]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/zil.c
OpenZFS 8909 - 8585 can cause a use-after-free kernel panic
[mirror_zfs.git] / module / zfs / zil.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
4747a7d3 23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
55922e73 24 * Copyright (c) 2014 Integros [integros.com]
34dc7c2f
BB
25 */
26
428870ff
BB
27/* Portions Copyright 2010 Robert Milkowski */
28
34dc7c2f
BB
29#include <sys/zfs_context.h>
30#include <sys/spa.h>
31#include <sys/dmu.h>
32#include <sys/zap.h>
33#include <sys/arc.h>
34#include <sys/stat.h>
35#include <sys/resource.h>
36#include <sys/zil.h>
37#include <sys/zil_impl.h>
38#include <sys/dsl_dataset.h>
572e2857 39#include <sys/vdev_impl.h>
34dc7c2f 40#include <sys/dmu_tx.h>
428870ff 41#include <sys/dsl_pool.h>
920dd524 42#include <sys/metaslab.h>
49ee64e5 43#include <sys/trace_zil.h>
a6255b7f 44#include <sys/abd.h>
34dc7c2f
BB
45
46/*
1ce23dca
PS
47 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
48 * calls that change the file system. Each itx has enough information to
49 * be able to replay them after a system crash, power loss, or
50 * equivalent failure mode. These are stored in memory until either:
34dc7c2f 51 *
1ce23dca
PS
52 * 1. they are committed to the pool by the DMU transaction group
53 * (txg), at which point they can be discarded; or
54 * 2. they are committed to the on-disk ZIL for the dataset being
55 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous
56 * requirement).
34dc7c2f 57 *
1ce23dca
PS
58 * In the event of a crash or power loss, the itxs contained by each
59 * dataset's on-disk ZIL will be replayed when that dataset is first
2fe61a7e 60 * instantiated (e.g. if the dataset is a normal fileystem, when it is
1ce23dca 61 * first mounted).
34dc7c2f 62 *
1ce23dca
PS
63 * As hinted at above, there is one ZIL per dataset (both the in-memory
64 * representation, and the on-disk representation). The on-disk format
65 * consists of 3 parts:
66 *
67 * - a single, per-dataset, ZIL header; which points to a chain of
68 * - zero or more ZIL blocks; each of which contains
69 * - zero or more ZIL records
70 *
71 * A ZIL record holds the information necessary to replay a single
72 * system call transaction. A ZIL block can hold many ZIL records, and
73 * the blocks are chained together, similarly to a singly linked list.
74 *
75 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
76 * block in the chain, and the ZIL header points to the first block in
77 * the chain.
78 *
79 * Note, there is not a fixed place in the pool to hold these ZIL
80 * blocks; they are dynamically allocated and freed as needed from the
81 * blocks available on the pool, though they can be preferentially
82 * allocated from a dedicated "log" vdev.
34dc7c2f
BB
83 */
84
1ce23dca
PS
85/*
86 * This controls the amount of time that a ZIL block (lwb) will remain
87 * "open" when it isn't "full", and it has a thread waiting for it to be
88 * committed to stable storage. Please refer to the zil_commit_waiter()
89 * function (and the comments within it) for more details.
90 */
91int zfs_commit_timeout_pct = 5;
92
b6ad9671
ED
93/*
94 * See zil.h for more information about these fields.
95 */
96zil_stats_t zil_stats = {
d1d7e268
MK
97 { "zil_commit_count", KSTAT_DATA_UINT64 },
98 { "zil_commit_writer_count", KSTAT_DATA_UINT64 },
99 { "zil_itx_count", KSTAT_DATA_UINT64 },
100 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 },
101 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 },
102 { "zil_itx_copied_count", KSTAT_DATA_UINT64 },
103 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 },
104 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 },
105 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 },
106 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 },
107 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 },
108 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 },
109 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 },
b6ad9671
ED
110};
111
112static kstat_t *zil_ksp;
113
34dc7c2f 114/*
d3cc8b15 115 * Disable intent logging replay. This global ZIL switch affects all pools.
34dc7c2f 116 */
d3cc8b15 117int zil_replay_disable = 0;
34dc7c2f
BB
118
119/*
120 * Tunable parameter for debugging or performance analysis. Setting
121 * zfs_nocacheflush will cause corruption on power loss if a volatile
122 * out-of-order write cache is enabled.
123 */
c409e464 124int zfs_nocacheflush = 0;
34dc7c2f 125
1b7c1e5c
GDN
126/*
127 * Limit SLOG write size per commit executed with synchronous priority.
128 * Any writes above that will be executed with lower (asynchronous) priority
129 * to limit potential SLOG device abuse by single active ZIL writer.
130 */
131unsigned long zil_slog_bulk = 768 * 1024;
132
34dc7c2f 133static kmem_cache_t *zil_lwb_cache;
1ce23dca 134static kmem_cache_t *zil_zcw_cache;
34dc7c2f 135
572e2857 136static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
428870ff
BB
137
138#define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
139 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
140
34dc7c2f 141static int
428870ff 142zil_bp_compare(const void *x1, const void *x2)
34dc7c2f 143{
428870ff
BB
144 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
145 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
34dc7c2f 146
ee36c709
GN
147 int cmp = AVL_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
148 if (likely(cmp))
149 return (cmp);
34dc7c2f 150
ee36c709 151 return (AVL_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
34dc7c2f
BB
152}
153
154static void
428870ff 155zil_bp_tree_init(zilog_t *zilog)
34dc7c2f 156{
428870ff
BB
157 avl_create(&zilog->zl_bp_tree, zil_bp_compare,
158 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
34dc7c2f
BB
159}
160
161static void
428870ff 162zil_bp_tree_fini(zilog_t *zilog)
34dc7c2f 163{
428870ff
BB
164 avl_tree_t *t = &zilog->zl_bp_tree;
165 zil_bp_node_t *zn;
34dc7c2f
BB
166 void *cookie = NULL;
167
168 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
428870ff 169 kmem_free(zn, sizeof (zil_bp_node_t));
34dc7c2f
BB
170
171 avl_destroy(t);
172}
173
428870ff
BB
174int
175zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
34dc7c2f 176{
428870ff 177 avl_tree_t *t = &zilog->zl_bp_tree;
9b67f605 178 const dva_t *dva;
428870ff 179 zil_bp_node_t *zn;
34dc7c2f
BB
180 avl_index_t where;
181
9b67f605
MA
182 if (BP_IS_EMBEDDED(bp))
183 return (0);
184
185 dva = BP_IDENTITY(bp);
186
34dc7c2f 187 if (avl_find(t, dva, &where) != NULL)
2e528b49 188 return (SET_ERROR(EEXIST));
34dc7c2f 189
79c76d5b 190 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
34dc7c2f
BB
191 zn->zn_dva = *dva;
192 avl_insert(t, zn, where);
193
194 return (0);
195}
196
197static zil_header_t *
198zil_header_in_syncing_context(zilog_t *zilog)
199{
200 return ((zil_header_t *)zilog->zl_header);
201}
202
203static void
204zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
205{
206 zio_cksum_t *zc = &bp->blk_cksum;
207
208 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
209 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
210 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
211 zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
212}
213
214/*
428870ff 215 * Read a log block and make sure it's valid.
34dc7c2f
BB
216 */
217static int
b5256303
TC
218zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
219 blkptr_t *nbp, void *dst, char **end)
34dc7c2f 220{
428870ff 221 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
2a432414 222 arc_flags_t aflags = ARC_FLAG_WAIT;
428870ff 223 arc_buf_t *abuf = NULL;
5dbd68a3 224 zbookmark_phys_t zb;
34dc7c2f
BB
225 int error;
226
428870ff
BB
227 if (zilog->zl_header->zh_claim_txg == 0)
228 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
34dc7c2f 229
428870ff
BB
230 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
231 zio_flags |= ZIO_FLAG_SPECULATIVE;
34dc7c2f 232
b5256303
TC
233 if (!decrypt)
234 zio_flags |= ZIO_FLAG_RAW;
235
428870ff
BB
236 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
237 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
238
b5256303
TC
239 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
240 &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
34dc7c2f
BB
241
242 if (error == 0) {
34dc7c2f
BB
243 zio_cksum_t cksum = bp->blk_cksum;
244
245 /*
b128c09f
BB
246 * Validate the checksummed log block.
247 *
34dc7c2f
BB
248 * Sequence numbers should be... sequential. The checksum
249 * verifier for the next block should be bp's checksum plus 1.
b128c09f
BB
250 *
251 * Also check the log chain linkage and size used.
34dc7c2f
BB
252 */
253 cksum.zc_word[ZIL_ZC_SEQ]++;
254
428870ff
BB
255 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
256 zil_chain_t *zilc = abuf->b_data;
257 char *lr = (char *)(zilc + 1);
258 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
34dc7c2f 259
428870ff
BB
260 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
261 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
2e528b49 262 error = SET_ERROR(ECKSUM);
428870ff 263 } else {
f1512ee6 264 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
428870ff
BB
265 bcopy(lr, dst, len);
266 *end = (char *)dst + len;
267 *nbp = zilc->zc_next_blk;
268 }
269 } else {
270 char *lr = abuf->b_data;
271 uint64_t size = BP_GET_LSIZE(bp);
272 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
273
274 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
275 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
276 (zilc->zc_nused > (size - sizeof (*zilc)))) {
2e528b49 277 error = SET_ERROR(ECKSUM);
428870ff 278 } else {
f1512ee6
MA
279 ASSERT3U(zilc->zc_nused, <=,
280 SPA_OLD_MAXBLOCKSIZE);
428870ff
BB
281 bcopy(lr, dst, zilc->zc_nused);
282 *end = (char *)dst + zilc->zc_nused;
283 *nbp = zilc->zc_next_blk;
284 }
34dc7c2f 285 }
428870ff 286
d3c2ae1c 287 arc_buf_destroy(abuf, &abuf);
428870ff
BB
288 }
289
290 return (error);
291}
292
293/*
294 * Read a TX_WRITE log data block.
295 */
296static int
297zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
298{
299 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
300 const blkptr_t *bp = &lr->lr_blkptr;
2a432414 301 arc_flags_t aflags = ARC_FLAG_WAIT;
428870ff 302 arc_buf_t *abuf = NULL;
5dbd68a3 303 zbookmark_phys_t zb;
428870ff
BB
304 int error;
305
306 if (BP_IS_HOLE(bp)) {
307 if (wbuf != NULL)
308 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
309 return (0);
34dc7c2f
BB
310 }
311
428870ff
BB
312 if (zilog->zl_header->zh_claim_txg == 0)
313 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
314
b5256303
TC
315 /*
316 * If we are not using the resulting data, we are just checking that
317 * it hasn't been corrupted so we don't need to waste CPU time
318 * decompressing and decrypting it.
319 */
320 if (wbuf == NULL)
321 zio_flags |= ZIO_FLAG_RAW;
322
428870ff
BB
323 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
324 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
325
294f6806 326 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
428870ff
BB
327 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
328
329 if (error == 0) {
330 if (wbuf != NULL)
331 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
d3c2ae1c 332 arc_buf_destroy(abuf, &abuf);
428870ff 333 }
34dc7c2f
BB
334
335 return (error);
336}
337
338/*
339 * Parse the intent log, and call parse_func for each valid record within.
34dc7c2f 340 */
428870ff 341int
34dc7c2f 342zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
b5256303
TC
343 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
344 boolean_t decrypt)
34dc7c2f
BB
345{
346 const zil_header_t *zh = zilog->zl_header;
428870ff
BB
347 boolean_t claimed = !!zh->zh_claim_txg;
348 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
349 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
350 uint64_t max_blk_seq = 0;
351 uint64_t max_lr_seq = 0;
352 uint64_t blk_count = 0;
353 uint64_t lr_count = 0;
354 blkptr_t blk, next_blk;
34dc7c2f 355 char *lrbuf, *lrp;
428870ff 356 int error = 0;
34dc7c2f 357
d1d7e268 358 bzero(&next_blk, sizeof (blkptr_t));
d4ed6673 359
428870ff
BB
360 /*
361 * Old logs didn't record the maximum zh_claim_lr_seq.
362 */
363 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
364 claim_lr_seq = UINT64_MAX;
34dc7c2f
BB
365
366 /*
367 * Starting at the block pointed to by zh_log we read the log chain.
368 * For each block in the chain we strongly check that block to
369 * ensure its validity. We stop when an invalid block is found.
370 * For each block pointer in the chain we call parse_blk_func().
371 * For each record in each valid block we call parse_lr_func().
372 * If the log has been claimed, stop if we encounter a sequence
373 * number greater than the highest claimed sequence number.
374 */
f1512ee6 375 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
428870ff 376 zil_bp_tree_init(zilog);
34dc7c2f 377
428870ff
BB
378 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
379 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
380 int reclen;
d4ed6673 381 char *end = NULL;
34dc7c2f 382
428870ff
BB
383 if (blk_seq > claim_blk_seq)
384 break;
b5256303
TC
385
386 error = parse_blk_func(zilog, &blk, arg, txg);
387 if (error != 0)
428870ff
BB
388 break;
389 ASSERT3U(max_blk_seq, <, blk_seq);
390 max_blk_seq = blk_seq;
391 blk_count++;
34dc7c2f 392
428870ff
BB
393 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
394 break;
34dc7c2f 395
b5256303
TC
396 error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
397 lrbuf, &end);
13fe0198 398 if (error != 0)
34dc7c2f
BB
399 break;
400
428870ff 401 for (lrp = lrbuf; lrp < end; lrp += reclen) {
34dc7c2f
BB
402 lr_t *lr = (lr_t *)lrp;
403 reclen = lr->lrc_reclen;
404 ASSERT3U(reclen, >=, sizeof (lr_t));
428870ff
BB
405 if (lr->lrc_seq > claim_lr_seq)
406 goto done;
b5256303
TC
407
408 error = parse_lr_func(zilog, lr, arg, txg);
409 if (error != 0)
428870ff
BB
410 goto done;
411 ASSERT3U(max_lr_seq, <, lr->lrc_seq);
412 max_lr_seq = lr->lrc_seq;
413 lr_count++;
34dc7c2f 414 }
34dc7c2f 415 }
428870ff
BB
416done:
417 zilog->zl_parse_error = error;
418 zilog->zl_parse_blk_seq = max_blk_seq;
419 zilog->zl_parse_lr_seq = max_lr_seq;
420 zilog->zl_parse_blk_count = blk_count;
421 zilog->zl_parse_lr_count = lr_count;
422
423 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
b5256303
TC
424 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq) ||
425 (decrypt && error == EIO));
428870ff
BB
426
427 zil_bp_tree_fini(zilog);
f1512ee6 428 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
34dc7c2f 429
428870ff 430 return (error);
34dc7c2f
BB
431}
432
428870ff 433static int
34dc7c2f
BB
434zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
435{
34dc7c2f
BB
436 /*
437 * Claim log block if not already committed and not already claimed.
428870ff 438 * If tx == NULL, just verify that the block is claimable.
34dc7c2f 439 */
b0bc7a84
MG
440 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
441 zil_bp_tree_add(zilog, bp) != 0)
428870ff
BB
442 return (0);
443
444 return (zio_wait(zio_claim(NULL, zilog->zl_spa,
445 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
446 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
34dc7c2f
BB
447}
448
428870ff 449static int
34dc7c2f
BB
450zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
451{
428870ff
BB
452 lr_write_t *lr = (lr_write_t *)lrc;
453 int error;
454
455 if (lrc->lrc_txtype != TX_WRITE)
456 return (0);
457
458 /*
459 * If the block is not readable, don't claim it. This can happen
460 * in normal operation when a log block is written to disk before
461 * some of the dmu_sync() blocks it points to. In this case, the
462 * transaction cannot have been committed to anyone (we would have
463 * waited for all writes to be stable first), so it is semantically
464 * correct to declare this the end of the log.
465 */
b5256303
TC
466 if (lr->lr_blkptr.blk_birth >= first_txg) {
467 error = zil_read_log_data(zilog, lr, NULL);
468 if (error != 0)
469 return (error);
470 }
471
428870ff 472 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
34dc7c2f
BB
473}
474
475/* ARGSUSED */
428870ff 476static int
34dc7c2f
BB
477zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
478{
428870ff
BB
479 zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
480
481 return (0);
34dc7c2f
BB
482}
483
428870ff 484static int
34dc7c2f
BB
485zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
486{
428870ff
BB
487 lr_write_t *lr = (lr_write_t *)lrc;
488 blkptr_t *bp = &lr->lr_blkptr;
489
34dc7c2f
BB
490 /*
491 * If we previously claimed it, we need to free it.
492 */
428870ff 493 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
b0bc7a84
MG
494 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
495 !BP_IS_HOLE(bp))
428870ff
BB
496 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
497
498 return (0);
499}
500
1ce23dca
PS
501static int
502zil_lwb_vdev_compare(const void *x1, const void *x2)
503{
504 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
505 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
506
507 return (AVL_CMP(v1, v2));
508}
509
428870ff 510static lwb_t *
1b7c1e5c
GDN
511zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg,
512 boolean_t fastwrite)
428870ff
BB
513{
514 lwb_t *lwb;
515
79c76d5b 516 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
428870ff
BB
517 lwb->lwb_zilog = zilog;
518 lwb->lwb_blk = *bp;
920dd524 519 lwb->lwb_fastwrite = fastwrite;
1b7c1e5c 520 lwb->lwb_slog = slog;
1ce23dca 521 lwb->lwb_state = LWB_STATE_CLOSED;
428870ff
BB
522 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
523 lwb->lwb_max_txg = txg;
1ce23dca
PS
524 lwb->lwb_write_zio = NULL;
525 lwb->lwb_root_zio = NULL;
428870ff 526 lwb->lwb_tx = NULL;
1ce23dca 527 lwb->lwb_issued_timestamp = 0;
428870ff
BB
528 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
529 lwb->lwb_nused = sizeof (zil_chain_t);
530 lwb->lwb_sz = BP_GET_LSIZE(bp);
531 } else {
532 lwb->lwb_nused = 0;
533 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
34dc7c2f 534 }
428870ff
BB
535
536 mutex_enter(&zilog->zl_lock);
537 list_insert_tail(&zilog->zl_lwb_list, lwb);
538 mutex_exit(&zilog->zl_lock);
539
1ce23dca
PS
540 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
541 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
2fe61a7e
PS
542 VERIFY(list_is_empty(&lwb->lwb_waiters));
543 VERIFY(list_is_empty(&lwb->lwb_itxs));
1ce23dca 544
428870ff 545 return (lwb);
34dc7c2f
BB
546}
547
1ce23dca
PS
548static void
549zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
550{
551 ASSERT(MUTEX_HELD(&zilog->zl_lock));
552 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
2fe61a7e
PS
553 VERIFY(list_is_empty(&lwb->lwb_waiters));
554 VERIFY(list_is_empty(&lwb->lwb_itxs));
1ce23dca 555 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1ce23dca
PS
556 ASSERT3P(lwb->lwb_write_zio, ==, NULL);
557 ASSERT3P(lwb->lwb_root_zio, ==, NULL);
2fe61a7e
PS
558 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
559 ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
560 lwb->lwb_state == LWB_STATE_DONE);
1ce23dca
PS
561
562 /*
563 * Clear the zilog's field to indicate this lwb is no longer
564 * valid, and prevent use-after-free errors.
565 */
566 if (zilog->zl_last_lwb_opened == lwb)
567 zilog->zl_last_lwb_opened = NULL;
568
569 kmem_cache_free(zil_lwb_cache, lwb);
570}
571
29809a6c
MA
572/*
573 * Called when we create in-memory log transactions so that we know
574 * to cleanup the itxs at the end of spa_sync().
575 */
576void
577zilog_dirty(zilog_t *zilog, uint64_t txg)
578{
579 dsl_pool_t *dp = zilog->zl_dmu_pool;
580 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
581
1ce23dca
PS
582 ASSERT(spa_writeable(zilog->zl_spa));
583
0c66c32d 584 if (ds->ds_is_snapshot)
29809a6c
MA
585 panic("dirtying snapshot!");
586
13fe0198 587 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
29809a6c
MA
588 /* up the hold count until we can be written out */
589 dmu_buf_add_ref(ds->ds_dbuf, zilog);
1ce23dca
PS
590
591 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
29809a6c
MA
592 }
593}
594
55922e73
GW
595/*
596 * Determine if the zil is dirty in the specified txg. Callers wanting to
597 * ensure that the dirty state does not change must hold the itxg_lock for
598 * the specified txg. Holding the lock will ensure that the zil cannot be
599 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
600 * state.
601 */
602boolean_t
603zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
604{
605 dsl_pool_t *dp = zilog->zl_dmu_pool;
606
607 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
608 return (B_TRUE);
609 return (B_FALSE);
610}
611
612/*
613 * Determine if the zil is dirty. The zil is considered dirty if it has
614 * any pending itx records that have not been cleaned by zil_clean().
615 */
29809a6c
MA
616boolean_t
617zilog_is_dirty(zilog_t *zilog)
618{
619 dsl_pool_t *dp = zilog->zl_dmu_pool;
29809a6c 620
1c27024e 621 for (int t = 0; t < TXG_SIZE; t++) {
29809a6c
MA
622 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
623 return (B_TRUE);
624 }
625 return (B_FALSE);
626}
627
34dc7c2f
BB
628/*
629 * Create an on-disk intent log.
630 */
428870ff 631static lwb_t *
34dc7c2f
BB
632zil_create(zilog_t *zilog)
633{
634 const zil_header_t *zh = zilog->zl_header;
428870ff 635 lwb_t *lwb = NULL;
34dc7c2f
BB
636 uint64_t txg = 0;
637 dmu_tx_t *tx = NULL;
638 blkptr_t blk;
639 int error = 0;
920dd524 640 boolean_t fastwrite = FALSE;
1b7c1e5c 641 boolean_t slog = FALSE;
34dc7c2f
BB
642
643 /*
644 * Wait for any previous destroy to complete.
645 */
646 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
647
648 ASSERT(zh->zh_claim_txg == 0);
649 ASSERT(zh->zh_replay_seq == 0);
650
651 blk = zh->zh_log;
652
653 /*
428870ff
BB
654 * Allocate an initial log block if:
655 * - there isn't one already
4e33ba4c 656 * - the existing block is the wrong endianness
34dc7c2f 657 */
fb5f0bc8 658 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
34dc7c2f 659 tx = dmu_tx_create(zilog->zl_os);
1ce23dca 660 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
34dc7c2f
BB
661 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
662 txg = dmu_tx_get_txg(tx);
663
fb5f0bc8 664 if (!BP_IS_HOLE(&blk)) {
428870ff 665 zio_free_zil(zilog->zl_spa, txg, &blk);
fb5f0bc8
BB
666 BP_ZERO(&blk);
667 }
668
b5256303 669 error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
1b7c1e5c 670 ZIL_MIN_BLKSZ, &slog);
920dd524 671 fastwrite = TRUE;
34dc7c2f
BB
672
673 if (error == 0)
674 zil_init_log_chain(zilog, &blk);
675 }
676
677 /*
1ce23dca 678 * Allocate a log write block (lwb) for the first log block.
34dc7c2f 679 */
428870ff 680 if (error == 0)
1b7c1e5c 681 lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite);
34dc7c2f
BB
682
683 /*
684 * If we just allocated the first log block, commit our transaction
2fe61a7e 685 * and wait for zil_sync() to stuff the block pointer into zh_log.
34dc7c2f
BB
686 * (zh is part of the MOS, so we cannot modify it in open context.)
687 */
688 if (tx != NULL) {
689 dmu_tx_commit(tx);
690 txg_wait_synced(zilog->zl_dmu_pool, txg);
691 }
692
693 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
428870ff
BB
694
695 return (lwb);
34dc7c2f
BB
696}
697
698/*
1ce23dca
PS
699 * In one tx, free all log blocks and clear the log header. If keep_first
700 * is set, then we're replaying a log with no content. We want to keep the
701 * first block, however, so that the first synchronous transaction doesn't
702 * require a txg_wait_synced() in zil_create(). We don't need to
703 * txg_wait_synced() here either when keep_first is set, because both
704 * zil_create() and zil_destroy() will wait for any in-progress destroys
705 * to complete.
34dc7c2f
BB
706 */
707void
708zil_destroy(zilog_t *zilog, boolean_t keep_first)
709{
710 const zil_header_t *zh = zilog->zl_header;
711 lwb_t *lwb;
712 dmu_tx_t *tx;
713 uint64_t txg;
714
715 /*
716 * Wait for any previous destroy to complete.
717 */
718 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
719
428870ff
BB
720 zilog->zl_old_header = *zh; /* debugging aid */
721
34dc7c2f
BB
722 if (BP_IS_HOLE(&zh->zh_log))
723 return;
724
725 tx = dmu_tx_create(zilog->zl_os);
1ce23dca 726 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
34dc7c2f
BB
727 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
728 txg = dmu_tx_get_txg(tx);
729
730 mutex_enter(&zilog->zl_lock);
731
34dc7c2f
BB
732 ASSERT3U(zilog->zl_destroy_txg, <, txg);
733 zilog->zl_destroy_txg = txg;
734 zilog->zl_keep_first = keep_first;
735
736 if (!list_is_empty(&zilog->zl_lwb_list)) {
737 ASSERT(zh->zh_claim_txg == 0);
3e31d2b0 738 VERIFY(!keep_first);
34dc7c2f 739 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
920dd524
ED
740 if (lwb->lwb_fastwrite)
741 metaslab_fastwrite_unmark(zilog->zl_spa,
742 &lwb->lwb_blk);
1ce23dca 743
34dc7c2f
BB
744 list_remove(&zilog->zl_lwb_list, lwb);
745 if (lwb->lwb_buf != NULL)
746 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1ce23dca
PS
747 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
748 zil_free_lwb(zilog, lwb);
34dc7c2f 749 }
428870ff 750 } else if (!keep_first) {
29809a6c 751 zil_destroy_sync(zilog, tx);
34dc7c2f
BB
752 }
753 mutex_exit(&zilog->zl_lock);
754
755 dmu_tx_commit(tx);
756}
757
29809a6c
MA
758void
759zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
760{
761 ASSERT(list_is_empty(&zilog->zl_lwb_list));
762 (void) zil_parse(zilog, zil_free_log_block,
b5256303 763 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
29809a6c
MA
764}
765
34dc7c2f 766int
9c43027b 767zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
34dc7c2f
BB
768{
769 dmu_tx_t *tx = txarg;
770 uint64_t first_txg = dmu_tx_get_txg(tx);
771 zilog_t *zilog;
772 zil_header_t *zh;
773 objset_t *os;
774 int error;
775
9c43027b 776 error = dmu_objset_own_obj(dp, ds->ds_object,
b5256303 777 DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
13fe0198 778 if (error != 0) {
6d9036f3
MA
779 /*
780 * EBUSY indicates that the objset is inconsistent, in which
781 * case it can not have a ZIL.
782 */
783 if (error != EBUSY) {
9c43027b
AJ
784 cmn_err(CE_WARN, "can't open objset for %llu, error %u",
785 (unsigned long long)ds->ds_object, error);
6d9036f3
MA
786 }
787
34dc7c2f
BB
788 return (0);
789 }
790
791 zilog = dmu_objset_zil(os);
792 zh = zil_header_in_syncing_context(zilog);
793
428870ff 794 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
9babb374 795 if (!BP_IS_HOLE(&zh->zh_log))
428870ff 796 zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
9babb374 797 BP_ZERO(&zh->zh_log);
b5256303
TC
798 if (os->os_encrypted)
799 os->os_next_write_raw = B_TRUE;
9babb374 800 dsl_dataset_dirty(dmu_objset_ds(os), tx);
b5256303 801 dmu_objset_disown(os, B_FALSE, FTAG);
428870ff 802 return (0);
9babb374
BB
803 }
804
34dc7c2f
BB
805 /*
806 * Claim all log blocks if we haven't already done so, and remember
807 * the highest claimed sequence number. This ensures that if we can
808 * read only part of the log now (e.g. due to a missing device),
809 * but we can read the entire log later, we will not try to replay
810 * or destroy beyond the last block we successfully claimed.
811 */
812 ASSERT3U(zh->zh_claim_txg, <=, first_txg);
813 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
428870ff 814 (void) zil_parse(zilog, zil_claim_log_block,
b5256303 815 zil_claim_log_record, tx, first_txg, B_FALSE);
428870ff
BB
816 zh->zh_claim_txg = first_txg;
817 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
818 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
819 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
820 zh->zh_flags |= ZIL_REPLAY_NEEDED;
821 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
34dc7c2f
BB
822 dsl_dataset_dirty(dmu_objset_ds(os), tx);
823 }
824
825 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
b5256303 826 dmu_objset_disown(os, B_FALSE, FTAG);
34dc7c2f
BB
827 return (0);
828}
829
b128c09f
BB
830/*
831 * Check the log by walking the log chain.
832 * Checksum errors are ok as they indicate the end of the chain.
833 * Any other error (no device or read failure) returns an error.
834 */
9c43027b 835/* ARGSUSED */
b128c09f 836int
9c43027b 837zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
b128c09f
BB
838{
839 zilog_t *zilog;
b128c09f 840 objset_t *os;
572e2857 841 blkptr_t *bp;
b128c09f
BB
842 int error;
843
428870ff
BB
844 ASSERT(tx == NULL);
845
9c43027b 846 error = dmu_objset_from_ds(ds, &os);
13fe0198 847 if (error != 0) {
9c43027b
AJ
848 cmn_err(CE_WARN, "can't open objset %llu, error %d",
849 (unsigned long long)ds->ds_object, error);
b128c09f
BB
850 return (0);
851 }
852
853 zilog = dmu_objset_zil(os);
572e2857
BB
854 bp = (blkptr_t *)&zilog->zl_header->zh_log;
855
856 /*
857 * Check the first block and determine if it's on a log device
858 * which may have been removed or faulted prior to loading this
859 * pool. If so, there's no point in checking the rest of the log
860 * as its content should have already been synced to the pool.
861 */
862 if (!BP_IS_HOLE(bp)) {
863 vdev_t *vd;
864 boolean_t valid = B_TRUE;
865
866 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
867 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
868 if (vd->vdev_islog && vdev_is_dead(vd))
869 valid = vdev_log_state_valid(vd);
870 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
871
9c43027b 872 if (!valid)
572e2857 873 return (0);
572e2857 874 }
b128c09f 875
428870ff
BB
876 /*
877 * Because tx == NULL, zil_claim_log_block() will not actually claim
878 * any blocks, but just determine whether it is possible to do so.
879 * In addition to checking the log chain, zil_claim_log_block()
880 * will invoke zio_claim() with a done func of spa_claim_notify(),
881 * which will update spa_max_claim_txg. See spa_load() for details.
882 */
883 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
b5256303
TC
884 zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa),
885 B_FALSE);
428870ff 886
428870ff 887 return ((error == ECKSUM || error == ENOENT) ? 0 : error);
b128c09f
BB
888}
889
1ce23dca
PS
890/*
891 * When an itx is "skipped", this function is used to properly mark the
892 * waiter as "done, and signal any thread(s) waiting on it. An itx can
893 * be skipped (and not committed to an lwb) for a variety of reasons,
894 * one of them being that the itx was committed via spa_sync(), prior to
895 * it being committed to an lwb; this can happen if a thread calling
896 * zil_commit() is racing with spa_sync().
897 */
898static void
899zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
34dc7c2f 900{
1ce23dca
PS
901 mutex_enter(&zcw->zcw_lock);
902 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
903 zcw->zcw_done = B_TRUE;
904 cv_broadcast(&zcw->zcw_cv);
905 mutex_exit(&zcw->zcw_lock);
906}
34dc7c2f 907
1ce23dca
PS
908/*
909 * This function is used when the given waiter is to be linked into an
910 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
911 * At this point, the waiter will no longer be referenced by the itx,
912 * and instead, will be referenced by the lwb.
913 */
914static void
915zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
916{
2fe61a7e
PS
917 /*
918 * The lwb_waiters field of the lwb is protected by the zilog's
919 * zl_lock, thus it must be held when calling this function.
920 */
921 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
922
1ce23dca
PS
923 mutex_enter(&zcw->zcw_lock);
924 ASSERT(!list_link_active(&zcw->zcw_node));
925 ASSERT3P(zcw->zcw_lwb, ==, NULL);
926 ASSERT3P(lwb, !=, NULL);
927 ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
928 lwb->lwb_state == LWB_STATE_ISSUED);
929
930 list_insert_tail(&lwb->lwb_waiters, zcw);
931 zcw->zcw_lwb = lwb;
932 mutex_exit(&zcw->zcw_lock);
933}
934
935/*
936 * This function is used when zio_alloc_zil() fails to allocate a ZIL
937 * block, and the given waiter must be linked to the "nolwb waiters"
938 * list inside of zil_process_commit_list().
939 */
940static void
941zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
942{
943 mutex_enter(&zcw->zcw_lock);
944 ASSERT(!list_link_active(&zcw->zcw_node));
945 ASSERT3P(zcw->zcw_lwb, ==, NULL);
946 list_insert_tail(nolwb, zcw);
947 mutex_exit(&zcw->zcw_lock);
34dc7c2f
BB
948}
949
950void
1ce23dca 951zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
34dc7c2f 952{
1ce23dca 953 avl_tree_t *t = &lwb->lwb_vdev_tree;
34dc7c2f
BB
954 avl_index_t where;
955 zil_vdev_node_t *zv, zvsearch;
956 int ndvas = BP_GET_NDVAS(bp);
957 int i;
958
959 if (zfs_nocacheflush)
960 return;
961
1ce23dca 962 mutex_enter(&lwb->lwb_vdev_lock);
34dc7c2f
BB
963 for (i = 0; i < ndvas; i++) {
964 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
965 if (avl_find(t, &zvsearch, &where) == NULL) {
79c76d5b 966 zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
34dc7c2f
BB
967 zv->zv_vdev = zvsearch.zv_vdev;
968 avl_insert(t, zv, where);
969 }
970 }
1ce23dca 971 mutex_exit(&lwb->lwb_vdev_lock);
34dc7c2f
BB
972}
973
1ce23dca
PS
974void
975zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
976{
977 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
978}
979
980/*
981 * This function is a called after all VDEVs associated with a given lwb
982 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
983 * as the lwb write completes, if "zfs_nocacheflush" is set.
984 *
985 * The intention is for this function to be called as soon as the
986 * contents of an lwb are considered "stable" on disk, and will survive
987 * any sudden loss of power. At this point, any threads waiting for the
988 * lwb to reach this state are signalled, and the "waiter" structures
989 * are marked "done".
990 */
572e2857 991static void
1ce23dca 992zil_lwb_flush_vdevs_done(zio_t *zio)
34dc7c2f 993{
1ce23dca
PS
994 lwb_t *lwb = zio->io_private;
995 zilog_t *zilog = lwb->lwb_zilog;
996 dmu_tx_t *tx = lwb->lwb_tx;
997 zil_commit_waiter_t *zcw;
998 itx_t *itx;
999
1000 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1001
1002 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
34dc7c2f 1003
1ce23dca 1004 mutex_enter(&zilog->zl_lock);
34dc7c2f
BB
1005
1006 /*
1ce23dca
PS
1007 * Ensure the lwb buffer pointer is cleared before releasing the
1008 * txg. If we have had an allocation failure and the txg is
1009 * waiting to sync then we want zil_sync() to remove the lwb so
1010 * that it's not picked up as the next new one in
1011 * zil_process_commit_list(). zil_sync() will only remove the
1012 * lwb if lwb_buf is null.
34dc7c2f 1013 */
1ce23dca
PS
1014 lwb->lwb_buf = NULL;
1015 lwb->lwb_tx = NULL;
34dc7c2f 1016
1ce23dca
PS
1017 ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1018 zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
34dc7c2f 1019
1ce23dca
PS
1020 lwb->lwb_root_zio = NULL;
1021 lwb->lwb_state = LWB_STATE_DONE;
34dc7c2f 1022
1ce23dca
PS
1023 if (zilog->zl_last_lwb_opened == lwb) {
1024 /*
1025 * Remember the highest committed log sequence number
1026 * for ztest. We only update this value when all the log
1027 * writes succeeded, because ztest wants to ASSERT that
1028 * it got the whole log chain.
1029 */
1030 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1031 }
1032
1033 while ((itx = list_head(&lwb->lwb_itxs)) != NULL) {
1034 list_remove(&lwb->lwb_itxs, itx);
1035 zil_itx_destroy(itx);
1036 }
1037
1038 while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1039 mutex_enter(&zcw->zcw_lock);
1040
1041 ASSERT(list_link_active(&zcw->zcw_node));
1042 list_remove(&lwb->lwb_waiters, zcw);
1043
1044 ASSERT3P(zcw->zcw_lwb, ==, lwb);
1045 zcw->zcw_lwb = NULL;
1046
1047 zcw->zcw_zio_error = zio->io_error;
1048
1049 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1050 zcw->zcw_done = B_TRUE;
1051 cv_broadcast(&zcw->zcw_cv);
1052
1053 mutex_exit(&zcw->zcw_lock);
34dc7c2f
BB
1054 }
1055
1ce23dca
PS
1056 mutex_exit(&zilog->zl_lock);
1057
34dc7c2f 1058 /*
1ce23dca
PS
1059 * Now that we've written this log block, we have a stable pointer
1060 * to the next block in the chain, so it's OK to let the txg in
1061 * which we allocated the next block sync.
34dc7c2f 1062 */
1ce23dca 1063 dmu_tx_commit(tx);
34dc7c2f
BB
1064}
1065
1066/*
1ce23dca
PS
1067 * This is called when an lwb write completes. This means, this specific
1068 * lwb was written to disk, and all dependent lwb have also been
1069 * written to disk.
1070 *
1071 * At this point, a DKIOCFLUSHWRITECACHE command hasn't been issued to
1072 * the VDEVs involved in writing out this specific lwb. The lwb will be
1073 * "done" once zil_lwb_flush_vdevs_done() is called, which occurs in the
1074 * zio completion callback for the lwb's root zio.
34dc7c2f
BB
1075 */
1076static void
1077zil_lwb_write_done(zio_t *zio)
1078{
1079 lwb_t *lwb = zio->io_private;
1ce23dca 1080 spa_t *spa = zio->io_spa;
34dc7c2f 1081 zilog_t *zilog = lwb->lwb_zilog;
1ce23dca
PS
1082 avl_tree_t *t = &lwb->lwb_vdev_tree;
1083 void *cookie = NULL;
1084 zil_vdev_node_t *zv;
1085
1086 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
34dc7c2f 1087
b128c09f 1088 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
b128c09f
BB
1089 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1090 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1091 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1092 ASSERT(!BP_IS_GANG(zio->io_bp));
1093 ASSERT(!BP_IS_HOLE(zio->io_bp));
9b67f605 1094 ASSERT(BP_GET_FILL(zio->io_bp) == 0);
b128c09f 1095
a6255b7f 1096 abd_put(zio->io_abd);
1ce23dca
PS
1097
1098 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1099
34dc7c2f 1100 mutex_enter(&zilog->zl_lock);
1ce23dca 1101 lwb->lwb_write_zio = NULL;
920dd524 1102 lwb->lwb_fastwrite = FALSE;
428870ff 1103 mutex_exit(&zilog->zl_lock);
9babb374 1104
1ce23dca
PS
1105 if (avl_numnodes(t) == 0)
1106 return;
1107
9babb374 1108 /*
1ce23dca
PS
1109 * If there was an IO error, we're not going to call zio_flush()
1110 * on these vdevs, so we simply empty the tree and free the
1111 * nodes. We avoid calling zio_flush() since there isn't any
1112 * good reason for doing so, after the lwb block failed to be
1113 * written out.
9babb374 1114 */
1ce23dca
PS
1115 if (zio->io_error != 0) {
1116 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1117 kmem_free(zv, sizeof (*zv));
1118 return;
1119 }
1120
1121 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1122 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1123 if (vd != NULL)
1124 zio_flush(lwb->lwb_root_zio, vd);
1125 kmem_free(zv, sizeof (*zv));
1126 }
34dc7c2f
BB
1127}
1128
1129/*
1ce23dca
PS
1130 * This function's purpose is to "open" an lwb such that it is ready to
1131 * accept new itxs being committed to it. To do this, the lwb's zio
1132 * structures are created, and linked to the lwb. This function is
1133 * idempotent; if the passed in lwb has already been opened, this
1134 * function is essentially a no-op.
34dc7c2f
BB
1135 */
1136static void
1ce23dca 1137zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
34dc7c2f 1138{
5dbd68a3 1139 zbookmark_phys_t zb;
1b7c1e5c 1140 zio_priority_t prio;
34dc7c2f 1141
1b2b0aca 1142 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1ce23dca
PS
1143 ASSERT3P(lwb, !=, NULL);
1144 EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1145 EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1146
428870ff
BB
1147 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1148 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1149 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
34dc7c2f 1150
920dd524
ED
1151 /* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */
1152 mutex_enter(&zilog->zl_lock);
1ce23dca 1153 if (lwb->lwb_root_zio == NULL) {
a6255b7f
DQ
1154 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1155 BP_GET_LSIZE(&lwb->lwb_blk));
1ce23dca 1156
920dd524
ED
1157 if (!lwb->lwb_fastwrite) {
1158 metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk);
1159 lwb->lwb_fastwrite = 1;
1160 }
1ce23dca 1161
1b7c1e5c
GDN
1162 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1163 prio = ZIO_PRIORITY_SYNC_WRITE;
1164 else
1165 prio = ZIO_PRIORITY_ASYNC_WRITE;
1ce23dca
PS
1166
1167 lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1168 zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1169 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1170
1171 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1172 zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1173 BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1174 prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
920dd524 1175 ZIO_FLAG_FASTWRITE, &zb);
1ce23dca
PS
1176 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1177
1178 lwb->lwb_state = LWB_STATE_OPENED;
1179
1180 /*
1181 * The zilog's "zl_last_lwb_opened" field is used to
1182 * build the lwb/zio dependency chain, which is used to
1183 * preserve the ordering of lwb completions that is
1184 * required by the semantics of the ZIL. Each new lwb
1185 * zio becomes a parent of the "previous" lwb zio, such
1186 * that the new lwb's zio cannot complete until the
1187 * "previous" lwb's zio completes.
1188 *
1189 * This is required by the semantics of zil_commit();
1190 * the commit waiters attached to the lwbs will be woken
1191 * in the lwb zio's completion callback, so this zio
1192 * dependency graph ensures the waiters are woken in the
1193 * correct order (the same order the lwbs were created).
1194 */
1195 lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1196 if (last_lwb_opened != NULL &&
1197 last_lwb_opened->lwb_state != LWB_STATE_DONE) {
1198 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1199 last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1200 ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1201 zio_add_child(lwb->lwb_root_zio,
1202 last_lwb_opened->lwb_root_zio);
1203 }
1204 zilog->zl_last_lwb_opened = lwb;
34dc7c2f 1205 }
920dd524 1206 mutex_exit(&zilog->zl_lock);
1ce23dca
PS
1207
1208 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1209 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1210 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
34dc7c2f
BB
1211}
1212
428870ff
BB
1213/*
1214 * Define a limited set of intent log block sizes.
d3cc8b15 1215 *
428870ff
BB
1216 * These must be a multiple of 4KB. Note only the amount used (again
1217 * aligned to 4KB) actually gets written. However, we can't always just
f1512ee6 1218 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
428870ff
BB
1219 */
1220uint64_t zil_block_buckets[] = {
1221 4096, /* non TX_WRITE */
1222 8192+4096, /* data base */
1223 32*1024 + 4096, /* NFS writes */
1224 UINT64_MAX
1225};
1226
34dc7c2f
BB
1227/*
1228 * Start a log block write and advance to the next log block.
1229 * Calls are serialized.
1230 */
1231static lwb_t *
1ce23dca 1232zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
34dc7c2f 1233{
428870ff
BB
1234 lwb_t *nlwb = NULL;
1235 zil_chain_t *zilc;
34dc7c2f 1236 spa_t *spa = zilog->zl_spa;
428870ff
BB
1237 blkptr_t *bp;
1238 dmu_tx_t *tx;
34dc7c2f 1239 uint64_t txg;
428870ff
BB
1240 uint64_t zil_blksz, wsz;
1241 int i, error;
1b7c1e5c 1242 boolean_t slog;
428870ff 1243
1b2b0aca 1244 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1ce23dca
PS
1245 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1246 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1247 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1248
428870ff
BB
1249 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1250 zilc = (zil_chain_t *)lwb->lwb_buf;
1251 bp = &zilc->zc_next_blk;
1252 } else {
1253 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1254 bp = &zilc->zc_next_blk;
1255 }
34dc7c2f 1256
428870ff 1257 ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
34dc7c2f
BB
1258
1259 /*
1260 * Allocate the next block and save its address in this block
1261 * before writing it in order to establish the log chain.
1262 * Note that if the allocation of nlwb synced before we wrote
1263 * the block that points at it (lwb), we'd leak it if we crashed.
428870ff
BB
1264 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1265 * We dirty the dataset to ensure that zil_sync() will be called
1266 * to clean up in the event of allocation failure or I/O failure.
34dc7c2f 1267 */
1ce23dca 1268
428870ff 1269 tx = dmu_tx_create(zilog->zl_os);
e98b6117
AG
1270
1271 /*
1272 * Since we are not going to create any new dirty data and we can even
1273 * help with clearing the existing dirty data, we should not be subject
1274 * to the dirty data based delays.
1275 * We (ab)use TXG_WAITED to bypass the delay mechanism.
1276 * One side effect from using TXG_WAITED is that dmu_tx_assign() can
1277 * fail if the pool is suspended. Those are dramatic circumstances,
1278 * so we return NULL to signal that the normal ZIL processing is not
1279 * possible and txg_wait_synced() should be used to ensure that the data
1280 * is on disk.
1281 */
1282 error = dmu_tx_assign(tx, TXG_WAITED);
1283 if (error != 0) {
1ce23dca 1284 ASSERT(error == EIO || error == ERESTART);
e98b6117
AG
1285 dmu_tx_abort(tx);
1286 return (NULL);
1287 }
428870ff
BB
1288 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1289 txg = dmu_tx_get_txg(tx);
1290
1291 lwb->lwb_tx = tx;
34dc7c2f
BB
1292
1293 /*
428870ff
BB
1294 * Log blocks are pre-allocated. Here we select the size of the next
1295 * block, based on size used in the last block.
1296 * - first find the smallest bucket that will fit the block from a
1297 * limited set of block sizes. This is because it's faster to write
1298 * blocks allocated from the same metaslab as they are adjacent or
1299 * close.
1300 * - next find the maximum from the new suggested size and an array of
1301 * previous sizes. This lessens a picket fence effect of wrongly
2fe61a7e 1302 * guessing the size if we have a stream of say 2k, 64k, 2k, 64k
428870ff
BB
1303 * requests.
1304 *
1305 * Note we only write what is used, but we can't just allocate
1306 * the maximum block size because we can exhaust the available
1307 * pool log space.
34dc7c2f 1308 */
428870ff
BB
1309 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1310 for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1311 continue;
1312 zil_blksz = zil_block_buckets[i];
1313 if (zil_blksz == UINT64_MAX)
f1512ee6 1314 zil_blksz = SPA_OLD_MAXBLOCKSIZE;
428870ff
BB
1315 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1316 for (i = 0; i < ZIL_PREV_BLKS; i++)
1317 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1318 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
34dc7c2f
BB
1319
1320 BP_ZERO(bp);
b5256303 1321 error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, zil_blksz, &slog);
1b7c1e5c 1322 if (slog) {
b6ad9671
ED
1323 ZIL_STAT_BUMP(zil_itx_metaslab_slog_count);
1324 ZIL_STAT_INCR(zil_itx_metaslab_slog_bytes, lwb->lwb_nused);
d1d7e268 1325 } else {
b6ad9671
ED
1326 ZIL_STAT_BUMP(zil_itx_metaslab_normal_count);
1327 ZIL_STAT_INCR(zil_itx_metaslab_normal_bytes, lwb->lwb_nused);
1328 }
13fe0198 1329 if (error == 0) {
428870ff
BB
1330 ASSERT3U(bp->blk_birth, ==, txg);
1331 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1332 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
34dc7c2f
BB
1333
1334 /*
1ce23dca 1335 * Allocate a new log write block (lwb).
34dc7c2f 1336 */
1b7c1e5c 1337 nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE);
34dc7c2f
BB
1338 }
1339
428870ff
BB
1340 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1341 /* For Slim ZIL only write what is used. */
1342 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1343 ASSERT3U(wsz, <=, lwb->lwb_sz);
1ce23dca 1344 zio_shrink(lwb->lwb_write_zio, wsz);
34dc7c2f 1345
428870ff
BB
1346 } else {
1347 wsz = lwb->lwb_sz;
1348 }
34dc7c2f 1349
428870ff
BB
1350 zilc->zc_pad = 0;
1351 zilc->zc_nused = lwb->lwb_nused;
1352 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
34dc7c2f
BB
1353
1354 /*
428870ff 1355 * clear unused data for security
34dc7c2f 1356 */
428870ff 1357 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
34dc7c2f 1358
1ce23dca
PS
1359 spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1360
1361 zil_lwb_add_block(lwb, &lwb->lwb_blk);
1362 lwb->lwb_issued_timestamp = gethrtime();
1363 lwb->lwb_state = LWB_STATE_ISSUED;
1364
1365 zio_nowait(lwb->lwb_root_zio);
1366 zio_nowait(lwb->lwb_write_zio);
34dc7c2f
BB
1367
1368 /*
428870ff
BB
1369 * If there was an allocation failure then nlwb will be null which
1370 * forces a txg_wait_synced().
34dc7c2f 1371 */
34dc7c2f
BB
1372 return (nlwb);
1373}
1374
1375static lwb_t *
1376zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1377{
1b7c1e5c
GDN
1378 lr_t *lrcb, *lrc;
1379 lr_write_t *lrwb, *lrw;
428870ff 1380 char *lr_buf;
1b7c1e5c 1381 uint64_t dlen, dnow, lwb_sp, reclen, txg;
34dc7c2f 1382
1b2b0aca 1383 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1ce23dca
PS
1384 ASSERT3P(lwb, !=, NULL);
1385 ASSERT3P(lwb->lwb_buf, !=, NULL);
1386
1387 zil_lwb_write_open(zilog, lwb);
428870ff 1388
1ce23dca
PS
1389 lrc = &itx->itx_lr;
1390 lrw = (lr_write_t *)lrc;
1391
1392 /*
1393 * A commit itx doesn't represent any on-disk state; instead
1394 * it's simply used as a place holder on the commit list, and
1395 * provides a mechanism for attaching a "commit waiter" onto the
1396 * correct lwb (such that the waiter can be signalled upon
1397 * completion of that lwb). Thus, we don't process this itx's
1398 * log record if it's a commit itx (these itx's don't have log
1399 * records), and instead link the itx's waiter onto the lwb's
1400 * list of waiters.
1401 *
1402 * For more details, see the comment above zil_commit().
1403 */
1404 if (lrc->lrc_txtype == TX_COMMIT) {
2fe61a7e 1405 mutex_enter(&zilog->zl_lock);
1ce23dca
PS
1406 zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1407 itx->itx_private = NULL;
2fe61a7e 1408 mutex_exit(&zilog->zl_lock);
1ce23dca
PS
1409 return (lwb);
1410 }
34dc7c2f 1411
1b7c1e5c 1412 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
34dc7c2f 1413 dlen = P2ROUNDUP_TYPED(
428870ff 1414 lrw->lr_length, sizeof (uint64_t), uint64_t);
1b7c1e5c
GDN
1415 } else {
1416 dlen = 0;
1417 }
1418 reclen = lrc->lrc_reclen;
34dc7c2f 1419 zilog->zl_cur_used += (reclen + dlen);
1b7c1e5c 1420 txg = lrc->lrc_txg;
34dc7c2f 1421
1ce23dca 1422 ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
34dc7c2f 1423
1b7c1e5c 1424cont:
34dc7c2f
BB
1425 /*
1426 * If this record won't fit in the current log block, start a new one.
1b7c1e5c 1427 * For WR_NEED_COPY optimize layout for minimal number of chunks.
34dc7c2f 1428 */
1b7c1e5c
GDN
1429 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1430 if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1431 lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 ||
1432 lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
1ce23dca 1433 lwb = zil_lwb_write_issue(zilog, lwb);
34dc7c2f
BB
1434 if (lwb == NULL)
1435 return (NULL);
1ce23dca 1436 zil_lwb_write_open(zilog, lwb);
428870ff 1437 ASSERT(LWB_EMPTY(lwb));
1b7c1e5c
GDN
1438 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1439 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
34dc7c2f
BB
1440 }
1441
1b7c1e5c 1442 dnow = MIN(dlen, lwb_sp - reclen);
428870ff
BB
1443 lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1444 bcopy(lrc, lr_buf, reclen);
1b7c1e5c
GDN
1445 lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */
1446 lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */
34dc7c2f 1447
b6ad9671
ED
1448 ZIL_STAT_BUMP(zil_itx_count);
1449
34dc7c2f
BB
1450 /*
1451 * If it's a write, fetch the data or get its blkptr as appropriate.
1452 */
1453 if (lrc->lrc_txtype == TX_WRITE) {
1454 if (txg > spa_freeze_txg(zilog->zl_spa))
1455 txg_wait_synced(zilog->zl_dmu_pool, txg);
b6ad9671
ED
1456 if (itx->itx_wr_state == WR_COPIED) {
1457 ZIL_STAT_BUMP(zil_itx_copied_count);
1458 ZIL_STAT_INCR(zil_itx_copied_bytes, lrw->lr_length);
1459 } else {
34dc7c2f
BB
1460 char *dbuf;
1461 int error;
1462
1b7c1e5c 1463 if (itx->itx_wr_state == WR_NEED_COPY) {
428870ff 1464 dbuf = lr_buf + reclen;
1b7c1e5c
GDN
1465 lrcb->lrc_reclen += dnow;
1466 if (lrwb->lr_length > dnow)
1467 lrwb->lr_length = dnow;
1468 lrw->lr_offset += dnow;
1469 lrw->lr_length -= dnow;
b6ad9671 1470 ZIL_STAT_BUMP(zil_itx_needcopy_count);
d1d7e268
MK
1471 ZIL_STAT_INCR(zil_itx_needcopy_bytes,
1472 lrw->lr_length);
34dc7c2f 1473 } else {
1ce23dca 1474 ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
34dc7c2f 1475 dbuf = NULL;
b6ad9671 1476 ZIL_STAT_BUMP(zil_itx_indirect_count);
d1d7e268
MK
1477 ZIL_STAT_INCR(zil_itx_indirect_bytes,
1478 lrw->lr_length);
34dc7c2f 1479 }
1ce23dca
PS
1480
1481 /*
1482 * We pass in the "lwb_write_zio" rather than
1483 * "lwb_root_zio" so that the "lwb_write_zio"
1484 * becomes the parent of any zio's created by
1485 * the "zl_get_data" callback. The vdevs are
1486 * flushed after the "lwb_write_zio" completes,
1487 * so we want to make sure that completion
1488 * callback waits for these additional zio's,
1489 * such that the vdevs used by those zio's will
1490 * be included in the lwb's vdev tree, and those
1491 * vdevs will be properly flushed. If we passed
1492 * in "lwb_root_zio" here, then these additional
1493 * vdevs may not be flushed; e.g. if these zio's
1494 * completed after "lwb_write_zio" completed.
1495 */
1496 error = zilog->zl_get_data(itx->itx_private,
1497 lrwb, dbuf, lwb, lwb->lwb_write_zio);
1498
45d1cae3
BB
1499 if (error == EIO) {
1500 txg_wait_synced(zilog->zl_dmu_pool, txg);
1501 return (lwb);
1502 }
13fe0198 1503 if (error != 0) {
34dc7c2f
BB
1504 ASSERT(error == ENOENT || error == EEXIST ||
1505 error == EALREADY);
1506 return (lwb);
1507 }
1508 }
1509 }
1510
428870ff
BB
1511 /*
1512 * We're actually making an entry, so update lrc_seq to be the
1513 * log record sequence number. Note that this is generally not
1514 * equal to the itx sequence number because not all transactions
1515 * are synchronous, and sometimes spa_sync() gets there first.
1516 */
1ce23dca 1517 lrcb->lrc_seq = ++zilog->zl_lr_seq;
1b7c1e5c 1518 lwb->lwb_nused += reclen + dnow;
1ce23dca
PS
1519
1520 zil_lwb_add_txg(lwb, txg);
1521
428870ff 1522 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
c99c9001 1523 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
34dc7c2f 1524
1b7c1e5c
GDN
1525 dlen -= dnow;
1526 if (dlen > 0) {
1527 zilog->zl_cur_used += reclen;
1528 goto cont;
1529 }
1530
34dc7c2f
BB
1531 return (lwb);
1532}
1533
1534itx_t *
1535zil_itx_create(uint64_t txtype, size_t lrsize)
1536{
72841b9f 1537 size_t itxsize;
34dc7c2f
BB
1538 itx_t *itx;
1539
1540 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
72841b9f 1541 itxsize = offsetof(itx_t, itx_lr) + lrsize;
34dc7c2f 1542
72841b9f 1543 itx = zio_data_buf_alloc(itxsize);
34dc7c2f
BB
1544 itx->itx_lr.lrc_txtype = txtype;
1545 itx->itx_lr.lrc_reclen = lrsize;
34dc7c2f 1546 itx->itx_lr.lrc_seq = 0; /* defensive */
572e2857 1547 itx->itx_sync = B_TRUE; /* default is synchronous */
119a394a
ED
1548 itx->itx_callback = NULL;
1549 itx->itx_callback_data = NULL;
72841b9f 1550 itx->itx_size = itxsize;
34dc7c2f
BB
1551
1552 return (itx);
1553}
1554
428870ff
BB
1555void
1556zil_itx_destroy(itx_t *itx)
1557{
1ce23dca
PS
1558 IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
1559 IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
1560
1561 if (itx->itx_callback != NULL)
1562 itx->itx_callback(itx->itx_callback_data);
1563
72841b9f 1564 zio_data_buf_free(itx, itx->itx_size);
428870ff
BB
1565}
1566
572e2857
BB
1567/*
1568 * Free up the sync and async itxs. The itxs_t has already been detached
1569 * so no locks are needed.
1570 */
1571static void
1572zil_itxg_clean(itxs_t *itxs)
34dc7c2f 1573{
572e2857
BB
1574 itx_t *itx;
1575 list_t *list;
1576 avl_tree_t *t;
1577 void *cookie;
1578 itx_async_node_t *ian;
1579
1580 list = &itxs->i_sync_list;
1581 while ((itx = list_head(list)) != NULL) {
1ce23dca
PS
1582 /*
1583 * In the general case, commit itxs will not be found
1584 * here, as they'll be committed to an lwb via
1585 * zil_lwb_commit(), and free'd in that function. Having
1586 * said that, it is still possible for commit itxs to be
1587 * found here, due to the following race:
1588 *
1589 * - a thread calls zil_commit() which assigns the
1590 * commit itx to a per-txg i_sync_list
1591 * - zil_itxg_clean() is called (e.g. via spa_sync())
1592 * while the waiter is still on the i_sync_list
1593 *
1594 * There's nothing to prevent syncing the txg while the
1595 * waiter is on the i_sync_list. This normally doesn't
1596 * happen because spa_sync() is slower than zil_commit(),
1597 * but if zil_commit() calls txg_wait_synced() (e.g.
1598 * because zil_create() or zil_commit_writer_stall() is
1599 * called) we will hit this case.
1600 */
1601 if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1602 zil_commit_waiter_skip(itx->itx_private);
1603
572e2857 1604 list_remove(list, itx);
19ea3d25 1605 zil_itx_destroy(itx);
572e2857 1606 }
34dc7c2f 1607
572e2857
BB
1608 cookie = NULL;
1609 t = &itxs->i_async_tree;
1610 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1611 list = &ian->ia_list;
1612 while ((itx = list_head(list)) != NULL) {
1613 list_remove(list, itx);
1ce23dca
PS
1614 /* commit itxs should never be on the async lists. */
1615 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
19ea3d25 1616 zil_itx_destroy(itx);
572e2857
BB
1617 }
1618 list_destroy(list);
1619 kmem_free(ian, sizeof (itx_async_node_t));
1620 }
1621 avl_destroy(t);
34dc7c2f 1622
572e2857
BB
1623 kmem_free(itxs, sizeof (itxs_t));
1624}
34dc7c2f 1625
572e2857
BB
1626static int
1627zil_aitx_compare(const void *x1, const void *x2)
1628{
1629 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1630 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1631
ee36c709 1632 return (AVL_CMP(o1, o2));
34dc7c2f
BB
1633}
1634
1635/*
572e2857 1636 * Remove all async itx with the given oid.
34dc7c2f
BB
1637 */
1638static void
572e2857 1639zil_remove_async(zilog_t *zilog, uint64_t oid)
34dc7c2f 1640{
572e2857
BB
1641 uint64_t otxg, txg;
1642 itx_async_node_t *ian;
1643 avl_tree_t *t;
1644 avl_index_t where;
34dc7c2f
BB
1645 list_t clean_list;
1646 itx_t *itx;
1647
572e2857 1648 ASSERT(oid != 0);
34dc7c2f
BB
1649 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1650
572e2857
BB
1651 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1652 otxg = ZILTEST_TXG;
1653 else
1654 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
34dc7c2f 1655
572e2857
BB
1656 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1657 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1658
1659 mutex_enter(&itxg->itxg_lock);
1660 if (itxg->itxg_txg != txg) {
1661 mutex_exit(&itxg->itxg_lock);
1662 continue;
1663 }
34dc7c2f 1664
572e2857
BB
1665 /*
1666 * Locate the object node and append its list.
1667 */
1668 t = &itxg->itxg_itxs->i_async_tree;
1669 ian = avl_find(t, &oid, &where);
1670 if (ian != NULL)
1671 list_move_tail(&clean_list, &ian->ia_list);
1672 mutex_exit(&itxg->itxg_lock);
1673 }
34dc7c2f
BB
1674 while ((itx = list_head(&clean_list)) != NULL) {
1675 list_remove(&clean_list, itx);
1ce23dca
PS
1676 /* commit itxs should never be on the async lists. */
1677 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
19ea3d25 1678 zil_itx_destroy(itx);
34dc7c2f
BB
1679 }
1680 list_destroy(&clean_list);
1681}
1682
572e2857
BB
1683void
1684zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1685{
1686 uint64_t txg;
1687 itxg_t *itxg;
1688 itxs_t *itxs, *clean = NULL;
1689
1690 /*
1691 * Object ids can be re-instantiated in the next txg so
1692 * remove any async transactions to avoid future leaks.
1693 * This can happen if a fsync occurs on the re-instantiated
1694 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1695 * the new file data and flushes a write record for the old object.
1696 */
1697 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1698 zil_remove_async(zilog, itx->itx_oid);
1699
1700 /*
1701 * Ensure the data of a renamed file is committed before the rename.
1702 */
1703 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1704 zil_async_to_sync(zilog, itx->itx_oid);
1705
29809a6c 1706 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
572e2857
BB
1707 txg = ZILTEST_TXG;
1708 else
1709 txg = dmu_tx_get_txg(tx);
1710
1711 itxg = &zilog->zl_itxg[txg & TXG_MASK];
1712 mutex_enter(&itxg->itxg_lock);
1713 itxs = itxg->itxg_itxs;
1714 if (itxg->itxg_txg != txg) {
1715 if (itxs != NULL) {
1716 /*
1717 * The zil_clean callback hasn't got around to cleaning
1718 * this itxg. Save the itxs for release below.
1719 * This should be rare.
1720 */
55922e73
GW
1721 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1722 "txg %llu", itxg->itxg_txg);
572e2857
BB
1723 clean = itxg->itxg_itxs;
1724 }
572e2857 1725 itxg->itxg_txg = txg;
d1d7e268 1726 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
79c76d5b 1727 KM_SLEEP);
572e2857
BB
1728
1729 list_create(&itxs->i_sync_list, sizeof (itx_t),
1730 offsetof(itx_t, itx_node));
1731 avl_create(&itxs->i_async_tree, zil_aitx_compare,
1732 sizeof (itx_async_node_t),
1733 offsetof(itx_async_node_t, ia_node));
1734 }
1735 if (itx->itx_sync) {
1736 list_insert_tail(&itxs->i_sync_list, itx);
572e2857
BB
1737 } else {
1738 avl_tree_t *t = &itxs->i_async_tree;
50c957f7
NB
1739 uint64_t foid =
1740 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
572e2857
BB
1741 itx_async_node_t *ian;
1742 avl_index_t where;
1743
1744 ian = avl_find(t, &foid, &where);
1745 if (ian == NULL) {
d1d7e268 1746 ian = kmem_alloc(sizeof (itx_async_node_t),
79c76d5b 1747 KM_SLEEP);
572e2857
BB
1748 list_create(&ian->ia_list, sizeof (itx_t),
1749 offsetof(itx_t, itx_node));
1750 ian->ia_foid = foid;
1751 avl_insert(t, ian, where);
1752 }
1753 list_insert_tail(&ian->ia_list, itx);
1754 }
1755
1756 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1ce23dca
PS
1757
1758 /*
1759 * We don't want to dirty the ZIL using ZILTEST_TXG, because
1760 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
1761 * need to be careful to always dirty the ZIL using the "real"
1762 * TXG (not itxg_txg) even when the SPA is frozen.
1763 */
1764 zilog_dirty(zilog, dmu_tx_get_txg(tx));
572e2857
BB
1765 mutex_exit(&itxg->itxg_lock);
1766
1767 /* Release the old itxs now we've dropped the lock */
1768 if (clean != NULL)
1769 zil_itxg_clean(clean);
1770}
1771
34dc7c2f
BB
1772/*
1773 * If there are any in-memory intent log transactions which have now been
29809a6c
MA
1774 * synced then start up a taskq to free them. We should only do this after we
1775 * have written out the uberblocks (i.e. txg has been comitted) so that
1776 * don't inadvertently clean out in-memory log records that would be required
1777 * by zil_commit().
34dc7c2f
BB
1778 */
1779void
572e2857 1780zil_clean(zilog_t *zilog, uint64_t synced_txg)
34dc7c2f 1781{
572e2857
BB
1782 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1783 itxs_t *clean_me;
34dc7c2f 1784
1ce23dca
PS
1785 ASSERT3U(synced_txg, <, ZILTEST_TXG);
1786
572e2857
BB
1787 mutex_enter(&itxg->itxg_lock);
1788 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1789 mutex_exit(&itxg->itxg_lock);
1790 return;
1791 }
1792 ASSERT3U(itxg->itxg_txg, <=, synced_txg);
a032ac4b 1793 ASSERT3U(itxg->itxg_txg, !=, 0);
572e2857
BB
1794 clean_me = itxg->itxg_itxs;
1795 itxg->itxg_itxs = NULL;
1796 itxg->itxg_txg = 0;
1797 mutex_exit(&itxg->itxg_lock);
1798 /*
1799 * Preferably start a task queue to free up the old itxs but
1800 * if taskq_dispatch can't allocate resources to do that then
1801 * free it in-line. This should be rare. Note, using TQ_SLEEP
1802 * created a bad performance problem.
1803 */
a032ac4b
BB
1804 ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
1805 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
1806 taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
1807 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP);
1808 if (id == TASKQID_INVALID)
572e2857
BB
1809 zil_itxg_clean(clean_me);
1810}
1811
1812/*
1ce23dca
PS
1813 * This function will traverse the queue of itxs that need to be
1814 * committed, and move them onto the ZIL's zl_itx_commit_list.
572e2857
BB
1815 */
1816static void
1817zil_get_commit_list(zilog_t *zilog)
1818{
1819 uint64_t otxg, txg;
1820 list_t *commit_list = &zilog->zl_itx_commit_list;
572e2857 1821
1b2b0aca 1822 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1ce23dca 1823
572e2857
BB
1824 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1825 otxg = ZILTEST_TXG;
1826 else
1827 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1828
55922e73
GW
1829 /*
1830 * This is inherently racy, since there is nothing to prevent
1831 * the last synced txg from changing. That's okay since we'll
1832 * only commit things in the future.
1833 */
572e2857
BB
1834 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1835 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1836
1837 mutex_enter(&itxg->itxg_lock);
1838 if (itxg->itxg_txg != txg) {
1839 mutex_exit(&itxg->itxg_lock);
1840 continue;
1841 }
1842
55922e73
GW
1843 /*
1844 * If we're adding itx records to the zl_itx_commit_list,
1845 * then the zil better be dirty in this "txg". We can assert
1846 * that here since we're holding the itxg_lock which will
1847 * prevent spa_sync from cleaning it. Once we add the itxs
1848 * to the zl_itx_commit_list we must commit it to disk even
1849 * if it's unnecessary (i.e. the txg was synced).
1850 */
1851 ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1852 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
572e2857 1853 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
572e2857
BB
1854
1855 mutex_exit(&itxg->itxg_lock);
1856 }
572e2857
BB
1857}
1858
1859/*
1860 * Move the async itxs for a specified object to commit into sync lists.
1861 */
1862static void
1863zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1864{
1865 uint64_t otxg, txg;
1866 itx_async_node_t *ian;
1867 avl_tree_t *t;
1868 avl_index_t where;
1869
1870 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1871 otxg = ZILTEST_TXG;
1872 else
1873 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1874
55922e73
GW
1875 /*
1876 * This is inherently racy, since there is nothing to prevent
1877 * the last synced txg from changing.
1878 */
572e2857
BB
1879 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1880 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1881
1882 mutex_enter(&itxg->itxg_lock);
1883 if (itxg->itxg_txg != txg) {
1884 mutex_exit(&itxg->itxg_lock);
1885 continue;
1886 }
1887
1888 /*
1889 * If a foid is specified then find that node and append its
1890 * list. Otherwise walk the tree appending all the lists
1891 * to the sync list. We add to the end rather than the
1892 * beginning to ensure the create has happened.
1893 */
1894 t = &itxg->itxg_itxs->i_async_tree;
1895 if (foid != 0) {
1896 ian = avl_find(t, &foid, &where);
1897 if (ian != NULL) {
1898 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1899 &ian->ia_list);
1900 }
1901 } else {
1902 void *cookie = NULL;
1903
1904 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1905 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1906 &ian->ia_list);
1907 list_destroy(&ian->ia_list);
1908 kmem_free(ian, sizeof (itx_async_node_t));
1909 }
1910 }
1911 mutex_exit(&itxg->itxg_lock);
34dc7c2f 1912 }
34dc7c2f
BB
1913}
1914
1ce23dca
PS
1915/*
1916 * This function will prune commit itxs that are at the head of the
1917 * commit list (it won't prune past the first non-commit itx), and
1918 * either: a) attach them to the last lwb that's still pending
1919 * completion, or b) skip them altogether.
1920 *
1921 * This is used as a performance optimization to prevent commit itxs
1922 * from generating new lwbs when it's unnecessary to do so.
1923 */
b128c09f 1924static void
1ce23dca 1925zil_prune_commit_list(zilog_t *zilog)
34dc7c2f 1926{
572e2857 1927 itx_t *itx;
34dc7c2f 1928
1b2b0aca 1929 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
572e2857 1930
1ce23dca
PS
1931 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
1932 lr_t *lrc = &itx->itx_lr;
1933 if (lrc->lrc_txtype != TX_COMMIT)
1934 break;
572e2857 1935
1ce23dca
PS
1936 mutex_enter(&zilog->zl_lock);
1937
1938 lwb_t *last_lwb = zilog->zl_last_lwb_opened;
1939 if (last_lwb == NULL || last_lwb->lwb_state == LWB_STATE_DONE) {
1940 /*
1941 * All of the itxs this waiter was waiting on
1942 * must have already completed (or there were
1943 * never any itx's for it to wait on), so it's
1944 * safe to skip this waiter and mark it done.
1945 */
1946 zil_commit_waiter_skip(itx->itx_private);
1947 } else {
1948 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
1949 itx->itx_private = NULL;
1950 }
1951
1952 mutex_exit(&zilog->zl_lock);
1953
1954 list_remove(&zilog->zl_itx_commit_list, itx);
1955 zil_itx_destroy(itx);
1956 }
1957
1958 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
1959}
1960
1961static void
1962zil_commit_writer_stall(zilog_t *zilog)
1963{
1964 /*
1965 * When zio_alloc_zil() fails to allocate the next lwb block on
1966 * disk, we must call txg_wait_synced() to ensure all of the
1967 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
1968 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
1969 * to zil_process_commit_list()) will have to call zil_create(),
1970 * and start a new ZIL chain.
1971 *
1972 * Since zil_alloc_zil() failed, the lwb that was previously
1973 * issued does not have a pointer to the "next" lwb on disk.
1974 * Thus, if another ZIL writer thread was to allocate the "next"
1975 * on-disk lwb, that block could be leaked in the event of a
1976 * crash (because the previous lwb on-disk would not point to
1977 * it).
1978 *
1b2b0aca 1979 * We must hold the zilog's zl_issuer_lock while we do this, to
1ce23dca
PS
1980 * ensure no new threads enter zil_process_commit_list() until
1981 * all lwb's in the zl_lwb_list have been synced and freed
1982 * (which is achieved via the txg_wait_synced() call).
1983 */
1b2b0aca 1984 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1ce23dca
PS
1985 txg_wait_synced(zilog->zl_dmu_pool, 0);
1986 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
1987}
1988
1989/*
1990 * This function will traverse the commit list, creating new lwbs as
1991 * needed, and committing the itxs from the commit list to these newly
1992 * created lwbs. Additionally, as a new lwb is created, the previous
1993 * lwb will be issued to the zio layer to be written to disk.
1994 */
1995static void
1996zil_process_commit_list(zilog_t *zilog)
1997{
1998 spa_t *spa = zilog->zl_spa;
1999 list_t nolwb_itxs;
2000 list_t nolwb_waiters;
2001 lwb_t *lwb;
2002 itx_t *itx;
2003
1b2b0aca 2004 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
572e2857
BB
2005
2006 /*
2007 * Return if there's nothing to commit before we dirty the fs by
2008 * calling zil_create().
2009 */
1ce23dca 2010 if (list_head(&zilog->zl_itx_commit_list) == NULL)
572e2857 2011 return;
34dc7c2f 2012
1ce23dca
PS
2013 list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2014 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2015 offsetof(zil_commit_waiter_t, zcw_node));
2016
2017 lwb = list_tail(&zilog->zl_lwb_list);
2018 if (lwb == NULL) {
2019 lwb = zil_create(zilog);
34dc7c2f 2020 } else {
1ce23dca
PS
2021 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2022 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
34dc7c2f
BB
2023 }
2024
1ce23dca
PS
2025 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2026 lr_t *lrc = &itx->itx_lr;
2027 uint64_t txg = lrc->lrc_txg;
2028
55922e73 2029 ASSERT3U(txg, !=, 0);
34dc7c2f 2030
1ce23dca
PS
2031 if (lrc->lrc_txtype == TX_COMMIT) {
2032 DTRACE_PROBE2(zil__process__commit__itx,
2033 zilog_t *, zilog, itx_t *, itx);
2034 } else {
2035 DTRACE_PROBE2(zil__process__normal__itx,
2036 zilog_t *, zilog, itx_t *, itx);
2037 }
2038
2039 list_remove(&zilog->zl_itx_commit_list, itx);
2040
1ce23dca
PS
2041 boolean_t synced = txg <= spa_last_synced_txg(spa);
2042 boolean_t frozen = txg > spa_freeze_txg(spa);
2043
2fe61a7e
PS
2044 /*
2045 * If the txg of this itx has already been synced out, then
2046 * we don't need to commit this itx to an lwb. This is
2047 * because the data of this itx will have already been
2048 * written to the main pool. This is inherently racy, and
2049 * it's still ok to commit an itx whose txg has already
2050 * been synced; this will result in a write that's
2051 * unnecessary, but will do no harm.
2052 *
2053 * With that said, we always want to commit TX_COMMIT itxs
2054 * to an lwb, regardless of whether or not that itx's txg
2055 * has been synced out. We do this to ensure any OPENED lwb
2056 * will always have at least one zil_commit_waiter_t linked
2057 * to the lwb.
2058 *
2059 * As a counter-example, if we skipped TX_COMMIT itx's
2060 * whose txg had already been synced, the following
2061 * situation could occur if we happened to be racing with
2062 * spa_sync:
2063 *
2064 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
2065 * itx's txg is 10 and the last synced txg is 9.
2066 * 2. spa_sync finishes syncing out txg 10.
2067 * 3. We move to the next itx in the list, it's a TX_COMMIT
2068 * whose txg is 10, so we skip it rather than committing
2069 * it to the lwb used in (1).
2070 *
2071 * If the itx that is skipped in (3) is the last TX_COMMIT
2072 * itx in the commit list, than it's possible for the lwb
2073 * used in (1) to remain in the OPENED state indefinitely.
2074 *
2075 * To prevent the above scenario from occurring, ensuring
2076 * that once an lwb is OPENED it will transition to ISSUED
2077 * and eventually DONE, we always commit TX_COMMIT itx's to
2078 * an lwb here, even if that itx's txg has already been
2079 * synced.
2080 *
2081 * Finally, if the pool is frozen, we _always_ commit the
2082 * itx. The point of freezing the pool is to prevent data
2083 * from being written to the main pool via spa_sync, and
2084 * instead rely solely on the ZIL to persistently store the
2085 * data; i.e. when the pool is frozen, the last synced txg
2086 * value can't be trusted.
2087 */
2088 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
1ce23dca
PS
2089 if (lwb != NULL) {
2090 lwb = zil_lwb_commit(zilog, itx, lwb);
2091
2092 if (lwb == NULL)
2093 list_insert_tail(&nolwb_itxs, itx);
2094 else
2095 list_insert_tail(&lwb->lwb_itxs, itx);
2096 } else {
2097 if (lrc->lrc_txtype == TX_COMMIT) {
2098 zil_commit_waiter_link_nolwb(
2099 itx->itx_private, &nolwb_waiters);
2100 }
2101
2102 list_insert_tail(&nolwb_itxs, itx);
2103 }
2104 } else {
2fe61a7e 2105 ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
1ce23dca
PS
2106 zil_itx_destroy(itx);
2107 }
34dc7c2f 2108 }
34dc7c2f 2109
1ce23dca
PS
2110 if (lwb == NULL) {
2111 /*
2112 * This indicates zio_alloc_zil() failed to allocate the
2113 * "next" lwb on-disk. When this happens, we must stall
2114 * the ZIL write pipeline; see the comment within
2115 * zil_commit_writer_stall() for more details.
2116 */
2117 zil_commit_writer_stall(zilog);
34dc7c2f 2118
1ce23dca
PS
2119 /*
2120 * Additionally, we have to signal and mark the "nolwb"
2121 * waiters as "done" here, since without an lwb, we
2122 * can't do this via zil_lwb_flush_vdevs_done() like
2123 * normal.
2124 */
2125 zil_commit_waiter_t *zcw;
2126 while ((zcw = list_head(&nolwb_waiters)) != NULL) {
2127 zil_commit_waiter_skip(zcw);
2128 list_remove(&nolwb_waiters, zcw);
2129 }
2130
2131 /*
2132 * And finally, we have to destroy the itx's that
2133 * couldn't be committed to an lwb; this will also call
2134 * the itx's callback if one exists for the itx.
2135 */
2136 while ((itx = list_head(&nolwb_itxs)) != NULL) {
2137 list_remove(&nolwb_itxs, itx);
2138 zil_itx_destroy(itx);
2139 }
2140 } else {
2141 ASSERT(list_is_empty(&nolwb_waiters));
2142 ASSERT3P(lwb, !=, NULL);
2143 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2144 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
2145
2146 /*
2147 * At this point, the ZIL block pointed at by the "lwb"
2148 * variable is in one of the following states: "closed"
2149 * or "open".
2150 *
2fe61a7e
PS
2151 * If it's "closed", then no itxs have been committed to
2152 * it, so there's no point in issuing its zio (i.e. it's
2153 * "empty").
1ce23dca 2154 *
2fe61a7e
PS
2155 * If it's "open", then it contains one or more itxs that
2156 * eventually need to be committed to stable storage. In
2157 * this case we intentionally do not issue the lwb's zio
2158 * to disk yet, and instead rely on one of the following
2159 * two mechanisms for issuing the zio:
1ce23dca 2160 *
2fe61a7e 2161 * 1. Ideally, there will be more ZIL activity occurring
1ce23dca 2162 * on the system, such that this function will be
2fe61a7e 2163 * immediately called again (not necessarily by the same
1ce23dca
PS
2164 * thread) and this lwb's zio will be issued via
2165 * zil_lwb_commit(). This way, the lwb is guaranteed to
2166 * be "full" when it is issued to disk, and we'll make
2167 * use of the lwb's size the best we can.
2168 *
2fe61a7e 2169 * 2. If there isn't sufficient ZIL activity occurring on
1ce23dca
PS
2170 * the system, such that this lwb's zio isn't issued via
2171 * zil_lwb_commit(), zil_commit_waiter() will issue the
2172 * lwb's zio. If this occurs, the lwb is not guaranteed
2173 * to be "full" by the time its zio is issued, and means
2174 * the size of the lwb was "too large" given the amount
2fe61a7e 2175 * of ZIL activity occurring on the system at that time.
1ce23dca
PS
2176 *
2177 * We do this for a couple of reasons:
2178 *
2179 * 1. To try and reduce the number of IOPs needed to
2180 * write the same number of itxs. If an lwb has space
2fe61a7e 2181 * available in its buffer for more itxs, and more itxs
1ce23dca
PS
2182 * will be committed relatively soon (relative to the
2183 * latency of performing a write), then it's beneficial
2184 * to wait for these "next" itxs. This way, more itxs
2185 * can be committed to stable storage with fewer writes.
2186 *
2187 * 2. To try and use the largest lwb block size that the
2188 * incoming rate of itxs can support. Again, this is to
2189 * try and pack as many itxs into as few lwbs as
2190 * possible, without significantly impacting the latency
2191 * of each individual itx.
2192 */
2193 }
2194}
2195
2196/*
2197 * This function is responsible for ensuring the passed in commit waiter
2198 * (and associated commit itx) is committed to an lwb. If the waiter is
2199 * not already committed to an lwb, all itxs in the zilog's queue of
2200 * itxs will be processed. The assumption is the passed in waiter's
2201 * commit itx will found in the queue just like the other non-commit
2202 * itxs, such that when the entire queue is processed, the waiter will
2fe61a7e 2203 * have been committed to an lwb.
1ce23dca
PS
2204 *
2205 * The lwb associated with the passed in waiter is not guaranteed to
2206 * have been issued by the time this function completes. If the lwb is
2207 * not issued, we rely on future calls to zil_commit_writer() to issue
2208 * the lwb, or the timeout mechanism found in zil_commit_waiter().
2209 */
2210static void
2211zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2212{
2213 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2214 ASSERT(spa_writeable(zilog->zl_spa));
1ce23dca 2215
1b2b0aca 2216 mutex_enter(&zilog->zl_issuer_lock);
1ce23dca
PS
2217
2218 if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2219 /*
2220 * It's possible that, while we were waiting to acquire
1b2b0aca 2221 * the "zl_issuer_lock", another thread committed this
1ce23dca
PS
2222 * waiter to an lwb. If that occurs, we bail out early,
2223 * without processing any of the zilog's queue of itxs.
2224 *
2225 * On certain workloads and system configurations, the
1b2b0aca 2226 * "zl_issuer_lock" can become highly contended. In an
1ce23dca
PS
2227 * attempt to reduce this contention, we immediately drop
2228 * the lock if the waiter has already been processed.
2229 *
2230 * We've measured this optimization to reduce CPU spent
2231 * contending on this lock by up to 5%, using a system
2232 * with 32 CPUs, low latency storage (~50 usec writes),
2233 * and 1024 threads performing sync writes.
2234 */
2235 goto out;
2236 }
2237
2238 ZIL_STAT_BUMP(zil_commit_writer_count);
2239
2240 zil_get_commit_list(zilog);
2241 zil_prune_commit_list(zilog);
2242 zil_process_commit_list(zilog);
2243
2244out:
1b2b0aca 2245 mutex_exit(&zilog->zl_issuer_lock);
1ce23dca
PS
2246}
2247
2248static void
2249zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2250{
1b2b0aca 2251 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
1ce23dca
PS
2252 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2253 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2254
2255 lwb_t *lwb = zcw->zcw_lwb;
2256 ASSERT3P(lwb, !=, NULL);
2257 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
34dc7c2f
BB
2258
2259 /*
1ce23dca
PS
2260 * If the lwb has already been issued by another thread, we can
2261 * immediately return since there's no work to be done (the
2262 * point of this function is to issue the lwb). Additionally, we
1b2b0aca 2263 * do this prior to acquiring the zl_issuer_lock, to avoid
1ce23dca 2264 * acquiring it when it's not necessary to do so.
34dc7c2f 2265 */
1ce23dca
PS
2266 if (lwb->lwb_state == LWB_STATE_ISSUED ||
2267 lwb->lwb_state == LWB_STATE_DONE)
2268 return;
34dc7c2f 2269
1ce23dca
PS
2270 /*
2271 * In order to call zil_lwb_write_issue() we must hold the
1b2b0aca 2272 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
1ce23dca 2273 * since we're already holding the commit waiter's "zcw_lock",
2fe61a7e 2274 * and those two locks are acquired in the opposite order
1ce23dca
PS
2275 * elsewhere.
2276 */
2277 mutex_exit(&zcw->zcw_lock);
1b2b0aca 2278 mutex_enter(&zilog->zl_issuer_lock);
1ce23dca 2279 mutex_enter(&zcw->zcw_lock);
34dc7c2f 2280
1ce23dca
PS
2281 /*
2282 * Since we just dropped and re-acquired the commit waiter's
2283 * lock, we have to re-check to see if the waiter was marked
2284 * "done" during that process. If the waiter was marked "done",
2285 * the "lwb" pointer is no longer valid (it can be free'd after
2286 * the waiter is marked "done"), so without this check we could
2287 * wind up with a use-after-free error below.
2288 */
2289 if (zcw->zcw_done)
2290 goto out;
119a394a 2291
1ce23dca
PS
2292 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2293
2294 /*
2fe61a7e
PS
2295 * We've already checked this above, but since we hadn't acquired
2296 * the zilog's zl_issuer_lock, we have to perform this check a
2297 * second time while holding the lock.
2298 *
2299 * We don't need to hold the zl_lock since the lwb cannot transition
2300 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2301 * _can_ transition from ISSUED to DONE, but it's OK to race with
2302 * that transition since we treat the lwb the same, whether it's in
2303 * the ISSUED or DONE states.
2304 *
2305 * The important thing, is we treat the lwb differently depending on
2306 * if it's ISSUED or OPENED, and block any other threads that might
2307 * attempt to issue this lwb. For that reason we hold the
2308 * zl_issuer_lock when checking the lwb_state; we must not call
1ce23dca 2309 * zil_lwb_write_issue() if the lwb had already been issued.
2fe61a7e
PS
2310 *
2311 * See the comment above the lwb_state_t structure definition for
2312 * more details on the lwb states, and locking requirements.
1ce23dca
PS
2313 */
2314 if (lwb->lwb_state == LWB_STATE_ISSUED ||
2315 lwb->lwb_state == LWB_STATE_DONE)
2316 goto out;
2317
2318 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2319
2320 /*
2321 * As described in the comments above zil_commit_waiter() and
2322 * zil_process_commit_list(), we need to issue this lwb's zio
2323 * since we've reached the commit waiter's timeout and it still
2324 * hasn't been issued.
2325 */
2326 lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2327
2328 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2329
2330 /*
2331 * Since the lwb's zio hadn't been issued by the time this thread
2332 * reached its timeout, we reset the zilog's "zl_cur_used" field
2333 * to influence the zil block size selection algorithm.
2334 *
2335 * By having to issue the lwb's zio here, it means the size of the
2336 * lwb was too large, given the incoming throughput of itxs. By
2337 * setting "zl_cur_used" to zero, we communicate this fact to the
2fe61a7e 2338 * block size selection algorithm, so it can take this information
1ce23dca
PS
2339 * into account, and potentially select a smaller size for the
2340 * next lwb block that is allocated.
2341 */
2342 zilog->zl_cur_used = 0;
2343
2344 if (nlwb == NULL) {
2345 /*
2346 * When zil_lwb_write_issue() returns NULL, this
2347 * indicates zio_alloc_zil() failed to allocate the
2348 * "next" lwb on-disk. When this occurs, the ZIL write
2349 * pipeline must be stalled; see the comment within the
2350 * zil_commit_writer_stall() function for more details.
2351 *
2352 * We must drop the commit waiter's lock prior to
2353 * calling zil_commit_writer_stall() or else we can wind
2354 * up with the following deadlock:
2355 *
2356 * - This thread is waiting for the txg to sync while
2357 * holding the waiter's lock; txg_wait_synced() is
2358 * used within txg_commit_writer_stall().
2359 *
2360 * - The txg can't sync because it is waiting for this
2361 * lwb's zio callback to call dmu_tx_commit().
2362 *
2363 * - The lwb's zio callback can't call dmu_tx_commit()
2364 * because it's blocked trying to acquire the waiter's
2365 * lock, which occurs prior to calling dmu_tx_commit()
2366 */
2367 mutex_exit(&zcw->zcw_lock);
2368 zil_commit_writer_stall(zilog);
2369 mutex_enter(&zcw->zcw_lock);
119a394a
ED
2370 }
2371
1ce23dca 2372out:
1b2b0aca 2373 mutex_exit(&zilog->zl_issuer_lock);
1ce23dca
PS
2374 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2375}
2376
2377/*
2378 * This function is responsible for performing the following two tasks:
2379 *
2380 * 1. its primary responsibility is to block until the given "commit
2381 * waiter" is considered "done".
2382 *
2383 * 2. its secondary responsibility is to issue the zio for the lwb that
2384 * the given "commit waiter" is waiting on, if this function has
2385 * waited "long enough" and the lwb is still in the "open" state.
2386 *
2387 * Given a sufficient amount of itxs being generated and written using
2388 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2389 * function. If this does not occur, this secondary responsibility will
2390 * ensure the lwb is issued even if there is not other synchronous
2391 * activity on the system.
2392 *
2393 * For more details, see zil_process_commit_list(); more specifically,
2394 * the comment at the bottom of that function.
2395 */
2396static void
2397zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2398{
2399 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
1b2b0aca 2400 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
1ce23dca 2401 ASSERT(spa_writeable(zilog->zl_spa));
1ce23dca
PS
2402
2403 mutex_enter(&zcw->zcw_lock);
428870ff
BB
2404
2405 /*
1ce23dca
PS
2406 * The timeout is scaled based on the lwb latency to avoid
2407 * significantly impacting the latency of each individual itx.
2408 * For more details, see the comment at the bottom of the
2409 * zil_process_commit_list() function.
428870ff 2410 */
1ce23dca
PS
2411 int pct = MAX(zfs_commit_timeout_pct, 1);
2412 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2413 hrtime_t wakeup = gethrtime() + sleep;
2414 boolean_t timedout = B_FALSE;
2415
2416 while (!zcw->zcw_done) {
2417 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2418
2419 lwb_t *lwb = zcw->zcw_lwb;
2420
2421 /*
2422 * Usually, the waiter will have a non-NULL lwb field here,
2423 * but it's possible for it to be NULL as a result of
2424 * zil_commit() racing with spa_sync().
2425 *
2426 * When zil_clean() is called, it's possible for the itxg
2427 * list (which may be cleaned via a taskq) to contain
2428 * commit itxs. When this occurs, the commit waiters linked
2429 * off of these commit itxs will not be committed to an
2430 * lwb. Additionally, these commit waiters will not be
2431 * marked done until zil_commit_waiter_skip() is called via
2432 * zil_itxg_clean().
2433 *
2434 * Thus, it's possible for this commit waiter (i.e. the
2435 * "zcw" variable) to be found in this "in between" state;
2436 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2437 * been skipped, so it's "zcw_done" field is still B_FALSE.
2438 */
2439 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2440
2441 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2442 ASSERT3B(timedout, ==, B_FALSE);
2443
2444 /*
2445 * If the lwb hasn't been issued yet, then we
2446 * need to wait with a timeout, in case this
2447 * function needs to issue the lwb after the
2448 * timeout is reached; responsibility (2) from
2449 * the comment above this function.
2450 */
2451 clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv,
2452 &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2453 CALLOUT_FLAG_ABSOLUTE);
2454
2455 if (timeleft >= 0 || zcw->zcw_done)
2456 continue;
2457
2458 timedout = B_TRUE;
2459 zil_commit_waiter_timeout(zilog, zcw);
2460
2461 if (!zcw->zcw_done) {
2462 /*
2463 * If the commit waiter has already been
2464 * marked "done", it's possible for the
2465 * waiter's lwb structure to have already
2466 * been freed. Thus, we can only reliably
2467 * make these assertions if the waiter
2468 * isn't done.
2469 */
2470 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2471 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2472 }
2473 } else {
2474 /*
2475 * If the lwb isn't open, then it must have already
2476 * been issued. In that case, there's no need to
2477 * use a timeout when waiting for the lwb to
2478 * complete.
2479 *
2480 * Additionally, if the lwb is NULL, the waiter
2fe61a7e 2481 * will soon be signaled and marked done via
1ce23dca
PS
2482 * zil_clean() and zil_itxg_clean(), so no timeout
2483 * is required.
2484 */
2485
2486 IMPLY(lwb != NULL,
2487 lwb->lwb_state == LWB_STATE_ISSUED ||
2488 lwb->lwb_state == LWB_STATE_DONE);
2489 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2490 }
2491 }
2492
2493 mutex_exit(&zcw->zcw_lock);
2494}
2495
2496static zil_commit_waiter_t *
2497zil_alloc_commit_waiter(void)
2498{
2499 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2500
2501 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2502 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2503 list_link_init(&zcw->zcw_node);
2504 zcw->zcw_lwb = NULL;
2505 zcw->zcw_done = B_FALSE;
2506 zcw->zcw_zio_error = 0;
2507
2508 return (zcw);
2509}
2510
2511static void
2512zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2513{
2514 ASSERT(!list_link_active(&zcw->zcw_node));
2515 ASSERT3P(zcw->zcw_lwb, ==, NULL);
2516 ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2517 mutex_destroy(&zcw->zcw_lock);
2518 cv_destroy(&zcw->zcw_cv);
2519 kmem_cache_free(zil_zcw_cache, zcw);
34dc7c2f
BB
2520}
2521
2522/*
1ce23dca
PS
2523 * This function is used to create a TX_COMMIT itx and assign it. This
2524 * way, it will be linked into the ZIL's list of synchronous itxs, and
2525 * then later committed to an lwb (or skipped) when
2526 * zil_process_commit_list() is called.
2527 */
2528static void
2529zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2530{
2531 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2532 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2533
2534 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2535 itx->itx_sync = B_TRUE;
2536 itx->itx_private = zcw;
2537
2538 zil_itx_assign(zilog, itx, tx);
2539
2540 dmu_tx_commit(tx);
2541}
2542
2543/*
2544 * Commit ZFS Intent Log transactions (itxs) to stable storage.
2545 *
2546 * When writing ZIL transactions to the on-disk representation of the
2547 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2548 * itxs can be committed to a single lwb. Once a lwb is written and
2549 * committed to stable storage (i.e. the lwb is written, and vdevs have
2550 * been flushed), each itx that was committed to that lwb is also
2551 * considered to be committed to stable storage.
2552 *
2553 * When an itx is committed to an lwb, the log record (lr_t) contained
2554 * by the itx is copied into the lwb's zio buffer, and once this buffer
2555 * is written to disk, it becomes an on-disk ZIL block.
2556 *
2557 * As itxs are generated, they're inserted into the ZIL's queue of
2558 * uncommitted itxs. The semantics of zil_commit() are such that it will
2559 * block until all itxs that were in the queue when it was called, are
2560 * committed to stable storage.
2561 *
2562 * If "foid" is zero, this means all "synchronous" and "asynchronous"
2563 * itxs, for all objects in the dataset, will be committed to stable
2564 * storage prior to zil_commit() returning. If "foid" is non-zero, all
2565 * "synchronous" itxs for all objects, but only "asynchronous" itxs
2566 * that correspond to the foid passed in, will be committed to stable
2567 * storage prior to zil_commit() returning.
2568 *
2569 * Generally speaking, when zil_commit() is called, the consumer doesn't
2570 * actually care about _all_ of the uncommitted itxs. Instead, they're
2571 * simply trying to waiting for a specific itx to be committed to disk,
2572 * but the interface(s) for interacting with the ZIL don't allow such
2573 * fine-grained communication. A better interface would allow a consumer
2574 * to create and assign an itx, and then pass a reference to this itx to
2575 * zil_commit(); such that zil_commit() would return as soon as that
2576 * specific itx was committed to disk (instead of waiting for _all_
2577 * itxs to be committed).
2578 *
2579 * When a thread calls zil_commit() a special "commit itx" will be
2580 * generated, along with a corresponding "waiter" for this commit itx.
2581 * zil_commit() will wait on this waiter's CV, such that when the waiter
2fe61a7e 2582 * is marked done, and signaled, zil_commit() will return.
1ce23dca
PS
2583 *
2584 * This commit itx is inserted into the queue of uncommitted itxs. This
2585 * provides an easy mechanism for determining which itxs were in the
2586 * queue prior to zil_commit() having been called, and which itxs were
2587 * added after zil_commit() was called.
2588 *
2589 * The commit it is special; it doesn't have any on-disk representation.
2590 * When a commit itx is "committed" to an lwb, the waiter associated
2591 * with it is linked onto the lwb's list of waiters. Then, when that lwb
2fe61a7e 2592 * completes, each waiter on the lwb's list is marked done and signaled
1ce23dca
PS
2593 * -- allowing the thread waiting on the waiter to return from zil_commit().
2594 *
2595 * It's important to point out a few critical factors that allow us
2596 * to make use of the commit itxs, commit waiters, per-lwb lists of
2597 * commit waiters, and zio completion callbacks like we're doing:
572e2857 2598 *
1ce23dca 2599 * 1. The list of waiters for each lwb is traversed, and each commit
2fe61a7e 2600 * waiter is marked "done" and signaled, in the zio completion
1ce23dca 2601 * callback of the lwb's zio[*].
572e2857 2602 *
2fe61a7e 2603 * * Actually, the waiters are signaled in the zio completion
1ce23dca
PS
2604 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2605 * that are sent to the vdevs upon completion of the lwb zio.
572e2857 2606 *
1ce23dca
PS
2607 * 2. When the itxs are inserted into the ZIL's queue of uncommitted
2608 * itxs, the order in which they are inserted is preserved[*]; as
2609 * itxs are added to the queue, they are added to the tail of
2610 * in-memory linked lists.
572e2857 2611 *
1ce23dca
PS
2612 * When committing the itxs to lwbs (to be written to disk), they
2613 * are committed in the same order in which the itxs were added to
2614 * the uncommitted queue's linked list(s); i.e. the linked list of
2615 * itxs to commit is traversed from head to tail, and each itx is
2616 * committed to an lwb in that order.
2617 *
2618 * * To clarify:
2619 *
2620 * - the order of "sync" itxs is preserved w.r.t. other
2621 * "sync" itxs, regardless of the corresponding objects.
2622 * - the order of "async" itxs is preserved w.r.t. other
2623 * "async" itxs corresponding to the same object.
2624 * - the order of "async" itxs is *not* preserved w.r.t. other
2625 * "async" itxs corresponding to different objects.
2626 * - the order of "sync" itxs w.r.t. "async" itxs (or vice
2627 * versa) is *not* preserved, even for itxs that correspond
2628 * to the same object.
2629 *
2630 * For more details, see: zil_itx_assign(), zil_async_to_sync(),
2631 * zil_get_commit_list(), and zil_process_commit_list().
2632 *
2633 * 3. The lwbs represent a linked list of blocks on disk. Thus, any
2634 * lwb cannot be considered committed to stable storage, until its
2635 * "previous" lwb is also committed to stable storage. This fact,
2636 * coupled with the fact described above, means that itxs are
2637 * committed in (roughly) the order in which they were generated.
2638 * This is essential because itxs are dependent on prior itxs.
2639 * Thus, we *must not* deem an itx as being committed to stable
2640 * storage, until *all* prior itxs have also been committed to
2641 * stable storage.
2642 *
2643 * To enforce this ordering of lwb zio's, while still leveraging as
2644 * much of the underlying storage performance as possible, we rely
2645 * on two fundamental concepts:
2646 *
2647 * 1. The creation and issuance of lwb zio's is protected by
1b2b0aca 2648 * the zilog's "zl_issuer_lock", which ensures only a single
1ce23dca
PS
2649 * thread is creating and/or issuing lwb's at a time
2650 * 2. The "previous" lwb is a child of the "current" lwb
2fe61a7e 2651 * (leveraging the zio parent-child dependency graph)
1ce23dca
PS
2652 *
2653 * By relying on this parent-child zio relationship, we can have
2654 * many lwb zio's concurrently issued to the underlying storage,
2655 * but the order in which they complete will be the same order in
2656 * which they were created.
34dc7c2f
BB
2657 */
2658void
572e2857 2659zil_commit(zilog_t *zilog, uint64_t foid)
34dc7c2f 2660{
1ce23dca
PS
2661 /*
2662 * We should never attempt to call zil_commit on a snapshot for
2663 * a couple of reasons:
2664 *
2665 * 1. A snapshot may never be modified, thus it cannot have any
2666 * in-flight itxs that would have modified the dataset.
2667 *
2668 * 2. By design, when zil_commit() is called, a commit itx will
2669 * be assigned to this zilog; as a result, the zilog will be
2670 * dirtied. We must not dirty the zilog of a snapshot; there's
2671 * checks in the code that enforce this invariant, and will
2672 * cause a panic if it's not upheld.
2673 */
2674 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
34dc7c2f 2675
572e2857
BB
2676 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2677 return;
34dc7c2f 2678
1ce23dca
PS
2679 if (!spa_writeable(zilog->zl_spa)) {
2680 /*
2681 * If the SPA is not writable, there should never be any
2682 * pending itxs waiting to be committed to disk. If that
2683 * weren't true, we'd skip writing those itxs out, and
2fe61a7e 2684 * would break the semantics of zil_commit(); thus, we're
1ce23dca
PS
2685 * verifying that truth before we return to the caller.
2686 */
2687 ASSERT(list_is_empty(&zilog->zl_lwb_list));
2688 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2689 for (int i = 0; i < TXG_SIZE; i++)
2690 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
2691 return;
2692 }
2693
2694 /*
2695 * If the ZIL is suspended, we don't want to dirty it by calling
2696 * zil_commit_itx_assign() below, nor can we write out
2697 * lwbs like would be done in zil_commit_write(). Thus, we
2698 * simply rely on txg_wait_synced() to maintain the necessary
2699 * semantics, and avoid calling those functions altogether.
2700 */
2701 if (zilog->zl_suspend > 0) {
2702 txg_wait_synced(zilog->zl_dmu_pool, 0);
2703 return;
2704 }
2705
2fe61a7e
PS
2706 zil_commit_impl(zilog, foid);
2707}
2708
2709void
2710zil_commit_impl(zilog_t *zilog, uint64_t foid)
2711{
b6ad9671
ED
2712 ZIL_STAT_BUMP(zil_commit_count);
2713
1ce23dca
PS
2714 /*
2715 * Move the "async" itxs for the specified foid to the "sync"
2716 * queues, such that they will be later committed (or skipped)
2717 * to an lwb when zil_process_commit_list() is called.
2718 *
2719 * Since these "async" itxs must be committed prior to this
2720 * call to zil_commit returning, we must perform this operation
2721 * before we call zil_commit_itx_assign().
2722 */
572e2857 2723 zil_async_to_sync(zilog, foid);
34dc7c2f 2724
1ce23dca
PS
2725 /*
2726 * We allocate a new "waiter" structure which will initially be
2727 * linked to the commit itx using the itx's "itx_private" field.
2728 * Since the commit itx doesn't represent any on-disk state,
2729 * when it's committed to an lwb, rather than copying the its
2730 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
2731 * added to the lwb's list of waiters. Then, when the lwb is
2732 * committed to stable storage, each waiter in the lwb's list of
2733 * waiters will be marked "done", and signalled.
2734 *
2735 * We must create the waiter and assign the commit itx prior to
2736 * calling zil_commit_writer(), or else our specific commit itx
2737 * is not guaranteed to be committed to an lwb prior to calling
2738 * zil_commit_waiter().
2739 */
2740 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
2741 zil_commit_itx_assign(zilog, zcw);
428870ff 2742
1ce23dca
PS
2743 zil_commit_writer(zilog, zcw);
2744 zil_commit_waiter(zilog, zcw);
428870ff 2745
1ce23dca
PS
2746 if (zcw->zcw_zio_error != 0) {
2747 /*
2748 * If there was an error writing out the ZIL blocks that
2749 * this thread is waiting on, then we fallback to
2750 * relying on spa_sync() to write out the data this
2751 * thread is waiting on. Obviously this has performance
2752 * implications, but the expectation is for this to be
2753 * an exceptional case, and shouldn't occur often.
2754 */
2755 DTRACE_PROBE2(zil__commit__io__error,
2756 zilog_t *, zilog, zil_commit_waiter_t *, zcw);
2757 txg_wait_synced(zilog->zl_dmu_pool, 0);
2758 }
8c0712fd 2759
1ce23dca 2760 zil_free_commit_waiter(zcw);
428870ff
BB
2761}
2762
34dc7c2f
BB
2763/*
2764 * Called in syncing context to free committed log blocks and update log header.
2765 */
2766void
2767zil_sync(zilog_t *zilog, dmu_tx_t *tx)
2768{
2769 zil_header_t *zh = zil_header_in_syncing_context(zilog);
2770 uint64_t txg = dmu_tx_get_txg(tx);
2771 spa_t *spa = zilog->zl_spa;
428870ff 2772 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
34dc7c2f
BB
2773 lwb_t *lwb;
2774
9babb374
BB
2775 /*
2776 * We don't zero out zl_destroy_txg, so make sure we don't try
2777 * to destroy it twice.
2778 */
2779 if (spa_sync_pass(spa) != 1)
2780 return;
2781
34dc7c2f
BB
2782 mutex_enter(&zilog->zl_lock);
2783
2784 ASSERT(zilog->zl_stop_sync == 0);
2785
428870ff
BB
2786 if (*replayed_seq != 0) {
2787 ASSERT(zh->zh_replay_seq < *replayed_seq);
2788 zh->zh_replay_seq = *replayed_seq;
2789 *replayed_seq = 0;
2790 }
34dc7c2f
BB
2791
2792 if (zilog->zl_destroy_txg == txg) {
2793 blkptr_t blk = zh->zh_log;
2794
2795 ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
34dc7c2f
BB
2796
2797 bzero(zh, sizeof (zil_header_t));
fb5f0bc8 2798 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
34dc7c2f
BB
2799
2800 if (zilog->zl_keep_first) {
2801 /*
2802 * If this block was part of log chain that couldn't
2803 * be claimed because a device was missing during
2804 * zil_claim(), but that device later returns,
2805 * then this block could erroneously appear valid.
2806 * To guard against this, assign a new GUID to the new
2807 * log chain so it doesn't matter what blk points to.
2808 */
2809 zil_init_log_chain(zilog, &blk);
2810 zh->zh_log = blk;
2811 }
2812 }
2813
9babb374 2814 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
34dc7c2f
BB
2815 zh->zh_log = lwb->lwb_blk;
2816 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
2817 break;
2818 list_remove(&zilog->zl_lwb_list, lwb);
1ce23dca
PS
2819 zio_free(spa, txg, &lwb->lwb_blk);
2820 zil_free_lwb(zilog, lwb);
34dc7c2f
BB
2821
2822 /*
2823 * If we don't have anything left in the lwb list then
2824 * we've had an allocation failure and we need to zero
2825 * out the zil_header blkptr so that we don't end
2826 * up freeing the same block twice.
2827 */
2828 if (list_head(&zilog->zl_lwb_list) == NULL)
2829 BP_ZERO(&zh->zh_log);
2830 }
920dd524
ED
2831
2832 /*
2833 * Remove fastwrite on any blocks that have been pre-allocated for
2834 * the next commit. This prevents fastwrite counter pollution by
2835 * unused, long-lived LWBs.
2836 */
2837 for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) {
1ce23dca 2838 if (lwb->lwb_fastwrite && !lwb->lwb_write_zio) {
920dd524
ED
2839 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
2840 lwb->lwb_fastwrite = 0;
2841 }
2842 }
2843
34dc7c2f
BB
2844 mutex_exit(&zilog->zl_lock);
2845}
2846
1ce23dca
PS
2847/* ARGSUSED */
2848static int
2849zil_lwb_cons(void *vbuf, void *unused, int kmflag)
2850{
2851 lwb_t *lwb = vbuf;
2852 list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2853 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
2854 offsetof(zil_commit_waiter_t, zcw_node));
2855 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
2856 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
2857 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
2858 return (0);
2859}
2860
2861/* ARGSUSED */
2862static void
2863zil_lwb_dest(void *vbuf, void *unused)
2864{
2865 lwb_t *lwb = vbuf;
2866 mutex_destroy(&lwb->lwb_vdev_lock);
2867 avl_destroy(&lwb->lwb_vdev_tree);
2868 list_destroy(&lwb->lwb_waiters);
2869 list_destroy(&lwb->lwb_itxs);
2870}
2871
34dc7c2f
BB
2872void
2873zil_init(void)
2874{
2875 zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1ce23dca
PS
2876 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
2877
2878 zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
2879 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
b6ad9671
ED
2880
2881 zil_ksp = kstat_create("zfs", 0, "zil", "misc",
d1d7e268 2882 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
b6ad9671
ED
2883 KSTAT_FLAG_VIRTUAL);
2884
2885 if (zil_ksp != NULL) {
2886 zil_ksp->ks_data = &zil_stats;
2887 kstat_install(zil_ksp);
2888 }
34dc7c2f
BB
2889}
2890
2891void
2892zil_fini(void)
2893{
1ce23dca 2894 kmem_cache_destroy(zil_zcw_cache);
34dc7c2f 2895 kmem_cache_destroy(zil_lwb_cache);
b6ad9671
ED
2896
2897 if (zil_ksp != NULL) {
2898 kstat_delete(zil_ksp);
2899 zil_ksp = NULL;
2900 }
34dc7c2f
BB
2901}
2902
428870ff
BB
2903void
2904zil_set_sync(zilog_t *zilog, uint64_t sync)
2905{
2906 zilog->zl_sync = sync;
2907}
2908
2909void
2910zil_set_logbias(zilog_t *zilog, uint64_t logbias)
2911{
2912 zilog->zl_logbias = logbias;
2913}
2914
34dc7c2f
BB
2915zilog_t *
2916zil_alloc(objset_t *os, zil_header_t *zh_phys)
2917{
2918 zilog_t *zilog;
2919
79c76d5b 2920 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
34dc7c2f
BB
2921
2922 zilog->zl_header = zh_phys;
2923 zilog->zl_os = os;
2924 zilog->zl_spa = dmu_objset_spa(os);
2925 zilog->zl_dmu_pool = dmu_objset_pool(os);
2926 zilog->zl_destroy_txg = TXG_INITIAL - 1;
428870ff
BB
2927 zilog->zl_logbias = dmu_objset_logbias(os);
2928 zilog->zl_sync = dmu_objset_syncprop(os);
1ce23dca
PS
2929 zilog->zl_dirty_max_txg = 0;
2930 zilog->zl_last_lwb_opened = NULL;
2931 zilog->zl_last_lwb_latency = 0;
34dc7c2f
BB
2932
2933 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1b2b0aca 2934 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f 2935
1c27024e 2936 for (int i = 0; i < TXG_SIZE; i++) {
572e2857
BB
2937 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
2938 MUTEX_DEFAULT, NULL);
2939 }
34dc7c2f
BB
2940
2941 list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
2942 offsetof(lwb_t, lwb_node));
2943
572e2857
BB
2944 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
2945 offsetof(itx_t, itx_node));
2946
34dc7c2f
BB
2947 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
2948
2949 return (zilog);
2950}
2951
2952void
2953zil_free(zilog_t *zilog)
2954{
d6320ddb 2955 int i;
34dc7c2f
BB
2956
2957 zilog->zl_stop_sync = 1;
2958
13fe0198
MA
2959 ASSERT0(zilog->zl_suspend);
2960 ASSERT0(zilog->zl_suspending);
2961
3e31d2b0 2962 ASSERT(list_is_empty(&zilog->zl_lwb_list));
34dc7c2f
BB
2963 list_destroy(&zilog->zl_lwb_list);
2964
572e2857
BB
2965 ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
2966 list_destroy(&zilog->zl_itx_commit_list);
2967
d6320ddb 2968 for (i = 0; i < TXG_SIZE; i++) {
572e2857
BB
2969 /*
2970 * It's possible for an itx to be generated that doesn't dirty
2971 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
2972 * callback to remove the entry. We remove those here.
2973 *
2974 * Also free up the ziltest itxs.
2975 */
2976 if (zilog->zl_itxg[i].itxg_itxs)
2977 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
2978 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
2979 }
2980
1b2b0aca 2981 mutex_destroy(&zilog->zl_issuer_lock);
34dc7c2f
BB
2982 mutex_destroy(&zilog->zl_lock);
2983
34dc7c2f
BB
2984 cv_destroy(&zilog->zl_cv_suspend);
2985
2986 kmem_free(zilog, sizeof (zilog_t));
2987}
2988
34dc7c2f
BB
2989/*
2990 * Open an intent log.
2991 */
2992zilog_t *
2993zil_open(objset_t *os, zil_get_data_t *get_data)
2994{
2995 zilog_t *zilog = dmu_objset_zil(os);
2996
1ce23dca
PS
2997 ASSERT3P(zilog->zl_get_data, ==, NULL);
2998 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3e31d2b0
ES
2999 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3000
34dc7c2f 3001 zilog->zl_get_data = get_data;
34dc7c2f
BB
3002
3003 return (zilog);
3004}
3005
3006/*
3007 * Close an intent log.
3008 */
3009void
3010zil_close(zilog_t *zilog)
3011{
3e31d2b0 3012 lwb_t *lwb;
1ce23dca 3013 uint64_t txg;
572e2857 3014
1ce23dca
PS
3015 if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3016 zil_commit(zilog, 0);
3017 } else {
3018 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
3019 ASSERT0(zilog->zl_dirty_max_txg);
3020 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3021 }
572e2857 3022
572e2857 3023 mutex_enter(&zilog->zl_lock);
3e31d2b0 3024 lwb = list_tail(&zilog->zl_lwb_list);
1ce23dca
PS
3025 if (lwb == NULL)
3026 txg = zilog->zl_dirty_max_txg;
3027 else
3028 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
572e2857 3029 mutex_exit(&zilog->zl_lock);
1ce23dca
PS
3030
3031 /*
3032 * We need to use txg_wait_synced() to wait long enough for the
3033 * ZIL to be clean, and to wait for all pending lwbs to be
3034 * written out.
3035 */
3036 if (txg != 0)
34dc7c2f 3037 txg_wait_synced(zilog->zl_dmu_pool, txg);
55922e73
GW
3038
3039 if (zilog_is_dirty(zilog))
3040 zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
50c957f7 3041 if (txg < spa_freeze_txg(zilog->zl_spa))
55922e73 3042 VERIFY(!zilog_is_dirty(zilog));
34dc7c2f 3043
34dc7c2f 3044 zilog->zl_get_data = NULL;
3e31d2b0
ES
3045
3046 /*
1ce23dca 3047 * We should have only one lwb left on the list; remove it now.
3e31d2b0
ES
3048 */
3049 mutex_enter(&zilog->zl_lock);
3050 lwb = list_head(&zilog->zl_lwb_list);
3051 if (lwb != NULL) {
1ce23dca
PS
3052 ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
3053 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
3054
920dd524
ED
3055 if (lwb->lwb_fastwrite)
3056 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
1ce23dca 3057
3e31d2b0
ES
3058 list_remove(&zilog->zl_lwb_list, lwb);
3059 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1ce23dca 3060 zil_free_lwb(zilog, lwb);
3e31d2b0
ES
3061 }
3062 mutex_exit(&zilog->zl_lock);
34dc7c2f
BB
3063}
3064
13fe0198
MA
3065static char *suspend_tag = "zil suspending";
3066
34dc7c2f
BB
3067/*
3068 * Suspend an intent log. While in suspended mode, we still honor
3069 * synchronous semantics, but we rely on txg_wait_synced() to do it.
13fe0198
MA
3070 * On old version pools, we suspend the log briefly when taking a
3071 * snapshot so that it will have an empty intent log.
3072 *
3073 * Long holds are not really intended to be used the way we do here --
3074 * held for such a short time. A concurrent caller of dsl_dataset_long_held()
3075 * could fail. Therefore we take pains to only put a long hold if it is
3076 * actually necessary. Fortunately, it will only be necessary if the
3077 * objset is currently mounted (or the ZVOL equivalent). In that case it
3078 * will already have a long hold, so we are not really making things any worse.
3079 *
3080 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3081 * zvol_state_t), and use their mechanism to prevent their hold from being
3082 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for
3083 * very little gain.
3084 *
3085 * if cookiep == NULL, this does both the suspend & resume.
3086 * Otherwise, it returns with the dataset "long held", and the cookie
3087 * should be passed into zil_resume().
34dc7c2f
BB
3088 */
3089int
13fe0198 3090zil_suspend(const char *osname, void **cookiep)
34dc7c2f 3091{
13fe0198
MA
3092 objset_t *os;
3093 zilog_t *zilog;
3094 const zil_header_t *zh;
3095 int error;
3096
3097 error = dmu_objset_hold(osname, suspend_tag, &os);
3098 if (error != 0)
3099 return (error);
3100 zilog = dmu_objset_zil(os);
34dc7c2f
BB
3101
3102 mutex_enter(&zilog->zl_lock);
13fe0198
MA
3103 zh = zilog->zl_header;
3104
9babb374 3105 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
34dc7c2f 3106 mutex_exit(&zilog->zl_lock);
13fe0198 3107 dmu_objset_rele(os, suspend_tag);
2e528b49 3108 return (SET_ERROR(EBUSY));
34dc7c2f 3109 }
13fe0198
MA
3110
3111 /*
3112 * Don't put a long hold in the cases where we can avoid it. This
3113 * is when there is no cookie so we are doing a suspend & resume
3114 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3115 * for the suspend because it's already suspended, or there's no ZIL.
3116 */
3117 if (cookiep == NULL && !zilog->zl_suspending &&
3118 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3119 mutex_exit(&zilog->zl_lock);
3120 dmu_objset_rele(os, suspend_tag);
3121 return (0);
3122 }
3123
3124 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3125 dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3126
3127 zilog->zl_suspend++;
3128
3129 if (zilog->zl_suspend > 1) {
34dc7c2f 3130 /*
13fe0198 3131 * Someone else is already suspending it.
34dc7c2f
BB
3132 * Just wait for them to finish.
3133 */
13fe0198 3134
34dc7c2f
BB
3135 while (zilog->zl_suspending)
3136 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
34dc7c2f 3137 mutex_exit(&zilog->zl_lock);
13fe0198
MA
3138
3139 if (cookiep == NULL)
3140 zil_resume(os);
3141 else
3142 *cookiep = os;
3143 return (0);
3144 }
3145
3146 /*
3147 * If there is no pointer to an on-disk block, this ZIL must not
3148 * be active (e.g. filesystem not mounted), so there's nothing
3149 * to clean up.
3150 */
3151 if (BP_IS_HOLE(&zh->zh_log)) {
3152 ASSERT(cookiep != NULL); /* fast path already handled */
3153
3154 *cookiep = os;
3155 mutex_exit(&zilog->zl_lock);
34dc7c2f
BB
3156 return (0);
3157 }
13fe0198 3158
4807c0ba
TC
3159 /*
3160 * The ZIL has work to do. Ensure that the associated encryption
3161 * key will remain mapped while we are committing the log by
3162 * grabbing a reference to it. If the key isn't loaded we have no
3163 * choice but to return an error until the wrapping key is loaded.
3164 */
3165 if (os->os_encrypted && spa_keystore_create_mapping(os->os_spa,
3166 dmu_objset_ds(os), FTAG) != 0) {
3167 zilog->zl_suspend--;
3168 mutex_exit(&zilog->zl_lock);
3169 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3170 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3171 return (SET_ERROR(EBUSY));
3172 }
3173
34dc7c2f
BB
3174 zilog->zl_suspending = B_TRUE;
3175 mutex_exit(&zilog->zl_lock);
3176
2fe61a7e
PS
3177 /*
3178 * We need to use zil_commit_impl to ensure we wait for all
3179 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwbs to be committed
3180 * to disk before proceeding. If we used zil_commit instead, it
3181 * would just call txg_wait_synced(), because zl_suspend is set.
3182 * txg_wait_synced() doesn't wait for these lwb's to be
3183 * LWB_STATE_DONE before returning.
3184 */
3185 zil_commit_impl(zilog, 0);
3186
3187 /*
3188 * Now that we've ensured all lwb's are LWB_STATE_DONE, we use
3189 * txg_wait_synced() to ensure the data from the zilog has
3190 * migrated to the main pool before calling zil_destroy().
3191 */
3192 txg_wait_synced(zilog->zl_dmu_pool, 0);
34dc7c2f
BB
3193
3194 zil_destroy(zilog, B_FALSE);
3195
3196 mutex_enter(&zilog->zl_lock);
3197 zilog->zl_suspending = B_FALSE;
3198 cv_broadcast(&zilog->zl_cv_suspend);
3199 mutex_exit(&zilog->zl_lock);
3200
4807c0ba
TC
3201 if (os->os_encrypted) {
3202 /*
3203 * Encrypted datasets need to wait for all data to be
3204 * synced out before removing the mapping.
3205 *
3206 * XXX: Depending on the number of datasets with
3207 * outstanding ZIL data on a given log device, this
3208 * might cause spa_offline_log() to take a long time.
3209 */
3210 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3211 VERIFY0(spa_keystore_remove_mapping(os->os_spa,
3212 dmu_objset_id(os), FTAG));
3213 }
3214
13fe0198
MA
3215 if (cookiep == NULL)
3216 zil_resume(os);
3217 else
3218 *cookiep = os;
34dc7c2f
BB
3219 return (0);
3220}
3221
3222void
13fe0198 3223zil_resume(void *cookie)
34dc7c2f 3224{
13fe0198
MA
3225 objset_t *os = cookie;
3226 zilog_t *zilog = dmu_objset_zil(os);
3227
34dc7c2f
BB
3228 mutex_enter(&zilog->zl_lock);
3229 ASSERT(zilog->zl_suspend != 0);
3230 zilog->zl_suspend--;
3231 mutex_exit(&zilog->zl_lock);
13fe0198
MA
3232 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3233 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
34dc7c2f
BB
3234}
3235
3236typedef struct zil_replay_arg {
867959b5 3237 zil_replay_func_t **zr_replay;
34dc7c2f 3238 void *zr_arg;
34dc7c2f 3239 boolean_t zr_byteswap;
428870ff 3240 char *zr_lr;
34dc7c2f
BB
3241} zil_replay_arg_t;
3242
428870ff
BB
3243static int
3244zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
3245{
eca7b760 3246 char name[ZFS_MAX_DATASET_NAME_LEN];
428870ff
BB
3247
3248 zilog->zl_replaying_seq--; /* didn't actually replay this one */
3249
3250 dmu_objset_name(zilog->zl_os, name);
3251
3252 cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3253 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3254 (u_longlong_t)lr->lrc_seq,
3255 (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3256 (lr->lrc_txtype & TX_CI) ? "CI" : "");
3257
3258 return (error);
3259}
3260
3261static int
34dc7c2f
BB
3262zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
3263{
3264 zil_replay_arg_t *zr = zra;
3265 const zil_header_t *zh = zilog->zl_header;
3266 uint64_t reclen = lr->lrc_reclen;
3267 uint64_t txtype = lr->lrc_txtype;
428870ff 3268 int error = 0;
34dc7c2f 3269
428870ff 3270 zilog->zl_replaying_seq = lr->lrc_seq;
34dc7c2f
BB
3271
3272 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
428870ff
BB
3273 return (0);
3274
3275 if (lr->lrc_txg < claim_txg) /* already committed */
3276 return (0);
34dc7c2f
BB
3277
3278 /* Strip case-insensitive bit, still present in log record */
3279 txtype &= ~TX_CI;
3280
428870ff
BB
3281 if (txtype == 0 || txtype >= TX_MAX_TYPE)
3282 return (zil_replay_error(zilog, lr, EINVAL));
3283
3284 /*
3285 * If this record type can be logged out of order, the object
3286 * (lr_foid) may no longer exist. That's legitimate, not an error.
3287 */
3288 if (TX_OOO(txtype)) {
3289 error = dmu_object_info(zilog->zl_os,
50c957f7 3290 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
428870ff
BB
3291 if (error == ENOENT || error == EEXIST)
3292 return (0);
fb5f0bc8
BB
3293 }
3294
34dc7c2f
BB
3295 /*
3296 * Make a copy of the data so we can revise and extend it.
3297 */
428870ff
BB
3298 bcopy(lr, zr->zr_lr, reclen);
3299
3300 /*
3301 * If this is a TX_WRITE with a blkptr, suck in the data.
3302 */
3303 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3304 error = zil_read_log_data(zilog, (lr_write_t *)lr,
3305 zr->zr_lr + reclen);
13fe0198 3306 if (error != 0)
428870ff
BB
3307 return (zil_replay_error(zilog, lr, error));
3308 }
34dc7c2f
BB
3309
3310 /*
3311 * The log block containing this lr may have been byteswapped
3312 * so that we can easily examine common fields like lrc_txtype.
428870ff 3313 * However, the log is a mix of different record types, and only the
34dc7c2f
BB
3314 * replay vectors know how to byteswap their records. Therefore, if
3315 * the lr was byteswapped, undo it before invoking the replay vector.
3316 */
3317 if (zr->zr_byteswap)
428870ff 3318 byteswap_uint64_array(zr->zr_lr, reclen);
34dc7c2f
BB
3319
3320 /*
3321 * We must now do two things atomically: replay this log record,
fb5f0bc8
BB
3322 * and update the log header sequence number to reflect the fact that
3323 * we did so. At the end of each replay function the sequence number
3324 * is updated if we are in replay mode.
34dc7c2f 3325 */
428870ff 3326 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
13fe0198 3327 if (error != 0) {
34dc7c2f
BB
3328 /*
3329 * The DMU's dnode layer doesn't see removes until the txg
3330 * commits, so a subsequent claim can spuriously fail with
fb5f0bc8 3331 * EEXIST. So if we receive any error we try syncing out
428870ff
BB
3332 * any removes then retry the transaction. Note that we
3333 * specify B_FALSE for byteswap now, so we don't do it twice.
34dc7c2f 3334 */
428870ff
BB
3335 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3336 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
13fe0198 3337 if (error != 0)
428870ff 3338 return (zil_replay_error(zilog, lr, error));
34dc7c2f 3339 }
428870ff 3340 return (0);
34dc7c2f
BB
3341}
3342
3343/* ARGSUSED */
428870ff 3344static int
34dc7c2f
BB
3345zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
3346{
3347 zilog->zl_replay_blks++;
428870ff
BB
3348
3349 return (0);
34dc7c2f
BB
3350}
3351
3352/*
3353 * If this dataset has a non-empty intent log, replay it and destroy it.
3354 */
3355void
867959b5 3356zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
34dc7c2f
BB
3357{
3358 zilog_t *zilog = dmu_objset_zil(os);
3359 const zil_header_t *zh = zilog->zl_header;
3360 zil_replay_arg_t zr;
3361
9babb374 3362 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
34dc7c2f
BB
3363 zil_destroy(zilog, B_TRUE);
3364 return;
3365 }
3366
34dc7c2f
BB
3367 zr.zr_replay = replay_func;
3368 zr.zr_arg = arg;
34dc7c2f 3369 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
79c76d5b 3370 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
34dc7c2f
BB
3371
3372 /*
3373 * Wait for in-progress removes to sync before starting replay.
3374 */
3375 txg_wait_synced(zilog->zl_dmu_pool, 0);
3376
fb5f0bc8 3377 zilog->zl_replay = B_TRUE;
428870ff 3378 zilog->zl_replay_time = ddi_get_lbolt();
34dc7c2f
BB
3379 ASSERT(zilog->zl_replay_blks == 0);
3380 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
b5256303 3381 zh->zh_claim_txg, B_TRUE);
00b46022 3382 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
34dc7c2f
BB
3383
3384 zil_destroy(zilog, B_FALSE);
3385 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
fb5f0bc8 3386 zilog->zl_replay = B_FALSE;
34dc7c2f
BB
3387}
3388
428870ff
BB
3389boolean_t
3390zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
34dc7c2f 3391{
428870ff
BB
3392 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3393 return (B_TRUE);
34dc7c2f 3394
428870ff
BB
3395 if (zilog->zl_replay) {
3396 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3397 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3398 zilog->zl_replaying_seq;
3399 return (B_TRUE);
34dc7c2f
BB
3400 }
3401
428870ff 3402 return (B_FALSE);
34dc7c2f 3403}
9babb374
BB
3404
3405/* ARGSUSED */
3406int
428870ff 3407zil_vdev_offline(const char *osname, void *arg)
9babb374 3408{
9babb374
BB
3409 int error;
3410
13fe0198
MA
3411 error = zil_suspend(osname, NULL);
3412 if (error != 0)
2e528b49 3413 return (SET_ERROR(EEXIST));
13fe0198 3414 return (0);
9babb374 3415}
c409e464
BB
3416
3417#if defined(_KERNEL) && defined(HAVE_SPL)
0f699108
AZ
3418EXPORT_SYMBOL(zil_alloc);
3419EXPORT_SYMBOL(zil_free);
3420EXPORT_SYMBOL(zil_open);
3421EXPORT_SYMBOL(zil_close);
3422EXPORT_SYMBOL(zil_replay);
3423EXPORT_SYMBOL(zil_replaying);
3424EXPORT_SYMBOL(zil_destroy);
3425EXPORT_SYMBOL(zil_destroy_sync);
3426EXPORT_SYMBOL(zil_itx_create);
3427EXPORT_SYMBOL(zil_itx_destroy);
3428EXPORT_SYMBOL(zil_itx_assign);
3429EXPORT_SYMBOL(zil_commit);
3430EXPORT_SYMBOL(zil_vdev_offline);
3431EXPORT_SYMBOL(zil_claim);
3432EXPORT_SYMBOL(zil_check_log_chain);
3433EXPORT_SYMBOL(zil_sync);
3434EXPORT_SYMBOL(zil_clean);
3435EXPORT_SYMBOL(zil_suspend);
3436EXPORT_SYMBOL(zil_resume);
1ce23dca 3437EXPORT_SYMBOL(zil_lwb_add_block);
0f699108
AZ
3438EXPORT_SYMBOL(zil_bp_tree_add);
3439EXPORT_SYMBOL(zil_set_sync);
3440EXPORT_SYMBOL(zil_set_logbias);
3441
1b7c1e5c 3442/* BEGIN CSTYLED */
2fe61a7e
PS
3443module_param(zfs_commit_timeout_pct, int, 0644);
3444MODULE_PARM_DESC(zfs_commit_timeout_pct, "ZIL block open timeout percentage");
3445
c409e464
BB
3446module_param(zil_replay_disable, int, 0644);
3447MODULE_PARM_DESC(zil_replay_disable, "Disable intent logging replay");
3448
3449module_param(zfs_nocacheflush, int, 0644);
3450MODULE_PARM_DESC(zfs_nocacheflush, "Disable cache flushes");
ee191e80 3451
1b7c1e5c
GDN
3452module_param(zil_slog_bulk, ulong, 0644);
3453MODULE_PARM_DESC(zil_slog_bulk, "Limit in bytes slog sync writes per commit");
3454/* END CSTYLED */
c409e464 3455#endif