]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/zil.c
Fix out-of-order ZIL txtype lost on hardlinked files
[mirror_zfs.git] / module / zfs / zil.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
492f64e9 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
55922e73 24 * Copyright (c) 2014 Integros [integros.com]
2ffd89fc 25 * Copyright (c) 2018 Datto Inc.
34dc7c2f
BB
26 */
27
428870ff
BB
28/* Portions Copyright 2010 Robert Milkowski */
29
34dc7c2f
BB
30#include <sys/zfs_context.h>
31#include <sys/spa.h>
d2734cce 32#include <sys/spa_impl.h>
34dc7c2f
BB
33#include <sys/dmu.h>
34#include <sys/zap.h>
35#include <sys/arc.h>
36#include <sys/stat.h>
34dc7c2f
BB
37#include <sys/zil.h>
38#include <sys/zil_impl.h>
39#include <sys/dsl_dataset.h>
572e2857 40#include <sys/vdev_impl.h>
34dc7c2f 41#include <sys/dmu_tx.h>
428870ff 42#include <sys/dsl_pool.h>
920dd524 43#include <sys/metaslab.h>
49ee64e5 44#include <sys/trace_zil.h>
a6255b7f 45#include <sys/abd.h>
34dc7c2f
BB
46
47/*
1ce23dca
PS
48 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
49 * calls that change the file system. Each itx has enough information to
50 * be able to replay them after a system crash, power loss, or
51 * equivalent failure mode. These are stored in memory until either:
34dc7c2f 52 *
1ce23dca
PS
53 * 1. they are committed to the pool by the DMU transaction group
54 * (txg), at which point they can be discarded; or
55 * 2. they are committed to the on-disk ZIL for the dataset being
56 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous
57 * requirement).
34dc7c2f 58 *
1ce23dca
PS
59 * In the event of a crash or power loss, the itxs contained by each
60 * dataset's on-disk ZIL will be replayed when that dataset is first
2fe61a7e 61 * instantiated (e.g. if the dataset is a normal fileystem, when it is
1ce23dca 62 * first mounted).
34dc7c2f 63 *
1ce23dca
PS
64 * As hinted at above, there is one ZIL per dataset (both the in-memory
65 * representation, and the on-disk representation). The on-disk format
66 * consists of 3 parts:
67 *
68 * - a single, per-dataset, ZIL header; which points to a chain of
69 * - zero or more ZIL blocks; each of which contains
70 * - zero or more ZIL records
71 *
72 * A ZIL record holds the information necessary to replay a single
73 * system call transaction. A ZIL block can hold many ZIL records, and
74 * the blocks are chained together, similarly to a singly linked list.
75 *
76 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
77 * block in the chain, and the ZIL header points to the first block in
78 * the chain.
79 *
80 * Note, there is not a fixed place in the pool to hold these ZIL
81 * blocks; they are dynamically allocated and freed as needed from the
82 * blocks available on the pool, though they can be preferentially
83 * allocated from a dedicated "log" vdev.
34dc7c2f
BB
84 */
85
1ce23dca
PS
86/*
87 * This controls the amount of time that a ZIL block (lwb) will remain
88 * "open" when it isn't "full", and it has a thread waiting for it to be
89 * committed to stable storage. Please refer to the zil_commit_waiter()
90 * function (and the comments within it) for more details.
91 */
92int zfs_commit_timeout_pct = 5;
93
b6ad9671
ED
94/*
95 * See zil.h for more information about these fields.
96 */
97zil_stats_t zil_stats = {
d1d7e268
MK
98 { "zil_commit_count", KSTAT_DATA_UINT64 },
99 { "zil_commit_writer_count", KSTAT_DATA_UINT64 },
100 { "zil_itx_count", KSTAT_DATA_UINT64 },
101 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 },
102 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 },
103 { "zil_itx_copied_count", KSTAT_DATA_UINT64 },
104 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 },
105 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 },
106 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 },
107 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 },
108 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 },
109 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 },
110 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 },
b6ad9671
ED
111};
112
113static kstat_t *zil_ksp;
114
34dc7c2f 115/*
d3cc8b15 116 * Disable intent logging replay. This global ZIL switch affects all pools.
34dc7c2f 117 */
d3cc8b15 118int zil_replay_disable = 0;
34dc7c2f
BB
119
120/*
53b1f5ea
PS
121 * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
122 * the disk(s) by the ZIL after an LWB write has completed. Setting this
123 * will cause ZIL corruption on power loss if a volatile out-of-order
124 * write cache is enabled.
34dc7c2f 125 */
53b1f5ea 126int zil_nocacheflush = 0;
34dc7c2f 127
1b7c1e5c
GDN
128/*
129 * Limit SLOG write size per commit executed with synchronous priority.
130 * Any writes above that will be executed with lower (asynchronous) priority
131 * to limit potential SLOG device abuse by single active ZIL writer.
132 */
133unsigned long zil_slog_bulk = 768 * 1024;
134
34dc7c2f 135static kmem_cache_t *zil_lwb_cache;
1ce23dca 136static kmem_cache_t *zil_zcw_cache;
34dc7c2f 137
572e2857 138static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
428870ff
BB
139
140#define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
141 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
142
34dc7c2f 143static int
428870ff 144zil_bp_compare(const void *x1, const void *x2)
34dc7c2f 145{
428870ff
BB
146 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
147 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
34dc7c2f 148
ee36c709
GN
149 int cmp = AVL_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
150 if (likely(cmp))
151 return (cmp);
34dc7c2f 152
ee36c709 153 return (AVL_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
34dc7c2f
BB
154}
155
156static void
428870ff 157zil_bp_tree_init(zilog_t *zilog)
34dc7c2f 158{
428870ff
BB
159 avl_create(&zilog->zl_bp_tree, zil_bp_compare,
160 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
34dc7c2f
BB
161}
162
163static void
428870ff 164zil_bp_tree_fini(zilog_t *zilog)
34dc7c2f 165{
428870ff
BB
166 avl_tree_t *t = &zilog->zl_bp_tree;
167 zil_bp_node_t *zn;
34dc7c2f
BB
168 void *cookie = NULL;
169
170 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
428870ff 171 kmem_free(zn, sizeof (zil_bp_node_t));
34dc7c2f
BB
172
173 avl_destroy(t);
174}
175
428870ff
BB
176int
177zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
34dc7c2f 178{
428870ff 179 avl_tree_t *t = &zilog->zl_bp_tree;
9b67f605 180 const dva_t *dva;
428870ff 181 zil_bp_node_t *zn;
34dc7c2f
BB
182 avl_index_t where;
183
9b67f605
MA
184 if (BP_IS_EMBEDDED(bp))
185 return (0);
186
187 dva = BP_IDENTITY(bp);
188
34dc7c2f 189 if (avl_find(t, dva, &where) != NULL)
2e528b49 190 return (SET_ERROR(EEXIST));
34dc7c2f 191
79c76d5b 192 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
34dc7c2f
BB
193 zn->zn_dva = *dva;
194 avl_insert(t, zn, where);
195
196 return (0);
197}
198
199static zil_header_t *
200zil_header_in_syncing_context(zilog_t *zilog)
201{
202 return ((zil_header_t *)zilog->zl_header);
203}
204
205static void
206zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
207{
208 zio_cksum_t *zc = &bp->blk_cksum;
209
210 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
211 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
212 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
213 zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
214}
215
216/*
428870ff 217 * Read a log block and make sure it's valid.
34dc7c2f
BB
218 */
219static int
b5256303
TC
220zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
221 blkptr_t *nbp, void *dst, char **end)
34dc7c2f 222{
428870ff 223 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
2a432414 224 arc_flags_t aflags = ARC_FLAG_WAIT;
428870ff 225 arc_buf_t *abuf = NULL;
5dbd68a3 226 zbookmark_phys_t zb;
34dc7c2f
BB
227 int error;
228
428870ff
BB
229 if (zilog->zl_header->zh_claim_txg == 0)
230 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
34dc7c2f 231
428870ff
BB
232 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
233 zio_flags |= ZIO_FLAG_SPECULATIVE;
34dc7c2f 234
b5256303
TC
235 if (!decrypt)
236 zio_flags |= ZIO_FLAG_RAW;
237
428870ff
BB
238 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
239 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
240
b5256303
TC
241 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
242 &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
34dc7c2f
BB
243
244 if (error == 0) {
34dc7c2f
BB
245 zio_cksum_t cksum = bp->blk_cksum;
246
247 /*
b128c09f
BB
248 * Validate the checksummed log block.
249 *
34dc7c2f
BB
250 * Sequence numbers should be... sequential. The checksum
251 * verifier for the next block should be bp's checksum plus 1.
b128c09f
BB
252 *
253 * Also check the log chain linkage and size used.
34dc7c2f
BB
254 */
255 cksum.zc_word[ZIL_ZC_SEQ]++;
256
428870ff
BB
257 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
258 zil_chain_t *zilc = abuf->b_data;
259 char *lr = (char *)(zilc + 1);
260 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
34dc7c2f 261
428870ff
BB
262 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
263 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
2e528b49 264 error = SET_ERROR(ECKSUM);
428870ff 265 } else {
f1512ee6 266 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
428870ff
BB
267 bcopy(lr, dst, len);
268 *end = (char *)dst + len;
269 *nbp = zilc->zc_next_blk;
270 }
271 } else {
272 char *lr = abuf->b_data;
273 uint64_t size = BP_GET_LSIZE(bp);
274 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
275
276 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
277 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
278 (zilc->zc_nused > (size - sizeof (*zilc)))) {
2e528b49 279 error = SET_ERROR(ECKSUM);
428870ff 280 } else {
f1512ee6
MA
281 ASSERT3U(zilc->zc_nused, <=,
282 SPA_OLD_MAXBLOCKSIZE);
428870ff
BB
283 bcopy(lr, dst, zilc->zc_nused);
284 *end = (char *)dst + zilc->zc_nused;
285 *nbp = zilc->zc_next_blk;
286 }
34dc7c2f 287 }
428870ff 288
d3c2ae1c 289 arc_buf_destroy(abuf, &abuf);
428870ff
BB
290 }
291
292 return (error);
293}
294
295/*
296 * Read a TX_WRITE log data block.
297 */
298static int
299zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
300{
301 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
302 const blkptr_t *bp = &lr->lr_blkptr;
2a432414 303 arc_flags_t aflags = ARC_FLAG_WAIT;
428870ff 304 arc_buf_t *abuf = NULL;
5dbd68a3 305 zbookmark_phys_t zb;
428870ff
BB
306 int error;
307
308 if (BP_IS_HOLE(bp)) {
309 if (wbuf != NULL)
310 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
311 return (0);
34dc7c2f
BB
312 }
313
428870ff
BB
314 if (zilog->zl_header->zh_claim_txg == 0)
315 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
316
b5256303
TC
317 /*
318 * If we are not using the resulting data, we are just checking that
319 * it hasn't been corrupted so we don't need to waste CPU time
320 * decompressing and decrypting it.
321 */
322 if (wbuf == NULL)
323 zio_flags |= ZIO_FLAG_RAW;
324
428870ff
BB
325 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
326 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
327
294f6806 328 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
428870ff
BB
329 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
330
331 if (error == 0) {
332 if (wbuf != NULL)
333 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
d3c2ae1c 334 arc_buf_destroy(abuf, &abuf);
428870ff 335 }
34dc7c2f
BB
336
337 return (error);
338}
339
340/*
341 * Parse the intent log, and call parse_func for each valid record within.
34dc7c2f 342 */
428870ff 343int
34dc7c2f 344zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
b5256303
TC
345 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
346 boolean_t decrypt)
34dc7c2f
BB
347{
348 const zil_header_t *zh = zilog->zl_header;
428870ff
BB
349 boolean_t claimed = !!zh->zh_claim_txg;
350 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
351 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
352 uint64_t max_blk_seq = 0;
353 uint64_t max_lr_seq = 0;
354 uint64_t blk_count = 0;
355 uint64_t lr_count = 0;
356 blkptr_t blk, next_blk;
34dc7c2f 357 char *lrbuf, *lrp;
428870ff 358 int error = 0;
34dc7c2f 359
d1d7e268 360 bzero(&next_blk, sizeof (blkptr_t));
d4ed6673 361
428870ff
BB
362 /*
363 * Old logs didn't record the maximum zh_claim_lr_seq.
364 */
365 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
366 claim_lr_seq = UINT64_MAX;
34dc7c2f
BB
367
368 /*
369 * Starting at the block pointed to by zh_log we read the log chain.
370 * For each block in the chain we strongly check that block to
371 * ensure its validity. We stop when an invalid block is found.
372 * For each block pointer in the chain we call parse_blk_func().
373 * For each record in each valid block we call parse_lr_func().
374 * If the log has been claimed, stop if we encounter a sequence
375 * number greater than the highest claimed sequence number.
376 */
f1512ee6 377 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
428870ff 378 zil_bp_tree_init(zilog);
34dc7c2f 379
428870ff
BB
380 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
381 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
382 int reclen;
d4ed6673 383 char *end = NULL;
34dc7c2f 384
428870ff
BB
385 if (blk_seq > claim_blk_seq)
386 break;
b5256303
TC
387
388 error = parse_blk_func(zilog, &blk, arg, txg);
389 if (error != 0)
428870ff
BB
390 break;
391 ASSERT3U(max_blk_seq, <, blk_seq);
392 max_blk_seq = blk_seq;
393 blk_count++;
34dc7c2f 394
428870ff
BB
395 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
396 break;
34dc7c2f 397
b5256303
TC
398 error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
399 lrbuf, &end);
13fe0198 400 if (error != 0)
34dc7c2f
BB
401 break;
402
428870ff 403 for (lrp = lrbuf; lrp < end; lrp += reclen) {
34dc7c2f
BB
404 lr_t *lr = (lr_t *)lrp;
405 reclen = lr->lrc_reclen;
406 ASSERT3U(reclen, >=, sizeof (lr_t));
428870ff
BB
407 if (lr->lrc_seq > claim_lr_seq)
408 goto done;
b5256303
TC
409
410 error = parse_lr_func(zilog, lr, arg, txg);
411 if (error != 0)
428870ff
BB
412 goto done;
413 ASSERT3U(max_lr_seq, <, lr->lrc_seq);
414 max_lr_seq = lr->lrc_seq;
415 lr_count++;
34dc7c2f 416 }
34dc7c2f 417 }
428870ff
BB
418done:
419 zilog->zl_parse_error = error;
420 zilog->zl_parse_blk_seq = max_blk_seq;
421 zilog->zl_parse_lr_seq = max_lr_seq;
422 zilog->zl_parse_blk_count = blk_count;
423 zilog->zl_parse_lr_count = lr_count;
424
425 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
b5256303
TC
426 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq) ||
427 (decrypt && error == EIO));
428870ff
BB
428
429 zil_bp_tree_fini(zilog);
f1512ee6 430 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
34dc7c2f 431
428870ff 432 return (error);
34dc7c2f
BB
433}
434
d2734cce
SD
435/* ARGSUSED */
436static int
437zil_clear_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
438{
439 ASSERT(!BP_IS_HOLE(bp));
440
441 /*
442 * As we call this function from the context of a rewind to a
443 * checkpoint, each ZIL block whose txg is later than the txg
444 * that we rewind to is invalid. Thus, we return -1 so
445 * zil_parse() doesn't attempt to read it.
446 */
447 if (bp->blk_birth >= first_txg)
448 return (-1);
449
450 if (zil_bp_tree_add(zilog, bp) != 0)
451 return (0);
452
453 zio_free(zilog->zl_spa, first_txg, bp);
454 return (0);
455}
456
457/* ARGSUSED */
458static int
459zil_noop_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
460{
461 return (0);
462}
463
428870ff 464static int
34dc7c2f
BB
465zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
466{
34dc7c2f
BB
467 /*
468 * Claim log block if not already committed and not already claimed.
428870ff 469 * If tx == NULL, just verify that the block is claimable.
34dc7c2f 470 */
b0bc7a84
MG
471 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
472 zil_bp_tree_add(zilog, bp) != 0)
428870ff
BB
473 return (0);
474
475 return (zio_wait(zio_claim(NULL, zilog->zl_spa,
476 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
477 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
34dc7c2f
BB
478}
479
428870ff 480static int
34dc7c2f
BB
481zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
482{
428870ff
BB
483 lr_write_t *lr = (lr_write_t *)lrc;
484 int error;
485
486 if (lrc->lrc_txtype != TX_WRITE)
487 return (0);
488
489 /*
490 * If the block is not readable, don't claim it. This can happen
491 * in normal operation when a log block is written to disk before
492 * some of the dmu_sync() blocks it points to. In this case, the
493 * transaction cannot have been committed to anyone (we would have
494 * waited for all writes to be stable first), so it is semantically
495 * correct to declare this the end of the log.
496 */
b5256303
TC
497 if (lr->lr_blkptr.blk_birth >= first_txg) {
498 error = zil_read_log_data(zilog, lr, NULL);
499 if (error != 0)
500 return (error);
501 }
502
428870ff 503 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
34dc7c2f
BB
504}
505
506/* ARGSUSED */
428870ff 507static int
34dc7c2f
BB
508zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
509{
d2734cce 510 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
428870ff
BB
511
512 return (0);
34dc7c2f
BB
513}
514
428870ff 515static int
34dc7c2f
BB
516zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
517{
428870ff
BB
518 lr_write_t *lr = (lr_write_t *)lrc;
519 blkptr_t *bp = &lr->lr_blkptr;
520
34dc7c2f
BB
521 /*
522 * If we previously claimed it, we need to free it.
523 */
428870ff 524 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
b0bc7a84
MG
525 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
526 !BP_IS_HOLE(bp))
428870ff
BB
527 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
528
529 return (0);
530}
531
1ce23dca
PS
532static int
533zil_lwb_vdev_compare(const void *x1, const void *x2)
534{
535 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
536 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
537
538 return (AVL_CMP(v1, v2));
539}
540
428870ff 541static lwb_t *
1b7c1e5c
GDN
542zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg,
543 boolean_t fastwrite)
428870ff
BB
544{
545 lwb_t *lwb;
546
79c76d5b 547 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
428870ff
BB
548 lwb->lwb_zilog = zilog;
549 lwb->lwb_blk = *bp;
920dd524 550 lwb->lwb_fastwrite = fastwrite;
1b7c1e5c 551 lwb->lwb_slog = slog;
1ce23dca 552 lwb->lwb_state = LWB_STATE_CLOSED;
428870ff
BB
553 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
554 lwb->lwb_max_txg = txg;
1ce23dca
PS
555 lwb->lwb_write_zio = NULL;
556 lwb->lwb_root_zio = NULL;
428870ff 557 lwb->lwb_tx = NULL;
1ce23dca 558 lwb->lwb_issued_timestamp = 0;
428870ff
BB
559 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
560 lwb->lwb_nused = sizeof (zil_chain_t);
561 lwb->lwb_sz = BP_GET_LSIZE(bp);
562 } else {
563 lwb->lwb_nused = 0;
564 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
34dc7c2f 565 }
428870ff
BB
566
567 mutex_enter(&zilog->zl_lock);
568 list_insert_tail(&zilog->zl_lwb_list, lwb);
569 mutex_exit(&zilog->zl_lock);
570
1ce23dca
PS
571 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
572 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
2fe61a7e
PS
573 VERIFY(list_is_empty(&lwb->lwb_waiters));
574 VERIFY(list_is_empty(&lwb->lwb_itxs));
1ce23dca 575
428870ff 576 return (lwb);
34dc7c2f
BB
577}
578
1ce23dca
PS
579static void
580zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
581{
582 ASSERT(MUTEX_HELD(&zilog->zl_lock));
583 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
2fe61a7e
PS
584 VERIFY(list_is_empty(&lwb->lwb_waiters));
585 VERIFY(list_is_empty(&lwb->lwb_itxs));
1ce23dca 586 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1ce23dca
PS
587 ASSERT3P(lwb->lwb_write_zio, ==, NULL);
588 ASSERT3P(lwb->lwb_root_zio, ==, NULL);
2fe61a7e
PS
589 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
590 ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
900d09b2 591 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
1ce23dca
PS
592
593 /*
594 * Clear the zilog's field to indicate this lwb is no longer
595 * valid, and prevent use-after-free errors.
596 */
597 if (zilog->zl_last_lwb_opened == lwb)
598 zilog->zl_last_lwb_opened = NULL;
599
600 kmem_cache_free(zil_lwb_cache, lwb);
601}
602
29809a6c
MA
603/*
604 * Called when we create in-memory log transactions so that we know
605 * to cleanup the itxs at the end of spa_sync().
606 */
607void
608zilog_dirty(zilog_t *zilog, uint64_t txg)
609{
610 dsl_pool_t *dp = zilog->zl_dmu_pool;
611 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
612
1ce23dca
PS
613 ASSERT(spa_writeable(zilog->zl_spa));
614
0c66c32d 615 if (ds->ds_is_snapshot)
29809a6c
MA
616 panic("dirtying snapshot!");
617
13fe0198 618 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
29809a6c
MA
619 /* up the hold count until we can be written out */
620 dmu_buf_add_ref(ds->ds_dbuf, zilog);
1ce23dca
PS
621
622 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
29809a6c
MA
623 }
624}
625
55922e73
GW
626/*
627 * Determine if the zil is dirty in the specified txg. Callers wanting to
628 * ensure that the dirty state does not change must hold the itxg_lock for
629 * the specified txg. Holding the lock will ensure that the zil cannot be
630 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
631 * state.
632 */
633boolean_t
634zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
635{
636 dsl_pool_t *dp = zilog->zl_dmu_pool;
637
638 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
639 return (B_TRUE);
640 return (B_FALSE);
641}
642
643/*
644 * Determine if the zil is dirty. The zil is considered dirty if it has
645 * any pending itx records that have not been cleaned by zil_clean().
646 */
29809a6c
MA
647boolean_t
648zilog_is_dirty(zilog_t *zilog)
649{
650 dsl_pool_t *dp = zilog->zl_dmu_pool;
29809a6c 651
1c27024e 652 for (int t = 0; t < TXG_SIZE; t++) {
29809a6c
MA
653 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
654 return (B_TRUE);
655 }
656 return (B_FALSE);
657}
658
34dc7c2f
BB
659/*
660 * Create an on-disk intent log.
661 */
428870ff 662static lwb_t *
34dc7c2f
BB
663zil_create(zilog_t *zilog)
664{
665 const zil_header_t *zh = zilog->zl_header;
428870ff 666 lwb_t *lwb = NULL;
34dc7c2f
BB
667 uint64_t txg = 0;
668 dmu_tx_t *tx = NULL;
669 blkptr_t blk;
670 int error = 0;
920dd524 671 boolean_t fastwrite = FALSE;
1b7c1e5c 672 boolean_t slog = FALSE;
34dc7c2f
BB
673
674 /*
675 * Wait for any previous destroy to complete.
676 */
677 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
678
679 ASSERT(zh->zh_claim_txg == 0);
680 ASSERT(zh->zh_replay_seq == 0);
681
682 blk = zh->zh_log;
683
684 /*
428870ff
BB
685 * Allocate an initial log block if:
686 * - there isn't one already
4e33ba4c 687 * - the existing block is the wrong endianness
34dc7c2f 688 */
fb5f0bc8 689 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
34dc7c2f 690 tx = dmu_tx_create(zilog->zl_os);
1ce23dca 691 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
34dc7c2f
BB
692 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
693 txg = dmu_tx_get_txg(tx);
694
fb5f0bc8 695 if (!BP_IS_HOLE(&blk)) {
d2734cce 696 zio_free(zilog->zl_spa, txg, &blk);
fb5f0bc8
BB
697 BP_ZERO(&blk);
698 }
699
b5256303 700 error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
1b7c1e5c 701 ZIL_MIN_BLKSZ, &slog);
920dd524 702 fastwrite = TRUE;
34dc7c2f
BB
703
704 if (error == 0)
705 zil_init_log_chain(zilog, &blk);
706 }
707
708 /*
1ce23dca 709 * Allocate a log write block (lwb) for the first log block.
34dc7c2f 710 */
428870ff 711 if (error == 0)
1b7c1e5c 712 lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite);
34dc7c2f
BB
713
714 /*
715 * If we just allocated the first log block, commit our transaction
2fe61a7e 716 * and wait for zil_sync() to stuff the block pointer into zh_log.
34dc7c2f
BB
717 * (zh is part of the MOS, so we cannot modify it in open context.)
718 */
719 if (tx != NULL) {
720 dmu_tx_commit(tx);
721 txg_wait_synced(zilog->zl_dmu_pool, txg);
722 }
723
c04812f9
TC
724 ASSERT(error != 0 || bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
725 IMPLY(error == 0, lwb != NULL);
428870ff
BB
726
727 return (lwb);
34dc7c2f
BB
728}
729
730/*
1ce23dca
PS
731 * In one tx, free all log blocks and clear the log header. If keep_first
732 * is set, then we're replaying a log with no content. We want to keep the
733 * first block, however, so that the first synchronous transaction doesn't
734 * require a txg_wait_synced() in zil_create(). We don't need to
735 * txg_wait_synced() here either when keep_first is set, because both
736 * zil_create() and zil_destroy() will wait for any in-progress destroys
737 * to complete.
34dc7c2f
BB
738 */
739void
740zil_destroy(zilog_t *zilog, boolean_t keep_first)
741{
742 const zil_header_t *zh = zilog->zl_header;
743 lwb_t *lwb;
744 dmu_tx_t *tx;
745 uint64_t txg;
746
747 /*
748 * Wait for any previous destroy to complete.
749 */
750 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
751
428870ff
BB
752 zilog->zl_old_header = *zh; /* debugging aid */
753
34dc7c2f
BB
754 if (BP_IS_HOLE(&zh->zh_log))
755 return;
756
757 tx = dmu_tx_create(zilog->zl_os);
1ce23dca 758 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
34dc7c2f
BB
759 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
760 txg = dmu_tx_get_txg(tx);
761
762 mutex_enter(&zilog->zl_lock);
763
34dc7c2f
BB
764 ASSERT3U(zilog->zl_destroy_txg, <, txg);
765 zilog->zl_destroy_txg = txg;
766 zilog->zl_keep_first = keep_first;
767
768 if (!list_is_empty(&zilog->zl_lwb_list)) {
769 ASSERT(zh->zh_claim_txg == 0);
3e31d2b0 770 VERIFY(!keep_first);
34dc7c2f 771 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
920dd524
ED
772 if (lwb->lwb_fastwrite)
773 metaslab_fastwrite_unmark(zilog->zl_spa,
774 &lwb->lwb_blk);
1ce23dca 775
34dc7c2f
BB
776 list_remove(&zilog->zl_lwb_list, lwb);
777 if (lwb->lwb_buf != NULL)
778 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1ce23dca
PS
779 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
780 zil_free_lwb(zilog, lwb);
34dc7c2f 781 }
428870ff 782 } else if (!keep_first) {
29809a6c 783 zil_destroy_sync(zilog, tx);
34dc7c2f
BB
784 }
785 mutex_exit(&zilog->zl_lock);
786
787 dmu_tx_commit(tx);
788}
789
29809a6c
MA
790void
791zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
792{
793 ASSERT(list_is_empty(&zilog->zl_lwb_list));
794 (void) zil_parse(zilog, zil_free_log_block,
b5256303 795 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
29809a6c
MA
796}
797
34dc7c2f 798int
9c43027b 799zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
34dc7c2f
BB
800{
801 dmu_tx_t *tx = txarg;
34dc7c2f 802 zilog_t *zilog;
d2734cce 803 uint64_t first_txg;
34dc7c2f
BB
804 zil_header_t *zh;
805 objset_t *os;
806 int error;
807
9c43027b 808 error = dmu_objset_own_obj(dp, ds->ds_object,
b5256303 809 DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
13fe0198 810 if (error != 0) {
6d9036f3
MA
811 /*
812 * EBUSY indicates that the objset is inconsistent, in which
813 * case it can not have a ZIL.
814 */
815 if (error != EBUSY) {
9c43027b
AJ
816 cmn_err(CE_WARN, "can't open objset for %llu, error %u",
817 (unsigned long long)ds->ds_object, error);
6d9036f3
MA
818 }
819
34dc7c2f
BB
820 return (0);
821 }
822
823 zilog = dmu_objset_zil(os);
824 zh = zil_header_in_syncing_context(zilog);
d2734cce
SD
825 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
826 first_txg = spa_min_claim_txg(zilog->zl_spa);
34dc7c2f 827
d2734cce
SD
828 /*
829 * If the spa_log_state is not set to be cleared, check whether
830 * the current uberblock is a checkpoint one and if the current
831 * header has been claimed before moving on.
832 *
833 * If the current uberblock is a checkpointed uberblock then
834 * one of the following scenarios took place:
835 *
836 * 1] We are currently rewinding to the checkpoint of the pool.
837 * 2] We crashed in the middle of a checkpoint rewind but we
838 * did manage to write the checkpointed uberblock to the
839 * vdev labels, so when we tried to import the pool again
840 * the checkpointed uberblock was selected from the import
841 * procedure.
842 *
843 * In both cases we want to zero out all the ZIL blocks, except
844 * the ones that have been claimed at the time of the checkpoint
845 * (their zh_claim_txg != 0). The reason is that these blocks
846 * may be corrupted since we may have reused their locations on
847 * disk after we took the checkpoint.
848 *
849 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
850 * when we first figure out whether the current uberblock is
851 * checkpointed or not. Unfortunately, that would discard all
852 * the logs, including the ones that are claimed, and we would
853 * leak space.
854 */
855 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
856 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
857 zh->zh_claim_txg == 0)) {
858 if (!BP_IS_HOLE(&zh->zh_log)) {
859 (void) zil_parse(zilog, zil_clear_log_block,
860 zil_noop_log_record, tx, first_txg, B_FALSE);
861 }
9babb374 862 BP_ZERO(&zh->zh_log);
b5256303 863 if (os->os_encrypted)
1b66810b 864 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
9babb374 865 dsl_dataset_dirty(dmu_objset_ds(os), tx);
b5256303 866 dmu_objset_disown(os, B_FALSE, FTAG);
428870ff 867 return (0);
9babb374
BB
868 }
869
d2734cce
SD
870 /*
871 * If we are not rewinding and opening the pool normally, then
872 * the min_claim_txg should be equal to the first txg of the pool.
873 */
874 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
875
34dc7c2f
BB
876 /*
877 * Claim all log blocks if we haven't already done so, and remember
878 * the highest claimed sequence number. This ensures that if we can
879 * read only part of the log now (e.g. due to a missing device),
880 * but we can read the entire log later, we will not try to replay
881 * or destroy beyond the last block we successfully claimed.
882 */
883 ASSERT3U(zh->zh_claim_txg, <=, first_txg);
884 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
428870ff 885 (void) zil_parse(zilog, zil_claim_log_block,
b5256303 886 zil_claim_log_record, tx, first_txg, B_FALSE);
428870ff
BB
887 zh->zh_claim_txg = first_txg;
888 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
889 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
890 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
891 zh->zh_flags |= ZIL_REPLAY_NEEDED;
892 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
d53bd7f5 893 if (os->os_encrypted)
1b66810b 894 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
34dc7c2f
BB
895 dsl_dataset_dirty(dmu_objset_ds(os), tx);
896 }
897
898 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
b5256303 899 dmu_objset_disown(os, B_FALSE, FTAG);
34dc7c2f
BB
900 return (0);
901}
902
b128c09f
BB
903/*
904 * Check the log by walking the log chain.
905 * Checksum errors are ok as they indicate the end of the chain.
906 * Any other error (no device or read failure) returns an error.
907 */
9c43027b 908/* ARGSUSED */
b128c09f 909int
9c43027b 910zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
b128c09f
BB
911{
912 zilog_t *zilog;
b128c09f 913 objset_t *os;
572e2857 914 blkptr_t *bp;
b128c09f
BB
915 int error;
916
428870ff
BB
917 ASSERT(tx == NULL);
918
9c43027b 919 error = dmu_objset_from_ds(ds, &os);
13fe0198 920 if (error != 0) {
9c43027b
AJ
921 cmn_err(CE_WARN, "can't open objset %llu, error %d",
922 (unsigned long long)ds->ds_object, error);
b128c09f
BB
923 return (0);
924 }
925
926 zilog = dmu_objset_zil(os);
572e2857
BB
927 bp = (blkptr_t *)&zilog->zl_header->zh_log;
928
572e2857
BB
929 if (!BP_IS_HOLE(bp)) {
930 vdev_t *vd;
931 boolean_t valid = B_TRUE;
932
d2734cce
SD
933 /*
934 * Check the first block and determine if it's on a log device
935 * which may have been removed or faulted prior to loading this
936 * pool. If so, there's no point in checking the rest of the
937 * log as its content should have already been synced to the
938 * pool.
939 */
572e2857
BB
940 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
941 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
942 if (vd->vdev_islog && vdev_is_dead(vd))
943 valid = vdev_log_state_valid(vd);
944 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
945
9c43027b 946 if (!valid)
572e2857 947 return (0);
d2734cce
SD
948
949 /*
950 * Check whether the current uberblock is checkpointed (e.g.
951 * we are rewinding) and whether the current header has been
952 * claimed or not. If it hasn't then skip verifying it. We
953 * do this because its ZIL blocks may be part of the pool's
954 * state before the rewind, which is no longer valid.
955 */
956 zil_header_t *zh = zil_header_in_syncing_context(zilog);
957 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
958 zh->zh_claim_txg == 0)
959 return (0);
572e2857 960 }
b128c09f 961
428870ff
BB
962 /*
963 * Because tx == NULL, zil_claim_log_block() will not actually claim
964 * any blocks, but just determine whether it is possible to do so.
965 * In addition to checking the log chain, zil_claim_log_block()
966 * will invoke zio_claim() with a done func of spa_claim_notify(),
967 * which will update spa_max_claim_txg. See spa_load() for details.
968 */
969 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
d2734cce
SD
970 zilog->zl_header->zh_claim_txg ? -1ULL :
971 spa_min_claim_txg(os->os_spa), B_FALSE);
428870ff 972
428870ff 973 return ((error == ECKSUM || error == ENOENT) ? 0 : error);
b128c09f
BB
974}
975
1ce23dca
PS
976/*
977 * When an itx is "skipped", this function is used to properly mark the
978 * waiter as "done, and signal any thread(s) waiting on it. An itx can
979 * be skipped (and not committed to an lwb) for a variety of reasons,
980 * one of them being that the itx was committed via spa_sync(), prior to
981 * it being committed to an lwb; this can happen if a thread calling
982 * zil_commit() is racing with spa_sync().
983 */
984static void
985zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
34dc7c2f 986{
1ce23dca
PS
987 mutex_enter(&zcw->zcw_lock);
988 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
989 zcw->zcw_done = B_TRUE;
990 cv_broadcast(&zcw->zcw_cv);
991 mutex_exit(&zcw->zcw_lock);
992}
34dc7c2f 993
1ce23dca
PS
994/*
995 * This function is used when the given waiter is to be linked into an
996 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
997 * At this point, the waiter will no longer be referenced by the itx,
998 * and instead, will be referenced by the lwb.
999 */
1000static void
1001zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
1002{
2fe61a7e
PS
1003 /*
1004 * The lwb_waiters field of the lwb is protected by the zilog's
1005 * zl_lock, thus it must be held when calling this function.
1006 */
1007 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
1008
1ce23dca
PS
1009 mutex_enter(&zcw->zcw_lock);
1010 ASSERT(!list_link_active(&zcw->zcw_node));
1011 ASSERT3P(zcw->zcw_lwb, ==, NULL);
1012 ASSERT3P(lwb, !=, NULL);
1013 ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
900d09b2
PS
1014 lwb->lwb_state == LWB_STATE_ISSUED ||
1015 lwb->lwb_state == LWB_STATE_WRITE_DONE);
1ce23dca
PS
1016
1017 list_insert_tail(&lwb->lwb_waiters, zcw);
1018 zcw->zcw_lwb = lwb;
1019 mutex_exit(&zcw->zcw_lock);
1020}
1021
1022/*
1023 * This function is used when zio_alloc_zil() fails to allocate a ZIL
1024 * block, and the given waiter must be linked to the "nolwb waiters"
1025 * list inside of zil_process_commit_list().
1026 */
1027static void
1028zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
1029{
1030 mutex_enter(&zcw->zcw_lock);
1031 ASSERT(!list_link_active(&zcw->zcw_node));
1032 ASSERT3P(zcw->zcw_lwb, ==, NULL);
1033 list_insert_tail(nolwb, zcw);
1034 mutex_exit(&zcw->zcw_lock);
34dc7c2f
BB
1035}
1036
1037void
1ce23dca 1038zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
34dc7c2f 1039{
1ce23dca 1040 avl_tree_t *t = &lwb->lwb_vdev_tree;
34dc7c2f
BB
1041 avl_index_t where;
1042 zil_vdev_node_t *zv, zvsearch;
1043 int ndvas = BP_GET_NDVAS(bp);
1044 int i;
1045
53b1f5ea 1046 if (zil_nocacheflush)
34dc7c2f
BB
1047 return;
1048
1ce23dca 1049 mutex_enter(&lwb->lwb_vdev_lock);
34dc7c2f
BB
1050 for (i = 0; i < ndvas; i++) {
1051 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1052 if (avl_find(t, &zvsearch, &where) == NULL) {
79c76d5b 1053 zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
34dc7c2f
BB
1054 zv->zv_vdev = zvsearch.zv_vdev;
1055 avl_insert(t, zv, where);
1056 }
1057 }
1ce23dca 1058 mutex_exit(&lwb->lwb_vdev_lock);
34dc7c2f
BB
1059}
1060
900d09b2
PS
1061static void
1062zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1063{
1064 avl_tree_t *src = &lwb->lwb_vdev_tree;
1065 avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1066 void *cookie = NULL;
1067 zil_vdev_node_t *zv;
1068
1069 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1070 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1071 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1072
1073 /*
1074 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1075 * not need the protection of lwb_vdev_lock (it will only be modified
1076 * while holding zilog->zl_lock) as its writes and those of its
1077 * children have all completed. The younger 'nlwb' may be waiting on
1078 * future writes to additional vdevs.
1079 */
1080 mutex_enter(&nlwb->lwb_vdev_lock);
1081 /*
1082 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1083 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1084 */
1085 while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1086 avl_index_t where;
1087
1088 if (avl_find(dst, zv, &where) == NULL) {
1089 avl_insert(dst, zv, where);
1090 } else {
1091 kmem_free(zv, sizeof (*zv));
1092 }
1093 }
1094 mutex_exit(&nlwb->lwb_vdev_lock);
1095}
1096
1ce23dca
PS
1097void
1098zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1099{
1100 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1101}
1102
1103/*
900d09b2 1104 * This function is a called after all vdevs associated with a given lwb
1ce23dca 1105 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
900d09b2
PS
1106 * as the lwb write completes, if "zil_nocacheflush" is set. Further,
1107 * all "previous" lwb's will have completed before this function is
1108 * called; i.e. this function is called for all previous lwbs before
1109 * it's called for "this" lwb (enforced via zio the dependencies
1110 * configured in zil_lwb_set_zio_dependency()).
1ce23dca
PS
1111 *
1112 * The intention is for this function to be called as soon as the
1113 * contents of an lwb are considered "stable" on disk, and will survive
1114 * any sudden loss of power. At this point, any threads waiting for the
1115 * lwb to reach this state are signalled, and the "waiter" structures
1116 * are marked "done".
1117 */
572e2857 1118static void
1ce23dca 1119zil_lwb_flush_vdevs_done(zio_t *zio)
34dc7c2f 1120{
1ce23dca
PS
1121 lwb_t *lwb = zio->io_private;
1122 zilog_t *zilog = lwb->lwb_zilog;
1123 dmu_tx_t *tx = lwb->lwb_tx;
1124 zil_commit_waiter_t *zcw;
1125 itx_t *itx;
1126
1127 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1128
1129 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
34dc7c2f 1130
1ce23dca 1131 mutex_enter(&zilog->zl_lock);
34dc7c2f
BB
1132
1133 /*
1ce23dca
PS
1134 * Ensure the lwb buffer pointer is cleared before releasing the
1135 * txg. If we have had an allocation failure and the txg is
1136 * waiting to sync then we want zil_sync() to remove the lwb so
1137 * that it's not picked up as the next new one in
1138 * zil_process_commit_list(). zil_sync() will only remove the
1139 * lwb if lwb_buf is null.
34dc7c2f 1140 */
1ce23dca
PS
1141 lwb->lwb_buf = NULL;
1142 lwb->lwb_tx = NULL;
34dc7c2f 1143
1ce23dca
PS
1144 ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1145 zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
34dc7c2f 1146
1ce23dca 1147 lwb->lwb_root_zio = NULL;
900d09b2
PS
1148
1149 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1150 lwb->lwb_state = LWB_STATE_FLUSH_DONE;
34dc7c2f 1151
1ce23dca
PS
1152 if (zilog->zl_last_lwb_opened == lwb) {
1153 /*
1154 * Remember the highest committed log sequence number
1155 * for ztest. We only update this value when all the log
1156 * writes succeeded, because ztest wants to ASSERT that
1157 * it got the whole log chain.
1158 */
1159 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1160 }
1161
1162 while ((itx = list_head(&lwb->lwb_itxs)) != NULL) {
1163 list_remove(&lwb->lwb_itxs, itx);
1164 zil_itx_destroy(itx);
1165 }
1166
1167 while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1168 mutex_enter(&zcw->zcw_lock);
1169
1170 ASSERT(list_link_active(&zcw->zcw_node));
1171 list_remove(&lwb->lwb_waiters, zcw);
1172
1173 ASSERT3P(zcw->zcw_lwb, ==, lwb);
1174 zcw->zcw_lwb = NULL;
1175
1176 zcw->zcw_zio_error = zio->io_error;
1177
1178 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1179 zcw->zcw_done = B_TRUE;
1180 cv_broadcast(&zcw->zcw_cv);
1181
1182 mutex_exit(&zcw->zcw_lock);
34dc7c2f
BB
1183 }
1184
1ce23dca
PS
1185 mutex_exit(&zilog->zl_lock);
1186
34dc7c2f 1187 /*
1ce23dca
PS
1188 * Now that we've written this log block, we have a stable pointer
1189 * to the next block in the chain, so it's OK to let the txg in
1190 * which we allocated the next block sync.
34dc7c2f 1191 */
1ce23dca 1192 dmu_tx_commit(tx);
34dc7c2f
BB
1193}
1194
1195/*
900d09b2
PS
1196 * This is called when an lwb's write zio completes. The callback's
1197 * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1198 * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1199 * in writing out this specific lwb's data, and in the case that cache
1200 * flushes have been deferred, vdevs involved in writing the data for
1201 * previous lwbs. The writes corresponding to all the vdevs in the
1202 * lwb_vdev_tree will have completed by the time this is called, due to
1203 * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1204 * which takes deferred flushes into account. The lwb will be "done"
1205 * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1206 * completion callback for the lwb's root zio.
34dc7c2f
BB
1207 */
1208static void
1209zil_lwb_write_done(zio_t *zio)
1210{
1211 lwb_t *lwb = zio->io_private;
1ce23dca 1212 spa_t *spa = zio->io_spa;
34dc7c2f 1213 zilog_t *zilog = lwb->lwb_zilog;
1ce23dca
PS
1214 avl_tree_t *t = &lwb->lwb_vdev_tree;
1215 void *cookie = NULL;
1216 zil_vdev_node_t *zv;
900d09b2 1217 lwb_t *nlwb;
1ce23dca
PS
1218
1219 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
34dc7c2f 1220
b128c09f 1221 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
b128c09f
BB
1222 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1223 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1224 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1225 ASSERT(!BP_IS_GANG(zio->io_bp));
1226 ASSERT(!BP_IS_HOLE(zio->io_bp));
9b67f605 1227 ASSERT(BP_GET_FILL(zio->io_bp) == 0);
b128c09f 1228
a6255b7f 1229 abd_put(zio->io_abd);
1ce23dca 1230
34dc7c2f 1231 mutex_enter(&zilog->zl_lock);
900d09b2
PS
1232 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1233 lwb->lwb_state = LWB_STATE_WRITE_DONE;
1ce23dca 1234 lwb->lwb_write_zio = NULL;
920dd524 1235 lwb->lwb_fastwrite = FALSE;
900d09b2 1236 nlwb = list_next(&zilog->zl_lwb_list, lwb);
428870ff 1237 mutex_exit(&zilog->zl_lock);
9babb374 1238
1ce23dca
PS
1239 if (avl_numnodes(t) == 0)
1240 return;
1241
9babb374 1242 /*
1ce23dca
PS
1243 * If there was an IO error, we're not going to call zio_flush()
1244 * on these vdevs, so we simply empty the tree and free the
1245 * nodes. We avoid calling zio_flush() since there isn't any
1246 * good reason for doing so, after the lwb block failed to be
1247 * written out.
9babb374 1248 */
1ce23dca
PS
1249 if (zio->io_error != 0) {
1250 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1251 kmem_free(zv, sizeof (*zv));
1252 return;
1253 }
1254
900d09b2
PS
1255 /*
1256 * If this lwb does not have any threads waiting for it to
1257 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1258 * command to the vdevs written to by "this" lwb, and instead
1259 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1260 * command for those vdevs. Thus, we merge the vdev tree of
1261 * "this" lwb with the vdev tree of the "next" lwb in the list,
1262 * and assume the "next" lwb will handle flushing the vdevs (or
1263 * deferring the flush(s) again).
1264 *
1265 * This is a useful performance optimization, especially for
1266 * workloads with lots of async write activity and few sync
1267 * write and/or fsync activity, as it has the potential to
1268 * coalesce multiple flush commands to a vdev into one.
1269 */
1270 if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) {
1271 zil_lwb_flush_defer(lwb, nlwb);
1272 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1273 return;
1274 }
1275
1ce23dca
PS
1276 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1277 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1278 if (vd != NULL)
1279 zio_flush(lwb->lwb_root_zio, vd);
1280 kmem_free(zv, sizeof (*zv));
1281 }
34dc7c2f
BB
1282}
1283
900d09b2
PS
1284static void
1285zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1286{
1287 lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1288
1289 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1290 ASSERT(MUTEX_HELD(&zilog->zl_lock));
1291
1292 /*
1293 * The zilog's "zl_last_lwb_opened" field is used to build the
1294 * lwb/zio dependency chain, which is used to preserve the
1295 * ordering of lwb completions that is required by the semantics
1296 * of the ZIL. Each new lwb zio becomes a parent of the
1297 * "previous" lwb zio, such that the new lwb's zio cannot
1298 * complete until the "previous" lwb's zio completes.
1299 *
1300 * This is required by the semantics of zil_commit(); the commit
1301 * waiters attached to the lwbs will be woken in the lwb zio's
1302 * completion callback, so this zio dependency graph ensures the
1303 * waiters are woken in the correct order (the same order the
1304 * lwbs were created).
1305 */
1306 if (last_lwb_opened != NULL &&
1307 last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) {
1308 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1309 last_lwb_opened->lwb_state == LWB_STATE_ISSUED ||
1310 last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE);
1311
1312 ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1313 zio_add_child(lwb->lwb_root_zio,
1314 last_lwb_opened->lwb_root_zio);
1315
1316 /*
1317 * If the previous lwb's write hasn't already completed,
1318 * we also want to order the completion of the lwb write
1319 * zios (above, we only order the completion of the lwb
1320 * root zios). This is required because of how we can
1321 * defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1322 *
612c4930 1323 * When the DKIOCFLUSHWRITECACHE commands are deferred,
900d09b2
PS
1324 * the previous lwb will rely on this lwb to flush the
1325 * vdevs written to by that previous lwb. Thus, we need
1326 * to ensure this lwb doesn't issue the flush until
1327 * after the previous lwb's write completes. We ensure
1328 * this ordering by setting the zio parent/child
1329 * relationship here.
1330 *
1331 * Without this relationship on the lwb's write zio,
1332 * it's possible for this lwb's write to complete prior
1333 * to the previous lwb's write completing; and thus, the
1334 * vdevs for the previous lwb would be flushed prior to
1335 * that lwb's data being written to those vdevs (the
1336 * vdevs are flushed in the lwb write zio's completion
1337 * handler, zil_lwb_write_done()).
1338 */
1339 if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) {
1340 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1341 last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1342
1343 ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL);
1344 zio_add_child(lwb->lwb_write_zio,
1345 last_lwb_opened->lwb_write_zio);
1346 }
1347 }
1348}
1349
1350
34dc7c2f 1351/*
1ce23dca
PS
1352 * This function's purpose is to "open" an lwb such that it is ready to
1353 * accept new itxs being committed to it. To do this, the lwb's zio
1354 * structures are created, and linked to the lwb. This function is
1355 * idempotent; if the passed in lwb has already been opened, this
1356 * function is essentially a no-op.
34dc7c2f
BB
1357 */
1358static void
1ce23dca 1359zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
34dc7c2f 1360{
5dbd68a3 1361 zbookmark_phys_t zb;
1b7c1e5c 1362 zio_priority_t prio;
34dc7c2f 1363
1b2b0aca 1364 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1ce23dca
PS
1365 ASSERT3P(lwb, !=, NULL);
1366 EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1367 EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1368
428870ff
BB
1369 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1370 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1371 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
34dc7c2f 1372
920dd524
ED
1373 /* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */
1374 mutex_enter(&zilog->zl_lock);
1ce23dca 1375 if (lwb->lwb_root_zio == NULL) {
a6255b7f
DQ
1376 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1377 BP_GET_LSIZE(&lwb->lwb_blk));
1ce23dca 1378
920dd524
ED
1379 if (!lwb->lwb_fastwrite) {
1380 metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk);
1381 lwb->lwb_fastwrite = 1;
1382 }
1ce23dca 1383
1b7c1e5c
GDN
1384 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1385 prio = ZIO_PRIORITY_SYNC_WRITE;
1386 else
1387 prio = ZIO_PRIORITY_ASYNC_WRITE;
1ce23dca
PS
1388
1389 lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1390 zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1391 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1392
1393 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1394 zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1395 BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1396 prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
920dd524 1397 ZIO_FLAG_FASTWRITE, &zb);
1ce23dca
PS
1398 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1399
1400 lwb->lwb_state = LWB_STATE_OPENED;
1401
900d09b2 1402 zil_lwb_set_zio_dependency(zilog, lwb);
1ce23dca 1403 zilog->zl_last_lwb_opened = lwb;
34dc7c2f 1404 }
920dd524 1405 mutex_exit(&zilog->zl_lock);
1ce23dca
PS
1406
1407 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1408 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1409 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
34dc7c2f
BB
1410}
1411
428870ff
BB
1412/*
1413 * Define a limited set of intent log block sizes.
d3cc8b15 1414 *
428870ff
BB
1415 * These must be a multiple of 4KB. Note only the amount used (again
1416 * aligned to 4KB) actually gets written. However, we can't always just
f1512ee6 1417 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
428870ff
BB
1418 */
1419uint64_t zil_block_buckets[] = {
1420 4096, /* non TX_WRITE */
1421 8192+4096, /* data base */
1422 32*1024 + 4096, /* NFS writes */
1423 UINT64_MAX
1424};
1425
b8738257
MA
1426/*
1427 * Maximum block size used by the ZIL. This is picked up when the ZIL is
1428 * initialized. Otherwise this should not be used directly; see
1429 * zl_max_block_size instead.
1430 */
1431int zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
1432
34dc7c2f
BB
1433/*
1434 * Start a log block write and advance to the next log block.
1435 * Calls are serialized.
1436 */
1437static lwb_t *
1ce23dca 1438zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
34dc7c2f 1439{
428870ff
BB
1440 lwb_t *nlwb = NULL;
1441 zil_chain_t *zilc;
34dc7c2f 1442 spa_t *spa = zilog->zl_spa;
428870ff
BB
1443 blkptr_t *bp;
1444 dmu_tx_t *tx;
34dc7c2f 1445 uint64_t txg;
428870ff
BB
1446 uint64_t zil_blksz, wsz;
1447 int i, error;
1b7c1e5c 1448 boolean_t slog;
428870ff 1449
1b2b0aca 1450 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1ce23dca
PS
1451 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1452 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1453 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1454
428870ff
BB
1455 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1456 zilc = (zil_chain_t *)lwb->lwb_buf;
1457 bp = &zilc->zc_next_blk;
1458 } else {
1459 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1460 bp = &zilc->zc_next_blk;
1461 }
34dc7c2f 1462
428870ff 1463 ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
34dc7c2f
BB
1464
1465 /*
1466 * Allocate the next block and save its address in this block
1467 * before writing it in order to establish the log chain.
1468 * Note that if the allocation of nlwb synced before we wrote
1469 * the block that points at it (lwb), we'd leak it if we crashed.
428870ff
BB
1470 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1471 * We dirty the dataset to ensure that zil_sync() will be called
1472 * to clean up in the event of allocation failure or I/O failure.
34dc7c2f 1473 */
1ce23dca 1474
428870ff 1475 tx = dmu_tx_create(zilog->zl_os);
e98b6117
AG
1476
1477 /*
0735ecb3
PS
1478 * Since we are not going to create any new dirty data, and we
1479 * can even help with clearing the existing dirty data, we
1480 * should not be subject to the dirty data based delays. We
1481 * use TXG_NOTHROTTLE to bypass the delay mechanism.
e98b6117 1482 */
0735ecb3
PS
1483 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1484
428870ff
BB
1485 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1486 txg = dmu_tx_get_txg(tx);
1487
1488 lwb->lwb_tx = tx;
34dc7c2f
BB
1489
1490 /*
428870ff
BB
1491 * Log blocks are pre-allocated. Here we select the size of the next
1492 * block, based on size used in the last block.
1493 * - first find the smallest bucket that will fit the block from a
1494 * limited set of block sizes. This is because it's faster to write
1495 * blocks allocated from the same metaslab as they are adjacent or
1496 * close.
1497 * - next find the maximum from the new suggested size and an array of
1498 * previous sizes. This lessens a picket fence effect of wrongly
2fe61a7e 1499 * guessing the size if we have a stream of say 2k, 64k, 2k, 64k
428870ff
BB
1500 * requests.
1501 *
1502 * Note we only write what is used, but we can't just allocate
1503 * the maximum block size because we can exhaust the available
1504 * pool log space.
34dc7c2f 1505 */
428870ff
BB
1506 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1507 for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1508 continue;
b8738257 1509 zil_blksz = MIN(zil_block_buckets[i], zilog->zl_max_block_size);
428870ff
BB
1510 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1511 for (i = 0; i < ZIL_PREV_BLKS; i++)
1512 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1513 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
34dc7c2f
BB
1514
1515 BP_ZERO(bp);
b5256303 1516 error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, zil_blksz, &slog);
1b7c1e5c 1517 if (slog) {
b6ad9671
ED
1518 ZIL_STAT_BUMP(zil_itx_metaslab_slog_count);
1519 ZIL_STAT_INCR(zil_itx_metaslab_slog_bytes, lwb->lwb_nused);
d1d7e268 1520 } else {
b6ad9671
ED
1521 ZIL_STAT_BUMP(zil_itx_metaslab_normal_count);
1522 ZIL_STAT_INCR(zil_itx_metaslab_normal_bytes, lwb->lwb_nused);
1523 }
13fe0198 1524 if (error == 0) {
428870ff
BB
1525 ASSERT3U(bp->blk_birth, ==, txg);
1526 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1527 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
34dc7c2f
BB
1528
1529 /*
1ce23dca 1530 * Allocate a new log write block (lwb).
34dc7c2f 1531 */
1b7c1e5c 1532 nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE);
34dc7c2f
BB
1533 }
1534
428870ff
BB
1535 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1536 /* For Slim ZIL only write what is used. */
1537 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1538 ASSERT3U(wsz, <=, lwb->lwb_sz);
1ce23dca 1539 zio_shrink(lwb->lwb_write_zio, wsz);
34dc7c2f 1540
428870ff
BB
1541 } else {
1542 wsz = lwb->lwb_sz;
1543 }
34dc7c2f 1544
428870ff
BB
1545 zilc->zc_pad = 0;
1546 zilc->zc_nused = lwb->lwb_nused;
1547 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
34dc7c2f
BB
1548
1549 /*
428870ff 1550 * clear unused data for security
34dc7c2f 1551 */
428870ff 1552 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
34dc7c2f 1553
1ce23dca
PS
1554 spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1555
1556 zil_lwb_add_block(lwb, &lwb->lwb_blk);
1557 lwb->lwb_issued_timestamp = gethrtime();
1558 lwb->lwb_state = LWB_STATE_ISSUED;
1559
1560 zio_nowait(lwb->lwb_root_zio);
1561 zio_nowait(lwb->lwb_write_zio);
34dc7c2f
BB
1562
1563 /*
428870ff
BB
1564 * If there was an allocation failure then nlwb will be null which
1565 * forces a txg_wait_synced().
34dc7c2f 1566 */
34dc7c2f
BB
1567 return (nlwb);
1568}
1569
b8738257
MA
1570/*
1571 * Maximum amount of write data that can be put into single log block.
1572 */
1573uint64_t
1574zil_max_log_data(zilog_t *zilog)
1575{
1576 return (zilog->zl_max_block_size -
1577 sizeof (zil_chain_t) - sizeof (lr_write_t));
1578}
1579
1580/*
1581 * Maximum amount of log space we agree to waste to reduce number of
1582 * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%).
1583 */
1584static inline uint64_t
1585zil_max_waste_space(zilog_t *zilog)
1586{
1587 return (zil_max_log_data(zilog) / 8);
1588}
1589
1590/*
1591 * Maximum amount of write data for WR_COPIED. For correctness, consumers
1592 * must fall back to WR_NEED_COPY if we can't fit the entire record into one
1593 * maximum sized log block, because each WR_COPIED record must fit in a
1594 * single log block. For space efficiency, we want to fit two records into a
1595 * max-sized log block.
1596 */
1597uint64_t
1598zil_max_copied_data(zilog_t *zilog)
1599{
1600 return ((zilog->zl_max_block_size - sizeof (zil_chain_t)) / 2 -
1601 sizeof (lr_write_t));
1602}
1603
34dc7c2f
BB
1604static lwb_t *
1605zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1606{
1b7c1e5c
GDN
1607 lr_t *lrcb, *lrc;
1608 lr_write_t *lrwb, *lrw;
428870ff 1609 char *lr_buf;
b8738257 1610 uint64_t dlen, dnow, lwb_sp, reclen, txg, max_log_data;
34dc7c2f 1611
1b2b0aca 1612 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1ce23dca
PS
1613 ASSERT3P(lwb, !=, NULL);
1614 ASSERT3P(lwb->lwb_buf, !=, NULL);
1615
1616 zil_lwb_write_open(zilog, lwb);
428870ff 1617
1ce23dca
PS
1618 lrc = &itx->itx_lr;
1619 lrw = (lr_write_t *)lrc;
1620
1621 /*
1622 * A commit itx doesn't represent any on-disk state; instead
1623 * it's simply used as a place holder on the commit list, and
1624 * provides a mechanism for attaching a "commit waiter" onto the
1625 * correct lwb (such that the waiter can be signalled upon
1626 * completion of that lwb). Thus, we don't process this itx's
1627 * log record if it's a commit itx (these itx's don't have log
1628 * records), and instead link the itx's waiter onto the lwb's
1629 * list of waiters.
1630 *
1631 * For more details, see the comment above zil_commit().
1632 */
1633 if (lrc->lrc_txtype == TX_COMMIT) {
2fe61a7e 1634 mutex_enter(&zilog->zl_lock);
1ce23dca
PS
1635 zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1636 itx->itx_private = NULL;
2fe61a7e 1637 mutex_exit(&zilog->zl_lock);
1ce23dca
PS
1638 return (lwb);
1639 }
34dc7c2f 1640
1b7c1e5c 1641 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
34dc7c2f 1642 dlen = P2ROUNDUP_TYPED(
428870ff 1643 lrw->lr_length, sizeof (uint64_t), uint64_t);
1b7c1e5c
GDN
1644 } else {
1645 dlen = 0;
1646 }
1647 reclen = lrc->lrc_reclen;
34dc7c2f 1648 zilog->zl_cur_used += (reclen + dlen);
1b7c1e5c 1649 txg = lrc->lrc_txg;
34dc7c2f 1650
1ce23dca 1651 ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
34dc7c2f 1652
1b7c1e5c 1653cont:
34dc7c2f
BB
1654 /*
1655 * If this record won't fit in the current log block, start a new one.
1b7c1e5c 1656 * For WR_NEED_COPY optimize layout for minimal number of chunks.
34dc7c2f 1657 */
1b7c1e5c 1658 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
b8738257 1659 max_log_data = zil_max_log_data(zilog);
1b7c1e5c 1660 if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
b8738257
MA
1661 lwb_sp < zil_max_waste_space(zilog) &&
1662 (dlen % max_log_data == 0 ||
1663 lwb_sp < reclen + dlen % max_log_data))) {
1ce23dca 1664 lwb = zil_lwb_write_issue(zilog, lwb);
34dc7c2f
BB
1665 if (lwb == NULL)
1666 return (NULL);
1ce23dca 1667 zil_lwb_write_open(zilog, lwb);
428870ff 1668 ASSERT(LWB_EMPTY(lwb));
1b7c1e5c 1669 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
b8738257
MA
1670
1671 /*
1672 * There must be enough space in the new, empty log block to
1673 * hold reclen. For WR_COPIED, we need to fit the whole
1674 * record in one block, and reclen is the header size + the
1675 * data size. For WR_NEED_COPY, we can create multiple
1676 * records, splitting the data into multiple blocks, so we
1677 * only need to fit one word of data per block; in this case
1678 * reclen is just the header size (no data).
1679 */
1b7c1e5c 1680 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
34dc7c2f
BB
1681 }
1682
1b7c1e5c 1683 dnow = MIN(dlen, lwb_sp - reclen);
428870ff
BB
1684 lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1685 bcopy(lrc, lr_buf, reclen);
1b7c1e5c
GDN
1686 lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */
1687 lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */
34dc7c2f 1688
b6ad9671
ED
1689 ZIL_STAT_BUMP(zil_itx_count);
1690
34dc7c2f
BB
1691 /*
1692 * If it's a write, fetch the data or get its blkptr as appropriate.
1693 */
1694 if (lrc->lrc_txtype == TX_WRITE) {
1695 if (txg > spa_freeze_txg(zilog->zl_spa))
1696 txg_wait_synced(zilog->zl_dmu_pool, txg);
b6ad9671
ED
1697 if (itx->itx_wr_state == WR_COPIED) {
1698 ZIL_STAT_BUMP(zil_itx_copied_count);
1699 ZIL_STAT_INCR(zil_itx_copied_bytes, lrw->lr_length);
1700 } else {
34dc7c2f
BB
1701 char *dbuf;
1702 int error;
1703
1b7c1e5c 1704 if (itx->itx_wr_state == WR_NEED_COPY) {
428870ff 1705 dbuf = lr_buf + reclen;
1b7c1e5c
GDN
1706 lrcb->lrc_reclen += dnow;
1707 if (lrwb->lr_length > dnow)
1708 lrwb->lr_length = dnow;
1709 lrw->lr_offset += dnow;
1710 lrw->lr_length -= dnow;
b6ad9671 1711 ZIL_STAT_BUMP(zil_itx_needcopy_count);
5666a994 1712 ZIL_STAT_INCR(zil_itx_needcopy_bytes, dnow);
34dc7c2f 1713 } else {
1ce23dca 1714 ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
34dc7c2f 1715 dbuf = NULL;
b6ad9671 1716 ZIL_STAT_BUMP(zil_itx_indirect_count);
d1d7e268
MK
1717 ZIL_STAT_INCR(zil_itx_indirect_bytes,
1718 lrw->lr_length);
34dc7c2f 1719 }
1ce23dca
PS
1720
1721 /*
1722 * We pass in the "lwb_write_zio" rather than
1723 * "lwb_root_zio" so that the "lwb_write_zio"
1724 * becomes the parent of any zio's created by
1725 * the "zl_get_data" callback. The vdevs are
1726 * flushed after the "lwb_write_zio" completes,
1727 * so we want to make sure that completion
1728 * callback waits for these additional zio's,
1729 * such that the vdevs used by those zio's will
1730 * be included in the lwb's vdev tree, and those
1731 * vdevs will be properly flushed. If we passed
1732 * in "lwb_root_zio" here, then these additional
1733 * vdevs may not be flushed; e.g. if these zio's
1734 * completed after "lwb_write_zio" completed.
1735 */
1736 error = zilog->zl_get_data(itx->itx_private,
1737 lrwb, dbuf, lwb, lwb->lwb_write_zio);
1738
45d1cae3
BB
1739 if (error == EIO) {
1740 txg_wait_synced(zilog->zl_dmu_pool, txg);
1741 return (lwb);
1742 }
13fe0198 1743 if (error != 0) {
34dc7c2f
BB
1744 ASSERT(error == ENOENT || error == EEXIST ||
1745 error == EALREADY);
1746 return (lwb);
1747 }
1748 }
1749 }
1750
428870ff
BB
1751 /*
1752 * We're actually making an entry, so update lrc_seq to be the
1753 * log record sequence number. Note that this is generally not
1754 * equal to the itx sequence number because not all transactions
1755 * are synchronous, and sometimes spa_sync() gets there first.
1756 */
1ce23dca 1757 lrcb->lrc_seq = ++zilog->zl_lr_seq;
1b7c1e5c 1758 lwb->lwb_nused += reclen + dnow;
1ce23dca
PS
1759
1760 zil_lwb_add_txg(lwb, txg);
1761
428870ff 1762 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
c99c9001 1763 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
34dc7c2f 1764
1b7c1e5c
GDN
1765 dlen -= dnow;
1766 if (dlen > 0) {
1767 zilog->zl_cur_used += reclen;
1768 goto cont;
1769 }
1770
34dc7c2f
BB
1771 return (lwb);
1772}
1773
1774itx_t *
1775zil_itx_create(uint64_t txtype, size_t lrsize)
1776{
72841b9f 1777 size_t itxsize;
34dc7c2f
BB
1778 itx_t *itx;
1779
1780 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
72841b9f 1781 itxsize = offsetof(itx_t, itx_lr) + lrsize;
34dc7c2f 1782
72841b9f 1783 itx = zio_data_buf_alloc(itxsize);
34dc7c2f
BB
1784 itx->itx_lr.lrc_txtype = txtype;
1785 itx->itx_lr.lrc_reclen = lrsize;
34dc7c2f 1786 itx->itx_lr.lrc_seq = 0; /* defensive */
572e2857 1787 itx->itx_sync = B_TRUE; /* default is synchronous */
119a394a
ED
1788 itx->itx_callback = NULL;
1789 itx->itx_callback_data = NULL;
72841b9f 1790 itx->itx_size = itxsize;
34dc7c2f
BB
1791
1792 return (itx);
1793}
1794
428870ff
BB
1795void
1796zil_itx_destroy(itx_t *itx)
1797{
1ce23dca
PS
1798 IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
1799 IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
1800
1801 if (itx->itx_callback != NULL)
1802 itx->itx_callback(itx->itx_callback_data);
1803
72841b9f 1804 zio_data_buf_free(itx, itx->itx_size);
428870ff
BB
1805}
1806
572e2857
BB
1807/*
1808 * Free up the sync and async itxs. The itxs_t has already been detached
1809 * so no locks are needed.
1810 */
1811static void
1812zil_itxg_clean(itxs_t *itxs)
34dc7c2f 1813{
572e2857
BB
1814 itx_t *itx;
1815 list_t *list;
1816 avl_tree_t *t;
1817 void *cookie;
1818 itx_async_node_t *ian;
1819
1820 list = &itxs->i_sync_list;
1821 while ((itx = list_head(list)) != NULL) {
1ce23dca
PS
1822 /*
1823 * In the general case, commit itxs will not be found
1824 * here, as they'll be committed to an lwb via
1825 * zil_lwb_commit(), and free'd in that function. Having
1826 * said that, it is still possible for commit itxs to be
1827 * found here, due to the following race:
1828 *
1829 * - a thread calls zil_commit() which assigns the
1830 * commit itx to a per-txg i_sync_list
1831 * - zil_itxg_clean() is called (e.g. via spa_sync())
1832 * while the waiter is still on the i_sync_list
1833 *
1834 * There's nothing to prevent syncing the txg while the
1835 * waiter is on the i_sync_list. This normally doesn't
1836 * happen because spa_sync() is slower than zil_commit(),
1837 * but if zil_commit() calls txg_wait_synced() (e.g.
1838 * because zil_create() or zil_commit_writer_stall() is
1839 * called) we will hit this case.
1840 */
1841 if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1842 zil_commit_waiter_skip(itx->itx_private);
1843
572e2857 1844 list_remove(list, itx);
19ea3d25 1845 zil_itx_destroy(itx);
572e2857 1846 }
34dc7c2f 1847
572e2857
BB
1848 cookie = NULL;
1849 t = &itxs->i_async_tree;
1850 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1851 list = &ian->ia_list;
1852 while ((itx = list_head(list)) != NULL) {
1853 list_remove(list, itx);
1ce23dca
PS
1854 /* commit itxs should never be on the async lists. */
1855 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
19ea3d25 1856 zil_itx_destroy(itx);
572e2857
BB
1857 }
1858 list_destroy(list);
1859 kmem_free(ian, sizeof (itx_async_node_t));
1860 }
1861 avl_destroy(t);
34dc7c2f 1862
572e2857
BB
1863 kmem_free(itxs, sizeof (itxs_t));
1864}
34dc7c2f 1865
572e2857
BB
1866static int
1867zil_aitx_compare(const void *x1, const void *x2)
1868{
1869 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1870 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1871
ee36c709 1872 return (AVL_CMP(o1, o2));
34dc7c2f
BB
1873}
1874
1875/*
572e2857 1876 * Remove all async itx with the given oid.
34dc7c2f 1877 */
8e556c5e 1878void
572e2857 1879zil_remove_async(zilog_t *zilog, uint64_t oid)
34dc7c2f 1880{
572e2857
BB
1881 uint64_t otxg, txg;
1882 itx_async_node_t *ian;
1883 avl_tree_t *t;
1884 avl_index_t where;
34dc7c2f
BB
1885 list_t clean_list;
1886 itx_t *itx;
1887
572e2857 1888 ASSERT(oid != 0);
34dc7c2f
BB
1889 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1890
572e2857
BB
1891 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1892 otxg = ZILTEST_TXG;
1893 else
1894 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
34dc7c2f 1895
572e2857
BB
1896 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1897 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1898
1899 mutex_enter(&itxg->itxg_lock);
1900 if (itxg->itxg_txg != txg) {
1901 mutex_exit(&itxg->itxg_lock);
1902 continue;
1903 }
34dc7c2f 1904
572e2857
BB
1905 /*
1906 * Locate the object node and append its list.
1907 */
1908 t = &itxg->itxg_itxs->i_async_tree;
1909 ian = avl_find(t, &oid, &where);
1910 if (ian != NULL)
1911 list_move_tail(&clean_list, &ian->ia_list);
1912 mutex_exit(&itxg->itxg_lock);
1913 }
34dc7c2f
BB
1914 while ((itx = list_head(&clean_list)) != NULL) {
1915 list_remove(&clean_list, itx);
1ce23dca
PS
1916 /* commit itxs should never be on the async lists. */
1917 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
19ea3d25 1918 zil_itx_destroy(itx);
34dc7c2f
BB
1919 }
1920 list_destroy(&clean_list);
1921}
1922
572e2857
BB
1923void
1924zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1925{
1926 uint64_t txg;
1927 itxg_t *itxg;
1928 itxs_t *itxs, *clean = NULL;
1929
572e2857
BB
1930 /*
1931 * Ensure the data of a renamed file is committed before the rename.
1932 */
1933 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1934 zil_async_to_sync(zilog, itx->itx_oid);
1935
29809a6c 1936 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
572e2857
BB
1937 txg = ZILTEST_TXG;
1938 else
1939 txg = dmu_tx_get_txg(tx);
1940
1941 itxg = &zilog->zl_itxg[txg & TXG_MASK];
1942 mutex_enter(&itxg->itxg_lock);
1943 itxs = itxg->itxg_itxs;
1944 if (itxg->itxg_txg != txg) {
1945 if (itxs != NULL) {
1946 /*
1947 * The zil_clean callback hasn't got around to cleaning
1948 * this itxg. Save the itxs for release below.
1949 * This should be rare.
1950 */
55922e73
GW
1951 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1952 "txg %llu", itxg->itxg_txg);
572e2857
BB
1953 clean = itxg->itxg_itxs;
1954 }
572e2857 1955 itxg->itxg_txg = txg;
d1d7e268 1956 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
79c76d5b 1957 KM_SLEEP);
572e2857
BB
1958
1959 list_create(&itxs->i_sync_list, sizeof (itx_t),
1960 offsetof(itx_t, itx_node));
1961 avl_create(&itxs->i_async_tree, zil_aitx_compare,
1962 sizeof (itx_async_node_t),
1963 offsetof(itx_async_node_t, ia_node));
1964 }
1965 if (itx->itx_sync) {
1966 list_insert_tail(&itxs->i_sync_list, itx);
572e2857
BB
1967 } else {
1968 avl_tree_t *t = &itxs->i_async_tree;
50c957f7
NB
1969 uint64_t foid =
1970 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
572e2857
BB
1971 itx_async_node_t *ian;
1972 avl_index_t where;
1973
1974 ian = avl_find(t, &foid, &where);
1975 if (ian == NULL) {
d1d7e268 1976 ian = kmem_alloc(sizeof (itx_async_node_t),
79c76d5b 1977 KM_SLEEP);
572e2857
BB
1978 list_create(&ian->ia_list, sizeof (itx_t),
1979 offsetof(itx_t, itx_node));
1980 ian->ia_foid = foid;
1981 avl_insert(t, ian, where);
1982 }
1983 list_insert_tail(&ian->ia_list, itx);
1984 }
1985
1986 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1ce23dca
PS
1987
1988 /*
1989 * We don't want to dirty the ZIL using ZILTEST_TXG, because
1990 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
1991 * need to be careful to always dirty the ZIL using the "real"
1992 * TXG (not itxg_txg) even when the SPA is frozen.
1993 */
1994 zilog_dirty(zilog, dmu_tx_get_txg(tx));
572e2857
BB
1995 mutex_exit(&itxg->itxg_lock);
1996
1997 /* Release the old itxs now we've dropped the lock */
1998 if (clean != NULL)
1999 zil_itxg_clean(clean);
2000}
2001
34dc7c2f
BB
2002/*
2003 * If there are any in-memory intent log transactions which have now been
29809a6c
MA
2004 * synced then start up a taskq to free them. We should only do this after we
2005 * have written out the uberblocks (i.e. txg has been comitted) so that
2006 * don't inadvertently clean out in-memory log records that would be required
2007 * by zil_commit().
34dc7c2f
BB
2008 */
2009void
572e2857 2010zil_clean(zilog_t *zilog, uint64_t synced_txg)
34dc7c2f 2011{
572e2857
BB
2012 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
2013 itxs_t *clean_me;
34dc7c2f 2014
1ce23dca
PS
2015 ASSERT3U(synced_txg, <, ZILTEST_TXG);
2016
572e2857
BB
2017 mutex_enter(&itxg->itxg_lock);
2018 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
2019 mutex_exit(&itxg->itxg_lock);
2020 return;
2021 }
2022 ASSERT3U(itxg->itxg_txg, <=, synced_txg);
a032ac4b 2023 ASSERT3U(itxg->itxg_txg, !=, 0);
572e2857
BB
2024 clean_me = itxg->itxg_itxs;
2025 itxg->itxg_itxs = NULL;
2026 itxg->itxg_txg = 0;
2027 mutex_exit(&itxg->itxg_lock);
2028 /*
2029 * Preferably start a task queue to free up the old itxs but
2030 * if taskq_dispatch can't allocate resources to do that then
2031 * free it in-line. This should be rare. Note, using TQ_SLEEP
2032 * created a bad performance problem.
2033 */
a032ac4b
BB
2034 ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
2035 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
2036 taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
2037 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP);
2038 if (id == TASKQID_INVALID)
572e2857
BB
2039 zil_itxg_clean(clean_me);
2040}
2041
2042/*
1ce23dca
PS
2043 * This function will traverse the queue of itxs that need to be
2044 * committed, and move them onto the ZIL's zl_itx_commit_list.
572e2857
BB
2045 */
2046static void
2047zil_get_commit_list(zilog_t *zilog)
2048{
2049 uint64_t otxg, txg;
2050 list_t *commit_list = &zilog->zl_itx_commit_list;
572e2857 2051
1b2b0aca 2052 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1ce23dca 2053
572e2857
BB
2054 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2055 otxg = ZILTEST_TXG;
2056 else
2057 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2058
55922e73
GW
2059 /*
2060 * This is inherently racy, since there is nothing to prevent
2061 * the last synced txg from changing. That's okay since we'll
2062 * only commit things in the future.
2063 */
572e2857
BB
2064 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2065 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2066
2067 mutex_enter(&itxg->itxg_lock);
2068 if (itxg->itxg_txg != txg) {
2069 mutex_exit(&itxg->itxg_lock);
2070 continue;
2071 }
2072
55922e73
GW
2073 /*
2074 * If we're adding itx records to the zl_itx_commit_list,
2075 * then the zil better be dirty in this "txg". We can assert
2076 * that here since we're holding the itxg_lock which will
2077 * prevent spa_sync from cleaning it. Once we add the itxs
2078 * to the zl_itx_commit_list we must commit it to disk even
2079 * if it's unnecessary (i.e. the txg was synced).
2080 */
2081 ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
2082 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
572e2857 2083 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
572e2857
BB
2084
2085 mutex_exit(&itxg->itxg_lock);
2086 }
572e2857
BB
2087}
2088
2089/*
2090 * Move the async itxs for a specified object to commit into sync lists.
2091 */
2092static void
2093zil_async_to_sync(zilog_t *zilog, uint64_t foid)
2094{
2095 uint64_t otxg, txg;
2096 itx_async_node_t *ian;
2097 avl_tree_t *t;
2098 avl_index_t where;
2099
2100 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2101 otxg = ZILTEST_TXG;
2102 else
2103 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2104
55922e73
GW
2105 /*
2106 * This is inherently racy, since there is nothing to prevent
2107 * the last synced txg from changing.
2108 */
572e2857
BB
2109 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2110 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2111
2112 mutex_enter(&itxg->itxg_lock);
2113 if (itxg->itxg_txg != txg) {
2114 mutex_exit(&itxg->itxg_lock);
2115 continue;
2116 }
2117
2118 /*
2119 * If a foid is specified then find that node and append its
2120 * list. Otherwise walk the tree appending all the lists
2121 * to the sync list. We add to the end rather than the
2122 * beginning to ensure the create has happened.
2123 */
2124 t = &itxg->itxg_itxs->i_async_tree;
2125 if (foid != 0) {
2126 ian = avl_find(t, &foid, &where);
2127 if (ian != NULL) {
2128 list_move_tail(&itxg->itxg_itxs->i_sync_list,
2129 &ian->ia_list);
2130 }
2131 } else {
2132 void *cookie = NULL;
2133
2134 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2135 list_move_tail(&itxg->itxg_itxs->i_sync_list,
2136 &ian->ia_list);
2137 list_destroy(&ian->ia_list);
2138 kmem_free(ian, sizeof (itx_async_node_t));
2139 }
2140 }
2141 mutex_exit(&itxg->itxg_lock);
34dc7c2f 2142 }
34dc7c2f
BB
2143}
2144
1ce23dca
PS
2145/*
2146 * This function will prune commit itxs that are at the head of the
2147 * commit list (it won't prune past the first non-commit itx), and
2148 * either: a) attach them to the last lwb that's still pending
2149 * completion, or b) skip them altogether.
2150 *
2151 * This is used as a performance optimization to prevent commit itxs
2152 * from generating new lwbs when it's unnecessary to do so.
2153 */
b128c09f 2154static void
1ce23dca 2155zil_prune_commit_list(zilog_t *zilog)
34dc7c2f 2156{
572e2857 2157 itx_t *itx;
34dc7c2f 2158
1b2b0aca 2159 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
572e2857 2160
1ce23dca
PS
2161 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2162 lr_t *lrc = &itx->itx_lr;
2163 if (lrc->lrc_txtype != TX_COMMIT)
2164 break;
572e2857 2165
1ce23dca
PS
2166 mutex_enter(&zilog->zl_lock);
2167
2168 lwb_t *last_lwb = zilog->zl_last_lwb_opened;
900d09b2
PS
2169 if (last_lwb == NULL ||
2170 last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
1ce23dca
PS
2171 /*
2172 * All of the itxs this waiter was waiting on
2173 * must have already completed (or there were
2174 * never any itx's for it to wait on), so it's
2175 * safe to skip this waiter and mark it done.
2176 */
2177 zil_commit_waiter_skip(itx->itx_private);
2178 } else {
2179 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2180 itx->itx_private = NULL;
2181 }
2182
2183 mutex_exit(&zilog->zl_lock);
2184
2185 list_remove(&zilog->zl_itx_commit_list, itx);
2186 zil_itx_destroy(itx);
2187 }
2188
2189 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2190}
2191
2192static void
2193zil_commit_writer_stall(zilog_t *zilog)
2194{
2195 /*
2196 * When zio_alloc_zil() fails to allocate the next lwb block on
2197 * disk, we must call txg_wait_synced() to ensure all of the
2198 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2199 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2200 * to zil_process_commit_list()) will have to call zil_create(),
2201 * and start a new ZIL chain.
2202 *
2203 * Since zil_alloc_zil() failed, the lwb that was previously
2204 * issued does not have a pointer to the "next" lwb on disk.
2205 * Thus, if another ZIL writer thread was to allocate the "next"
2206 * on-disk lwb, that block could be leaked in the event of a
2207 * crash (because the previous lwb on-disk would not point to
2208 * it).
2209 *
1b2b0aca 2210 * We must hold the zilog's zl_issuer_lock while we do this, to
1ce23dca
PS
2211 * ensure no new threads enter zil_process_commit_list() until
2212 * all lwb's in the zl_lwb_list have been synced and freed
2213 * (which is achieved via the txg_wait_synced() call).
2214 */
1b2b0aca 2215 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1ce23dca
PS
2216 txg_wait_synced(zilog->zl_dmu_pool, 0);
2217 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2218}
2219
2220/*
2221 * This function will traverse the commit list, creating new lwbs as
2222 * needed, and committing the itxs from the commit list to these newly
2223 * created lwbs. Additionally, as a new lwb is created, the previous
2224 * lwb will be issued to the zio layer to be written to disk.
2225 */
2226static void
2227zil_process_commit_list(zilog_t *zilog)
2228{
2229 spa_t *spa = zilog->zl_spa;
2230 list_t nolwb_itxs;
2231 list_t nolwb_waiters;
2232 lwb_t *lwb;
2233 itx_t *itx;
2234
1b2b0aca 2235 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
572e2857
BB
2236
2237 /*
2238 * Return if there's nothing to commit before we dirty the fs by
2239 * calling zil_create().
2240 */
1ce23dca 2241 if (list_head(&zilog->zl_itx_commit_list) == NULL)
572e2857 2242 return;
34dc7c2f 2243
1ce23dca
PS
2244 list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2245 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2246 offsetof(zil_commit_waiter_t, zcw_node));
2247
2248 lwb = list_tail(&zilog->zl_lwb_list);
2249 if (lwb == NULL) {
2250 lwb = zil_create(zilog);
34dc7c2f 2251 } else {
1ce23dca 2252 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
900d09b2
PS
2253 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2254 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
34dc7c2f
BB
2255 }
2256
1ce23dca
PS
2257 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2258 lr_t *lrc = &itx->itx_lr;
2259 uint64_t txg = lrc->lrc_txg;
2260
55922e73 2261 ASSERT3U(txg, !=, 0);
34dc7c2f 2262
1ce23dca
PS
2263 if (lrc->lrc_txtype == TX_COMMIT) {
2264 DTRACE_PROBE2(zil__process__commit__itx,
2265 zilog_t *, zilog, itx_t *, itx);
2266 } else {
2267 DTRACE_PROBE2(zil__process__normal__itx,
2268 zilog_t *, zilog, itx_t *, itx);
2269 }
2270
2271 list_remove(&zilog->zl_itx_commit_list, itx);
2272
1ce23dca
PS
2273 boolean_t synced = txg <= spa_last_synced_txg(spa);
2274 boolean_t frozen = txg > spa_freeze_txg(spa);
2275
2fe61a7e
PS
2276 /*
2277 * If the txg of this itx has already been synced out, then
2278 * we don't need to commit this itx to an lwb. This is
2279 * because the data of this itx will have already been
2280 * written to the main pool. This is inherently racy, and
2281 * it's still ok to commit an itx whose txg has already
2282 * been synced; this will result in a write that's
2283 * unnecessary, but will do no harm.
2284 *
2285 * With that said, we always want to commit TX_COMMIT itxs
2286 * to an lwb, regardless of whether or not that itx's txg
2287 * has been synced out. We do this to ensure any OPENED lwb
2288 * will always have at least one zil_commit_waiter_t linked
2289 * to the lwb.
2290 *
2291 * As a counter-example, if we skipped TX_COMMIT itx's
2292 * whose txg had already been synced, the following
2293 * situation could occur if we happened to be racing with
2294 * spa_sync:
2295 *
2296 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
2297 * itx's txg is 10 and the last synced txg is 9.
2298 * 2. spa_sync finishes syncing out txg 10.
2299 * 3. We move to the next itx in the list, it's a TX_COMMIT
2300 * whose txg is 10, so we skip it rather than committing
2301 * it to the lwb used in (1).
2302 *
2303 * If the itx that is skipped in (3) is the last TX_COMMIT
2304 * itx in the commit list, than it's possible for the lwb
2305 * used in (1) to remain in the OPENED state indefinitely.
2306 *
2307 * To prevent the above scenario from occurring, ensuring
2308 * that once an lwb is OPENED it will transition to ISSUED
2309 * and eventually DONE, we always commit TX_COMMIT itx's to
2310 * an lwb here, even if that itx's txg has already been
2311 * synced.
2312 *
2313 * Finally, if the pool is frozen, we _always_ commit the
2314 * itx. The point of freezing the pool is to prevent data
2315 * from being written to the main pool via spa_sync, and
2316 * instead rely solely on the ZIL to persistently store the
2317 * data; i.e. when the pool is frozen, the last synced txg
2318 * value can't be trusted.
2319 */
2320 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
1ce23dca
PS
2321 if (lwb != NULL) {
2322 lwb = zil_lwb_commit(zilog, itx, lwb);
2323
2324 if (lwb == NULL)
2325 list_insert_tail(&nolwb_itxs, itx);
2326 else
2327 list_insert_tail(&lwb->lwb_itxs, itx);
2328 } else {
2329 if (lrc->lrc_txtype == TX_COMMIT) {
2330 zil_commit_waiter_link_nolwb(
2331 itx->itx_private, &nolwb_waiters);
2332 }
2333
2334 list_insert_tail(&nolwb_itxs, itx);
2335 }
2336 } else {
2fe61a7e 2337 ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
1ce23dca
PS
2338 zil_itx_destroy(itx);
2339 }
34dc7c2f 2340 }
34dc7c2f 2341
1ce23dca
PS
2342 if (lwb == NULL) {
2343 /*
2344 * This indicates zio_alloc_zil() failed to allocate the
2345 * "next" lwb on-disk. When this happens, we must stall
2346 * the ZIL write pipeline; see the comment within
2347 * zil_commit_writer_stall() for more details.
2348 */
2349 zil_commit_writer_stall(zilog);
34dc7c2f 2350
1ce23dca
PS
2351 /*
2352 * Additionally, we have to signal and mark the "nolwb"
2353 * waiters as "done" here, since without an lwb, we
2354 * can't do this via zil_lwb_flush_vdevs_done() like
2355 * normal.
2356 */
2357 zil_commit_waiter_t *zcw;
2358 while ((zcw = list_head(&nolwb_waiters)) != NULL) {
2359 zil_commit_waiter_skip(zcw);
2360 list_remove(&nolwb_waiters, zcw);
2361 }
2362
2363 /*
2364 * And finally, we have to destroy the itx's that
2365 * couldn't be committed to an lwb; this will also call
2366 * the itx's callback if one exists for the itx.
2367 */
2368 while ((itx = list_head(&nolwb_itxs)) != NULL) {
2369 list_remove(&nolwb_itxs, itx);
2370 zil_itx_destroy(itx);
2371 }
2372 } else {
2373 ASSERT(list_is_empty(&nolwb_waiters));
2374 ASSERT3P(lwb, !=, NULL);
2375 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
900d09b2
PS
2376 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2377 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1ce23dca
PS
2378
2379 /*
2380 * At this point, the ZIL block pointed at by the "lwb"
2381 * variable is in one of the following states: "closed"
2382 * or "open".
2383 *
2fe61a7e
PS
2384 * If it's "closed", then no itxs have been committed to
2385 * it, so there's no point in issuing its zio (i.e. it's
2386 * "empty").
1ce23dca 2387 *
2fe61a7e
PS
2388 * If it's "open", then it contains one or more itxs that
2389 * eventually need to be committed to stable storage. In
2390 * this case we intentionally do not issue the lwb's zio
2391 * to disk yet, and instead rely on one of the following
2392 * two mechanisms for issuing the zio:
1ce23dca 2393 *
2fe61a7e 2394 * 1. Ideally, there will be more ZIL activity occurring
1ce23dca 2395 * on the system, such that this function will be
2fe61a7e 2396 * immediately called again (not necessarily by the same
1ce23dca
PS
2397 * thread) and this lwb's zio will be issued via
2398 * zil_lwb_commit(). This way, the lwb is guaranteed to
2399 * be "full" when it is issued to disk, and we'll make
2400 * use of the lwb's size the best we can.
2401 *
2fe61a7e 2402 * 2. If there isn't sufficient ZIL activity occurring on
1ce23dca
PS
2403 * the system, such that this lwb's zio isn't issued via
2404 * zil_lwb_commit(), zil_commit_waiter() will issue the
2405 * lwb's zio. If this occurs, the lwb is not guaranteed
2406 * to be "full" by the time its zio is issued, and means
2407 * the size of the lwb was "too large" given the amount
2fe61a7e 2408 * of ZIL activity occurring on the system at that time.
1ce23dca
PS
2409 *
2410 * We do this for a couple of reasons:
2411 *
2412 * 1. To try and reduce the number of IOPs needed to
2413 * write the same number of itxs. If an lwb has space
2fe61a7e 2414 * available in its buffer for more itxs, and more itxs
1ce23dca
PS
2415 * will be committed relatively soon (relative to the
2416 * latency of performing a write), then it's beneficial
2417 * to wait for these "next" itxs. This way, more itxs
2418 * can be committed to stable storage with fewer writes.
2419 *
2420 * 2. To try and use the largest lwb block size that the
2421 * incoming rate of itxs can support. Again, this is to
2422 * try and pack as many itxs into as few lwbs as
2423 * possible, without significantly impacting the latency
2424 * of each individual itx.
2425 */
2426 }
2427}
2428
2429/*
2430 * This function is responsible for ensuring the passed in commit waiter
2431 * (and associated commit itx) is committed to an lwb. If the waiter is
2432 * not already committed to an lwb, all itxs in the zilog's queue of
2433 * itxs will be processed. The assumption is the passed in waiter's
2434 * commit itx will found in the queue just like the other non-commit
2435 * itxs, such that when the entire queue is processed, the waiter will
2fe61a7e 2436 * have been committed to an lwb.
1ce23dca
PS
2437 *
2438 * The lwb associated with the passed in waiter is not guaranteed to
2439 * have been issued by the time this function completes. If the lwb is
2440 * not issued, we rely on future calls to zil_commit_writer() to issue
2441 * the lwb, or the timeout mechanism found in zil_commit_waiter().
2442 */
2443static void
2444zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2445{
2446 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2447 ASSERT(spa_writeable(zilog->zl_spa));
1ce23dca 2448
1b2b0aca 2449 mutex_enter(&zilog->zl_issuer_lock);
1ce23dca
PS
2450
2451 if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2452 /*
2453 * It's possible that, while we were waiting to acquire
1b2b0aca 2454 * the "zl_issuer_lock", another thread committed this
1ce23dca
PS
2455 * waiter to an lwb. If that occurs, we bail out early,
2456 * without processing any of the zilog's queue of itxs.
2457 *
2458 * On certain workloads and system configurations, the
1b2b0aca 2459 * "zl_issuer_lock" can become highly contended. In an
1ce23dca
PS
2460 * attempt to reduce this contention, we immediately drop
2461 * the lock if the waiter has already been processed.
2462 *
2463 * We've measured this optimization to reduce CPU spent
2464 * contending on this lock by up to 5%, using a system
2465 * with 32 CPUs, low latency storage (~50 usec writes),
2466 * and 1024 threads performing sync writes.
2467 */
2468 goto out;
2469 }
2470
2471 ZIL_STAT_BUMP(zil_commit_writer_count);
2472
2473 zil_get_commit_list(zilog);
2474 zil_prune_commit_list(zilog);
2475 zil_process_commit_list(zilog);
2476
2477out:
1b2b0aca 2478 mutex_exit(&zilog->zl_issuer_lock);
1ce23dca
PS
2479}
2480
2481static void
2482zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2483{
1b2b0aca 2484 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
1ce23dca
PS
2485 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2486 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2487
2488 lwb_t *lwb = zcw->zcw_lwb;
2489 ASSERT3P(lwb, !=, NULL);
2490 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
34dc7c2f
BB
2491
2492 /*
1ce23dca
PS
2493 * If the lwb has already been issued by another thread, we can
2494 * immediately return since there's no work to be done (the
2495 * point of this function is to issue the lwb). Additionally, we
1b2b0aca 2496 * do this prior to acquiring the zl_issuer_lock, to avoid
1ce23dca 2497 * acquiring it when it's not necessary to do so.
34dc7c2f 2498 */
1ce23dca 2499 if (lwb->lwb_state == LWB_STATE_ISSUED ||
900d09b2
PS
2500 lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2501 lwb->lwb_state == LWB_STATE_FLUSH_DONE)
1ce23dca 2502 return;
34dc7c2f 2503
1ce23dca
PS
2504 /*
2505 * In order to call zil_lwb_write_issue() we must hold the
1b2b0aca 2506 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
1ce23dca 2507 * since we're already holding the commit waiter's "zcw_lock",
2fe61a7e 2508 * and those two locks are acquired in the opposite order
1ce23dca
PS
2509 * elsewhere.
2510 */
2511 mutex_exit(&zcw->zcw_lock);
1b2b0aca 2512 mutex_enter(&zilog->zl_issuer_lock);
1ce23dca 2513 mutex_enter(&zcw->zcw_lock);
34dc7c2f 2514
1ce23dca
PS
2515 /*
2516 * Since we just dropped and re-acquired the commit waiter's
2517 * lock, we have to re-check to see if the waiter was marked
2518 * "done" during that process. If the waiter was marked "done",
2519 * the "lwb" pointer is no longer valid (it can be free'd after
2520 * the waiter is marked "done"), so without this check we could
2521 * wind up with a use-after-free error below.
2522 */
2523 if (zcw->zcw_done)
2524 goto out;
119a394a 2525
1ce23dca
PS
2526 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2527
2528 /*
2fe61a7e
PS
2529 * We've already checked this above, but since we hadn't acquired
2530 * the zilog's zl_issuer_lock, we have to perform this check a
2531 * second time while holding the lock.
2532 *
2533 * We don't need to hold the zl_lock since the lwb cannot transition
2534 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2535 * _can_ transition from ISSUED to DONE, but it's OK to race with
2536 * that transition since we treat the lwb the same, whether it's in
2537 * the ISSUED or DONE states.
2538 *
2539 * The important thing, is we treat the lwb differently depending on
2540 * if it's ISSUED or OPENED, and block any other threads that might
2541 * attempt to issue this lwb. For that reason we hold the
2542 * zl_issuer_lock when checking the lwb_state; we must not call
1ce23dca 2543 * zil_lwb_write_issue() if the lwb had already been issued.
2fe61a7e
PS
2544 *
2545 * See the comment above the lwb_state_t structure definition for
2546 * more details on the lwb states, and locking requirements.
1ce23dca
PS
2547 */
2548 if (lwb->lwb_state == LWB_STATE_ISSUED ||
900d09b2
PS
2549 lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2550 lwb->lwb_state == LWB_STATE_FLUSH_DONE)
1ce23dca
PS
2551 goto out;
2552
2553 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2554
2555 /*
2556 * As described in the comments above zil_commit_waiter() and
2557 * zil_process_commit_list(), we need to issue this lwb's zio
2558 * since we've reached the commit waiter's timeout and it still
2559 * hasn't been issued.
2560 */
2561 lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2562
ab119165 2563 IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED);
1ce23dca
PS
2564
2565 /*
2566 * Since the lwb's zio hadn't been issued by the time this thread
2567 * reached its timeout, we reset the zilog's "zl_cur_used" field
2568 * to influence the zil block size selection algorithm.
2569 *
2570 * By having to issue the lwb's zio here, it means the size of the
2571 * lwb was too large, given the incoming throughput of itxs. By
2572 * setting "zl_cur_used" to zero, we communicate this fact to the
2fe61a7e 2573 * block size selection algorithm, so it can take this information
1ce23dca
PS
2574 * into account, and potentially select a smaller size for the
2575 * next lwb block that is allocated.
2576 */
2577 zilog->zl_cur_used = 0;
2578
2579 if (nlwb == NULL) {
2580 /*
2581 * When zil_lwb_write_issue() returns NULL, this
2582 * indicates zio_alloc_zil() failed to allocate the
2583 * "next" lwb on-disk. When this occurs, the ZIL write
2584 * pipeline must be stalled; see the comment within the
2585 * zil_commit_writer_stall() function for more details.
2586 *
2587 * We must drop the commit waiter's lock prior to
2588 * calling zil_commit_writer_stall() or else we can wind
2589 * up with the following deadlock:
2590 *
2591 * - This thread is waiting for the txg to sync while
2592 * holding the waiter's lock; txg_wait_synced() is
2593 * used within txg_commit_writer_stall().
2594 *
2595 * - The txg can't sync because it is waiting for this
2596 * lwb's zio callback to call dmu_tx_commit().
2597 *
2598 * - The lwb's zio callback can't call dmu_tx_commit()
2599 * because it's blocked trying to acquire the waiter's
2600 * lock, which occurs prior to calling dmu_tx_commit()
2601 */
2602 mutex_exit(&zcw->zcw_lock);
2603 zil_commit_writer_stall(zilog);
2604 mutex_enter(&zcw->zcw_lock);
119a394a
ED
2605 }
2606
1ce23dca 2607out:
1b2b0aca 2608 mutex_exit(&zilog->zl_issuer_lock);
1ce23dca
PS
2609 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2610}
2611
2612/*
2613 * This function is responsible for performing the following two tasks:
2614 *
2615 * 1. its primary responsibility is to block until the given "commit
2616 * waiter" is considered "done".
2617 *
2618 * 2. its secondary responsibility is to issue the zio for the lwb that
2619 * the given "commit waiter" is waiting on, if this function has
2620 * waited "long enough" and the lwb is still in the "open" state.
2621 *
2622 * Given a sufficient amount of itxs being generated and written using
2623 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2624 * function. If this does not occur, this secondary responsibility will
2625 * ensure the lwb is issued even if there is not other synchronous
2626 * activity on the system.
2627 *
2628 * For more details, see zil_process_commit_list(); more specifically,
2629 * the comment at the bottom of that function.
2630 */
2631static void
2632zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2633{
2634 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
1b2b0aca 2635 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
1ce23dca 2636 ASSERT(spa_writeable(zilog->zl_spa));
1ce23dca
PS
2637
2638 mutex_enter(&zcw->zcw_lock);
428870ff
BB
2639
2640 /*
1ce23dca
PS
2641 * The timeout is scaled based on the lwb latency to avoid
2642 * significantly impacting the latency of each individual itx.
2643 * For more details, see the comment at the bottom of the
2644 * zil_process_commit_list() function.
428870ff 2645 */
1ce23dca
PS
2646 int pct = MAX(zfs_commit_timeout_pct, 1);
2647 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2648 hrtime_t wakeup = gethrtime() + sleep;
2649 boolean_t timedout = B_FALSE;
2650
2651 while (!zcw->zcw_done) {
2652 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2653
2654 lwb_t *lwb = zcw->zcw_lwb;
2655
2656 /*
2657 * Usually, the waiter will have a non-NULL lwb field here,
2658 * but it's possible for it to be NULL as a result of
2659 * zil_commit() racing with spa_sync().
2660 *
2661 * When zil_clean() is called, it's possible for the itxg
2662 * list (which may be cleaned via a taskq) to contain
2663 * commit itxs. When this occurs, the commit waiters linked
2664 * off of these commit itxs will not be committed to an
2665 * lwb. Additionally, these commit waiters will not be
2666 * marked done until zil_commit_waiter_skip() is called via
2667 * zil_itxg_clean().
2668 *
2669 * Thus, it's possible for this commit waiter (i.e. the
2670 * "zcw" variable) to be found in this "in between" state;
2671 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2672 * been skipped, so it's "zcw_done" field is still B_FALSE.
2673 */
2674 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2675
2676 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2677 ASSERT3B(timedout, ==, B_FALSE);
2678
2679 /*
2680 * If the lwb hasn't been issued yet, then we
2681 * need to wait with a timeout, in case this
2682 * function needs to issue the lwb after the
2683 * timeout is reached; responsibility (2) from
2684 * the comment above this function.
2685 */
2686 clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv,
2687 &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2688 CALLOUT_FLAG_ABSOLUTE);
2689
2690 if (timeleft >= 0 || zcw->zcw_done)
2691 continue;
2692
2693 timedout = B_TRUE;
2694 zil_commit_waiter_timeout(zilog, zcw);
2695
2696 if (!zcw->zcw_done) {
2697 /*
2698 * If the commit waiter has already been
2699 * marked "done", it's possible for the
2700 * waiter's lwb structure to have already
2701 * been freed. Thus, we can only reliably
2702 * make these assertions if the waiter
2703 * isn't done.
2704 */
2705 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2706 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2707 }
2708 } else {
2709 /*
2710 * If the lwb isn't open, then it must have already
2711 * been issued. In that case, there's no need to
2712 * use a timeout when waiting for the lwb to
2713 * complete.
2714 *
2715 * Additionally, if the lwb is NULL, the waiter
2fe61a7e 2716 * will soon be signaled and marked done via
1ce23dca
PS
2717 * zil_clean() and zil_itxg_clean(), so no timeout
2718 * is required.
2719 */
2720
2721 IMPLY(lwb != NULL,
2722 lwb->lwb_state == LWB_STATE_ISSUED ||
900d09b2
PS
2723 lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2724 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
1ce23dca
PS
2725 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2726 }
2727 }
2728
2729 mutex_exit(&zcw->zcw_lock);
2730}
2731
2732static zil_commit_waiter_t *
2733zil_alloc_commit_waiter(void)
2734{
2735 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2736
2737 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2738 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2739 list_link_init(&zcw->zcw_node);
2740 zcw->zcw_lwb = NULL;
2741 zcw->zcw_done = B_FALSE;
2742 zcw->zcw_zio_error = 0;
2743
2744 return (zcw);
2745}
2746
2747static void
2748zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2749{
2750 ASSERT(!list_link_active(&zcw->zcw_node));
2751 ASSERT3P(zcw->zcw_lwb, ==, NULL);
2752 ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2753 mutex_destroy(&zcw->zcw_lock);
2754 cv_destroy(&zcw->zcw_cv);
2755 kmem_cache_free(zil_zcw_cache, zcw);
34dc7c2f
BB
2756}
2757
2758/*
1ce23dca
PS
2759 * This function is used to create a TX_COMMIT itx and assign it. This
2760 * way, it will be linked into the ZIL's list of synchronous itxs, and
2761 * then later committed to an lwb (or skipped) when
2762 * zil_process_commit_list() is called.
2763 */
2764static void
2765zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2766{
2767 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2768 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2769
2770 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2771 itx->itx_sync = B_TRUE;
2772 itx->itx_private = zcw;
2773
2774 zil_itx_assign(zilog, itx, tx);
2775
2776 dmu_tx_commit(tx);
2777}
2778
2779/*
2780 * Commit ZFS Intent Log transactions (itxs) to stable storage.
2781 *
2782 * When writing ZIL transactions to the on-disk representation of the
2783 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2784 * itxs can be committed to a single lwb. Once a lwb is written and
2785 * committed to stable storage (i.e. the lwb is written, and vdevs have
2786 * been flushed), each itx that was committed to that lwb is also
2787 * considered to be committed to stable storage.
2788 *
2789 * When an itx is committed to an lwb, the log record (lr_t) contained
2790 * by the itx is copied into the lwb's zio buffer, and once this buffer
2791 * is written to disk, it becomes an on-disk ZIL block.
2792 *
2793 * As itxs are generated, they're inserted into the ZIL's queue of
2794 * uncommitted itxs. The semantics of zil_commit() are such that it will
2795 * block until all itxs that were in the queue when it was called, are
2796 * committed to stable storage.
2797 *
2798 * If "foid" is zero, this means all "synchronous" and "asynchronous"
2799 * itxs, for all objects in the dataset, will be committed to stable
2800 * storage prior to zil_commit() returning. If "foid" is non-zero, all
2801 * "synchronous" itxs for all objects, but only "asynchronous" itxs
2802 * that correspond to the foid passed in, will be committed to stable
2803 * storage prior to zil_commit() returning.
2804 *
2805 * Generally speaking, when zil_commit() is called, the consumer doesn't
2806 * actually care about _all_ of the uncommitted itxs. Instead, they're
2807 * simply trying to waiting for a specific itx to be committed to disk,
2808 * but the interface(s) for interacting with the ZIL don't allow such
2809 * fine-grained communication. A better interface would allow a consumer
2810 * to create and assign an itx, and then pass a reference to this itx to
2811 * zil_commit(); such that zil_commit() would return as soon as that
2812 * specific itx was committed to disk (instead of waiting for _all_
2813 * itxs to be committed).
2814 *
2815 * When a thread calls zil_commit() a special "commit itx" will be
2816 * generated, along with a corresponding "waiter" for this commit itx.
2817 * zil_commit() will wait on this waiter's CV, such that when the waiter
2fe61a7e 2818 * is marked done, and signaled, zil_commit() will return.
1ce23dca
PS
2819 *
2820 * This commit itx is inserted into the queue of uncommitted itxs. This
2821 * provides an easy mechanism for determining which itxs were in the
2822 * queue prior to zil_commit() having been called, and which itxs were
2823 * added after zil_commit() was called.
2824 *
2825 * The commit it is special; it doesn't have any on-disk representation.
2826 * When a commit itx is "committed" to an lwb, the waiter associated
2827 * with it is linked onto the lwb's list of waiters. Then, when that lwb
2fe61a7e 2828 * completes, each waiter on the lwb's list is marked done and signaled
1ce23dca
PS
2829 * -- allowing the thread waiting on the waiter to return from zil_commit().
2830 *
2831 * It's important to point out a few critical factors that allow us
2832 * to make use of the commit itxs, commit waiters, per-lwb lists of
2833 * commit waiters, and zio completion callbacks like we're doing:
572e2857 2834 *
1ce23dca 2835 * 1. The list of waiters for each lwb is traversed, and each commit
2fe61a7e 2836 * waiter is marked "done" and signaled, in the zio completion
1ce23dca 2837 * callback of the lwb's zio[*].
572e2857 2838 *
2fe61a7e 2839 * * Actually, the waiters are signaled in the zio completion
1ce23dca
PS
2840 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2841 * that are sent to the vdevs upon completion of the lwb zio.
572e2857 2842 *
1ce23dca
PS
2843 * 2. When the itxs are inserted into the ZIL's queue of uncommitted
2844 * itxs, the order in which they are inserted is preserved[*]; as
2845 * itxs are added to the queue, they are added to the tail of
2846 * in-memory linked lists.
572e2857 2847 *
1ce23dca
PS
2848 * When committing the itxs to lwbs (to be written to disk), they
2849 * are committed in the same order in which the itxs were added to
2850 * the uncommitted queue's linked list(s); i.e. the linked list of
2851 * itxs to commit is traversed from head to tail, and each itx is
2852 * committed to an lwb in that order.
2853 *
2854 * * To clarify:
2855 *
2856 * - the order of "sync" itxs is preserved w.r.t. other
2857 * "sync" itxs, regardless of the corresponding objects.
2858 * - the order of "async" itxs is preserved w.r.t. other
2859 * "async" itxs corresponding to the same object.
2860 * - the order of "async" itxs is *not* preserved w.r.t. other
2861 * "async" itxs corresponding to different objects.
2862 * - the order of "sync" itxs w.r.t. "async" itxs (or vice
2863 * versa) is *not* preserved, even for itxs that correspond
2864 * to the same object.
2865 *
2866 * For more details, see: zil_itx_assign(), zil_async_to_sync(),
2867 * zil_get_commit_list(), and zil_process_commit_list().
2868 *
2869 * 3. The lwbs represent a linked list of blocks on disk. Thus, any
2870 * lwb cannot be considered committed to stable storage, until its
2871 * "previous" lwb is also committed to stable storage. This fact,
2872 * coupled with the fact described above, means that itxs are
2873 * committed in (roughly) the order in which they were generated.
2874 * This is essential because itxs are dependent on prior itxs.
2875 * Thus, we *must not* deem an itx as being committed to stable
2876 * storage, until *all* prior itxs have also been committed to
2877 * stable storage.
2878 *
2879 * To enforce this ordering of lwb zio's, while still leveraging as
2880 * much of the underlying storage performance as possible, we rely
2881 * on two fundamental concepts:
2882 *
2883 * 1. The creation and issuance of lwb zio's is protected by
1b2b0aca 2884 * the zilog's "zl_issuer_lock", which ensures only a single
1ce23dca
PS
2885 * thread is creating and/or issuing lwb's at a time
2886 * 2. The "previous" lwb is a child of the "current" lwb
2fe61a7e 2887 * (leveraging the zio parent-child dependency graph)
1ce23dca
PS
2888 *
2889 * By relying on this parent-child zio relationship, we can have
2890 * many lwb zio's concurrently issued to the underlying storage,
2891 * but the order in which they complete will be the same order in
2892 * which they were created.
34dc7c2f
BB
2893 */
2894void
572e2857 2895zil_commit(zilog_t *zilog, uint64_t foid)
34dc7c2f 2896{
1ce23dca
PS
2897 /*
2898 * We should never attempt to call zil_commit on a snapshot for
2899 * a couple of reasons:
2900 *
2901 * 1. A snapshot may never be modified, thus it cannot have any
2902 * in-flight itxs that would have modified the dataset.
2903 *
2904 * 2. By design, when zil_commit() is called, a commit itx will
2905 * be assigned to this zilog; as a result, the zilog will be
2906 * dirtied. We must not dirty the zilog of a snapshot; there's
2907 * checks in the code that enforce this invariant, and will
2908 * cause a panic if it's not upheld.
2909 */
2910 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
34dc7c2f 2911
572e2857
BB
2912 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2913 return;
34dc7c2f 2914
1ce23dca
PS
2915 if (!spa_writeable(zilog->zl_spa)) {
2916 /*
2917 * If the SPA is not writable, there should never be any
2918 * pending itxs waiting to be committed to disk. If that
2919 * weren't true, we'd skip writing those itxs out, and
2fe61a7e 2920 * would break the semantics of zil_commit(); thus, we're
1ce23dca
PS
2921 * verifying that truth before we return to the caller.
2922 */
2923 ASSERT(list_is_empty(&zilog->zl_lwb_list));
2924 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2925 for (int i = 0; i < TXG_SIZE; i++)
2926 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
2927 return;
2928 }
2929
2930 /*
2931 * If the ZIL is suspended, we don't want to dirty it by calling
2932 * zil_commit_itx_assign() below, nor can we write out
2933 * lwbs like would be done in zil_commit_write(). Thus, we
2934 * simply rely on txg_wait_synced() to maintain the necessary
2935 * semantics, and avoid calling those functions altogether.
2936 */
2937 if (zilog->zl_suspend > 0) {
2938 txg_wait_synced(zilog->zl_dmu_pool, 0);
2939 return;
2940 }
2941
2fe61a7e
PS
2942 zil_commit_impl(zilog, foid);
2943}
2944
2945void
2946zil_commit_impl(zilog_t *zilog, uint64_t foid)
2947{
b6ad9671
ED
2948 ZIL_STAT_BUMP(zil_commit_count);
2949
1ce23dca
PS
2950 /*
2951 * Move the "async" itxs for the specified foid to the "sync"
2952 * queues, such that they will be later committed (or skipped)
2953 * to an lwb when zil_process_commit_list() is called.
2954 *
2955 * Since these "async" itxs must be committed prior to this
2956 * call to zil_commit returning, we must perform this operation
2957 * before we call zil_commit_itx_assign().
2958 */
572e2857 2959 zil_async_to_sync(zilog, foid);
34dc7c2f 2960
1ce23dca
PS
2961 /*
2962 * We allocate a new "waiter" structure which will initially be
2963 * linked to the commit itx using the itx's "itx_private" field.
2964 * Since the commit itx doesn't represent any on-disk state,
2965 * when it's committed to an lwb, rather than copying the its
2966 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
2967 * added to the lwb's list of waiters. Then, when the lwb is
2968 * committed to stable storage, each waiter in the lwb's list of
2969 * waiters will be marked "done", and signalled.
2970 *
2971 * We must create the waiter and assign the commit itx prior to
2972 * calling zil_commit_writer(), or else our specific commit itx
2973 * is not guaranteed to be committed to an lwb prior to calling
2974 * zil_commit_waiter().
2975 */
2976 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
2977 zil_commit_itx_assign(zilog, zcw);
428870ff 2978
1ce23dca
PS
2979 zil_commit_writer(zilog, zcw);
2980 zil_commit_waiter(zilog, zcw);
428870ff 2981
1ce23dca
PS
2982 if (zcw->zcw_zio_error != 0) {
2983 /*
2984 * If there was an error writing out the ZIL blocks that
2985 * this thread is waiting on, then we fallback to
2986 * relying on spa_sync() to write out the data this
2987 * thread is waiting on. Obviously this has performance
2988 * implications, but the expectation is for this to be
2989 * an exceptional case, and shouldn't occur often.
2990 */
2991 DTRACE_PROBE2(zil__commit__io__error,
2992 zilog_t *, zilog, zil_commit_waiter_t *, zcw);
2993 txg_wait_synced(zilog->zl_dmu_pool, 0);
2994 }
8c0712fd 2995
1ce23dca 2996 zil_free_commit_waiter(zcw);
428870ff
BB
2997}
2998
34dc7c2f
BB
2999/*
3000 * Called in syncing context to free committed log blocks and update log header.
3001 */
3002void
3003zil_sync(zilog_t *zilog, dmu_tx_t *tx)
3004{
3005 zil_header_t *zh = zil_header_in_syncing_context(zilog);
3006 uint64_t txg = dmu_tx_get_txg(tx);
3007 spa_t *spa = zilog->zl_spa;
428870ff 3008 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
34dc7c2f
BB
3009 lwb_t *lwb;
3010
9babb374
BB
3011 /*
3012 * We don't zero out zl_destroy_txg, so make sure we don't try
3013 * to destroy it twice.
3014 */
3015 if (spa_sync_pass(spa) != 1)
3016 return;
3017
34dc7c2f
BB
3018 mutex_enter(&zilog->zl_lock);
3019
3020 ASSERT(zilog->zl_stop_sync == 0);
3021
428870ff
BB
3022 if (*replayed_seq != 0) {
3023 ASSERT(zh->zh_replay_seq < *replayed_seq);
3024 zh->zh_replay_seq = *replayed_seq;
3025 *replayed_seq = 0;
3026 }
34dc7c2f
BB
3027
3028 if (zilog->zl_destroy_txg == txg) {
3029 blkptr_t blk = zh->zh_log;
3030
3031 ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
34dc7c2f
BB
3032
3033 bzero(zh, sizeof (zil_header_t));
fb5f0bc8 3034 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
34dc7c2f
BB
3035
3036 if (zilog->zl_keep_first) {
3037 /*
3038 * If this block was part of log chain that couldn't
3039 * be claimed because a device was missing during
3040 * zil_claim(), but that device later returns,
3041 * then this block could erroneously appear valid.
3042 * To guard against this, assign a new GUID to the new
3043 * log chain so it doesn't matter what blk points to.
3044 */
3045 zil_init_log_chain(zilog, &blk);
3046 zh->zh_log = blk;
3047 }
3048 }
3049
9babb374 3050 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
34dc7c2f
BB
3051 zh->zh_log = lwb->lwb_blk;
3052 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
3053 break;
3054 list_remove(&zilog->zl_lwb_list, lwb);
1ce23dca
PS
3055 zio_free(spa, txg, &lwb->lwb_blk);
3056 zil_free_lwb(zilog, lwb);
34dc7c2f
BB
3057
3058 /*
3059 * If we don't have anything left in the lwb list then
3060 * we've had an allocation failure and we need to zero
3061 * out the zil_header blkptr so that we don't end
3062 * up freeing the same block twice.
3063 */
3064 if (list_head(&zilog->zl_lwb_list) == NULL)
3065 BP_ZERO(&zh->zh_log);
3066 }
920dd524
ED
3067
3068 /*
3069 * Remove fastwrite on any blocks that have been pre-allocated for
3070 * the next commit. This prevents fastwrite counter pollution by
3071 * unused, long-lived LWBs.
3072 */
3073 for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) {
1ce23dca 3074 if (lwb->lwb_fastwrite && !lwb->lwb_write_zio) {
920dd524
ED
3075 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3076 lwb->lwb_fastwrite = 0;
3077 }
3078 }
3079
34dc7c2f
BB
3080 mutex_exit(&zilog->zl_lock);
3081}
3082
1ce23dca
PS
3083/* ARGSUSED */
3084static int
3085zil_lwb_cons(void *vbuf, void *unused, int kmflag)
3086{
3087 lwb_t *lwb = vbuf;
3088 list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
3089 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
3090 offsetof(zil_commit_waiter_t, zcw_node));
3091 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
3092 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
3093 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
3094 return (0);
3095}
3096
3097/* ARGSUSED */
3098static void
3099zil_lwb_dest(void *vbuf, void *unused)
3100{
3101 lwb_t *lwb = vbuf;
3102 mutex_destroy(&lwb->lwb_vdev_lock);
3103 avl_destroy(&lwb->lwb_vdev_tree);
3104 list_destroy(&lwb->lwb_waiters);
3105 list_destroy(&lwb->lwb_itxs);
3106}
3107
34dc7c2f
BB
3108void
3109zil_init(void)
3110{
3111 zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1ce23dca
PS
3112 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
3113
3114 zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
3115 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
b6ad9671
ED
3116
3117 zil_ksp = kstat_create("zfs", 0, "zil", "misc",
d1d7e268 3118 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
b6ad9671
ED
3119 KSTAT_FLAG_VIRTUAL);
3120
3121 if (zil_ksp != NULL) {
3122 zil_ksp->ks_data = &zil_stats;
3123 kstat_install(zil_ksp);
3124 }
34dc7c2f
BB
3125}
3126
3127void
3128zil_fini(void)
3129{
1ce23dca 3130 kmem_cache_destroy(zil_zcw_cache);
34dc7c2f 3131 kmem_cache_destroy(zil_lwb_cache);
b6ad9671
ED
3132
3133 if (zil_ksp != NULL) {
3134 kstat_delete(zil_ksp);
3135 zil_ksp = NULL;
3136 }
34dc7c2f
BB
3137}
3138
428870ff
BB
3139void
3140zil_set_sync(zilog_t *zilog, uint64_t sync)
3141{
3142 zilog->zl_sync = sync;
3143}
3144
3145void
3146zil_set_logbias(zilog_t *zilog, uint64_t logbias)
3147{
3148 zilog->zl_logbias = logbias;
3149}
3150
34dc7c2f
BB
3151zilog_t *
3152zil_alloc(objset_t *os, zil_header_t *zh_phys)
3153{
3154 zilog_t *zilog;
3155
79c76d5b 3156 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
34dc7c2f
BB
3157
3158 zilog->zl_header = zh_phys;
3159 zilog->zl_os = os;
3160 zilog->zl_spa = dmu_objset_spa(os);
3161 zilog->zl_dmu_pool = dmu_objset_pool(os);
3162 zilog->zl_destroy_txg = TXG_INITIAL - 1;
428870ff
BB
3163 zilog->zl_logbias = dmu_objset_logbias(os);
3164 zilog->zl_sync = dmu_objset_syncprop(os);
1ce23dca
PS
3165 zilog->zl_dirty_max_txg = 0;
3166 zilog->zl_last_lwb_opened = NULL;
3167 zilog->zl_last_lwb_latency = 0;
b8738257 3168 zilog->zl_max_block_size = zil_maxblocksize;
34dc7c2f
BB
3169
3170 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1b2b0aca 3171 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f 3172
1c27024e 3173 for (int i = 0; i < TXG_SIZE; i++) {
572e2857
BB
3174 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
3175 MUTEX_DEFAULT, NULL);
3176 }
34dc7c2f
BB
3177
3178 list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
3179 offsetof(lwb_t, lwb_node));
3180
572e2857
BB
3181 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
3182 offsetof(itx_t, itx_node));
3183
34dc7c2f
BB
3184 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3185
3186 return (zilog);
3187}
3188
3189void
3190zil_free(zilog_t *zilog)
3191{
d6320ddb 3192 int i;
34dc7c2f
BB
3193
3194 zilog->zl_stop_sync = 1;
3195
13fe0198
MA
3196 ASSERT0(zilog->zl_suspend);
3197 ASSERT0(zilog->zl_suspending);
3198
3e31d2b0 3199 ASSERT(list_is_empty(&zilog->zl_lwb_list));
34dc7c2f
BB
3200 list_destroy(&zilog->zl_lwb_list);
3201
572e2857
BB
3202 ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3203 list_destroy(&zilog->zl_itx_commit_list);
3204
d6320ddb 3205 for (i = 0; i < TXG_SIZE; i++) {
572e2857
BB
3206 /*
3207 * It's possible for an itx to be generated that doesn't dirty
3208 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3209 * callback to remove the entry. We remove those here.
3210 *
3211 * Also free up the ziltest itxs.
3212 */
3213 if (zilog->zl_itxg[i].itxg_itxs)
3214 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3215 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3216 }
3217
1b2b0aca 3218 mutex_destroy(&zilog->zl_issuer_lock);
34dc7c2f
BB
3219 mutex_destroy(&zilog->zl_lock);
3220
34dc7c2f
BB
3221 cv_destroy(&zilog->zl_cv_suspend);
3222
3223 kmem_free(zilog, sizeof (zilog_t));
3224}
3225
34dc7c2f
BB
3226/*
3227 * Open an intent log.
3228 */
3229zilog_t *
3230zil_open(objset_t *os, zil_get_data_t *get_data)
3231{
3232 zilog_t *zilog = dmu_objset_zil(os);
3233
1ce23dca
PS
3234 ASSERT3P(zilog->zl_get_data, ==, NULL);
3235 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3e31d2b0
ES
3236 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3237
34dc7c2f 3238 zilog->zl_get_data = get_data;
34dc7c2f
BB
3239
3240 return (zilog);
3241}
3242
3243/*
3244 * Close an intent log.
3245 */
3246void
3247zil_close(zilog_t *zilog)
3248{
3e31d2b0 3249 lwb_t *lwb;
1ce23dca 3250 uint64_t txg;
572e2857 3251
1ce23dca
PS
3252 if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3253 zil_commit(zilog, 0);
3254 } else {
3255 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
3256 ASSERT0(zilog->zl_dirty_max_txg);
3257 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3258 }
572e2857 3259
572e2857 3260 mutex_enter(&zilog->zl_lock);
3e31d2b0 3261 lwb = list_tail(&zilog->zl_lwb_list);
1ce23dca
PS
3262 if (lwb == NULL)
3263 txg = zilog->zl_dirty_max_txg;
3264 else
3265 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
572e2857 3266 mutex_exit(&zilog->zl_lock);
1ce23dca
PS
3267
3268 /*
3269 * We need to use txg_wait_synced() to wait long enough for the
3270 * ZIL to be clean, and to wait for all pending lwbs to be
3271 * written out.
3272 */
3273 if (txg != 0)
34dc7c2f 3274 txg_wait_synced(zilog->zl_dmu_pool, txg);
55922e73
GW
3275
3276 if (zilog_is_dirty(zilog))
a887d653 3277 zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog, txg);
50c957f7 3278 if (txg < spa_freeze_txg(zilog->zl_spa))
55922e73 3279 VERIFY(!zilog_is_dirty(zilog));
34dc7c2f 3280
34dc7c2f 3281 zilog->zl_get_data = NULL;
3e31d2b0
ES
3282
3283 /*
1ce23dca 3284 * We should have only one lwb left on the list; remove it now.
3e31d2b0
ES
3285 */
3286 mutex_enter(&zilog->zl_lock);
3287 lwb = list_head(&zilog->zl_lwb_list);
3288 if (lwb != NULL) {
1ce23dca
PS
3289 ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
3290 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
3291
920dd524
ED
3292 if (lwb->lwb_fastwrite)
3293 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
1ce23dca 3294
3e31d2b0
ES
3295 list_remove(&zilog->zl_lwb_list, lwb);
3296 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1ce23dca 3297 zil_free_lwb(zilog, lwb);
3e31d2b0
ES
3298 }
3299 mutex_exit(&zilog->zl_lock);
34dc7c2f
BB
3300}
3301
13fe0198
MA
3302static char *suspend_tag = "zil suspending";
3303
34dc7c2f
BB
3304/*
3305 * Suspend an intent log. While in suspended mode, we still honor
3306 * synchronous semantics, but we rely on txg_wait_synced() to do it.
13fe0198
MA
3307 * On old version pools, we suspend the log briefly when taking a
3308 * snapshot so that it will have an empty intent log.
3309 *
3310 * Long holds are not really intended to be used the way we do here --
3311 * held for such a short time. A concurrent caller of dsl_dataset_long_held()
3312 * could fail. Therefore we take pains to only put a long hold if it is
3313 * actually necessary. Fortunately, it will only be necessary if the
3314 * objset is currently mounted (or the ZVOL equivalent). In that case it
3315 * will already have a long hold, so we are not really making things any worse.
3316 *
3317 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3318 * zvol_state_t), and use their mechanism to prevent their hold from being
3319 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for
3320 * very little gain.
3321 *
3322 * if cookiep == NULL, this does both the suspend & resume.
3323 * Otherwise, it returns with the dataset "long held", and the cookie
3324 * should be passed into zil_resume().
34dc7c2f
BB
3325 */
3326int
13fe0198 3327zil_suspend(const char *osname, void **cookiep)
34dc7c2f 3328{
13fe0198
MA
3329 objset_t *os;
3330 zilog_t *zilog;
3331 const zil_header_t *zh;
3332 int error;
3333
3334 error = dmu_objset_hold(osname, suspend_tag, &os);
3335 if (error != 0)
3336 return (error);
3337 zilog = dmu_objset_zil(os);
34dc7c2f
BB
3338
3339 mutex_enter(&zilog->zl_lock);
13fe0198
MA
3340 zh = zilog->zl_header;
3341
9babb374 3342 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
34dc7c2f 3343 mutex_exit(&zilog->zl_lock);
13fe0198 3344 dmu_objset_rele(os, suspend_tag);
2e528b49 3345 return (SET_ERROR(EBUSY));
34dc7c2f 3346 }
13fe0198
MA
3347
3348 /*
3349 * Don't put a long hold in the cases where we can avoid it. This
3350 * is when there is no cookie so we are doing a suspend & resume
3351 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3352 * for the suspend because it's already suspended, or there's no ZIL.
3353 */
3354 if (cookiep == NULL && !zilog->zl_suspending &&
3355 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3356 mutex_exit(&zilog->zl_lock);
3357 dmu_objset_rele(os, suspend_tag);
3358 return (0);
3359 }
3360
3361 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3362 dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3363
3364 zilog->zl_suspend++;
3365
3366 if (zilog->zl_suspend > 1) {
34dc7c2f 3367 /*
13fe0198 3368 * Someone else is already suspending it.
34dc7c2f
BB
3369 * Just wait for them to finish.
3370 */
13fe0198 3371
34dc7c2f
BB
3372 while (zilog->zl_suspending)
3373 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
34dc7c2f 3374 mutex_exit(&zilog->zl_lock);
13fe0198
MA
3375
3376 if (cookiep == NULL)
3377 zil_resume(os);
3378 else
3379 *cookiep = os;
3380 return (0);
3381 }
3382
3383 /*
3384 * If there is no pointer to an on-disk block, this ZIL must not
3385 * be active (e.g. filesystem not mounted), so there's nothing
3386 * to clean up.
3387 */
3388 if (BP_IS_HOLE(&zh->zh_log)) {
3389 ASSERT(cookiep != NULL); /* fast path already handled */
3390
3391 *cookiep = os;
3392 mutex_exit(&zilog->zl_lock);
34dc7c2f
BB
3393 return (0);
3394 }
13fe0198 3395
4807c0ba
TC
3396 /*
3397 * The ZIL has work to do. Ensure that the associated encryption
3398 * key will remain mapped while we are committing the log by
3399 * grabbing a reference to it. If the key isn't loaded we have no
3400 * choice but to return an error until the wrapping key is loaded.
3401 */
52ce99dd
TC
3402 if (os->os_encrypted &&
3403 dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
4807c0ba
TC
3404 zilog->zl_suspend--;
3405 mutex_exit(&zilog->zl_lock);
3406 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3407 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
2ffd89fc 3408 return (SET_ERROR(EACCES));
4807c0ba
TC
3409 }
3410
34dc7c2f
BB
3411 zilog->zl_suspending = B_TRUE;
3412 mutex_exit(&zilog->zl_lock);
3413
2fe61a7e
PS
3414 /*
3415 * We need to use zil_commit_impl to ensure we wait for all
3416 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwbs to be committed
3417 * to disk before proceeding. If we used zil_commit instead, it
3418 * would just call txg_wait_synced(), because zl_suspend is set.
3419 * txg_wait_synced() doesn't wait for these lwb's to be
900d09b2 3420 * LWB_STATE_FLUSH_DONE before returning.
2fe61a7e
PS
3421 */
3422 zil_commit_impl(zilog, 0);
3423
3424 /*
900d09b2
PS
3425 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
3426 * use txg_wait_synced() to ensure the data from the zilog has
3427 * migrated to the main pool before calling zil_destroy().
2fe61a7e
PS
3428 */
3429 txg_wait_synced(zilog->zl_dmu_pool, 0);
34dc7c2f
BB
3430
3431 zil_destroy(zilog, B_FALSE);
3432
3433 mutex_enter(&zilog->zl_lock);
3434 zilog->zl_suspending = B_FALSE;
3435 cv_broadcast(&zilog->zl_cv_suspend);
3436 mutex_exit(&zilog->zl_lock);
3437
52ce99dd
TC
3438 if (os->os_encrypted)
3439 dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
4807c0ba 3440
13fe0198
MA
3441 if (cookiep == NULL)
3442 zil_resume(os);
3443 else
3444 *cookiep = os;
34dc7c2f
BB
3445 return (0);
3446}
3447
3448void
13fe0198 3449zil_resume(void *cookie)
34dc7c2f 3450{
13fe0198
MA
3451 objset_t *os = cookie;
3452 zilog_t *zilog = dmu_objset_zil(os);
3453
34dc7c2f
BB
3454 mutex_enter(&zilog->zl_lock);
3455 ASSERT(zilog->zl_suspend != 0);
3456 zilog->zl_suspend--;
3457 mutex_exit(&zilog->zl_lock);
13fe0198
MA
3458 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3459 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
34dc7c2f
BB
3460}
3461
3462typedef struct zil_replay_arg {
867959b5 3463 zil_replay_func_t **zr_replay;
34dc7c2f 3464 void *zr_arg;
34dc7c2f 3465 boolean_t zr_byteswap;
428870ff 3466 char *zr_lr;
34dc7c2f
BB
3467} zil_replay_arg_t;
3468
428870ff
BB
3469static int
3470zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
3471{
eca7b760 3472 char name[ZFS_MAX_DATASET_NAME_LEN];
428870ff
BB
3473
3474 zilog->zl_replaying_seq--; /* didn't actually replay this one */
3475
3476 dmu_objset_name(zilog->zl_os, name);
3477
3478 cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3479 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3480 (u_longlong_t)lr->lrc_seq,
3481 (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3482 (lr->lrc_txtype & TX_CI) ? "CI" : "");
3483
3484 return (error);
3485}
3486
3487static int
34dc7c2f
BB
3488zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
3489{
3490 zil_replay_arg_t *zr = zra;
3491 const zil_header_t *zh = zilog->zl_header;
3492 uint64_t reclen = lr->lrc_reclen;
3493 uint64_t txtype = lr->lrc_txtype;
428870ff 3494 int error = 0;
34dc7c2f 3495
428870ff 3496 zilog->zl_replaying_seq = lr->lrc_seq;
34dc7c2f
BB
3497
3498 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
428870ff
BB
3499 return (0);
3500
3501 if (lr->lrc_txg < claim_txg) /* already committed */
3502 return (0);
34dc7c2f
BB
3503
3504 /* Strip case-insensitive bit, still present in log record */
3505 txtype &= ~TX_CI;
3506
428870ff
BB
3507 if (txtype == 0 || txtype >= TX_MAX_TYPE)
3508 return (zil_replay_error(zilog, lr, EINVAL));
3509
3510 /*
3511 * If this record type can be logged out of order, the object
3512 * (lr_foid) may no longer exist. That's legitimate, not an error.
3513 */
3514 if (TX_OOO(txtype)) {
3515 error = dmu_object_info(zilog->zl_os,
50c957f7 3516 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
428870ff
BB
3517 if (error == ENOENT || error == EEXIST)
3518 return (0);
fb5f0bc8
BB
3519 }
3520
34dc7c2f
BB
3521 /*
3522 * Make a copy of the data so we can revise and extend it.
3523 */
428870ff
BB
3524 bcopy(lr, zr->zr_lr, reclen);
3525
3526 /*
3527 * If this is a TX_WRITE with a blkptr, suck in the data.
3528 */
3529 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3530 error = zil_read_log_data(zilog, (lr_write_t *)lr,
3531 zr->zr_lr + reclen);
13fe0198 3532 if (error != 0)
428870ff
BB
3533 return (zil_replay_error(zilog, lr, error));
3534 }
34dc7c2f
BB
3535
3536 /*
3537 * The log block containing this lr may have been byteswapped
3538 * so that we can easily examine common fields like lrc_txtype.
428870ff 3539 * However, the log is a mix of different record types, and only the
34dc7c2f
BB
3540 * replay vectors know how to byteswap their records. Therefore, if
3541 * the lr was byteswapped, undo it before invoking the replay vector.
3542 */
3543 if (zr->zr_byteswap)
428870ff 3544 byteswap_uint64_array(zr->zr_lr, reclen);
34dc7c2f
BB
3545
3546 /*
3547 * We must now do two things atomically: replay this log record,
fb5f0bc8
BB
3548 * and update the log header sequence number to reflect the fact that
3549 * we did so. At the end of each replay function the sequence number
3550 * is updated if we are in replay mode.
34dc7c2f 3551 */
428870ff 3552 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
13fe0198 3553 if (error != 0) {
34dc7c2f
BB
3554 /*
3555 * The DMU's dnode layer doesn't see removes until the txg
3556 * commits, so a subsequent claim can spuriously fail with
fb5f0bc8 3557 * EEXIST. So if we receive any error we try syncing out
428870ff
BB
3558 * any removes then retry the transaction. Note that we
3559 * specify B_FALSE for byteswap now, so we don't do it twice.
34dc7c2f 3560 */
428870ff
BB
3561 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3562 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
13fe0198 3563 if (error != 0)
428870ff 3564 return (zil_replay_error(zilog, lr, error));
34dc7c2f 3565 }
428870ff 3566 return (0);
34dc7c2f
BB
3567}
3568
3569/* ARGSUSED */
428870ff 3570static int
34dc7c2f
BB
3571zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
3572{
3573 zilog->zl_replay_blks++;
428870ff
BB
3574
3575 return (0);
34dc7c2f
BB
3576}
3577
3578/*
3579 * If this dataset has a non-empty intent log, replay it and destroy it.
3580 */
3581void
867959b5 3582zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
34dc7c2f
BB
3583{
3584 zilog_t *zilog = dmu_objset_zil(os);
3585 const zil_header_t *zh = zilog->zl_header;
3586 zil_replay_arg_t zr;
3587
9babb374 3588 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
34dc7c2f
BB
3589 zil_destroy(zilog, B_TRUE);
3590 return;
3591 }
3592
34dc7c2f
BB
3593 zr.zr_replay = replay_func;
3594 zr.zr_arg = arg;
34dc7c2f 3595 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
79c76d5b 3596 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
34dc7c2f
BB
3597
3598 /*
3599 * Wait for in-progress removes to sync before starting replay.
3600 */
3601 txg_wait_synced(zilog->zl_dmu_pool, 0);
3602
fb5f0bc8 3603 zilog->zl_replay = B_TRUE;
428870ff 3604 zilog->zl_replay_time = ddi_get_lbolt();
34dc7c2f
BB
3605 ASSERT(zilog->zl_replay_blks == 0);
3606 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
b5256303 3607 zh->zh_claim_txg, B_TRUE);
00b46022 3608 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
34dc7c2f
BB
3609
3610 zil_destroy(zilog, B_FALSE);
3611 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
fb5f0bc8 3612 zilog->zl_replay = B_FALSE;
34dc7c2f
BB
3613}
3614
428870ff
BB
3615boolean_t
3616zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
34dc7c2f 3617{
428870ff
BB
3618 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3619 return (B_TRUE);
34dc7c2f 3620
428870ff
BB
3621 if (zilog->zl_replay) {
3622 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3623 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3624 zilog->zl_replaying_seq;
3625 return (B_TRUE);
34dc7c2f
BB
3626 }
3627
428870ff 3628 return (B_FALSE);
34dc7c2f 3629}
9babb374
BB
3630
3631/* ARGSUSED */
3632int
a1d477c2 3633zil_reset(const char *osname, void *arg)
9babb374 3634{
9babb374
BB
3635 int error;
3636
13fe0198 3637 error = zil_suspend(osname, NULL);
2ffd89fc
PZ
3638 /* EACCES means crypto key not loaded */
3639 if ((error == EACCES) || (error == EBUSY))
3640 return (SET_ERROR(error));
13fe0198 3641 if (error != 0)
2e528b49 3642 return (SET_ERROR(EEXIST));
13fe0198 3643 return (0);
9babb374 3644}
c409e464 3645
93ce2b4c 3646#if defined(_KERNEL)
0f699108
AZ
3647EXPORT_SYMBOL(zil_alloc);
3648EXPORT_SYMBOL(zil_free);
3649EXPORT_SYMBOL(zil_open);
3650EXPORT_SYMBOL(zil_close);
3651EXPORT_SYMBOL(zil_replay);
3652EXPORT_SYMBOL(zil_replaying);
3653EXPORT_SYMBOL(zil_destroy);
3654EXPORT_SYMBOL(zil_destroy_sync);
3655EXPORT_SYMBOL(zil_itx_create);
3656EXPORT_SYMBOL(zil_itx_destroy);
3657EXPORT_SYMBOL(zil_itx_assign);
3658EXPORT_SYMBOL(zil_commit);
0f699108
AZ
3659EXPORT_SYMBOL(zil_claim);
3660EXPORT_SYMBOL(zil_check_log_chain);
3661EXPORT_SYMBOL(zil_sync);
3662EXPORT_SYMBOL(zil_clean);
3663EXPORT_SYMBOL(zil_suspend);
3664EXPORT_SYMBOL(zil_resume);
1ce23dca 3665EXPORT_SYMBOL(zil_lwb_add_block);
0f699108
AZ
3666EXPORT_SYMBOL(zil_bp_tree_add);
3667EXPORT_SYMBOL(zil_set_sync);
3668EXPORT_SYMBOL(zil_set_logbias);
3669
1b7c1e5c 3670/* BEGIN CSTYLED */
2fe61a7e
PS
3671module_param(zfs_commit_timeout_pct, int, 0644);
3672MODULE_PARM_DESC(zfs_commit_timeout_pct, "ZIL block open timeout percentage");
3673
c409e464
BB
3674module_param(zil_replay_disable, int, 0644);
3675MODULE_PARM_DESC(zil_replay_disable, "Disable intent logging replay");
3676
53b1f5ea
PS
3677module_param(zil_nocacheflush, int, 0644);
3678MODULE_PARM_DESC(zil_nocacheflush, "Disable ZIL cache flushes");
ee191e80 3679
1b7c1e5c
GDN
3680module_param(zil_slog_bulk, ulong, 0644);
3681MODULE_PARM_DESC(zil_slog_bulk, "Limit in bytes slog sync writes per commit");
b8738257
MA
3682
3683module_param(zil_maxblocksize, int, 0644);
3684MODULE_PARM_DESC(zil_maxblocksize, "Limit in bytes of ZIL log block size");
1b7c1e5c 3685/* END CSTYLED */
c409e464 3686#endif