASYNC since the ZIL transactions are already
2074 * going to be pushed out as part of the zil_commit().
2075 */
2076 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2077 (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2078 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2079
2080 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2081
2082 ZFS_ENTER(zfsvfs);
2083 ZFS_VERIFY_ZP(zp);
2084 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id);
2085 ZFS_EXIT(zfsvfs);
2086 return (0);
2087}
2088
2089
2090/*
2091 * Get the requested file attributes and place them in the provided
2092 * vattr structure.
2093 *
2094 * IN: vp - vnode of file.
2095 * vap - va_mask identifies requested attributes.
2096 * If AT_XVATTR set, then optional attrs are requested
2097 * flags - ATTR_NOACLCHECK (CIFS server context)
2098 * cr - credentials of caller.
2099 * ct - caller context
2100 *
2101 * OUT: vap - attribute values.
2102 *
2103 * RETURN: 0 (always succeeds)
2104 */
2105/* ARGSUSED */
2106static int
2107zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2108 caller_context_t *ct)
2109{
2110 znode_t *zp = VTOZ(vp);
2111 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2112 znode_phys_t *pzp;
2113 int error = 0;
2114 uint64_t links;
2115 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2116 xoptattr_t *xoap = NULL;
2117 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2118
2119 ZFS_ENTER(zfsvfs);
2120 ZFS_VERIFY_ZP(zp);
2121 pzp = zp->z_phys;
2122
2123 mutex_enter(&zp->z_lock);
2124
2125 /*
2126 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2127 * Also, if we are the owner don't bother, since owner should
2128 * always be allowed to read basic attributes of file.
2129 */
2130 if (!(pzp->zp_flags & ZFS_ACL_TRIVIAL) &&
2131 (pzp->zp_uid != crgetuid(cr))) {
2132 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2133 skipaclchk, cr)) {
2134 mutex_exit(&zp->z_lock);
2135 ZFS_EXIT(zfsvfs);
2136 return (error);
2137 }
2138 }
2139
2140 /*
2141 * Return all attributes. It's cheaper to provide the answer
2142 * than to determine whether we were asked the question.
2143 */
2144
2145 vap->va_type = vp->v_type;
2146 vap->va_mode = pzp->zp_mode & MODEMASK;
2147 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2148 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2149 vap->va_nodeid = zp->z_id;
2150 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2151 links = pzp->zp_links + 1;
2152 else
2153 links = pzp->zp_links;
2154 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */
2155 vap->va_size = pzp->zp_size;
2156 vap->va_rdev = vp->v_rdev;
2157 vap->va_seq = zp->z_seq;
2158
2159 /*
2160 * Add in any requested optional attributes and the create time.
2161 * Also set the corresponding bits in the returned attribute bitmap.
2162 */
2163 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2164 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2165 xoap->xoa_archive =
2166 ((pzp->zp_flags & ZFS_ARCHIVE) != 0);
2167 XVA_SET_RTN(xvap, XAT_ARCHIVE);
2168 }
2169
2170 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2171 xoap->xoa_readonly =
2172 ((pzp->zp_flags & ZFS_READONLY) != 0);
2173 XVA_SET_RTN(xvap, XAT_READONLY);
2174 }
2175
2176 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2177 xoap->xoa_system =
2178 ((pzp->zp_flags & ZFS_SYSTEM) != 0);
2179 XVA_SET_RTN(xvap, XAT_SYSTEM);
2180 }
2181
2182 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2183 xoap->xoa_hidden =
2184 ((pzp->zp_flags & ZFS_HIDDEN) != 0);
2185 XVA_SET_RTN(xvap, XAT_HIDDEN);
2186 }
2187
2188 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2189 xoap->xoa_nounlink =
2190 ((pzp->zp_flags & ZFS_NOUNLINK) != 0);
2191 XVA_SET_RTN(xvap, XAT_NOUNLINK);
2192 }
2193
2194 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2195 xoap->xoa_immutable =
2196 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0);
2197 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2198 }
2199
2200 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2201 xoap->xoa_appendonly =
2202 ((pzp->zp_flags & ZFS_APPENDONLY) != 0);
2203 XVA_SET_RTN(xvap, XAT_APPENDONLY);
2204 }
2205
2206 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2207 xoap->xoa_nodump =
2208 ((pzp->zp_flags & ZFS_NODUMP) != 0);
2209 XVA_SET_RTN(xvap, XAT_NODUMP);
2210 }
2211
2212 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2213 xoap->xoa_opaque =
2214 ((pzp->zp_flags & ZFS_OPAQUE) != 0);
2215 XVA_SET_RTN(xvap, XAT_OPAQUE);
2216 }
2217
2218 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2219 xoap->xoa_av_quarantined =
2220 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0);
2221 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2222 }
2223
2224 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2225 xoap->xoa_av_modified =
2226 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0);
2227 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2228 }
2229
2230 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2231 vp->v_type == VREG &&
2232 (pzp->zp_flags & ZFS_BONUS_SCANSTAMP)) {
2233 size_t len;
2234 dmu_object_info_t doi;
2235
2236 /*
2237 * Only VREG files have anti-virus scanstamps, so we
2238 * won't conflict with symlinks in the bonus buffer.
2239 */
2240 dmu_object_info_from_db(zp->z_dbuf, &doi);
2241 len = sizeof (xoap->xoa_av_scanstamp) +
2242 sizeof (znode_phys_t);
2243 if (len <= doi.doi_bonus_size) {
2244 /*
2245 * pzp points to the start of the
2246 * znode_phys_t. pzp + 1 points to the
2247 * first byte after the znode_phys_t.
2248 */
2249 (void) memcpy(xoap->xoa_av_scanstamp,
2250 pzp + 1,
2251 sizeof (xoap->xoa_av_scanstamp));
2252 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
2253 }
2254 }
2255
2256 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2257 ZFS_TIME_DECODE(&xoap->xoa_createtime, pzp->zp_crtime);
2258 XVA_SET_RTN(xvap, XAT_CREATETIME);
2259 }
2260 }
2261
2262 ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime);
2263 ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime);
2264 ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime);
2265
2266 mutex_exit(&zp->z_lock);
2267
2268 dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks);
2269
2270 if (zp->z_blksz == 0) {
2271 /*
2272 * Block size hasn't been set; suggest maximal I/O transfers.
2273 */
2274 vap->va_blksize = zfsvfs->z_max_blksz;
2275 }
2276
2277 ZFS_EXIT(zfsvfs);
2278 return (0);
2279}
2280
2281/*
2282 * Set the file attributes to the values contained in the
2283 * vattr structure.
2284 *
2285 * IN: vp - vnode of file to be modified.
2286 * vap - new attribute values.
2287 * If AT_XVATTR set, then optional attrs are being set
2288 * flags - ATTR_UTIME set if non-default time values provided.
2289 * - ATTR_NOACLCHECK (CIFS context only).
2290 * cr - credentials of caller.
2291 * ct - caller context
2292 *
2293 * RETURN: 0 if success
2294 * error code if failure
2295 *
2296 * Timestamps:
2297 * vp - ctime updated, mtime updated if size changed.
2298 */
2299/* ARGSUSED */
2300static int
2301zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2302 caller_context_t *ct)
2303{
2304 znode_t *zp = VTOZ(vp);
2305 znode_phys_t *pzp;
2306 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2307 zilog_t *zilog;
2308 dmu_tx_t *tx;
2309 vattr_t oldva;
fb5f0bc8 2310 xvattr_t tmpxvattr;
34dc7c2f
BB
2311 uint_t mask = vap->va_mask;
2312 uint_t saved_mask;
2313 int trim_mask = 0;
2314 uint64_t new_mode;
2315 znode_t *attrzp;
2316 int need_policy = FALSE;
2317 int err;
2318 zfs_fuid_info_t *fuidp = NULL;
2319 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2320 xoptattr_t *xoap;
2321 zfs_acl_t *aclp = NULL;
2322 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2323
2324 if (mask == 0)
2325 return (0);
2326
2327 if (mask & AT_NOSET)
2328 return (EINVAL);
2329
2330 ZFS_ENTER(zfsvfs);
2331 ZFS_VERIFY_ZP(zp);
2332
2333 pzp = zp->z_phys;
2334 zilog = zfsvfs->z_log;
2335
2336 /*
2337 * Make sure that if we have ephemeral uid/gid or xvattr specified
2338 * that file system is at proper version level
2339 */
2340
2341 if (zfsvfs->z_use_fuids == B_FALSE &&
2342 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2343 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2344 (mask & AT_XVATTR))) {
2345 ZFS_EXIT(zfsvfs);
2346 return (EINVAL);
2347 }
2348
2349 if (mask & AT_SIZE && vp->v_type == VDIR) {
2350 ZFS_EXIT(zfsvfs);
2351 return (EISDIR);
2352 }
2353
2354 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2355 ZFS_EXIT(zfsvfs);
2356 return (EINVAL);
2357 }
2358
2359 /*
2360 * If this is an xvattr_t, then get a pointer to the structure of
2361 * optional attributes. If this is NULL, then we have a vattr_t.
2362 */
2363 xoap = xva_getxoptattr(xvap);
2364
fb5f0bc8
BB
2365 xva_init(&tmpxvattr);
2366
34dc7c2f
BB
2367 /*
2368 * Immutable files can only alter immutable bit and atime
2369 */
2370 if ((pzp->zp_flags & ZFS_IMMUTABLE) &&
2371 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2372 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2373 ZFS_EXIT(zfsvfs);
2374 return (EPERM);
2375 }
2376
2377 if ((mask & AT_SIZE) && (pzp->zp_flags & ZFS_READONLY)) {
2378 ZFS_EXIT(zfsvfs);
2379 return (EPERM);
2380 }
2381
2382 /*
2383 * Verify timestamps doesn't overflow 32 bits.
2384 * ZFS can handle large timestamps, but 32bit syscalls can't
2385 * handle times greater than 2039. This check should be removed
2386 * once large timestamps are fully supported.
2387 */
2388 if (mask & (AT_ATIME | AT_MTIME)) {
2389 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2390 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2391 ZFS_EXIT(zfsvfs);
2392 return (EOVERFLOW);
2393 }
2394 }
2395
2396top:
2397 attrzp = NULL;
2398
2399 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2400 ZFS_EXIT(zfsvfs);
2401 return (EROFS);
2402 }
2403
2404 /*
2405 * First validate permissions
2406 */
2407
2408 if (mask & AT_SIZE) {
2409 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2410 if (err) {
2411 ZFS_EXIT(zfsvfs);
2412 return (err);
2413 }
2414 /*
2415 * XXX - Note, we are not providing any open
2416 * mode flags here (like FNDELAY), so we may
2417 * block if there are locks present... this
2418 * should be addressed in openat().
2419 */
b128c09f
BB
2420 /* XXX - would it be OK to generate a log record here? */
2421 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
34dc7c2f
BB
2422 if (err) {
2423 ZFS_EXIT(zfsvfs);
2424 return (err);
2425 }
2426 }
2427
2428 if (mask & (AT_ATIME|AT_MTIME) ||
2429 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2430 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2431 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2432 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2433 XVA_ISSET_REQ(xvap, XAT_SYSTEM))))
2434 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2435 skipaclchk, cr);
2436
2437 if (mask & (AT_UID|AT_GID)) {
2438 int idmask = (mask & (AT_UID|AT_GID));
2439 int take_owner;
2440 int take_group;
2441
2442 /*
2443 * NOTE: even if a new mode is being set,
2444 * we may clear S_ISUID/S_ISGID bits.
2445 */
2446
2447 if (!(mask & AT_MODE))
2448 vap->va_mode = pzp->zp_mode;
2449
2450 /*
2451 * Take ownership or chgrp to group we are a member of
2452 */
2453
2454 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2455 take_group = (mask & AT_GID) &&
2456 zfs_groupmember(zfsvfs, vap->va_gid, cr);
2457
2458 /*
2459 * If both AT_UID and AT_GID are set then take_owner and
2460 * take_group must both be set in order to allow taking
2461 * ownership.
2462 *
2463 * Otherwise, send the check through secpolicy_vnode_setattr()
2464 *
2465 */
2466
2467 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2468 ((idmask == AT_UID) && take_owner) ||
2469 ((idmask == AT_GID) && take_group)) {
2470 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2471 skipaclchk, cr) == 0) {
2472 /*
2473 * Remove setuid/setgid for non-privileged users
2474 */
2475 secpolicy_setid_clear(vap, cr);
2476 trim_mask = (mask & (AT_UID|AT_GID));
2477 } else {
2478 need_policy = TRUE;
2479 }
2480 } else {
2481 need_policy = TRUE;
2482 }
2483 }
2484
2485 mutex_enter(&zp->z_lock);
2486 oldva.va_mode = pzp->zp_mode;
2487 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2488 if (mask & AT_XVATTR) {
fb5f0bc8
BB
2489 /*
2490 * Update xvattr mask to include only those attributes
2491 * that are actually changing.
2492 *
2493 * the bits will be restored prior to actually setting
2494 * the attributes so the caller thinks they were set.
2495 */
2496 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2497 if (xoap->xoa_appendonly !=
2498 ((pzp->zp_flags & ZFS_APPENDONLY) != 0)) {
2499 need_policy = TRUE;
2500 } else {
2501 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2502 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2503 }
2504 }
2505
2506 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2507 if (xoap->xoa_nounlink !=
2508 ((pzp->zp_flags & ZFS_NOUNLINK) != 0)) {
2509 need_policy = TRUE;
2510 } else {
2511 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2512 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2513 }
2514 }
2515
2516 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2517 if (xoap->xoa_immutable !=
2518 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0)) {
2519 need_policy = TRUE;
2520 } else {
2521 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2522 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2523 }
2524 }
2525
2526 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2527 if (xoap->xoa_nodump !=
2528 ((pzp->zp_flags & ZFS_NODUMP) != 0)) {
2529 need_policy = TRUE;
2530 } else {
2531 XVA_CLR_REQ(xvap, XAT_NODUMP);
2532 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2533 }
2534 }
2535
2536 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2537 if (xoap->xoa_av_modified !=
2538 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0)) {
2539 need_policy = TRUE;
2540 } else {
2541 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2542 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2543 }
2544 }
2545
2546 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2547 if ((vp->v_type != VREG &&
2548 xoap->xoa_av_quarantined) ||
2549 xoap->xoa_av_quarantined !=
2550 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0)) {
2551 need_policy = TRUE;
2552 } else {
2553 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2554 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2555 }
2556 }
2557
2558 if (need_policy == FALSE &&
2559 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2560 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
34dc7c2f
BB
2561 need_policy = TRUE;
2562 }
2563 }
2564
2565 mutex_exit(&zp->z_lock);
2566
2567 if (mask & AT_MODE) {
2568 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2569 err = secpolicy_setid_setsticky_clear(vp, vap,
2570 &oldva, cr);
2571 if (err) {
2572 ZFS_EXIT(zfsvfs);
2573 return (err);
2574 }
2575 trim_mask |= AT_MODE;
2576 } else {
2577 need_policy = TRUE;
2578 }
2579 }
2580
2581 if (need_policy) {
2582 /*
2583 * If trim_mask is set then take ownership
2584 * has been granted or write_acl is present and user
2585 * has the ability to modify mode. In that case remove
2586 * UID|GID and or MODE from mask so that
2587 * secpolicy_vnode_setattr() doesn't revoke it.
2588 */
2589
2590 if (trim_mask) {
2591 saved_mask = vap->va_mask;
2592 vap->va_mask &= ~trim_mask;
2593 }
2594 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2595 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2596 if (err) {
2597 ZFS_EXIT(zfsvfs);
2598 return (err);
2599 }
2600
2601 if (trim_mask)
2602 vap->va_mask |= saved_mask;
2603 }
2604
2605 /*
2606 * secpolicy_vnode_setattr, or take ownership may have
2607 * changed va_mask
2608 */
2609 mask = vap->va_mask;
2610
2611 tx = dmu_tx_create(zfsvfs->z_os);
2612 dmu_tx_hold_bonus(tx, zp->z_id);
2613 if (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2614 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid))) {
2615 if (zfsvfs->z_fuid_obj == 0) {
2616 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
2617 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
2618 FUID_SIZE_ESTIMATE(zfsvfs));
2619 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL);
2620 } else {
2621 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
2622 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
2623 FUID_SIZE_ESTIMATE(zfsvfs));
2624 }
2625 }
2626
2627 if (mask & AT_MODE) {
2628 uint64_t pmode = pzp->zp_mode;
2629
2630 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2631
2632 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) {
2633 dmu_tx_abort(tx);
2634 ZFS_EXIT(zfsvfs);
2635 return (err);
2636 }
2637 if (pzp->zp_acl.z_acl_extern_obj) {
2638 /* Are we upgrading ACL from old V0 format to new V1 */
2639 if (zfsvfs->z_version <= ZPL_VERSION_FUID &&
2640 pzp->zp_acl.z_acl_version ==
2641 ZFS_ACL_VERSION_INITIAL) {
2642 dmu_tx_hold_free(tx,
2643 pzp->zp_acl.z_acl_extern_obj, 0,
2644 DMU_OBJECT_END);
2645 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2646 0, aclp->z_acl_bytes);
2647 } else {
2648 dmu_tx_hold_write(tx,
2649 pzp->zp_acl.z_acl_extern_obj, 0,
2650 aclp->z_acl_bytes);
2651 }
2652 } else if (aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2653 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2654 0, aclp->z_acl_bytes);
2655 }
2656 }
2657
2658 if ((mask & (AT_UID | AT_GID)) && pzp->zp_xattr != 0) {
2659 err = zfs_zget(zp->z_zfsvfs, pzp->zp_xattr, &attrzp);
2660 if (err) {
2661 dmu_tx_abort(tx);
2662 ZFS_EXIT(zfsvfs);
2663 if (aclp)
2664 zfs_acl_free(aclp);
2665 return (err);
2666 }
2667 dmu_tx_hold_bonus(tx, attrzp->z_id);
2668 }
2669
fb5f0bc8 2670 err = dmu_tx_assign(tx, TXG_NOWAIT);
34dc7c2f
BB
2671 if (err) {
2672 if (attrzp)
2673 VN_RELE(ZTOV(attrzp));
2674
2675 if (aclp) {
2676 zfs_acl_free(aclp);
2677 aclp = NULL;
2678 }
2679
fb5f0bc8 2680 if (err == ERESTART) {
34dc7c2f
BB
2681 dmu_tx_wait(tx);
2682 dmu_tx_abort(tx);
2683 goto top;
2684 }
2685 dmu_tx_abort(tx);
2686 ZFS_EXIT(zfsvfs);
2687 return (err);
2688 }
2689
2690 dmu_buf_will_dirty(zp->z_dbuf, tx);
2691
2692 /*
2693 * Set each attribute requested.
2694 * We group settings according to the locks they need to acquire.
2695 *
2696 * Note: you cannot set ctime directly, although it will be
2697 * updated as a side-effect of calling this function.
2698 */
2699
2700 mutex_enter(&zp->z_lock);
2701
2702 if (mask & AT_MODE) {
2703 mutex_enter(&zp->z_acl_lock);
2704 zp->z_phys->zp_mode = new_mode;
2705 err = zfs_aclset_common(zp, aclp, cr, &fuidp, tx);
2706 ASSERT3U(err, ==, 0);
2707 mutex_exit(&zp->z_acl_lock);
2708 }
2709
2710 if (attrzp)
2711 mutex_enter(&attrzp->z_lock);
2712
2713 if (mask & AT_UID) {
2714 pzp->zp_uid = zfs_fuid_create(zfsvfs,
2715 vap->va_uid, cr, ZFS_OWNER, tx, &fuidp);
2716 if (attrzp) {
2717 attrzp->z_phys->zp_uid = zfs_fuid_create(zfsvfs,
2718 vap->va_uid, cr, ZFS_OWNER, tx, &fuidp);
2719 }
2720 }
2721
2722 if (mask & AT_GID) {
2723 pzp->zp_gid = zfs_fuid_create(zfsvfs, vap->va_gid,
2724 cr, ZFS_GROUP, tx, &fuidp);
2725 if (attrzp)
2726 attrzp->z_phys->zp_gid = zfs_fuid_create(zfsvfs,
2727 vap->va_gid, cr, ZFS_GROUP, tx, &fuidp);
2728 }
2729
2730 if (aclp)
2731 zfs_acl_free(aclp);
2732
2733 if (attrzp)
2734 mutex_exit(&attrzp->z_lock);
2735
2736 if (mask & AT_ATIME)
2737 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime);
2738
2739 if (mask & AT_MTIME)
2740 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime);
2741
b128c09f 2742 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
34dc7c2f
BB
2743 if (mask & AT_SIZE)
2744 zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx);
2745 else if (mask != 0)
2746 zfs_time_stamper_locked(zp, STATE_CHANGED, tx);
2747 /*
2748 * Do this after setting timestamps to prevent timestamp
2749 * update from toggling bit
2750 */
2751
2752 if (xoap && (mask & AT_XVATTR)) {
fb5f0bc8
BB
2753
2754 /*
2755 * restore trimmed off masks
2756 * so that return masks can be set for caller.
2757 */
2758
2759 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
2760 XVA_SET_REQ(xvap, XAT_APPENDONLY);
2761 }
2762 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
2763 XVA_SET_REQ(xvap, XAT_NOUNLINK);
2764 }
2765 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
2766 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
2767 }
2768 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
2769 XVA_SET_REQ(xvap, XAT_NODUMP);
2770 }
2771 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
2772 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
2773 }
2774 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
2775 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
2776 }
2777
34dc7c2f
BB
2778 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
2779 size_t len;
2780 dmu_object_info_t doi;
2781
2782 ASSERT(vp->v_type == VREG);
2783
2784 /* Grow the bonus buffer if necessary. */
2785 dmu_object_info_from_db(zp->z_dbuf, &doi);
2786 len = sizeof (xoap->xoa_av_scanstamp) +
2787 sizeof (znode_phys_t);
2788 if (len > doi.doi_bonus_size)
2789 VERIFY(dmu_set_bonus(zp->z_dbuf, len, tx) == 0);
2790 }
2791 zfs_xvattr_set(zp, xvap);
2792 }
2793
2794 if (mask != 0)
2795 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
2796
2797 if (fuidp)
2798 zfs_fuid_info_free(fuidp);
2799 mutex_exit(&zp->z_lock);
2800
2801 if (attrzp)
2802 VN_RELE(ZTOV(attrzp));
2803
2804 dmu_tx_commit(tx);
2805
2806 ZFS_EXIT(zfsvfs);
2807 return (err);
2808}
2809
2810typedef struct zfs_zlock {
2811 krwlock_t *zl_rwlock; /* lock we acquired */
2812 znode_t *zl_znode; /* znode we held */
2813 struct zfs_zlock *zl_next; /* next in list */
2814} zfs_zlock_t;
2815
2816/*
2817 * Drop locks and release vnodes that were held by zfs_rename_lock().
2818 */
2819static void
2820zfs_rename_unlock(zfs_zlock_t **zlpp)
2821{
2822 zfs_zlock_t *zl;
2823
2824 while ((zl = *zlpp) != NULL) {
2825 if (zl->zl_znode != NULL)
2826 VN_RELE(ZTOV(zl->zl_znode));
2827 rw_exit(zl->zl_rwlock);
2828 *zlpp = zl->zl_next;
2829 kmem_free(zl, sizeof (*zl));
2830 }
2831}
2832
2833/*
2834 * Search back through the directory tree, using the ".." entries.
2835 * Lock each directory in the chain to prevent concurrent renames.
2836 * Fail any attempt to move a directory into one of its own descendants.
2837 * XXX - z_parent_lock can overlap with map or grow locks
2838 */
2839static int
2840zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
2841{
2842 zfs_zlock_t *zl;
2843 znode_t *zp = tdzp;
2844 uint64_t rootid = zp->z_zfsvfs->z_root;
2845 uint64_t *oidp = &zp->z_id;
2846 krwlock_t *rwlp = &szp->z_parent_lock;
2847 krw_t rw = RW_WRITER;
2848
2849 /*
2850 * First pass write-locks szp and compares to zp->z_id.
2851 * Later passes read-lock zp and compare to zp->z_parent.
2852 */
2853 do {
2854 if (!rw_tryenter(rwlp, rw)) {
2855 /*
2856 * Another thread is renaming in this path.
2857 * Note that if we are a WRITER, we don't have any
2858 * parent_locks held yet.
2859 */
2860 if (rw == RW_READER && zp->z_id > szp->z_id) {
2861 /*
2862 * Drop our locks and restart
2863 */
2864 zfs_rename_unlock(&zl);
2865 *zlpp = NULL;
2866 zp = tdzp;
2867 oidp = &zp->z_id;
2868 rwlp = &szp->z_parent_lock;
2869 rw = RW_WRITER;
2870 continue;
2871 } else {
2872 /*
2873 * Wait for other thread to drop its locks
2874 */
2875 rw_enter(rwlp, rw);
2876 }
2877 }
2878
2879 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
2880 zl->zl_rwlock = rwlp;
2881 zl->zl_znode = NULL;
2882 zl->zl_next = *zlpp;
2883 *zlpp = zl;
2884
2885 if (*oidp == szp->z_id) /* We're a descendant of szp */
2886 return (EINVAL);
2887
2888 if (*oidp == rootid) /* We've hit the top */
2889 return (0);
2890
2891 if (rw == RW_READER) { /* i.e. not the first pass */
2892 int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp);
2893 if (error)
2894 return (error);
2895 zl->zl_znode = zp;
2896 }
2897 oidp = &zp->z_phys->zp_parent;
2898 rwlp = &zp->z_parent_lock;
2899 rw = RW_READER;
2900
2901 } while (zp->z_id != sdzp->z_id);
2902
2903 return (0);
2904}
2905
2906/*
2907 * Move an entry from the provided source directory to the target
2908 * directory. Change the entry name as indicated.
2909 *
2910 * IN: sdvp - Source directory containing the "old entry".
2911 * snm - Old entry name.
2912 * tdvp - Target directory to contain the "new entry".
2913 * tnm - New entry name.
2914 * cr - credentials of caller.
2915 * ct - caller context
2916 * flags - case flags
2917 *
2918 * RETURN: 0 if success
2919 * error code if failure
2920 *
2921 * Timestamps:
2922 * sdvp,tdvp - ctime|mtime updated
2923 */
2924/*ARGSUSED*/
2925static int
2926zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
2927 caller_context_t *ct, int flags)
2928{
2929 znode_t *tdzp, *szp, *tzp;
2930 znode_t *sdzp = VTOZ(sdvp);
2931 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs;
2932 zilog_t *zilog;
2933 vnode_t *realvp;
2934 zfs_dirlock_t *sdl, *tdl;
2935 dmu_tx_t *tx;
2936 zfs_zlock_t *zl;
2937 int cmp, serr, terr;
2938 int error = 0;
2939 int zflg = 0;
2940
2941 ZFS_ENTER(zfsvfs);
2942 ZFS_VERIFY_ZP(sdzp);
2943 zilog = zfsvfs->z_log;
2944
2945 /*
2946 * Make sure we have the real vp for the target directory.
2947 */
2948 if (VOP_REALVP(tdvp, &realvp, ct) == 0)
2949 tdvp = realvp;
2950
2951 if (tdvp->v_vfsp != sdvp->v_vfsp) {
2952 ZFS_EXIT(zfsvfs);
2953 return (EXDEV);
2954 }
2955
2956 tdzp = VTOZ(tdvp);
2957 ZFS_VERIFY_ZP(tdzp);
2958 if (zfsvfs->z_utf8 && u8_validate(tnm,
2959 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
2960 ZFS_EXIT(zfsvfs);
2961 return (EILSEQ);
2962 }
2963
2964 if (flags & FIGNORECASE)
2965 zflg |= ZCILOOK;
2966
2967top:
2968 szp = NULL;
2969 tzp = NULL;
2970 zl = NULL;
2971
2972 /*
2973 * This is to prevent the creation of links into attribute space
2974 * by renaming a linked file into/outof an attribute directory.
2975 * See the comment in zfs_link() for why this is considered bad.
2976 */
2977 if ((tdzp->z_phys->zp_flags & ZFS_XATTR) !=
2978 (sdzp->z_phys->zp_flags & ZFS_XATTR)) {
2979 ZFS_EXIT(zfsvfs);
2980 return (EINVAL);
2981 }
2982
2983 /*
2984 * Lock source and target directory entries. To prevent deadlock,
2985 * a lock ordering must be defined. We lock the directory with
2986 * the smallest object id first, or if it's a tie, the one with
2987 * the lexically first name.
2988 */
2989 if (sdzp->z_id < tdzp->z_id) {
2990 cmp = -1;
2991 } else if (sdzp->z_id > tdzp->z_id) {
2992 cmp = 1;
2993 } else {
2994 /*
2995 * First compare the two name arguments without
2996 * considering any case folding.
2997 */
2998 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
2999
3000 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3001 ASSERT(error == 0 || !zfsvfs->z_utf8);
3002 if (cmp == 0) {
3003 /*
3004 * POSIX: "If the old argument and the new argument
3005 * both refer to links to the same existing file,
3006 * the rename() function shall return successfully
3007 * and perform no other action."
3008 */
3009 ZFS_EXIT(zfsvfs);
3010 return (0);
3011 }
3012 /*
3013 * If the file system is case-folding, then we may
3014 * have some more checking to do. A case-folding file
3015 * system is either supporting mixed case sensitivity
3016 * access or is completely case-insensitive. Note
3017 * that the file system is always case preserving.
3018 *
3019 * In mixed sensitivity mode case sensitive behavior
3020 * is the default. FIGNORECASE must be used to
3021 * explicitly request case insensitive behavior.
3022 *
3023 * If the source and target names provided differ only
3024 * by case (e.g., a request to rename 'tim' to 'Tim'),
3025 * we will treat this as a special case in the
3026 * case-insensitive mode: as long as the source name
3027 * is an exact match, we will allow this to proceed as
3028 * a name-change request.
3029 */
3030 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3031 (zfsvfs->z_case == ZFS_CASE_MIXED &&
3032 flags & FIGNORECASE)) &&
3033 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3034 &error) == 0) {
3035 /*
3036 * case preserving rename request, require exact
3037 * name matches
3038 */
3039 zflg |= ZCIEXACT;
3040 zflg &= ~ZCILOOK;
3041 }
3042 }
3043
3044 if (cmp < 0) {
3045 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3046 ZEXISTS | zflg, NULL, NULL);
3047 terr = zfs_dirent_lock(&tdl,
3048 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3049 } else {
3050 terr = zfs_dirent_lock(&tdl,
3051 tdzp, tnm, &tzp, zflg, NULL, NULL);
3052 serr = zfs_dirent_lock(&sdl,
3053 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3054 NULL, NULL);
3055 }
3056
3057 if (serr) {
3058 /*
3059 * Source entry invalid or not there.
3060 */
3061 if (!terr) {
3062 zfs_dirent_unlock(tdl);
3063 if (tzp)
3064 VN_RELE(ZTOV(tzp));
3065 }
3066 if (strcmp(snm, "..") == 0)
3067 serr = EINVAL;
3068 ZFS_EXIT(zfsvfs);
3069 return (serr);
3070 }
3071 if (terr) {
3072 zfs_dirent_unlock(sdl);
3073 VN_RELE(ZTOV(szp));
3074 if (strcmp(tnm, "..") == 0)
3075 terr = EINVAL;
3076 ZFS_EXIT(zfsvfs);
3077 return (terr);
3078 }
3079
3080 /*
3081 * Must have write access at the source to remove the old entry
3082 * and write access at the target to create the new entry.
3083 * Note that if target and source are the same, this can be
3084 * done in a single check.
3085 */
3086
3087 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3088 goto out;
3089
3090 if (ZTOV(szp)->v_type == VDIR) {
3091 /*
3092 * Check to make sure rename is valid.
3093 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3094 */
3095 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3096 goto out;
3097 }
3098
3099 /*
3100 * Does target exist?
3101 */
3102 if (tzp) {
3103 /*
3104 * Source and target must be the same type.
3105 */
3106 if (ZTOV(szp)->v_type == VDIR) {
3107 if (ZTOV(tzp)->v_type != VDIR) {
3108 error = ENOTDIR;
3109 goto out;
3110 }
3111 } else {
3112 if (ZTOV(tzp)->v_type == VDIR) {
3113 error = EISDIR;
3114 goto out;
3115 }
3116 }
3117 /*
3118 * POSIX dictates that when the source and target
3119 * entries refer to the same file object, rename
3120 * must do nothing and exit without error.
3121 */
3122 if (szp->z_id == tzp->z_id) {
3123 error = 0;
3124 goto out;
3125 }
3126 }
3127
3128 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3129 if (tzp)
3130 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3131
3132 /*
3133 * notify the target directory if it is not the same
3134 * as source directory.
3135 */
3136 if (tdvp != sdvp) {
3137 vnevent_rename_dest_dir(tdvp, ct);
3138 }
3139
3140 tx = dmu_tx_create(zfsvfs->z_os);
3141 dmu_tx_hold_bonus(tx, szp->z_id); /* nlink changes */
3142 dmu_tx_hold_bonus(tx, sdzp->z_id); /* nlink changes */
3143 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3144 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3145 if (sdzp != tdzp)
3146 dmu_tx_hold_bonus(tx, tdzp->z_id); /* nlink changes */
3147 if (tzp)
3148 dmu_tx_hold_bonus(tx, tzp->z_id); /* parent changes */
3149 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
fb5f0bc8 3150 error = dmu_tx_assign(tx, TXG_NOWAIT);
34dc7c2f
BB
3151 if (error) {
3152 if (zl != NULL)
3153 zfs_rename_unlock(&zl);
3154 zfs_dirent_unlock(sdl);
3155 zfs_dirent_unlock(tdl);
3156 VN_RELE(ZTOV(szp));
3157 if (tzp)
3158 VN_RELE(ZTOV(tzp));
fb5f0bc8 3159 if (error == ERESTART) {
34dc7c2f
BB
3160 dmu_tx_wait(tx);
3161 dmu_tx_abort(tx);
3162 goto top;
3163 }
3164 dmu_tx_abort(tx);
3165 ZFS_EXIT(zfsvfs);
3166 return (error);
3167 }
3168
3169 if (tzp) /* Attempt to remove the existing target */
3170 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3171
3172 if (error == 0) {
3173 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3174 if (error == 0) {
3175 szp->z_phys->zp_flags |= ZFS_AV_MODIFIED;
3176
3177 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3178 ASSERT(error == 0);
3179
3180 zfs_log_rename(zilog, tx,
3181 TX_RENAME | (flags & FIGNORECASE ? TX_CI : 0),
3182 sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp);
b128c09f
BB
3183
3184 /* Update path information for the target vnode */
3185 vn_renamepath(tdvp, ZTOV(szp), tnm, strlen(tnm));
34dc7c2f
BB
3186 }
3187 }
3188
3189 dmu_tx_commit(tx);
3190out:
3191 if (zl != NULL)
3192 zfs_rename_unlock(&zl);
3193
3194 zfs_dirent_unlock(sdl);
3195 zfs_dirent_unlock(tdl);
3196
3197 VN_RELE(ZTOV(szp));
3198 if (tzp)
3199 VN_RELE(ZTOV(tzp));
3200
3201 ZFS_EXIT(zfsvfs);
3202 return (error);
3203}
3204
3205/*
3206 * Insert the indicated symbolic reference entry into the directory.
3207 *
3208 * IN: dvp - Directory to contain new symbolic link.
3209 * link - Name for new symlink entry.
3210 * vap - Attributes of new entry.
3211 * target - Target path of new symlink.
3212 * cr - credentials of caller.
3213 * ct - caller context
3214 * flags - case flags
3215 *
3216 * RETURN: 0 if success
3217 * error code if failure
3218 *
3219 * Timestamps:
3220 * dvp - ctime|mtime updated
3221 */
3222/*ARGSUSED*/
3223static int
3224zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3225 caller_context_t *ct, int flags)
3226{
3227 znode_t *zp, *dzp = VTOZ(dvp);
3228 zfs_dirlock_t *dl;
3229 dmu_tx_t *tx;
3230 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
3231 zilog_t *zilog;
3232 int len = strlen(link);
3233 int error;
3234 int zflg = ZNEW;
3235 zfs_fuid_info_t *fuidp = NULL;
3236
3237 ASSERT(vap->va_type == VLNK);
3238
3239 ZFS_ENTER(zfsvfs);
3240 ZFS_VERIFY_ZP(dzp);
3241 zilog = zfsvfs->z_log;
3242
3243 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3244 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3245 ZFS_EXIT(zfsvfs);
3246 return (EILSEQ);
3247 }
3248 if (flags & FIGNORECASE)
3249 zflg |= ZCILOOK;
3250top:
3251 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3252 ZFS_EXIT(zfsvfs);
3253 return (error);
3254 }
3255
3256 if (len > MAXPATHLEN) {
3257 ZFS_EXIT(zfsvfs);
3258 return (ENAMETOOLONG);
3259 }
3260
3261 /*
3262 * Attempt to lock directory; fail if entry already exists.
3263 */
3264 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3265 if (error) {
3266 ZFS_EXIT(zfsvfs);
3267 return (error);
3268 }
3269
3270 tx = dmu_tx_create(zfsvfs->z_os);
3271 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3272 dmu_tx_hold_bonus(tx, dzp->z_id);
3273 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3274 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE)
3275 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE);
3276 if (IS_EPHEMERAL(crgetuid(cr)) || IS_EPHEMERAL(crgetgid(cr))) {
3277 if (zfsvfs->z_fuid_obj == 0) {
3278 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
3279 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3280 FUID_SIZE_ESTIMATE(zfsvfs));
3281 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL);
3282 } else {
3283 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
3284 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
3285 FUID_SIZE_ESTIMATE(zfsvfs));
3286 }
3287 }
fb5f0bc8 3288 error = dmu_tx_assign(tx, TXG_NOWAIT);
34dc7c2f
BB
3289 if (error) {
3290 zfs_dirent_unlock(dl);
fb5f0bc8 3291 if (error == ERESTART) {
34dc7c2f
BB
3292 dmu_tx_wait(tx);
3293 dmu_tx_abort(tx);
3294 goto top;
3295 }
3296 dmu_tx_abort(tx);
3297 ZFS_EXIT(zfsvfs);
3298 return (error);
3299 }
3300
3301 dmu_buf_will_dirty(dzp->z_dbuf, tx);
3302
3303 /*
3304 * Create a new object for the symlink.
3305 * Put the link content into bonus buffer if it will fit;
3306 * otherwise, store it just like any other file data.
3307 */
3308 if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) {
3309 zfs_mknode(dzp, vap, tx, cr, 0, &zp, len, NULL, &fuidp);
3310 if (len != 0)
3311 bcopy(link, zp->z_phys + 1, len);
3312 } else {
3313 dmu_buf_t *dbp;
3314
3315 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, NULL, &fuidp);
3316 /*
3317 * Nothing can access the znode yet so no locking needed
3318 * for growing the znode's blocksize.
3319 */
3320 zfs_grow_blocksize(zp, len, tx);
3321
3322 VERIFY(0 == dmu_buf_hold(zfsvfs->z_os,
3323 zp->z_id, 0, FTAG, &dbp));
3324 dmu_buf_will_dirty(dbp, tx);
3325
3326 ASSERT3U(len, <=, dbp->db_size);
3327 bcopy(link, dbp->db_data, len);
3328 dmu_buf_rele(dbp, FTAG);
3329 }
3330 zp->z_phys->zp_size = len;
3331
3332 /*
3333 * Insert the new object into the directory.
3334 */
3335 (void) zfs_link_create(dl, zp, tx, ZNEW);
3336out:
3337 if (error == 0) {
3338 uint64_t txtype = TX_SYMLINK;
3339 if (flags & FIGNORECASE)
3340 txtype |= TX_CI;
3341 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3342 }
3343 if (fuidp)
3344 zfs_fuid_info_free(fuidp);
3345
3346 dmu_tx_commit(tx);
3347
3348 zfs_dirent_unlock(dl);
3349
3350 VN_RELE(ZTOV(zp));
3351
3352 ZFS_EXIT(zfsvfs);
3353 return (error);
3354}
3355
3356/*
3357 * Return, in the buffer contained in the provided uio structure,
3358 * the symbolic path referred to by vp.
3359 *
3360 * IN: vp - vnode of symbolic link.
3361 * uoip - structure to contain the link path.
3362 * cr - credentials of caller.
3363 * ct - caller context
3364 *
3365 * OUT: uio - structure to contain the link path.
3366 *
3367 * RETURN: 0 if success
3368 * error code if failure
3369 *
3370 * Timestamps:
3371 * vp - atime updated
3372 */
3373/* ARGSUSED */
3374static int
3375zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3376{
3377 znode_t *zp = VTOZ(vp);
3378 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3379 size_t bufsz;
3380 int error;
3381
3382 ZFS_ENTER(zfsvfs);
3383 ZFS_VERIFY_ZP(zp);
3384
3385 bufsz = (size_t)zp->z_phys->zp_size;
3386 if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) {
3387 error = uiomove(zp->z_phys + 1,
3388 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio);
3389 } else {
3390 dmu_buf_t *dbp;
3391 error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp);
3392 if (error) {
3393 ZFS_EXIT(zfsvfs);
3394 return (error);
3395 }
3396 error = uiomove(dbp->db_data,
3397 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio);
3398 dmu_buf_rele(dbp, FTAG);
3399 }
3400
3401 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3402 ZFS_EXIT(zfsvfs);
3403 return (error);
3404}
3405
3406/*
3407 * Insert a new entry into directory tdvp referencing svp.
3408 *
3409 * IN: tdvp - Directory to contain new entry.
3410 * svp - vnode of new entry.
3411 * name - name of new entry.
3412 * cr - credentials of caller.
3413 * ct - caller context
3414 *
3415 * RETURN: 0 if success
3416 * error code if failure
3417 *
3418 * Timestamps:
3419 * tdvp - ctime|mtime updated
3420 * svp - ctime updated
3421 */
3422/* ARGSUSED */
3423static int
3424zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
3425 caller_context_t *ct, int flags)
3426{
3427 znode_t *dzp = VTOZ(tdvp);
3428 znode_t *tzp, *szp;
3429 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
3430 zilog_t *zilog;
3431 zfs_dirlock_t *dl;
3432 dmu_tx_t *tx;
3433 vnode_t *realvp;
3434 int error;
3435 int zf = ZNEW;
3436 uid_t owner;
3437
3438 ASSERT(tdvp->v_type == VDIR);
3439
3440 ZFS_ENTER(zfsvfs);
3441 ZFS_VERIFY_ZP(dzp);
3442 zilog = zfsvfs->z_log;
3443
3444 if (VOP_REALVP(svp, &realvp, ct) == 0)
3445 svp = realvp;
3446
3447 if (svp->v_vfsp != tdvp->v_vfsp) {
3448 ZFS_EXIT(zfsvfs);
3449 return (EXDEV);
3450 }
3451 szp = VTOZ(svp);
3452 ZFS_VERIFY_ZP(szp);
3453
3454 if (zfsvfs->z_utf8 && u8_validate(name,
3455 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3456 ZFS_EXIT(zfsvfs);
3457 return (EILSEQ);
3458 }
3459 if (flags & FIGNORECASE)
3460 zf |= ZCILOOK;
3461
3462top:
3463 /*
3464 * We do not support links between attributes and non-attributes
3465 * because of the potential security risk of creating links
3466 * into "normal" file space in order to circumvent restrictions
3467 * imposed in attribute space.
3468 */
3469 if ((szp->z_phys->zp_flags & ZFS_XATTR) !=
3470 (dzp->z_phys->zp_flags & ZFS_XATTR)) {
3471 ZFS_EXIT(zfsvfs);
3472 return (EINVAL);
3473 }
3474
3475 /*
3476 * POSIX dictates that we return EPERM here.
3477 * Better choices include ENOTSUP or EISDIR.
3478 */
3479 if (svp->v_type == VDIR) {
3480 ZFS_EXIT(zfsvfs);
3481 return (EPERM);
3482 }
3483
3484 owner = zfs_fuid_map_id(zfsvfs, szp->z_phys->zp_uid, cr, ZFS_OWNER);
3485 if (owner != crgetuid(cr) &&
3486 secpolicy_basic_link(cr) != 0) {
3487 ZFS_EXIT(zfsvfs);
3488 return (EPERM);
3489 }
3490
3491 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3492 ZFS_EXIT(zfsvfs);
3493 return (error);
3494 }
3495
3496 /*
3497 * Attempt to lock directory; fail if entry already exists.
3498 */
3499 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
3500 if (error) {
3501 ZFS_EXIT(zfsvfs);
3502 return (error);
3503 }
3504
3505 tx = dmu_tx_create(zfsvfs->z_os);
3506 dmu_tx_hold_bonus(tx, szp->z_id);
3507 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
fb5f0bc8 3508 error = dmu_tx_assign(tx, TXG_NOWAIT);
34dc7c2f
BB
3509 if (error) {
3510 zfs_dirent_unlock(dl);
fb5f0bc8 3511 if (error == ERESTART) {
34dc7c2f
BB
3512 dmu_tx_wait(tx);
3513 dmu_tx_abort(tx);
3514 goto top;
3515 }
3516 dmu_tx_abort(tx);
3517 ZFS_EXIT(zfsvfs);
3518 return (error);
3519 }
3520
3521 error = zfs_link_create(dl, szp, tx, 0);
3522
3523 if (error == 0) {
3524 uint64_t txtype = TX_LINK;
3525 if (flags & FIGNORECASE)
3526 txtype |= TX_CI;
3527 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
3528 }
3529
3530 dmu_tx_commit(tx);
3531
3532 zfs_dirent_unlock(dl);
3533
3534 if (error == 0) {
3535 vnevent_link(svp, ct);
3536 }
3537
3538 ZFS_EXIT(zfsvfs);
3539 return (error);
3540}
3541
3542/*
3543 * zfs_null_putapage() is used when the file system has been force
3544 * unmounted. It just drops the pages.
3545 */
3546/* ARGSUSED */
3547static int
3548zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
3549 size_t *lenp, int flags, cred_t *cr)
3550{
3551 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
3552 return (0);
3553}
3554
3555/*
3556 * Push a page out to disk, klustering if possible.
3557 *
3558 * IN: vp - file to push page to.
3559 * pp - page to push.
3560 * flags - additional flags.
3561 * cr - credentials of caller.
3562 *
3563 * OUT: offp - start of range pushed.
3564 * lenp - len of range pushed.
3565 *
3566 * RETURN: 0 if success
3567 * error code if failure
3568 *
3569 * NOTE: callers must have locked the page to be pushed. On
3570 * exit, the page (and all other pages in the kluster) must be
3571 * unlocked.
3572 */
3573/* ARGSUSED */
3574static int
3575zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
3576 size_t *lenp, int flags, cred_t *cr)
3577{
3578 znode_t *zp = VTOZ(vp);
3579 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
34dc7c2f 3580 dmu_tx_t *tx;
34dc7c2f
BB
3581 u_offset_t off, koff;
3582 size_t len, klen;
3583 uint64_t filesz;
3584 int err;
3585
3586 filesz = zp->z_phys->zp_size;
3587 off = pp->p_offset;
3588 len = PAGESIZE;
3589 /*
3590 * If our blocksize is bigger than the page size, try to kluster
fb5f0bc8 3591 * multiple pages so that we write a full block (thus avoiding
34dc7c2f
BB
3592 * a read-modify-write).
3593 */
3594 if (off < filesz && zp->z_blksz > PAGESIZE) {
d164b209
BB
3595 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
3596 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
34dc7c2f
BB
3597 ASSERT(koff <= filesz);
3598 if (koff + klen > filesz)
3599 klen = P2ROUNDUP(filesz - koff, (uint64_t)PAGESIZE);
3600 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
3601 }
3602 ASSERT3U(btop(len), ==, btopr(len));
d164b209 3603
34dc7c2f
BB
3604 /*
3605 * Can't push pages past end-of-file.
3606 */
34dc7c2f
BB
3607 if (off >= filesz) {
3608 /* ignore all pages */
3609 err = 0;
3610 goto out;
3611 } else if (off + len > filesz) {
3612 int npages = btopr(filesz - off);
3613 page_t *trunc;
3614
3615 page_list_break(&pp, &trunc, npages);
3616 /* ignore pages past end of file */
3617 if (trunc)
3618 pvn_write_done(trunc, flags);
3619 len = filesz - off;
3620 }
d164b209 3621top:
34dc7c2f
BB
3622 tx = dmu_tx_create(zfsvfs->z_os);
3623 dmu_tx_hold_write(tx, zp->z_id, off, len);
3624 dmu_tx_hold_bonus(tx, zp->z_id);
fb5f0bc8 3625 err = dmu_tx_assign(tx, TXG_NOWAIT);
34dc7c2f 3626 if (err != 0) {
fb5f0bc8 3627 if (err == ERESTART) {
34dc7c2f
BB
3628 dmu_tx_wait(tx);
3629 dmu_tx_abort(tx);
34dc7c2f
BB
3630 goto top;
3631 }
3632 dmu_tx_abort(tx);
3633 goto out;
3634 }
3635
3636 if (zp->z_blksz <= PAGESIZE) {
b128c09f 3637 caddr_t va = zfs_map_page(pp, S_READ);
34dc7c2f
BB
3638 ASSERT3U(len, <=, PAGESIZE);
3639 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
b128c09f 3640 zfs_unmap_page(pp, va);
34dc7c2f
BB
3641 } else {
3642 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
3643 }
3644
3645 if (err == 0) {
3646 zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
d164b209 3647 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
34dc7c2f
BB
3648 dmu_tx_commit(tx);
3649 }
3650
3651out:
34dc7c2f
BB
3652 pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
3653 if (offp)
3654 *offp = off;
3655 if (lenp)
3656 *lenp = len;
3657
3658 return (err);
3659}
3660
3661/*
3662 * Copy the portion of the file indicated from pages into the file.
3663 * The pages are stored in a page list attached to the files vnode.
3664 *
3665 * IN: vp - vnode of file to push page data to.
3666 * off - position in file to put data.
3667 * len - amount of data to write.
3668 * flags - flags to control the operation.
3669 * cr - credentials of caller.
3670 * ct - caller context.
3671 *
3672 * RETURN: 0 if success
3673 * error code if failure
3674 *
3675 * Timestamps:
3676 * vp - ctime|mtime updated
3677 */
3678/*ARGSUSED*/
3679static int
3680zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
3681 caller_context_t *ct)
3682{
3683 znode_t *zp = VTOZ(vp);
3684 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3685 page_t *pp;
3686 size_t io_len;
3687 u_offset_t io_off;
d164b209
BB
3688 uint_t blksz;
3689 rl_t *rl;
34dc7c2f
BB
3690 int error = 0;
3691
3692 ZFS_ENTER(zfsvfs);
3693 ZFS_VERIFY_ZP(zp);
3694
d164b209
BB
3695 /*
3696 * Align this request to the file block size in case we kluster.
3697 * XXX - this can result in pretty aggresive locking, which can
3698 * impact simultanious read/write access. One option might be
3699 * to break up long requests (len == 0) into block-by-block
3700 * operations to get narrower locking.
3701 */
3702 blksz = zp->z_blksz;
3703 if (ISP2(blksz))
3704 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
3705 else
3706 io_off = 0;
3707 if (len > 0 && ISP2(blksz))
3708 io_len = P2ROUNDUP_TYPED(len + (io_off - off), blksz, size_t);
3709 else
3710 io_len = 0;
3711
3712 if (io_len == 0) {
34dc7c2f 3713 /*
d164b209 3714 * Search the entire vp list for pages >= io_off.
34dc7c2f 3715 */
d164b209
BB
3716 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
3717 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
34dc7c2f
BB
3718 goto out;
3719 }
d164b209 3720 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
34dc7c2f 3721
d164b209 3722 if (off > zp->z_phys->zp_size) {
34dc7c2f 3723 /* past end of file */
d164b209 3724 zfs_range_unlock(rl);
34dc7c2f
BB
3725 ZFS_EXIT(zfsvfs);
3726 return (0);
3727 }
3728
d164b209 3729 len = MIN(io_len, P2ROUNDUP(zp->z_phys->zp_size, PAGESIZE) - io_off);
34dc7c2f 3730
d164b209 3731 for (off = io_off; io_off < off + len; io_off += io_len) {
34dc7c2f
BB
3732 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
3733 pp = page_lookup(vp, io_off,
3734 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
3735 } else {
3736 pp = page_lookup_nowait(vp, io_off,
3737 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
3738 }
3739
3740 if (pp != NULL && pvn_getdirty(pp, flags)) {
3741 int err;
3742
3743 /*
3744 * Found a dirty page to push
3745 */
3746 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
3747 if (err)
3748 error = err;
3749 } else {
3750 io_len = PAGESIZE;
3751 }
3752 }
3753out:
d164b209 3754 zfs_range_unlock(rl);
34dc7c2f
BB
3755 if ((flags & B_ASYNC) == 0)
3756 zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id);
3757 ZFS_EXIT(zfsvfs);
3758 return (error);
3759}
3760
3761/*ARGSUSED*/
3762void
3763zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
3764{
3765 znode_t *zp = VTOZ(vp);
3766 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3767 int error;
3768
3769 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
3770 if (zp->z_dbuf == NULL) {
3771 /*
3772 * The fs has been unmounted, or we did a
3773 * suspend/resume and this file no longer exists.
3774 */
3775 if (vn_has_cached_data(vp)) {
3776 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
3777 B_INVAL, cr);
3778 }
3779
3780 mutex_enter(&zp->z_lock);
3781 vp->v_count = 0; /* count arrives as 1 */
3782 mutex_exit(&zp->z_lock);
3783 rw_exit(&zfsvfs->z_teardown_inactive_lock);
3784 zfs_znode_free(zp);
3785 return;
3786 }
3787
3788 /*
3789 * Attempt to push any data in the page cache. If this fails
3790 * we will get kicked out later in zfs_zinactive().
3791 */
3792 if (vn_has_cached_data(vp)) {
3793 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
3794 cr);
3795 }
3796
3797 if (zp->z_atime_dirty && zp->z_unlinked == 0) {
3798 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
3799
3800 dmu_tx_hold_bonus(tx, zp->z_id);
3801 error = dmu_tx_assign(tx, TXG_WAIT);
3802 if (error) {
3803 dmu_tx_abort(tx);
3804 } else {
3805 dmu_buf_will_dirty(zp->z_dbuf, tx);
3806 mutex_enter(&zp->z_lock);
3807 zp->z_atime_dirty = 0;
3808 mutex_exit(&zp->z_lock);
3809 dmu_tx_commit(tx);
3810 }
3811 }
3812
3813 zfs_zinactive(zp);
3814 rw_exit(&zfsvfs->z_teardown_inactive_lock);
3815}
3816
3817/*
3818 * Bounds-check the seek operation.
3819 *
3820 * IN: vp - vnode seeking within
3821 * ooff - old file offset
3822 * noffp - pointer to new file offset
3823 * ct - caller context
3824 *
3825 * RETURN: 0 if success
3826 * EINVAL if new offset invalid
3827 */
3828/* ARGSUSED */
3829static int
3830zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
3831 caller_context_t *ct)
3832{
3833 if (vp->v_type == VDIR)
3834 return (0);
3835 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
3836}
3837
3838/*
3839 * Pre-filter the generic locking function to trap attempts to place
3840 * a mandatory lock on a memory mapped file.
3841 */
3842static int
3843zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
3844 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
3845{
3846 znode_t *zp = VTOZ(vp);
3847 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3848 int error;
3849
3850 ZFS_ENTER(zfsvfs);
3851 ZFS_VERIFY_ZP(zp);
3852
3853 /*
3854 * We are following the UFS semantics with respect to mapcnt
3855 * here: If we see that the file is mapped already, then we will
3856 * return an error, but we don't worry about races between this
3857 * function and zfs_map().
3858 */
3859 if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) {
3860 ZFS_EXIT(zfsvfs);
3861 return (EAGAIN);
3862 }
3863 error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct);
3864 ZFS_EXIT(zfsvfs);
3865 return (error);
3866}
3867
3868/*
3869 * If we can't find a page in the cache, we will create a new page
3870 * and fill it with file data. For efficiency, we may try to fill
d164b209
BB
3871 * multiple pages at once (klustering) to fill up the supplied page
3872 * list.
34dc7c2f
BB
3873 */
3874static int
3875zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
3876 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
3877{
3878 znode_t *zp = VTOZ(vp);
3879 page_t *pp, *cur_pp;
3880 objset_t *os = zp->z_zfsvfs->z_os;
34dc7c2f 3881 u_offset_t io_off, total;
34dc7c2f 3882 size_t io_len;
34dc7c2f
BB
3883 int err;
3884
34dc7c2f 3885 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
d164b209
BB
3886 /*
3887 * We only have a single page, don't bother klustering
3888 */
34dc7c2f
BB
3889 io_off = off;
3890 io_len = PAGESIZE;
3891 pp = page_create_va(vp, io_off, io_len, PG_WAIT, seg, addr);
3892 } else {
3893 /*
d164b209 3894 * Try to find enough pages to fill the page list
34dc7c2f 3895 */
34dc7c2f 3896 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
d164b209 3897 &io_len, off, plsz, 0);
34dc7c2f
BB
3898 }
3899 if (pp == NULL) {
3900 /*
d164b209 3901 * The page already exists, nothing to do here.
34dc7c2f
BB
3902 */
3903 *pl = NULL;
3904 return (0);
3905 }
3906
3907 /*
3908 * Fill the pages in the kluster.
3909 */
3910 cur_pp = pp;
3911 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
d164b209
BB
3912 caddr_t va;
3913
34dc7c2f 3914 ASSERT3U(io_off, ==, cur_pp->p_offset);
b128c09f 3915 va = zfs_map_page(cur_pp, S_WRITE);
d164b209 3916 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va);
b128c09f 3917 zfs_unmap_page(cur_pp, va);
34dc7c2f
BB
3918 if (err) {
3919 /* On error, toss the entire kluster */
3920 pvn_read_done(pp, B_ERROR);
b128c09f
BB
3921 /* convert checksum errors into IO errors */
3922 if (err == ECKSUM)
3923 err = EIO;
34dc7c2f
BB
3924 return (err);
3925 }
3926 cur_pp = cur_pp->p_next;
3927 }
d164b209 3928
34dc7c2f 3929 /*
d164b209
BB
3930 * Fill in the page list array from the kluster starting
3931 * from the desired offset `off'.
34dc7c2f
BB
3932 * NOTE: the page list will always be null terminated.
3933 */
3934 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
d164b209 3935 ASSERT(pl == NULL || (*pl)->p_offset == off);
34dc7c2f
BB
3936
3937 return (0);
3938}
3939
3940/*
3941 * Return pointers to the pages for the file region [off, off + len]
3942 * in the pl array. If plsz is greater than len, this function may
d164b209
BB
3943 * also return page pointers from after the specified region
3944 * (i.e. the region [off, off + plsz]). These additional pages are
3945 * only returned if they are already in the cache, or were created as
3946 * part of a klustered read.
34dc7c2f
BB
3947 *
3948 * IN: vp - vnode of file to get data from.
3949 * off - position in file to get data from.
3950 * len - amount of data to retrieve.
3951 * plsz - length of provided page list.
3952 * seg - segment to obtain pages for.
3953 * addr - virtual address of fault.
3954 * rw - mode of created pages.
3955 * cr - credentials of caller.
3956 * ct - caller context.
3957 *
3958 * OUT: protp - protection mode of created pages.
3959 * pl - list of pages created.
3960 *
3961 * RETURN: 0 if success
3962 * error code if failure
3963 *
3964 * Timestamps:
3965 * vp - atime updated
3966 */
3967/* ARGSUSED */
3968static int
3969zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
3970 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
3971 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
3972{
3973 znode_t *zp = VTOZ(vp);
3974 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
d164b209
BB
3975 page_t **pl0 = pl;
3976 int err = 0;
3977
3978 /* we do our own caching, faultahead is unnecessary */
3979 if (pl == NULL)
3980 return (0);
3981 else if (len > plsz)
3982 len = plsz;
3983 else
3984 len = P2ROUNDUP(len, PAGESIZE);
3985 ASSERT(plsz >= len);
34dc7c2f
BB
3986
3987 ZFS_ENTER(zfsvfs);
3988 ZFS_VERIFY_ZP(zp);
3989
3990 if (protp)
3991 *protp = PROT_ALL;
3992
34dc7c2f
BB
3993 /*
3994 * Loop through the requested range [off, off + len] looking
3995 * for pages. If we don't find a page, we will need to create
3996 * a new page and fill it with data from the file.
3997 */
3998 while (len > 0) {
d164b209
BB
3999 if (*pl = page_lookup(vp, off, SE_SHARED))
4000 *(pl+1) = NULL;
4001 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4002 goto out;
4003 while (*pl) {
4004 ASSERT3U((*pl)->p_offset, ==, off);
34dc7c2f
BB
4005 off += PAGESIZE;
4006 addr += PAGESIZE;
d164b209
BB
4007 if (len > 0) {
4008 ASSERT3U(len, >=, PAGESIZE);
4009 len -= PAGESIZE;
34dc7c2f 4010 }
d164b209
BB
4011 ASSERT3U(plsz, >=, PAGESIZE);
4012 plsz -= PAGESIZE;
4013 pl++;
34dc7c2f
BB
4014 }
4015 }
4016
4017 /*
4018 * Fill out the page array with any pages already in the cache.
4019 */
d164b209
BB
4020 while (plsz > 0 &&
4021 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4022 off += PAGESIZE;
4023 plsz -= PAGESIZE;
34dc7c2f 4024 }
34dc7c2f 4025out:
34dc7c2f
BB
4026 if (err) {
4027 /*
4028 * Release any pages we have previously locked.
4029 */
4030 while (pl > pl0)
4031 page_unlock(*--pl);
d164b209
BB
4032 } else {
4033 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
34dc7c2f
BB
4034 }
4035
4036 *pl = NULL;
4037
34dc7c2f
BB
4038 ZFS_EXIT(zfsvfs);
4039 return (err);
4040}
4041
4042/*
4043 * Request a memory map for a section of a file. This code interacts
4044 * with common code and the VM system as follows:
4045 *
4046 * common code calls mmap(), which ends up in smmap_common()
4047 *
4048 * this calls VOP_MAP(), which takes you into (say) zfs
4049 *
4050 * zfs_map() calls as_map(), passing segvn_create() as the callback
4051 *
4052 * segvn_create() creates the new segment and calls VOP_ADDMAP()
4053 *
4054 * zfs_addmap() updates z_mapcnt
4055 */
4056/*ARGSUSED*/
4057static int
4058zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4059 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4060 caller_context_t *ct)
4061{
4062 znode_t *zp = VTOZ(vp);
4063 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4064 segvn_crargs_t vn_a;
4065 int error;
4066
4067 ZFS_ENTER(zfsvfs);
4068 ZFS_VERIFY_ZP(zp);
4069
4070 if ((prot & PROT_WRITE) &&
4071 (zp->z_phys->zp_flags & (ZFS_IMMUTABLE | ZFS_READONLY |
4072 ZFS_APPENDONLY))) {
4073 ZFS_EXIT(zfsvfs);
4074 return (EPERM);
4075 }
4076
4077 if ((prot & (PROT_READ | PROT_EXEC)) &&
4078 (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED)) {
4079 ZFS_EXIT(zfsvfs);
4080 return (EACCES);
4081 }
4082
4083 if (vp->v_flag & VNOMAP) {
4084 ZFS_EXIT(zfsvfs);
4085 return (ENOSYS);
4086 }
4087
4088 if (off < 0 || len > MAXOFFSET_T - off) {
4089 ZFS_EXIT(zfsvfs);
4090 return (ENXIO);
4091 }
4092
4093 if (vp->v_type != VREG) {
4094 ZFS_EXIT(zfsvfs);
4095 return (ENODEV);
4096 }
4097
4098 /*
4099 * If file is locked, disallow mapping.
4100 */
4101 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) {
4102 ZFS_EXIT(zfsvfs);
4103 return (EAGAIN);
4104 }
4105
4106 as_rangelock(as);
4107 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4108 if (error != 0) {
4109 as_rangeunlock(as);
4110 ZFS_EXIT(zfsvfs);
4111 return (error);
4112 }
4113
4114 vn_a.vp = vp;
4115 vn_a.offset = (u_offset_t)off;
4116 vn_a.type = flags & MAP_TYPE;
4117 vn_a.prot = prot;
4118 vn_a.maxprot = maxprot;
4119 vn_a.cred = cr;
4120 vn_a.amp = NULL;
4121 vn_a.flags = flags & ~MAP_TYPE;
4122 vn_a.szc = 0;
4123 vn_a.lgrp_mem_policy_flags = 0;
4124
4125 error = as_map(as, *addrp, len, segvn_create, &vn_a);
4126
4127 as_rangeunlock(as);
4128 ZFS_EXIT(zfsvfs);
4129 return (error);
4130}
4131
4132/* ARGSUSED */
4133static int
4134zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4135 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4136 caller_context_t *ct)
4137{
4138 uint64_t pages = btopr(len);
4139
4140 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4141 return (0);
4142}
4143
4144/*
4145 * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4146 * more accurate mtime for the associated file. Since we don't have a way of
4147 * detecting when the data was actually modified, we have to resort to
4148 * heuristics. If an explicit msync() is done, then we mark the mtime when the
4149 * last page is pushed. The problem occurs when the msync() call is omitted,
4150 * which by far the most common case:
4151 *
4152 * open()
4153 * mmap()
4154 * <modify memory>
4155 * munmap()
4156 * close()
4157 * <time lapse>
4158 * putpage() via fsflush
4159 *
4160 * If we wait until fsflush to come along, we can have a modification time that
4161 * is some arbitrary point in the future. In order to prevent this in the
4162 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4163 * torn down.
4164 */
4165/* ARGSUSED */
4166static int
4167zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4168 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4169 caller_context_t *ct)
4170{
4171 uint64_t pages = btopr(len);
4172
4173 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4174 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4175
4176 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4177 vn_has_cached_data(vp))
4178 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4179
4180 return (0);
4181}
4182
4183/*
4184 * Free or allocate space in a file. Currently, this function only
4185 * supports the `F_FREESP' command. However, this command is somewhat
4186 * misnamed, as its functionality includes the ability to allocate as
4187 * well as free space.
4188 *
4189 * IN: vp - vnode of file to free data in.
4190 * cmd - action to take (only F_FREESP supported).
4191 * bfp - section of file to free/alloc.
4192 * flag - current file open mode flags.
4193 * offset - current file offset.
4194 * cr - credentials of caller [UNUSED].
4195 * ct - caller context.
4196 *
4197 * RETURN: 0 if success
4198 * error code if failure
4199 *
4200 * Timestamps:
4201 * vp - ctime|mtime updated
4202 */
4203/* ARGSUSED */
4204static int
4205zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4206 offset_t offset, cred_t *cr, caller_context_t *ct)
4207{
4208 znode_t *zp = VTOZ(vp);
4209 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4210 uint64_t off, len;
4211 int error;
4212
4213 ZFS_ENTER(zfsvfs);
4214 ZFS_VERIFY_ZP(zp);
4215
34dc7c2f
BB
4216 if (cmd != F_FREESP) {
4217 ZFS_EXIT(zfsvfs);
4218 return (EINVAL);
4219 }
4220
4221 if (error = convoff(vp, bfp, 0, offset)) {
4222 ZFS_EXIT(zfsvfs);
4223 return (error);
4224 }
4225
4226 if (bfp->l_len < 0) {
4227 ZFS_EXIT(zfsvfs);
4228 return (EINVAL);
4229 }
4230
4231 off = bfp->l_start;
4232 len = bfp->l_len; /* 0 means from off to end of file */
4233
b128c09f 4234 error = zfs_freesp(zp, off, len, flag, TRUE);
34dc7c2f
BB
4235
4236 ZFS_EXIT(zfsvfs);
4237 return (error);
4238}
4239
4240/*ARGSUSED*/
4241static int
4242zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4243{
4244 znode_t *zp = VTOZ(vp);
4245 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4246 uint32_t gen;
4247 uint64_t object = zp->z_id;
4248 zfid_short_t *zfid;
4249 int size, i;
4250
4251 ZFS_ENTER(zfsvfs);
4252 ZFS_VERIFY_ZP(zp);
4253 gen = (uint32_t)zp->z_gen;
4254
4255 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4256 if (fidp->fid_len < size) {
4257 fidp->fid_len = size;
4258 ZFS_EXIT(zfsvfs);
4259 return (ENOSPC);
4260 }
4261
4262 zfid = (zfid_short_t *)fidp;
4263
4264 zfid->zf_len = size;
4265
4266 for (i = 0; i < sizeof (zfid->zf_object); i++)
4267 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4268
4269 /* Must have a non-zero generation number to distinguish from .zfs */
4270 if (gen == 0)
4271 gen = 1;
4272 for (i = 0; i < sizeof (zfid->zf_gen); i++)
4273 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4274
4275 if (size == LONG_FID_LEN) {
4276 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
4277 zfid_long_t *zlfid;
4278
4279 zlfid = (zfid_long_t *)fidp;
4280
4281 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4282 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4283
4284 /* XXX - this should be the generation number for the objset */
4285 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4286 zlfid->zf_setgen[i] = 0;
4287 }
4288
4289 ZFS_EXIT(zfsvfs);
4290 return (0);
4291}
4292
4293static int
4294zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4295 caller_context_t *ct)
4296{
4297 znode_t *zp, *xzp;
4298 zfsvfs_t *zfsvfs;
4299 zfs_dirlock_t *dl;
4300 int error;
4301
4302 switch (cmd) {
4303 case _PC_LINK_MAX:
4304 *valp = ULONG_MAX;
4305 return (0);
4306
4307 case _PC_FILESIZEBITS:
4308 *valp = 64;
4309 return (0);
4310
4311 case _PC_XATTR_EXISTS:
4312 zp = VTOZ(vp);
4313 zfsvfs = zp->z_zfsvfs;
4314 ZFS_ENTER(zfsvfs);
4315 ZFS_VERIFY_ZP(zp);
4316 *valp = 0;
4317 error = zfs_dirent_lock(&dl, zp, "", &xzp,
4318 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4319 if (error == 0) {
4320 zfs_dirent_unlock(dl);
4321 if (!zfs_dirempty(xzp))
4322 *valp = 1;
4323 VN_RELE(ZTOV(xzp));
4324 } else if (error == ENOENT) {
4325 /*
4326 * If there aren't extended attributes, it's the
4327 * same as having zero of them.
4328 */
4329 error = 0;
4330 }
4331 ZFS_EXIT(zfsvfs);
4332 return (error);
4333
4334 case _PC_SATTR_ENABLED:
4335 case _PC_SATTR_EXISTS:
b128c09f 4336 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
34dc7c2f
BB
4337 (vp->v_type == VREG || vp->v_type == VDIR);
4338 return (0);
4339
4340 case _PC_ACL_ENABLED:
4341 *valp = _ACL_ACE_ENABLED;
4342 return (0);
4343
4344 case _PC_MIN_HOLE_SIZE:
4345 *valp = (ulong_t)SPA_MINBLOCKSIZE;
4346 return (0);
4347
4348 default:
4349 return (fs_pathconf(vp, cmd, valp, cr, ct));
4350 }
4351}
4352
4353/*ARGSUSED*/
4354static int
4355zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4356 caller_context_t *ct)
4357{
4358 znode_t *zp = VTOZ(vp);
4359 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4360 int error;
4361 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4362
4363 ZFS_ENTER(zfsvfs);
4364 ZFS_VERIFY_ZP(zp);
4365 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
4366 ZFS_EXIT(zfsvfs);
4367
4368 return (error);
4369}
4370
4371/*ARGSUSED*/
4372static int
4373zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4374 caller_context_t *ct)
4375{
4376 znode_t *zp = VTOZ(vp);
4377 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4378 int error;
4379 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4380
4381 ZFS_ENTER(zfsvfs);
4382 ZFS_VERIFY_ZP(zp);
4383 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
4384 ZFS_EXIT(zfsvfs);
4385 return (error);
4386}
4387
4388/*
4389 * Predeclare these here so that the compiler assumes that
4390 * this is an "old style" function declaration that does
4391 * not include arguments => we won't get type mismatch errors
4392 * in the initializations that follow.
4393 */
4394static int zfs_inval();
4395static int zfs_isdir();
4396
4397static int
4398zfs_inval()
4399{
4400 return (EINVAL);
4401}
4402
4403static int
4404zfs_isdir()
4405{
4406 return (EISDIR);
4407}
4408/*
4409 * Directory vnode operations template
4410 */
4411vnodeops_t *zfs_dvnodeops;
4412const fs_operation_def_t zfs_dvnodeops_template[] = {
4413 VOPNAME_OPEN, { .vop_open = zfs_open },
4414 VOPNAME_CLOSE, { .vop_close = zfs_close },
4415 VOPNAME_READ, { .error = zfs_isdir },
4416 VOPNAME_WRITE, { .error = zfs_isdir },
4417 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
4418 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
4419 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
4420 VOPNAME_ACCESS, { .vop_access = zfs_access },
4421 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
4422 VOPNAME_CREATE, { .vop_create = zfs_create },
4423 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
4424 VOPNAME_LINK, { .vop_link = zfs_link },
4425 VOPNAME_RENAME, { .vop_rename = zfs_rename },
4426 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir },
4427 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
4428 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
4429 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink },
4430 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
4431 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
4432 VOPNAME_FID, { .vop_fid = zfs_fid },
4433 VOPNAME_SEEK, { .vop_seek = zfs_seek },
4434 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
4435 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
4436 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
4437 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
4438 NULL, NULL
4439};
4440
4441/*
4442 * Regular file vnode operations template
4443 */
4444vnodeops_t *zfs_fvnodeops;
4445const fs_operation_def_t zfs_fvnodeops_template[] = {
4446 VOPNAME_OPEN, { .vop_open = zfs_open },
4447 VOPNAME_CLOSE, { .vop_close = zfs_close },
4448 VOPNAME_READ, { .vop_read = zfs_read },
4449 VOPNAME_WRITE, { .vop_write = zfs_write },
4450 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
4451 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
4452 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
4453 VOPNAME_ACCESS, { .vop_access = zfs_access },
4454 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
4455 VOPNAME_RENAME, { .vop_rename = zfs_rename },
4456 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
4457 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
4458 VOPNAME_FID, { .vop_fid = zfs_fid },
4459 VOPNAME_SEEK, { .vop_seek = zfs_seek },
4460 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock },
4461 VOPNAME_SPACE, { .vop_space = zfs_space },
4462 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage },
4463 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage },
4464 VOPNAME_MAP, { .vop_map = zfs_map },
4465 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap },
4466 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap },
4467 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
4468 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
4469 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
4470 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
4471 NULL, NULL
4472};
4473
4474/*
4475 * Symbolic link vnode operations template
4476 */
4477vnodeops_t *zfs_symvnodeops;
4478const fs_operation_def_t zfs_symvnodeops_template[] = {
4479 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
4480 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
4481 VOPNAME_ACCESS, { .vop_access = zfs_access },
4482 VOPNAME_RENAME, { .vop_rename = zfs_rename },
4483 VOPNAME_READLINK, { .vop_readlink = zfs_readlink },
4484 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
4485 VOPNAME_FID, { .vop_fid = zfs_fid },
4486 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
4487 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
4488 NULL, NULL
4489};
4490
4491/*
4492 * Extended attribute directory vnode operations template
4493 * This template is identical to the directory vnodes
4494 * operation template except for restricted operations:
4495 * VOP_MKDIR()
4496 * VOP_SYMLINK()
4497 * Note that there are other restrictions embedded in:
4498 * zfs_create() - restrict type to VREG
4499 * zfs_link() - no links into/out of attribute space
4500 * zfs_rename() - no moves into/out of attribute space
4501 */
4502vnodeops_t *zfs_xdvnodeops;
4503const fs_operation_def_t zfs_xdvnodeops_template[] = {
4504 VOPNAME_OPEN, { .vop_open = zfs_open },
4505 VOPNAME_CLOSE, { .vop_close = zfs_close },
4506 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
4507 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
4508 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
4509 VOPNAME_ACCESS, { .vop_access = zfs_access },
4510 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
4511 VOPNAME_CREATE, { .vop_create = zfs_create },
4512 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
4513 VOPNAME_LINK, { .vop_link = zfs_link },
4514 VOPNAME_RENAME, { .vop_rename = zfs_rename },
4515 VOPNAME_MKDIR, { .error = zfs_inval },
4516 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
4517 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
4518 VOPNAME_SYMLINK, { .error = zfs_inval },
4519 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
4520 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
4521 VOPNAME_FID, { .vop_fid = zfs_fid },
4522 VOPNAME_SEEK, { .vop_seek = zfs_seek },
4523 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
4524 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
4525 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
4526 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
4527 NULL, NULL
4528};
4529
4530/*
4531 * Error vnode operations template
4532 */
4533vnodeops_t *zfs_evnodeops;
4534const fs_operation_def_t zfs_evnodeops_template[] = {
4535 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
4536 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
4537 NULL, NULL
4538};