]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/zio_crypt.c
Wait for resilver after online
[mirror_zfs.git] / module / zfs / zio_crypt.c
CommitLineData
b5256303
TC
1/*
2 * CDDL HEADER START
3 *
4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
7 * 1.0 of the CDDL.
8 *
9 * A full copy of the text of the CDDL should have accompanied this
10 * source. A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
12 *
13 * CDDL HEADER END
14 */
15
16/*
17 * Copyright (c) 2017, Datto, Inc. All rights reserved.
18 */
19
20#include <sys/zio_crypt.h>
21#include <sys/dmu.h>
22#include <sys/dmu_objset.h>
23#include <sys/dnode.h>
24#include <sys/fs/zfs.h>
25#include <sys/zio.h>
26#include <sys/zil.h>
27#include <sys/sha2.h>
4807c0ba 28#include <sys/hkdf.h>
cf637391 29#include "qat.h"
b5256303
TC
30
31/*
32 * This file is responsible for handling all of the details of generating
33 * encryption parameters and performing encryption and authentication.
34 *
35 * BLOCK ENCRYPTION PARAMETERS:
36 * Encryption /Authentication Algorithm Suite (crypt):
37 * The encryption algorithm, mode, and key length we are going to use. We
38 * currently support AES in either GCM or CCM modes with 128, 192, and 256 bit
39 * keys. All authentication is currently done with SHA512-HMAC.
40 *
41 * Plaintext:
42 * The unencrypted data that we want to encrypt.
43 *
44 * Initialization Vector (IV):
45 * An initialization vector for the encryption algorithms. This is used to
46 * "tweak" the encryption algorithms so that two blocks of the same data are
47 * encrypted into different ciphertext outputs, thus obfuscating block patterns.
48 * The supported encryption modes (AES-GCM and AES-CCM) require that an IV is
49 * never reused with the same encryption key. This value is stored unencrypted
50 * and must simply be provided to the decryption function. We use a 96 bit IV
51 * (as recommended by NIST) for all block encryption. For non-dedup blocks we
52 * derive the IV randomly. The first 64 bits of the IV are stored in the second
53 * word of DVA[2] and the remaining 32 bits are stored in the upper 32 bits of
54 * blk_fill. This is safe because encrypted blocks can't use the upper 32 bits
55 * of blk_fill. We only encrypt level 0 blocks, which normally have a fill count
56 * of 1. The only exception is for DMU_OT_DNODE objects, where the fill count of
57 * level 0 blocks is the number of allocated dnodes in that block. The on-disk
58 * format supports at most 2^15 slots per L0 dnode block, because the maximum
59 * block size is 16MB (2^24). In either case, for level 0 blocks this number
60 * will still be smaller than UINT32_MAX so it is safe to store the IV in the
61 * top 32 bits of blk_fill, while leaving the bottom 32 bits of the fill count
62 * for the dnode code.
63 *
64 * Master key:
65 * This is the most important secret data of an encrypted dataset. It is used
66 * along with the salt to generate that actual encryption keys via HKDF. We
67 * do not use the master key to directly encrypt any data because there are
68 * theoretical limits on how much data can actually be safely encrypted with
69 * any encryption mode. The master key is stored encrypted on disk with the
70 * user's wrapping key. Its length is determined by the encryption algorithm.
71 * For details on how this is stored see the block comment in dsl_crypt.c
72 *
73 * Salt:
74 * Used as an input to the HKDF function, along with the master key. We use a
75 * 64 bit salt, stored unencrypted in the first word of DVA[2]. Any given salt
76 * can be used for encrypting many blocks, so we cache the current salt and the
77 * associated derived key in zio_crypt_t so we do not need to derive it again
78 * needlessly.
79 *
80 * Encryption Key:
81 * A secret binary key, generated from an HKDF function used to encrypt and
82 * decrypt data.
83 *
8d9e7c8f 84 * Message Authentication Code (MAC)
b5256303
TC
85 * The MAC is an output of authenticated encryption modes such as AES-GCM and
86 * AES-CCM. Its purpose is to ensure that an attacker cannot modify encrypted
87 * data on disk and return garbage to the application. Effectively, it is a
88 * checksum that can not be reproduced by an attacker. We store the MAC in the
89 * second 128 bits of blk_cksum, leaving the first 128 bits for a truncated
90 * regular checksum of the ciphertext which can be used for scrubbing.
91 *
92 * OBJECT AUTHENTICATION:
93 * Some object types, such as DMU_OT_MASTER_NODE cannot be encrypted because
94 * they contain some info that always needs to be readable. To prevent this
95 * data from being altered, we authenticate this data using SHA512-HMAC. This
96 * will produce a MAC (similar to the one produced via encryption) which can
97 * be used to verify the object was not modified. HMACs do not require key
98 * rotation or IVs, so we can keep up to the full 3 copies of authenticated
99 * data.
100 *
101 * ZIL ENCRYPTION:
102 * ZIL blocks have their bp written to disk ahead of the associated data, so we
103 * cannot store the MAC there as we normally do. For these blocks the MAC is
104 * stored in the embedded checksum within the zil_chain_t header. The salt and
105 * IV are generated for the block on bp allocation instead of at encryption
106 * time. In addition, ZIL blocks have some pieces that must be left in plaintext
107 * for claiming even though all of the sensitive user data still needs to be
108 * encrypted. The function zio_crypt_init_uios_zil() handles parsing which
109 * pieces of the block need to be encrypted. All data that is not encrypted is
110 * authenticated using the AAD mechanisms that the supported encryption modes
111 * provide for. In order to preserve the semantics of the ZIL for encrypted
112 * datasets, the ZIL is not protected at the objset level as described below.
113 *
114 * DNODE ENCRYPTION:
115 * Similarly to ZIL blocks, the core part of each dnode_phys_t needs to be left
116 * in plaintext for scrubbing and claiming, but the bonus buffers might contain
117 * sensitive user data. The function zio_crypt_init_uios_dnode() handles parsing
118 * which which pieces of the block need to be encrypted. For more details about
119 * dnode authentication and encryption, see zio_crypt_init_uios_dnode().
120 *
121 * OBJECT SET AUTHENTICATION:
122 * Up to this point, everything we have encrypted and authenticated has been
123 * at level 0 (or -2 for the ZIL). If we did not do any further work the
8d9e7c8f 124 * on-disk format would be susceptible to attacks that deleted or rearranged
b5256303
TC
125 * the order of level 0 blocks. Ideally, the cleanest solution would be to
126 * maintain a tree of authentication MACs going up the bp tree. However, this
127 * presents a problem for raw sends. Send files do not send information about
128 * indirect blocks so there would be no convenient way to transfer the MACs and
129 * they cannot be recalculated on the receive side without the master key which
130 * would defeat one of the purposes of raw sends in the first place. Instead,
131 * for the indirect levels of the bp tree, we use a regular SHA512 of the MACs
132 * from the level below. We also include some portable fields from blk_prop such
133 * as the lsize and compression algorithm to prevent the data from being
8d9e7c8f 134 * misinterpreted.
b5256303 135 *
8d9e7c8f 136 * At the objset level, we maintain 2 separate 256 bit MACs in the
b5256303 137 * objset_phys_t. The first one is "portable" and is the logical root of the
8d9e7c8f 138 * MAC tree maintained in the metadnode's bps. The second, is "local" and is
b5256303
TC
139 * used as the root MAC for the user accounting objects, which are also not
140 * transferred via "zfs send". The portable MAC is sent in the DRR_BEGIN payload
141 * of the send file. The useraccounting code ensures that the useraccounting
142 * info is not present upon a receive, so the local MAC can simply be cleared
143 * out at that time. For more info about objset_phys_t authentication, see
144 * zio_crypt_do_objset_hmacs().
145 *
146 * CONSIDERATIONS FOR DEDUP:
147 * In order for dedup to work, blocks that we want to dedup with one another
148 * need to use the same IV and encryption key, so that they will have the same
149 * ciphertext. Normally, one should never reuse an IV with the same encryption
150 * key or else AES-GCM and AES-CCM can both actually leak the plaintext of both
8d9e7c8f 151 * blocks. In this case, however, since we are using the same plaintext as
b5256303
TC
152 * well all that we end up with is a duplicate of the original ciphertext we
153 * already had. As a result, an attacker with read access to the raw disk will
154 * be able to tell which blocks are the same but this information is given away
155 * by dedup anyway. In order to get the same IVs and encryption keys for
8d9e7c8f
TC
156 * equivalent blocks of data we use an HMAC of the plaintext. We use an HMAC
157 * here so that a reproducible checksum of the plaintext is never available to
b5256303
TC
158 * the attacker. The HMAC key is kept alongside the master key, encrypted on
159 * disk. The first 64 bits of the HMAC are used in place of the random salt, and
160 * the next 96 bits are used as the IV. As a result of this mechanism, dedup
161 * will only work within a clone family since encrypted dedup requires use of
162 * the same master and HMAC keys.
163 */
164
165/*
166 * After encrypting many blocks with the same key we may start to run up
167 * against the theoretical limits of how much data can securely be encrypted
168 * with a single key using the supported encryption modes. The most obvious
169 * limitation is that our risk of generating 2 equivalent 96 bit IVs increases
170 * the more IVs we generate (which both GCM and CCM modes strictly forbid).
171 * This risk actually grows surprisingly quickly over time according to the
172 * Birthday Problem. With a total IV space of 2^(96 bits), and assuming we have
173 * generated n IVs with a cryptographically secure RNG, the approximate
174 * probability p(n) of a collision is given as:
175 *
176 * p(n) ~= e^(-n*(n-1)/(2*(2^96)))
177 *
178 * [http://www.math.cornell.edu/~mec/2008-2009/TianyiZheng/Birthday.html]
179 *
180 * Assuming that we want to ensure that p(n) never goes over 1 / 1 trillion
181 * we must not write more than 398,065,730 blocks with the same encryption key.
182 * Therefore, we rotate our keys after 400,000,000 blocks have been written by
183 * generating a new random 64 bit salt for our HKDF encryption key generation
184 * function.
185 */
186#define ZFS_KEY_MAX_SALT_USES_DEFAULT 400000000
187#define ZFS_CURRENT_MAX_SALT_USES \
188 (MIN(zfs_key_max_salt_uses, ZFS_KEY_MAX_SALT_USES_DEFAULT))
189unsigned long zfs_key_max_salt_uses = ZFS_KEY_MAX_SALT_USES_DEFAULT;
190
ae76f45c
TC
191typedef struct blkptr_auth_buf {
192 uint64_t bab_prop; /* blk_prop - portable mask */
193 uint8_t bab_mac[ZIO_DATA_MAC_LEN]; /* MAC from blk_cksum */\r
194 uint64_t bab_pad; /* reserved for future use */
195} blkptr_auth_buf_t;
196
b5256303
TC
197zio_crypt_info_t zio_crypt_table[ZIO_CRYPT_FUNCTIONS] = {
198 {"", ZC_TYPE_NONE, 0, "inherit"},
199 {"", ZC_TYPE_NONE, 0, "on"},
200 {"", ZC_TYPE_NONE, 0, "off"},
201 {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 16, "aes-128-ccm"},
202 {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 24, "aes-192-ccm"},
203 {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 32, "aes-256-ccm"},
204 {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 16, "aes-128-gcm"},
205 {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 24, "aes-192-gcm"},
206 {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 32, "aes-256-gcm"}
207};
208
b5256303
TC
209void
210zio_crypt_key_destroy(zio_crypt_key_t *key)
211{
212 rw_destroy(&key->zk_salt_lock);
213
214 /* free crypto templates */
215 crypto_destroy_ctx_template(key->zk_current_tmpl);
216 crypto_destroy_ctx_template(key->zk_hmac_tmpl);
217
218 /* zero out sensitive data */
219 bzero(key, sizeof (zio_crypt_key_t));
220}
221
222int
223zio_crypt_key_init(uint64_t crypt, zio_crypt_key_t *key)
224{
225 int ret;
226 crypto_mechanism_t mech;
227 uint_t keydata_len;
228
229 ASSERT(key != NULL);
230 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
231
232 keydata_len = zio_crypt_table[crypt].ci_keylen;
233 bzero(key, sizeof (zio_crypt_key_t));
234
235 /* fill keydata buffers and salt with random data */
236 ret = random_get_bytes((uint8_t *)&key->zk_guid, sizeof (uint64_t));
237 if (ret != 0)
238 goto error;
239
240 ret = random_get_bytes(key->zk_master_keydata, keydata_len);
241 if (ret != 0)
242 goto error;
243
244 ret = random_get_bytes(key->zk_hmac_keydata, SHA512_HMAC_KEYLEN);
245 if (ret != 0)
246 goto error;
247
248 ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
249 if (ret != 0)
250 goto error;
251
252 /* derive the current key from the master key */
253 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
254 key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
255 keydata_len);
256 if (ret != 0)
257 goto error;
258
259 /* initialize keys for the ICP */
260 key->zk_current_key.ck_format = CRYPTO_KEY_RAW;
261 key->zk_current_key.ck_data = key->zk_current_keydata;
4807c0ba 262 key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
b5256303
TC
263
264 key->zk_hmac_key.ck_format = CRYPTO_KEY_RAW;
265 key->zk_hmac_key.ck_data = &key->zk_hmac_key;
4807c0ba 266 key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
b5256303
TC
267
268 /*
269 * Initialize the crypto templates. It's ok if this fails because
270 * this is just an optimization.
271 */
272 mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname);
273 ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
274 &key->zk_current_tmpl, KM_SLEEP);
275 if (ret != CRYPTO_SUCCESS)
276 key->zk_current_tmpl = NULL;
277
278 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
279 ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key,
280 &key->zk_hmac_tmpl, KM_SLEEP);
281 if (ret != CRYPTO_SUCCESS)
282 key->zk_hmac_tmpl = NULL;
283
284 key->zk_crypt = crypt;
ae76f45c 285 key->zk_version = ZIO_CRYPT_KEY_CURRENT_VERSION;
b5256303
TC
286 key->zk_salt_count = 0;
287 rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
288
289 return (0);
290
291error:
292 zio_crypt_key_destroy(key);
293 return (ret);
294}
295
296static int
297zio_crypt_key_change_salt(zio_crypt_key_t *key)
298{
299 int ret = 0;
300 uint8_t salt[ZIO_DATA_SALT_LEN];
301 crypto_mechanism_t mech;
302 uint_t keydata_len = zio_crypt_table[key->zk_crypt].ci_keylen;
303
304 /* generate a new salt */
305 ret = random_get_bytes(salt, ZIO_DATA_SALT_LEN);
306 if (ret != 0)
307 goto error;
308
309 rw_enter(&key->zk_salt_lock, RW_WRITER);
310
311 /* someone beat us to the salt rotation, just unlock and return */
312 if (key->zk_salt_count < ZFS_CURRENT_MAX_SALT_USES)
313 goto out_unlock;
314
315 /* derive the current key from the master key and the new salt */
316 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
317 salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata, keydata_len);
318 if (ret != 0)
319 goto out_unlock;
320
321 /* assign the salt and reset the usage count */
322 bcopy(salt, key->zk_salt, ZIO_DATA_SALT_LEN);
323 key->zk_salt_count = 0;
324
325 /* destroy the old context template and create the new one */
326 crypto_destroy_ctx_template(key->zk_current_tmpl);
327 ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
328 &key->zk_current_tmpl, KM_SLEEP);
329 if (ret != CRYPTO_SUCCESS)
330 key->zk_current_tmpl = NULL;
331
332 rw_exit(&key->zk_salt_lock);
333
334 return (0);
335
336out_unlock:
337 rw_exit(&key->zk_salt_lock);
338error:
339 return (ret);
340}
341
342/* See comment above zfs_key_max_salt_uses definition for details */
343int
344zio_crypt_key_get_salt(zio_crypt_key_t *key, uint8_t *salt)
345{
346 int ret;
347 boolean_t salt_change;
348
349 rw_enter(&key->zk_salt_lock, RW_READER);
350
351 bcopy(key->zk_salt, salt, ZIO_DATA_SALT_LEN);
352 salt_change = (atomic_inc_64_nv(&key->zk_salt_count) >=
353 ZFS_CURRENT_MAX_SALT_USES);
354
355 rw_exit(&key->zk_salt_lock);
356
357 if (salt_change) {
358 ret = zio_crypt_key_change_salt(key);
359 if (ret != 0)
360 goto error;
361 }
362
363 return (0);
364
365error:
366 return (ret);
367}
368
369/*
370 * This function handles all encryption and decryption in zfs. When
371 * encrypting it expects puio to reference the plaintext and cuio to
372 * reference the cphertext. cuio must have enough space for the
373 * ciphertext + room for a MAC. datalen should be the length of the
374 * plaintext / ciphertext alone.
375 */
376static int
377zio_do_crypt_uio(boolean_t encrypt, uint64_t crypt, crypto_key_t *key,
378 crypto_ctx_template_t tmpl, uint8_t *ivbuf, uint_t datalen,
379 uio_t *puio, uio_t *cuio, uint8_t *authbuf, uint_t auth_len)
380{
381 int ret;
382 crypto_data_t plaindata, cipherdata;
383 CK_AES_CCM_PARAMS ccmp;
384 CK_AES_GCM_PARAMS gcmp;
385 crypto_mechanism_t mech;
386 zio_crypt_info_t crypt_info;
387 uint_t plain_full_len, maclen;
388
389 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
390 ASSERT3U(key->ck_format, ==, CRYPTO_KEY_RAW);
391
392 /* lookup the encryption info */
393 crypt_info = zio_crypt_table[crypt];
394
395 /* the mac will always be the last iovec_t in the cipher uio */
396 maclen = cuio->uio_iov[cuio->uio_iovcnt - 1].iov_len;
397
398 ASSERT(maclen <= ZIO_DATA_MAC_LEN);
399
400 /* setup encryption mechanism (same as crypt) */
401 mech.cm_type = crypto_mech2id(crypt_info.ci_mechname);
402
403 /*
404 * Strangely, the ICP requires that plain_full_len must include
405 * the MAC length when decrypting, even though the UIO does not
406 * need to have the extra space allocated.
407 */
408 if (encrypt) {
409 plain_full_len = datalen;
410 } else {
411 plain_full_len = datalen + maclen;
412 }
413
414 /*
415 * setup encryption params (currently only AES CCM and AES GCM
416 * are supported)
417 */
418 if (crypt_info.ci_crypt_type == ZC_TYPE_CCM) {
419 ccmp.ulNonceSize = ZIO_DATA_IV_LEN;
420 ccmp.ulAuthDataSize = auth_len;
421 ccmp.authData = authbuf;
422 ccmp.ulMACSize = maclen;
423 ccmp.nonce = ivbuf;
424 ccmp.ulDataSize = plain_full_len;
425
426 mech.cm_param = (char *)(&ccmp);
427 mech.cm_param_len = sizeof (CK_AES_CCM_PARAMS);
428 } else {
429 gcmp.ulIvLen = ZIO_DATA_IV_LEN;
4807c0ba 430 gcmp.ulIvBits = CRYPTO_BYTES2BITS(ZIO_DATA_IV_LEN);
b5256303
TC
431 gcmp.ulAADLen = auth_len;
432 gcmp.pAAD = authbuf;
4807c0ba 433 gcmp.ulTagBits = CRYPTO_BYTES2BITS(maclen);
b5256303
TC
434 gcmp.pIv = ivbuf;
435
436 mech.cm_param = (char *)(&gcmp);
437 mech.cm_param_len = sizeof (CK_AES_GCM_PARAMS);
438 }
439
440 /* populate the cipher and plain data structs. */
441 plaindata.cd_format = CRYPTO_DATA_UIO;
442 plaindata.cd_offset = 0;
443 plaindata.cd_uio = puio;
444 plaindata.cd_miscdata = NULL;
445 plaindata.cd_length = plain_full_len;
446
447 cipherdata.cd_format = CRYPTO_DATA_UIO;
448 cipherdata.cd_offset = 0;
449 cipherdata.cd_uio = cuio;
450 cipherdata.cd_miscdata = NULL;
451 cipherdata.cd_length = datalen + maclen;
452
453 /* perform the actual encryption */
454 if (encrypt) {
455 ret = crypto_encrypt(&mech, &plaindata, key, tmpl, &cipherdata,
456 NULL);
457 if (ret != CRYPTO_SUCCESS) {
458 ret = SET_ERROR(EIO);
459 goto error;
460 }
461 } else {
462 ret = crypto_decrypt(&mech, &cipherdata, key, tmpl, &plaindata,
463 NULL);
464 if (ret != CRYPTO_SUCCESS) {
465 ASSERT3U(ret, ==, CRYPTO_INVALID_MAC);
466 ret = SET_ERROR(ECKSUM);
467 goto error;
468 }
469 }
470
471 return (0);
472
473error:
474 return (ret);
475}
476
477int
478zio_crypt_key_wrap(crypto_key_t *cwkey, zio_crypt_key_t *key, uint8_t *iv,
479 uint8_t *mac, uint8_t *keydata_out, uint8_t *hmac_keydata_out)
480{
481 int ret;
482 uio_t puio, cuio;
ae76f45c 483 uint64_t aad[3];
b5256303
TC
484 iovec_t plain_iovecs[2], cipher_iovecs[3];
485 uint64_t crypt = key->zk_crypt;
ae76f45c 486 uint_t enc_len, keydata_len, aad_len;
b5256303
TC
487
488 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
489 ASSERT3U(cwkey->ck_format, ==, CRYPTO_KEY_RAW);
490
491 keydata_len = zio_crypt_table[crypt].ci_keylen;
492
493 /* generate iv for wrapping the master and hmac key */
494 ret = random_get_pseudo_bytes(iv, WRAPPING_IV_LEN);
495 if (ret != 0)
496 goto error;
497
498 /* initialize uio_ts */
499 plain_iovecs[0].iov_base = key->zk_master_keydata;
500 plain_iovecs[0].iov_len = keydata_len;
501 plain_iovecs[1].iov_base = key->zk_hmac_keydata;
502 plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
503
504 cipher_iovecs[0].iov_base = keydata_out;
505 cipher_iovecs[0].iov_len = keydata_len;
506 cipher_iovecs[1].iov_base = hmac_keydata_out;
507 cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
508 cipher_iovecs[2].iov_base = mac;
509 cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN;
510
ae76f45c
TC
511 /*
512 * Although we don't support writing to the old format, we do
513 * support rewrapping the key so that the user can move and
514 * quarantine datasets on the old format.
515 */
516 if (key->zk_version == 0) {
517 aad_len = sizeof (uint64_t);
518 aad[0] = LE_64(key->zk_guid);
519 } else {
520 ASSERT3U(key->zk_version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
521 aad_len = sizeof (uint64_t) * 3;
522 aad[0] = LE_64(key->zk_guid);
523 aad[1] = LE_64(crypt);
524 aad[2] = LE_64(key->zk_version);
525 }
526
b5256303
TC
527 enc_len = zio_crypt_table[crypt].ci_keylen + SHA512_HMAC_KEYLEN;
528 puio.uio_iov = plain_iovecs;
529 puio.uio_iovcnt = 2;
530 puio.uio_segflg = UIO_SYSSPACE;
531 cuio.uio_iov = cipher_iovecs;
532 cuio.uio_iovcnt = 3;
533 cuio.uio_segflg = UIO_SYSSPACE;
534
535 /* encrypt the keys and store the resulting ciphertext and mac */
536 ret = zio_do_crypt_uio(B_TRUE, crypt, cwkey, NULL, iv, enc_len,
ae76f45c 537 &puio, &cuio, (uint8_t *)aad, aad_len);
b5256303
TC
538 if (ret != 0)
539 goto error;
540
541 return (0);
542
543error:
544 return (ret);
545}
546
547int
ae76f45c
TC
548zio_crypt_key_unwrap(crypto_key_t *cwkey, uint64_t crypt, uint64_t version,
549 uint64_t guid, uint8_t *keydata, uint8_t *hmac_keydata, uint8_t *iv,
550 uint8_t *mac, zio_crypt_key_t *key)
b5256303
TC
551{
552 int ret;
553 crypto_mechanism_t mech;
554 uio_t puio, cuio;
ae76f45c 555 uint64_t aad[3];
b5256303 556 iovec_t plain_iovecs[2], cipher_iovecs[3];
ae76f45c 557 uint_t enc_len, keydata_len, aad_len;
b5256303
TC
558
559 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
560 ASSERT3U(cwkey->ck_format, ==, CRYPTO_KEY_RAW);
561
562 keydata_len = zio_crypt_table[crypt].ci_keylen;
563
564 /* initialize uio_ts */
565 plain_iovecs[0].iov_base = key->zk_master_keydata;
566 plain_iovecs[0].iov_len = keydata_len;
567 plain_iovecs[1].iov_base = key->zk_hmac_keydata;
568 plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
569
570 cipher_iovecs[0].iov_base = keydata;
571 cipher_iovecs[0].iov_len = keydata_len;
572 cipher_iovecs[1].iov_base = hmac_keydata;
573 cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
574 cipher_iovecs[2].iov_base = mac;
575 cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN;
576
ae76f45c
TC
577 if (version == 0) {
578 aad_len = sizeof (uint64_t);
579 aad[0] = LE_64(guid);
580 } else {
581 ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
582 aad_len = sizeof (uint64_t) * 3;
583 aad[0] = LE_64(guid);
584 aad[1] = LE_64(crypt);
585 aad[2] = LE_64(version);
586 }
587
b5256303
TC
588 enc_len = keydata_len + SHA512_HMAC_KEYLEN;
589 puio.uio_iov = plain_iovecs;
590 puio.uio_segflg = UIO_SYSSPACE;
591 puio.uio_iovcnt = 2;
592 cuio.uio_iov = cipher_iovecs;
593 cuio.uio_iovcnt = 3;
594 cuio.uio_segflg = UIO_SYSSPACE;
595
596 /* decrypt the keys and store the result in the output buffers */
597 ret = zio_do_crypt_uio(B_FALSE, crypt, cwkey, NULL, iv, enc_len,
ae76f45c 598 &puio, &cuio, (uint8_t *)aad, aad_len);
b5256303
TC
599 if (ret != 0)
600 goto error;
601
602 /* generate a fresh salt */
603 ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
604 if (ret != 0)
605 goto error;
606
607 /* derive the current key from the master key */
608 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
609 key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
610 keydata_len);
611 if (ret != 0)
612 goto error;
613
614 /* initialize keys for ICP */
615 key->zk_current_key.ck_format = CRYPTO_KEY_RAW;
616 key->zk_current_key.ck_data = key->zk_current_keydata;
4807c0ba 617 key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
b5256303
TC
618
619 key->zk_hmac_key.ck_format = CRYPTO_KEY_RAW;
620 key->zk_hmac_key.ck_data = key->zk_hmac_keydata;
4807c0ba 621 key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
b5256303
TC
622
623 /*
624 * Initialize the crypto templates. It's ok if this fails because
625 * this is just an optimization.
626 */
627 mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname);
628 ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
629 &key->zk_current_tmpl, KM_SLEEP);
630 if (ret != CRYPTO_SUCCESS)
631 key->zk_current_tmpl = NULL;
632
633 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
634 ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key,
635 &key->zk_hmac_tmpl, KM_SLEEP);
636 if (ret != CRYPTO_SUCCESS)
637 key->zk_hmac_tmpl = NULL;
638
639 key->zk_crypt = crypt;
ae76f45c 640 key->zk_version = version;
b5256303
TC
641 key->zk_guid = guid;
642 key->zk_salt_count = 0;
643 rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
644
645 return (0);
646
647error:
648 zio_crypt_key_destroy(key);
649 return (ret);
650}
651
652int
653zio_crypt_generate_iv(uint8_t *ivbuf)
654{
655 int ret;
656
657 /* randomly generate the IV */
658 ret = random_get_pseudo_bytes(ivbuf, ZIO_DATA_IV_LEN);
659 if (ret != 0)
660 goto error;
661
662 return (0);
663
664error:
665 bzero(ivbuf, ZIO_DATA_IV_LEN);
666 return (ret);
667}
668
669int
670zio_crypt_do_hmac(zio_crypt_key_t *key, uint8_t *data, uint_t datalen,
4807c0ba 671 uint8_t *digestbuf, uint_t digestlen)
b5256303
TC
672{
673 int ret;
674 crypto_mechanism_t mech;
675 crypto_data_t in_data, digest_data;
4807c0ba
TC
676 uint8_t raw_digestbuf[SHA512_DIGEST_LENGTH];
677
678 ASSERT3U(digestlen, <=, SHA512_DIGEST_LENGTH);
b5256303
TC
679
680 /* initialize sha512-hmac mechanism and crypto data */
681 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
682 mech.cm_param = NULL;
683 mech.cm_param_len = 0;
684
685 /* initialize the crypto data */
686 in_data.cd_format = CRYPTO_DATA_RAW;
687 in_data.cd_offset = 0;
688 in_data.cd_length = datalen;
689 in_data.cd_raw.iov_base = (char *)data;
690 in_data.cd_raw.iov_len = in_data.cd_length;
691
692 digest_data.cd_format = CRYPTO_DATA_RAW;
693 digest_data.cd_offset = 0;
4807c0ba 694 digest_data.cd_length = SHA512_DIGEST_LENGTH;
b5256303
TC
695 digest_data.cd_raw.iov_base = (char *)raw_digestbuf;
696 digest_data.cd_raw.iov_len = digest_data.cd_length;
697
698 /* generate the hmac */
699 ret = crypto_mac(&mech, &in_data, &key->zk_hmac_key, key->zk_hmac_tmpl,
700 &digest_data, NULL);
701 if (ret != CRYPTO_SUCCESS) {
702 ret = SET_ERROR(EIO);
703 goto error;
704 }
705
4807c0ba 706 bcopy(raw_digestbuf, digestbuf, digestlen);
b5256303
TC
707
708 return (0);
709
710error:
4807c0ba 711 bzero(digestbuf, digestlen);
b5256303
TC
712 return (ret);
713}
714
715int
716zio_crypt_generate_iv_salt_dedup(zio_crypt_key_t *key, uint8_t *data,
717 uint_t datalen, uint8_t *ivbuf, uint8_t *salt)
718{
719 int ret;
4807c0ba 720 uint8_t digestbuf[SHA512_DIGEST_LENGTH];
b5256303 721
4807c0ba
TC
722 ret = zio_crypt_do_hmac(key, data, datalen,
723 digestbuf, SHA512_DIGEST_LENGTH);
b5256303
TC
724 if (ret != 0)
725 return (ret);
726
727 bcopy(digestbuf, salt, ZIO_DATA_SALT_LEN);
728 bcopy(digestbuf + ZIO_DATA_SALT_LEN, ivbuf, ZIO_DATA_IV_LEN);
729
730 return (0);
731}
732
733/*
734 * The following functions are used to encode and decode encryption parameters
735 * into blkptr_t and zil_header_t. The ICP wants to use these parameters as
736 * byte strings, which normally means that these strings would not need to deal
737 * with byteswapping at all. However, both blkptr_t and zil_header_t may be
738 * byteswapped by lower layers and so we must "undo" that byteswap here upon
ae76f45c
TC
739 * decoding and encoding in a non-native byteorder. These functions require
740 * that the byteorder bit is correct before being called.
b5256303
TC
741 */
742void
743zio_crypt_encode_params_bp(blkptr_t *bp, uint8_t *salt, uint8_t *iv)
744{
ae76f45c 745 uint64_t val64;
b5256303
TC
746 uint32_t val32;
747
748 ASSERT(BP_IS_ENCRYPTED(bp));
749
ae76f45c
TC
750 if (!BP_SHOULD_BYTESWAP(bp)) {
751 bcopy(salt, &bp->blk_dva[2].dva_word[0], sizeof (uint64_t));
752 bcopy(iv, &bp->blk_dva[2].dva_word[1], sizeof (uint64_t));
753 bcopy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
754 BP_SET_IV2(bp, val32);
755 } else {
756 bcopy(salt, &val64, sizeof (uint64_t));
757 bp->blk_dva[2].dva_word[0] = BSWAP_64(val64);
758
759 bcopy(iv, &val64, sizeof (uint64_t));
760 bp->blk_dva[2].dva_word[1] = BSWAP_64(val64);
761
762 bcopy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
763 BP_SET_IV2(bp, BSWAP_32(val32));
764 }
b5256303
TC
765}
766
767void
768zio_crypt_decode_params_bp(const blkptr_t *bp, uint8_t *salt, uint8_t *iv)
769{
770 uint64_t val64;
771 uint32_t val32;
772
773 ASSERT(BP_IS_PROTECTED(bp));
774
775 /* for convenience, so callers don't need to check */
776 if (BP_IS_AUTHENTICATED(bp)) {
777 bzero(salt, ZIO_DATA_SALT_LEN);
778 bzero(iv, ZIO_DATA_IV_LEN);
779 return;
780 }
781
782 if (!BP_SHOULD_BYTESWAP(bp)) {
783 bcopy(&bp->blk_dva[2].dva_word[0], salt, sizeof (uint64_t));
784 bcopy(&bp->blk_dva[2].dva_word[1], iv, sizeof (uint64_t));
785
786 val32 = (uint32_t)BP_GET_IV2(bp);
787 bcopy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
788 } else {
789 val64 = BSWAP_64(bp->blk_dva[2].dva_word[0]);
790 bcopy(&val64, salt, sizeof (uint64_t));
791
792 val64 = BSWAP_64(bp->blk_dva[2].dva_word[1]);
793 bcopy(&val64, iv, sizeof (uint64_t));
794
795 val32 = BSWAP_32((uint32_t)BP_GET_IV2(bp));
796 bcopy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
797 }
798}
799
800void
801zio_crypt_encode_mac_bp(blkptr_t *bp, uint8_t *mac)
802{
ae76f45c
TC
803 uint64_t val64;
804
b5256303
TC
805 ASSERT(BP_USES_CRYPT(bp));
806 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_OBJSET);
807
ae76f45c
TC
808 if (!BP_SHOULD_BYTESWAP(bp)) {
809 bcopy(mac, &bp->blk_cksum.zc_word[2], sizeof (uint64_t));
810 bcopy(mac + sizeof (uint64_t), &bp->blk_cksum.zc_word[3],
811 sizeof (uint64_t));
812 } else {
813 bcopy(mac, &val64, sizeof (uint64_t));
814 bp->blk_cksum.zc_word[2] = BSWAP_64(val64);
815
816 bcopy(mac + sizeof (uint64_t), &val64, sizeof (uint64_t));
817 bp->blk_cksum.zc_word[3] = BSWAP_64(val64);
818 }
b5256303
TC
819}
820
821void
822zio_crypt_decode_mac_bp(const blkptr_t *bp, uint8_t *mac)
823{
824 uint64_t val64;
825
826 ASSERT(BP_USES_CRYPT(bp) || BP_IS_HOLE(bp));
827
828 /* for convenience, so callers don't need to check */
829 if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
830 bzero(mac, ZIO_DATA_MAC_LEN);
831 return;
832 }
833
834 if (!BP_SHOULD_BYTESWAP(bp)) {
835 bcopy(&bp->blk_cksum.zc_word[2], mac, sizeof (uint64_t));
836 bcopy(&bp->blk_cksum.zc_word[3], mac + sizeof (uint64_t),
837 sizeof (uint64_t));
838 } else {
839 val64 = BSWAP_64(bp->blk_cksum.zc_word[2]);
840 bcopy(&val64, mac, sizeof (uint64_t));
841
842 val64 = BSWAP_64(bp->blk_cksum.zc_word[3]);
843 bcopy(&val64, mac + sizeof (uint64_t), sizeof (uint64_t));
844 }
845}
846
847void
848zio_crypt_encode_mac_zil(void *data, uint8_t *mac)
849{
850 zil_chain_t *zilc = data;
851
852 bcopy(mac, &zilc->zc_eck.zec_cksum.zc_word[2], sizeof (uint64_t));
853 bcopy(mac + sizeof (uint64_t), &zilc->zc_eck.zec_cksum.zc_word[3],
854 sizeof (uint64_t));
855}
856
857void
858zio_crypt_decode_mac_zil(const void *data, uint8_t *mac)
859{
860 /*
861 * The ZIL MAC is embedded in the block it protects, which will
862 * not have been byteswapped by the time this function has been called.
863 * As a result, we don't need to worry about byteswapping the MAC.
864 */
865 const zil_chain_t *zilc = data;
866
867 bcopy(&zilc->zc_eck.zec_cksum.zc_word[2], mac, sizeof (uint64_t));
868 bcopy(&zilc->zc_eck.zec_cksum.zc_word[3], mac + sizeof (uint64_t),
869 sizeof (uint64_t));
870}
871
872/*
873 * This routine takes a block of dnodes (src_abd) and copies only the bonus
874 * buffers to the same offsets in the dst buffer. datalen should be the size
875 * of both the src_abd and the dst buffer (not just the length of the bonus
876 * buffers).
877 */
878void
879zio_crypt_copy_dnode_bonus(abd_t *src_abd, uint8_t *dst, uint_t datalen)
880{
881 uint_t i, max_dnp = datalen >> DNODE_SHIFT;
882 uint8_t *src;
883 dnode_phys_t *dnp, *sdnp, *ddnp;
884
885 src = abd_borrow_buf_copy(src_abd, datalen);
886
887 sdnp = (dnode_phys_t *)src;
888 ddnp = (dnode_phys_t *)dst;
889
890 for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
891 dnp = &sdnp[i];
892 if (dnp->dn_type != DMU_OT_NONE &&
893 DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
894 dnp->dn_bonuslen != 0) {
895 bcopy(DN_BONUS(dnp), DN_BONUS(&ddnp[i]),
896 DN_MAX_BONUS_LEN(dnp));
897 }
898 }
899
900 abd_return_buf(src_abd, src, datalen);
901}
902
ae76f45c
TC
903/*
904 * This function decides what fields from blk_prop are included in
905 * the on-disk various MAC algorithms.
906 */
b5256303 907static void
ae76f45c 908zio_crypt_bp_zero_nonportable_blkprop(blkptr_t *bp, uint64_t version)
b5256303 909{
ae76f45c
TC
910 /*
911 * Version 0 did not properly zero out all non-portable fields
912 * as it should have done. We maintain this code so that we can
913 * do read-only imports of pools on this version.
914 */
915 if (version == 0) {
916 BP_SET_DEDUP(bp, 0);
917 BP_SET_CHECKSUM(bp, 0);
918 BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE);
919 return;
920 }
921
922 ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
923
924 /*
925 * The hole_birth feature might set these fields even if this bp
926 * is a hole. We zero them out here to guarantee that raw sends
927 * will function with or without the feature.
928 */
929 if (BP_IS_HOLE(bp)) {
930 bp->blk_prop = 0ULL;
931 return;
932 }
b5256303
TC
933
934 /*
ae76f45c
TC
935 * At L0 we want to verify these fields to ensure that data blocks
936 * can not be reinterpretted. For instance, we do not want an attacker
937 * to trick us into returning raw lz4 compressed data to the user
938 * by modifying the compression bits. At higher levels, we cannot
939 * enforce this policy since raw sends do not convey any information
940 * about indirect blocks, so these values might be different on the
941 * receive side. Fortunately, this does not open any new attack
942 * vectors, since any alterations that can be made to a higher level
943 * bp must still verify the correct order of the layer below it.
b5256303 944 */
ae76f45c
TC
945 if (BP_GET_LEVEL(bp) != 0) {
946 BP_SET_BYTEORDER(bp, 0);
947 BP_SET_COMPRESS(bp, 0);
948
949 /*
950 * psize cannot be set to zero or it will trigger
951 * asserts, but the value doesn't really matter as
952 * long as it is constant.
953 */
954 BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE);
955 }
956
957 BP_SET_DEDUP(bp, 0);
958 BP_SET_CHECKSUM(bp, 0);
b5256303
TC
959}
960
ae76f45c
TC
961static void
962zio_crypt_bp_auth_init(uint64_t version, boolean_t should_bswap, blkptr_t *bp,
963 blkptr_auth_buf_t *bab, uint_t *bab_len)
b5256303 964{
b5256303 965 blkptr_t tmpbp = *bp;
b5256303
TC
966
967 if (should_bswap)
968 byteswap_uint64_array(&tmpbp, sizeof (blkptr_t));
969
970 ASSERT(BP_USES_CRYPT(&tmpbp) || BP_IS_HOLE(&tmpbp));
971 ASSERT0(BP_IS_EMBEDDED(&tmpbp));
b5256303 972
ae76f45c 973 zio_crypt_decode_mac_bp(&tmpbp, bab->bab_mac);
b5256303 974
ae76f45c
TC
975 /*
976 * We always MAC blk_prop in LE to ensure portability. This
977 * must be done after decoding the mac, since the endianness
978 * will get zero'd out here.
979 */
980 zio_crypt_bp_zero_nonportable_blkprop(&tmpbp, version);
981 bab->bab_prop = LE_64(tmpbp.blk_prop);
982 bab->bab_pad = 0ULL;
983
984 /* version 0 did not include the padding */
985 *bab_len = sizeof (blkptr_auth_buf_t);
986 if (version == 0)
987 *bab_len -= sizeof (uint64_t);
988}
b5256303 989
ae76f45c
TC
990static int
991zio_crypt_bp_do_hmac_updates(crypto_context_t ctx, uint64_t version,
992 boolean_t should_bswap, blkptr_t *bp)
993{
994 int ret;
995 uint_t bab_len;
996 blkptr_auth_buf_t bab;
997 crypto_data_t cd;
b5256303 998
ae76f45c
TC
999 zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
1000 cd.cd_format = CRYPTO_DATA_RAW;
1001 cd.cd_offset = 0;
1002 cd.cd_length = bab_len;
1003 cd.cd_raw.iov_base = (char *)&bab;
b5256303
TC
1004 cd.cd_raw.iov_len = cd.cd_length;
1005
1006 ret = crypto_mac_update(ctx, &cd, NULL);
1007 if (ret != CRYPTO_SUCCESS) {
1008 ret = SET_ERROR(EIO);
1009 goto error;
1010 }
1011
1012 return (0);
1013
1014error:
1015 return (ret);
1016}
1017
1018static void
ae76f45c
TC
1019zio_crypt_bp_do_indrect_checksum_updates(SHA2_CTX *ctx, uint64_t version,
1020 boolean_t should_bswap, blkptr_t *bp)
b5256303 1021{
ae76f45c
TC
1022 uint_t bab_len;
1023 blkptr_auth_buf_t bab;
b5256303 1024
ae76f45c
TC
1025 zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
1026 SHA2Update(ctx, &bab, bab_len);
b5256303
TC
1027}
1028
1029static void
ae76f45c 1030zio_crypt_bp_do_aad_updates(uint8_t **aadp, uint_t *aad_len, uint64_t version,
b5256303
TC
1031 boolean_t should_bswap, blkptr_t *bp)
1032{
ae76f45c
TC
1033 uint_t bab_len;
1034 blkptr_auth_buf_t bab;
b5256303 1035
ae76f45c
TC
1036 zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
1037 bcopy(&bab, *aadp, bab_len);
1038 *aadp += bab_len;
1039 *aad_len += bab_len;
b5256303
TC
1040}
1041
1042static int
ae76f45c
TC
1043zio_crypt_do_dnode_hmac_updates(crypto_context_t ctx, uint64_t version,
1044 boolean_t should_bswap, dnode_phys_t *dnp)
b5256303
TC
1045{
1046 int ret, i;
1047 dnode_phys_t *adnp;
1048 boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
1049 crypto_data_t cd;
1050 uint8_t tmp_dncore[offsetof(dnode_phys_t, dn_blkptr)];
1051
1052 cd.cd_format = CRYPTO_DATA_RAW;
1053 cd.cd_offset = 0;
1054
1055 /* authenticate the core dnode (masking out non-portable bits) */
1056 bcopy(dnp, tmp_dncore, sizeof (tmp_dncore));
1057 adnp = (dnode_phys_t *)tmp_dncore;
1058 if (le_bswap) {
1059 adnp->dn_datablkszsec = BSWAP_16(adnp->dn_datablkszsec);
1060 adnp->dn_bonuslen = BSWAP_16(adnp->dn_bonuslen);
1061 adnp->dn_maxblkid = BSWAP_64(adnp->dn_maxblkid);
1062 adnp->dn_used = BSWAP_64(adnp->dn_used);
1063 }
1064 adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
1065 adnp->dn_used = 0;
1066
1067 cd.cd_length = sizeof (tmp_dncore);
1068 cd.cd_raw.iov_base = (char *)adnp;
1069 cd.cd_raw.iov_len = cd.cd_length;
1070
1071 ret = crypto_mac_update(ctx, &cd, NULL);
1072 if (ret != CRYPTO_SUCCESS) {
1073 ret = SET_ERROR(EIO);
1074 goto error;
1075 }
1076
1077 for (i = 0; i < dnp->dn_nblkptr; i++) {
ae76f45c 1078 ret = zio_crypt_bp_do_hmac_updates(ctx, version,
b5256303
TC
1079 should_bswap, &dnp->dn_blkptr[i]);
1080 if (ret != 0)
1081 goto error;
1082 }
1083
1084 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
ae76f45c 1085 ret = zio_crypt_bp_do_hmac_updates(ctx, version,
b5256303
TC
1086 should_bswap, DN_SPILL_BLKPTR(dnp));
1087 if (ret != 0)
1088 goto error;
1089 }
1090
1091 return (0);
1092
1093error:
1094 return (ret);
1095}
1096
1097/*
1098 * objset_phys_t blocks introduce a number of exceptions to the normal
7b30ee6b 1099 * authentication process. objset_phys_t's contain 2 separate HMACS for
b5256303 1100 * protecting the integrity of their data. The portable_mac protects the
7b30ee6b 1101 * metadnode. This MAC can be sent with a raw send and protects against
b5256303
TC
1102 * reordering of data within the metadnode. The local_mac protects the user
1103 * accounting objects which are not sent from one system to another.
1104 *
1105 * In addition, objset blocks are the only blocks that can be modified and
1106 * written to disk without the key loaded under certain circumstances. During
1107 * zil_claim() we need to be able to update the zil_header_t to complete
1108 * claiming log blocks and during raw receives we need to write out the
1109 * portable_mac from the send file. Both of these actions are possible
1110 * because these fields are not protected by either MAC so neither one will
1111 * need to modify the MACs without the key. However, when the modified blocks
1112 * are written out they will be byteswapped into the host machine's native
1113 * endianness which will modify fields protected by the MAC. As a result, MAC
1114 * calculation for objset blocks works slightly differently from other block
1115 * types. Where other block types MAC the data in whatever endianness is
1116 * written to disk, objset blocks always MAC little endian version of their
1117 * values. In the code, should_bswap is the value from BP_SHOULD_BYTESWAP()
1118 * and le_bswap indicates whether a byteswap is needed to get this block
1119 * into little endian format.
1120 */
1121int
1122zio_crypt_do_objset_hmacs(zio_crypt_key_t *key, void *data, uint_t datalen,
1123 boolean_t should_bswap, uint8_t *portable_mac, uint8_t *local_mac)
1124{
1125 int ret;
1126 crypto_mechanism_t mech;
1127 crypto_context_t ctx;
1128 crypto_data_t cd;
1129 objset_phys_t *osp = data;
1130 uint64_t intval;
1131 boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
4807c0ba
TC
1132 uint8_t raw_portable_mac[SHA512_DIGEST_LENGTH];
1133 uint8_t raw_local_mac[SHA512_DIGEST_LENGTH];
b5256303
TC
1134
1135 /* initialize HMAC mechanism */
1136 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
1137 mech.cm_param = NULL;
1138 mech.cm_param_len = 0;
1139
1140 cd.cd_format = CRYPTO_DATA_RAW;
1141 cd.cd_offset = 0;
1142
1143 /* calculate the portable MAC from the portable fields and metadnode */
1144 ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx, NULL);
1145 if (ret != CRYPTO_SUCCESS) {
1146 ret = SET_ERROR(EIO);
1147 goto error;
1148 }
1149
1150 /* add in the os_type */
1151 intval = (le_bswap) ? osp->os_type : BSWAP_64(osp->os_type);
1152 cd.cd_length = sizeof (uint64_t);
1153 cd.cd_raw.iov_base = (char *)&intval;
1154 cd.cd_raw.iov_len = cd.cd_length;
1155
1156 ret = crypto_mac_update(ctx, &cd, NULL);
1157 if (ret != CRYPTO_SUCCESS) {
1158 ret = SET_ERROR(EIO);
1159 goto error;
1160 }
1161
1162 /* add in the portable os_flags */
1163 intval = osp->os_flags;
1164 if (should_bswap)
1165 intval = BSWAP_64(intval);
1166 intval &= OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
1167 if (!ZFS_HOST_BYTEORDER)
1168 intval = BSWAP_64(intval);
1169
1170 cd.cd_length = sizeof (uint64_t);
1171 cd.cd_raw.iov_base = (char *)&intval;
1172 cd.cd_raw.iov_len = cd.cd_length;
1173
1174 ret = crypto_mac_update(ctx, &cd, NULL);
1175 if (ret != CRYPTO_SUCCESS) {
1176 ret = SET_ERROR(EIO);
1177 goto error;
1178 }
1179
1180 /* add in fields from the metadnode */
ae76f45c
TC
1181 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1182 should_bswap, &osp->os_meta_dnode);
b5256303
TC
1183 if (ret)
1184 goto error;
1185
1186 /* store the final digest in a temporary buffer and copy what we need */
4807c0ba 1187 cd.cd_length = SHA512_DIGEST_LENGTH;
b5256303
TC
1188 cd.cd_raw.iov_base = (char *)raw_portable_mac;
1189 cd.cd_raw.iov_len = cd.cd_length;
1190
1191 ret = crypto_mac_final(ctx, &cd, NULL);
1192 if (ret != CRYPTO_SUCCESS) {
1193 ret = SET_ERROR(EIO);
1194 goto error;
1195 }
1196
1197 bcopy(raw_portable_mac, portable_mac, ZIO_OBJSET_MAC_LEN);
1198
1199 /*
f8478fc2
TC
1200 * The local MAC protects the user, group and project accounting.
1201 * If these objects are not present, the local MAC is zeroed out.
b5256303 1202 */
f8478fc2 1203 if ((datalen >= OBJSET_PHYS_SIZE_V3 &&
7b30ee6b
TC
1204 osp->os_userused_dnode.dn_type == DMU_OT_NONE &&
1205 osp->os_groupused_dnode.dn_type == DMU_OT_NONE &&
f8478fc2
TC
1206 osp->os_projectused_dnode.dn_type == DMU_OT_NONE) ||
1207 (datalen >= OBJSET_PHYS_SIZE_V2 &&
1208 osp->os_userused_dnode.dn_type == DMU_OT_NONE &&
1209 osp->os_groupused_dnode.dn_type == DMU_OT_NONE) ||
1210 (datalen <= OBJSET_PHYS_SIZE_V1)) {
b5256303
TC
1211 bzero(local_mac, ZIO_OBJSET_MAC_LEN);
1212 return (0);
1213 }
1214
1215 /* calculate the local MAC from the userused and groupused dnodes */
1216 ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx, NULL);
1217 if (ret != CRYPTO_SUCCESS) {
1218 ret = SET_ERROR(EIO);
1219 goto error;
1220 }
1221
1222 /* add in the non-portable os_flags */
1223 intval = osp->os_flags;
1224 if (should_bswap)
1225 intval = BSWAP_64(intval);
1226 intval &= ~OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
1227 if (!ZFS_HOST_BYTEORDER)
1228 intval = BSWAP_64(intval);
1229
1230 cd.cd_length = sizeof (uint64_t);
1231 cd.cd_raw.iov_base = (char *)&intval;
1232 cd.cd_raw.iov_len = cd.cd_length;
1233
1234 ret = crypto_mac_update(ctx, &cd, NULL);
1235 if (ret != CRYPTO_SUCCESS) {
1236 ret = SET_ERROR(EIO);
1237 goto error;
1238 }
1239
1240 /* add in fields from the user accounting dnodes */
7b30ee6b
TC
1241 if (osp->os_userused_dnode.dn_type != DMU_OT_NONE) {
1242 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1243 should_bswap, &osp->os_userused_dnode);
1244 if (ret)
1245 goto error;
1246 }
b5256303 1247
7b30ee6b
TC
1248 if (osp->os_groupused_dnode.dn_type != DMU_OT_NONE) {
1249 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1250 should_bswap, &osp->os_groupused_dnode);
1251 if (ret)
1252 goto error;
1253 }
1254
1255 if (osp->os_projectused_dnode.dn_type != DMU_OT_NONE &&
1256 datalen >= OBJSET_PHYS_SIZE_V3) {
1257 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1258 should_bswap, &osp->os_projectused_dnode);
1259 if (ret)
1260 goto error;
1261 }
b5256303
TC
1262
1263 /* store the final digest in a temporary buffer and copy what we need */
4807c0ba 1264 cd.cd_length = SHA512_DIGEST_LENGTH;
b5256303
TC
1265 cd.cd_raw.iov_base = (char *)raw_local_mac;
1266 cd.cd_raw.iov_len = cd.cd_length;
1267
1268 ret = crypto_mac_final(ctx, &cd, NULL);
1269 if (ret != CRYPTO_SUCCESS) {
1270 ret = SET_ERROR(EIO);
1271 goto error;
1272 }
1273
1274 bcopy(raw_local_mac, local_mac, ZIO_OBJSET_MAC_LEN);
1275
1276 return (0);
1277
1278error:
1279 bzero(portable_mac, ZIO_OBJSET_MAC_LEN);
1280 bzero(local_mac, ZIO_OBJSET_MAC_LEN);
1281 return (ret);
1282}
1283
1284static void
1285zio_crypt_destroy_uio(uio_t *uio)
1286{
1287 if (uio->uio_iov)
1288 kmem_free(uio->uio_iov, uio->uio_iovcnt * sizeof (iovec_t));
1289}
1290
1291/*
1292 * This function parses an uncompressed indirect block and returns a checksum
1293 * of all the portable fields from all of the contained bps. The portable
1294 * fields are the MAC and all of the fields from blk_prop except for the dedup,
1295 * checksum, and psize bits. For an explanation of the purpose of this, see
1296 * the comment block on object set authentication.
1297 */
ae76f45c
TC
1298static int
1299zio_crypt_do_indirect_mac_checksum_impl(boolean_t generate, void *buf,
1300 uint_t datalen, uint64_t version, boolean_t byteswap, uint8_t *cksum)
b5256303
TC
1301{
1302 blkptr_t *bp;
1303 int i, epb = datalen >> SPA_BLKPTRSHIFT;
1304 SHA2_CTX ctx;
4807c0ba 1305 uint8_t digestbuf[SHA512_DIGEST_LENGTH];
b5256303
TC
1306
1307 /* checksum all of the MACs from the layer below */
1308 SHA2Init(SHA512, &ctx);
1309 for (i = 0, bp = buf; i < epb; i++, bp++) {
ae76f45c
TC
1310 zio_crypt_bp_do_indrect_checksum_updates(&ctx, version,
1311 byteswap, bp);
b5256303
TC
1312 }
1313 SHA2Final(digestbuf, &ctx);
1314
1315 if (generate) {
1316 bcopy(digestbuf, cksum, ZIO_DATA_MAC_LEN);
1317 return (0);
1318 }
1319
1320 if (bcmp(digestbuf, cksum, ZIO_DATA_MAC_LEN) != 0)
1321 return (SET_ERROR(ECKSUM));
1322
1323 return (0);
1324}
1325
1326int
ae76f45c 1327zio_crypt_do_indirect_mac_checksum(boolean_t generate, void *buf,
b5256303
TC
1328 uint_t datalen, boolean_t byteswap, uint8_t *cksum)
1329{
ae76f45c 1330 int ret;
b5256303 1331
ae76f45c
TC
1332 /*
1333 * Unfortunately, callers of this function will not always have
1334 * easy access to the on-disk format version. This info is
1335 * normally found in the DSL Crypto Key, but the checksum-of-MACs
1336 * is expected to be verifiable even when the key isn't loaded.
1337 * Here, instead of doing a ZAP lookup for the version for each
1338 * zio, we simply try both existing formats.
1339 */
1340 ret = zio_crypt_do_indirect_mac_checksum_impl(generate, buf,
1341 datalen, ZIO_CRYPT_KEY_CURRENT_VERSION, byteswap, cksum);
1342 if (ret == ECKSUM) {
1343 ASSERT(!generate);
1344 ret = zio_crypt_do_indirect_mac_checksum_impl(generate,
1345 buf, datalen, 0, byteswap, cksum);
1346 }
1347
1348 return (ret);
1349}
1350
1351int
1352zio_crypt_do_indirect_mac_checksum_abd(boolean_t generate, abd_t *abd,
1353 uint_t datalen, boolean_t byteswap, uint8_t *cksum)
1354{
b5256303
TC
1355 int ret;
1356 void *buf;
1357
1358 buf = abd_borrow_buf_copy(abd, datalen);
1359 ret = zio_crypt_do_indirect_mac_checksum(generate, buf, datalen,
1360 byteswap, cksum);
1361 abd_return_buf(abd, buf, datalen);
1362
1363 return (ret);
1364}
1365
1366/*
1367 * Special case handling routine for encrypting / decrypting ZIL blocks.
1368 * We do not check for the older ZIL chain because the encryption feature
1369 * was not available before the newer ZIL chain was introduced. The goal
1370 * here is to encrypt everything except the blkptr_t of a lr_write_t and
1371 * the zil_chain_t header. Everything that is not encrypted is authenticated.
1372 */
1373static int
1374zio_crypt_init_uios_zil(boolean_t encrypt, uint8_t *plainbuf,
1375 uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap, uio_t *puio,
1376 uio_t *cuio, uint_t *enc_len, uint8_t **authbuf, uint_t *auth_len,
1377 boolean_t *no_crypt)
1378{
1379 int ret;
9bae371c
TC
1380 uint64_t txtype, lr_len;
1381 uint_t nr_src, nr_dst, crypt_len;
b5256303
TC
1382 uint_t aad_len = 0, nr_iovecs = 0, total_len = 0;
1383 iovec_t *src_iovecs = NULL, *dst_iovecs = NULL;
1384 uint8_t *src, *dst, *slrp, *dlrp, *blkend, *aadp;
1385 zil_chain_t *zilc;
1386 lr_t *lr;
1387 uint8_t *aadbuf = zio_buf_alloc(datalen);
1388
1389 /* cipherbuf always needs an extra iovec for the MAC */
1390 if (encrypt) {
1391 src = plainbuf;
1392 dst = cipherbuf;
1393 nr_src = 0;
1394 nr_dst = 1;
1395 } else {
1396 src = cipherbuf;
1397 dst = plainbuf;
1398 nr_src = 1;
1399 nr_dst = 0;
1400 }
1401
1402 /* find the start and end record of the log block */
1403 zilc = (zil_chain_t *)src;
1404 slrp = src + sizeof (zil_chain_t);
1405 aadp = aadbuf;
1406 blkend = src + ((byteswap) ? BSWAP_64(zilc->zc_nused) : zilc->zc_nused);
1407
1408 /* calculate the number of encrypted iovecs we will need */
1409 for (; slrp < blkend; slrp += lr_len) {
1410 lr = (lr_t *)slrp;
1411
1412 if (!byteswap) {
1413 txtype = lr->lrc_txtype;
1414 lr_len = lr->lrc_reclen;
1415 } else {
1416 txtype = BSWAP_64(lr->lrc_txtype);
1417 lr_len = BSWAP_64(lr->lrc_reclen);
1418 }
1419
1420 nr_iovecs++;
1421 if (txtype == TX_WRITE && lr_len != sizeof (lr_write_t))
1422 nr_iovecs++;
1423 }
1424
1425 nr_src += nr_iovecs;
1426 nr_dst += nr_iovecs;
1427
1428 /* allocate the iovec arrays */
1429 if (nr_src != 0) {
1430 src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP);
4807c0ba 1431 if (src_iovecs == NULL) {
b5256303
TC
1432 ret = SET_ERROR(ENOMEM);
1433 goto error;
1434 }
1435 }
1436
1437 if (nr_dst != 0) {
1438 dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP);
4807c0ba 1439 if (dst_iovecs == NULL) {
b5256303
TC
1440 ret = SET_ERROR(ENOMEM);
1441 goto error;
1442 }
1443 }
1444
1445 /*
1446 * Copy the plain zil header over and authenticate everything except
1447 * the checksum that will store our MAC. If we are writing the data
1448 * the embedded checksum will not have been calculated yet, so we don't
1449 * authenticate that.
1450 */
1451 bcopy(src, dst, sizeof (zil_chain_t));
1452 bcopy(src, aadp, sizeof (zil_chain_t) - sizeof (zio_eck_t));
1453 aadp += sizeof (zil_chain_t) - sizeof (zio_eck_t);
1454 aad_len += sizeof (zil_chain_t) - sizeof (zio_eck_t);
1455
1456 /* loop over records again, filling in iovecs */
1457 nr_iovecs = 0;
1458 slrp = src + sizeof (zil_chain_t);
1459 dlrp = dst + sizeof (zil_chain_t);
1460
1461 for (; slrp < blkend; slrp += lr_len, dlrp += lr_len) {
1462 lr = (lr_t *)slrp;
1463
1464 if (!byteswap) {
1465 txtype = lr->lrc_txtype;
1466 lr_len = lr->lrc_reclen;
1467 } else {
1468 txtype = BSWAP_64(lr->lrc_txtype);
1469 lr_len = BSWAP_64(lr->lrc_reclen);
1470 }
1471
1472 /* copy the common lr_t */
1473 bcopy(slrp, dlrp, sizeof (lr_t));
1474 bcopy(slrp, aadp, sizeof (lr_t));
1475 aadp += sizeof (lr_t);
1476 aad_len += sizeof (lr_t);
1477
4807c0ba
TC
1478 ASSERT3P(src_iovecs, !=, NULL);
1479 ASSERT3P(dst_iovecs, !=, NULL);
1480
b5256303
TC
1481 /*
1482 * If this is a TX_WRITE record we want to encrypt everything
1483 * except the bp if exists. If the bp does exist we want to
1484 * authenticate it.
1485 */
1486 if (txtype == TX_WRITE) {
1487 crypt_len = sizeof (lr_write_t) -
1488 sizeof (lr_t) - sizeof (blkptr_t);
1489 src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t);
1490 src_iovecs[nr_iovecs].iov_len = crypt_len;
1491 dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t);
1492 dst_iovecs[nr_iovecs].iov_len = crypt_len;
1493
1494 /* copy the bp now since it will not be encrypted */
1495 bcopy(slrp + sizeof (lr_write_t) - sizeof (blkptr_t),
1496 dlrp + sizeof (lr_write_t) - sizeof (blkptr_t),
1497 sizeof (blkptr_t));
1498 bcopy(slrp + sizeof (lr_write_t) - sizeof (blkptr_t),
1499 aadp, sizeof (blkptr_t));
1500 aadp += sizeof (blkptr_t);
1501 aad_len += sizeof (blkptr_t);
1502 nr_iovecs++;
1503 total_len += crypt_len;
1504
1505 if (lr_len != sizeof (lr_write_t)) {
1506 crypt_len = lr_len - sizeof (lr_write_t);
1507 src_iovecs[nr_iovecs].iov_base =
1508 slrp + sizeof (lr_write_t);
1509 src_iovecs[nr_iovecs].iov_len = crypt_len;
1510 dst_iovecs[nr_iovecs].iov_base =
1511 dlrp + sizeof (lr_write_t);
1512 dst_iovecs[nr_iovecs].iov_len = crypt_len;
1513 nr_iovecs++;
1514 total_len += crypt_len;
1515 }
1516 } else {
1517 crypt_len = lr_len - sizeof (lr_t);
1518 src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t);
1519 src_iovecs[nr_iovecs].iov_len = crypt_len;
1520 dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t);
1521 dst_iovecs[nr_iovecs].iov_len = crypt_len;
1522 nr_iovecs++;
1523 total_len += crypt_len;
1524 }
1525 }
1526
1527 *no_crypt = (nr_iovecs == 0);
1528 *enc_len = total_len;
1529 *authbuf = aadbuf;
1530 *auth_len = aad_len;
1531
1532 if (encrypt) {
1533 puio->uio_iov = src_iovecs;
1534 puio->uio_iovcnt = nr_src;
1535 cuio->uio_iov = dst_iovecs;
1536 cuio->uio_iovcnt = nr_dst;
1537 } else {
1538 puio->uio_iov = dst_iovecs;
1539 puio->uio_iovcnt = nr_dst;
1540 cuio->uio_iov = src_iovecs;
1541 cuio->uio_iovcnt = nr_src;
1542 }
1543
1544 return (0);
1545
1546error:
1547 zio_buf_free(aadbuf, datalen);
1548 if (src_iovecs != NULL)
1549 kmem_free(src_iovecs, nr_src * sizeof (iovec_t));
1550 if (dst_iovecs != NULL)
1551 kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t));
1552
1553 *enc_len = 0;
1554 *authbuf = NULL;
1555 *auth_len = 0;
1556 *no_crypt = B_FALSE;
1557 puio->uio_iov = NULL;
1558 puio->uio_iovcnt = 0;
1559 cuio->uio_iov = NULL;
1560 cuio->uio_iovcnt = 0;
1561 return (ret);
1562}
1563
1564/*
1565 * Special case handling routine for encrypting / decrypting dnode blocks.
1566 */
1567static int
ae76f45c
TC
1568zio_crypt_init_uios_dnode(boolean_t encrypt, uint64_t version,
1569 uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
1570 uio_t *puio, uio_t *cuio, uint_t *enc_len, uint8_t **authbuf,
1571 uint_t *auth_len, boolean_t *no_crypt)
b5256303
TC
1572{
1573 int ret;
1574 uint_t nr_src, nr_dst, crypt_len;
1575 uint_t aad_len = 0, nr_iovecs = 0, total_len = 0;
1576 uint_t i, j, max_dnp = datalen >> DNODE_SHIFT;
1577 iovec_t *src_iovecs = NULL, *dst_iovecs = NULL;
1578 uint8_t *src, *dst, *aadp;
1579 dnode_phys_t *dnp, *adnp, *sdnp, *ddnp;
1580 uint8_t *aadbuf = zio_buf_alloc(datalen);
1581
1582 if (encrypt) {
1583 src = plainbuf;
1584 dst = cipherbuf;
1585 nr_src = 0;
1586 nr_dst = 1;
1587 } else {
1588 src = cipherbuf;
1589 dst = plainbuf;
1590 nr_src = 1;
1591 nr_dst = 0;
1592 }
1593
1594 sdnp = (dnode_phys_t *)src;
1595 ddnp = (dnode_phys_t *)dst;
1596 aadp = aadbuf;
1597
1598 /*
1599 * Count the number of iovecs we will need to do the encryption by
1600 * counting the number of bonus buffers that need to be encrypted.
1601 */
1602 for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
1603 /*
1604 * This block may still be byteswapped. However, all of the
1605 * values we use are either uint8_t's (for which byteswapping
1606 * is a noop) or a * != 0 check, which will work regardless
1607 * of whether or not we byteswap.
1608 */
1609 if (sdnp[i].dn_type != DMU_OT_NONE &&
1610 DMU_OT_IS_ENCRYPTED(sdnp[i].dn_bonustype) &&
1611 sdnp[i].dn_bonuslen != 0) {
1612 nr_iovecs++;
1613 }
1614 }
1615
1616 nr_src += nr_iovecs;
1617 nr_dst += nr_iovecs;
1618
1619 if (nr_src != 0) {
1620 src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP);
4807c0ba 1621 if (src_iovecs == NULL) {
b5256303
TC
1622 ret = SET_ERROR(ENOMEM);
1623 goto error;
1624 }
1625 }
1626
1627 if (nr_dst != 0) {
1628 dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP);
4807c0ba 1629 if (dst_iovecs == NULL) {
b5256303
TC
1630 ret = SET_ERROR(ENOMEM);
1631 goto error;
1632 }
1633 }
1634
1635 nr_iovecs = 0;
1636
1637 /*
1638 * Iterate through the dnodes again, this time filling in the uios
1639 * we allocated earlier. We also concatenate any data we want to
1640 * authenticate onto aadbuf.
1641 */
1642 for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
1643 dnp = &sdnp[i];
1644
1645 /* copy over the core fields and blkptrs (kept as plaintext) */
1646 bcopy(dnp, &ddnp[i], (uint8_t *)DN_BONUS(dnp) - (uint8_t *)dnp);
1647
1648 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1649 bcopy(DN_SPILL_BLKPTR(dnp), DN_SPILL_BLKPTR(&ddnp[i]),
1650 sizeof (blkptr_t));
1651 }
1652
1653 /*
1654 * Handle authenticated data. We authenticate everything in
1655 * the dnode that can be brought over when we do a raw send.
1656 * This includes all of the core fields as well as the MACs
1657 * stored in the bp checksums and all of the portable bits
1658 * from blk_prop. We include the dnode padding here in case it
1659 * ever gets used in the future. Some dn_flags and dn_used are
1660 * not portable so we mask those out values out of the
1661 * authenticated data.
1662 */
1663 crypt_len = offsetof(dnode_phys_t, dn_blkptr);
1664 bcopy(dnp, aadp, crypt_len);
1665 adnp = (dnode_phys_t *)aadp;
1666 adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
1667 adnp->dn_used = 0;
1668 aadp += crypt_len;
1669 aad_len += crypt_len;
1670
1671 for (j = 0; j < dnp->dn_nblkptr; j++) {
1672 zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
ae76f45c 1673 version, byteswap, &dnp->dn_blkptr[j]);
b5256303
TC
1674 }
1675
1676 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1677 zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
ae76f45c 1678 version, byteswap, DN_SPILL_BLKPTR(dnp));
b5256303
TC
1679 }
1680
1681 /*
1682 * If this bonus buffer needs to be encrypted, we prepare an
1683 * iovec_t. The encryption / decryption functions will fill
1684 * this in for us with the encrypted or decrypted data.
1685 * Otherwise we add the bonus buffer to the authenticated
1686 * data buffer and copy it over to the destination. The
1687 * encrypted iovec extends to DN_MAX_BONUS_LEN(dnp) so that
1688 * we can guarantee alignment with the AES block size
1689 * (128 bits).
1690 */
1691 crypt_len = DN_MAX_BONUS_LEN(dnp);
1692 if (dnp->dn_type != DMU_OT_NONE &&
1693 DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
1694 dnp->dn_bonuslen != 0) {
4807c0ba
TC
1695 ASSERT3U(nr_iovecs, <, nr_src);
1696 ASSERT3U(nr_iovecs, <, nr_dst);
1697 ASSERT3P(src_iovecs, !=, NULL);
1698 ASSERT3P(dst_iovecs, !=, NULL);
b5256303
TC
1699 src_iovecs[nr_iovecs].iov_base = DN_BONUS(dnp);
1700 src_iovecs[nr_iovecs].iov_len = crypt_len;
1701 dst_iovecs[nr_iovecs].iov_base = DN_BONUS(&ddnp[i]);
1702 dst_iovecs[nr_iovecs].iov_len = crypt_len;
1703
1704 nr_iovecs++;
1705 total_len += crypt_len;
1706 } else {
1707 bcopy(DN_BONUS(dnp), DN_BONUS(&ddnp[i]), crypt_len);
1708 bcopy(DN_BONUS(dnp), aadp, crypt_len);
1709 aadp += crypt_len;
1710 aad_len += crypt_len;
1711 }
1712 }
1713
1714 *no_crypt = (nr_iovecs == 0);
1715 *enc_len = total_len;
1716 *authbuf = aadbuf;
1717 *auth_len = aad_len;
1718
1719 if (encrypt) {
1720 puio->uio_iov = src_iovecs;
1721 puio->uio_iovcnt = nr_src;
1722 cuio->uio_iov = dst_iovecs;
1723 cuio->uio_iovcnt = nr_dst;
1724 } else {
1725 puio->uio_iov = dst_iovecs;
1726 puio->uio_iovcnt = nr_dst;
1727 cuio->uio_iov = src_iovecs;
1728 cuio->uio_iovcnt = nr_src;
1729 }
1730
1731 return (0);
1732
1733error:
1734 zio_buf_free(aadbuf, datalen);
1735 if (src_iovecs != NULL)
1736 kmem_free(src_iovecs, nr_src * sizeof (iovec_t));
1737 if (dst_iovecs != NULL)
1738 kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t));
1739
1740 *enc_len = 0;
1741 *authbuf = NULL;
1742 *auth_len = 0;
1743 *no_crypt = B_FALSE;
1744 puio->uio_iov = NULL;
1745 puio->uio_iovcnt = 0;
1746 cuio->uio_iov = NULL;
1747 cuio->uio_iovcnt = 0;
1748 return (ret);
1749}
1750
1751static int
1752zio_crypt_init_uios_normal(boolean_t encrypt, uint8_t *plainbuf,
1753 uint8_t *cipherbuf, uint_t datalen, uio_t *puio, uio_t *cuio,
1754 uint_t *enc_len)
1755{
1756 int ret;
1757 uint_t nr_plain = 1, nr_cipher = 2;
1758 iovec_t *plain_iovecs = NULL, *cipher_iovecs = NULL;
1759
1760 /* allocate the iovecs for the plain and cipher data */
1761 plain_iovecs = kmem_alloc(nr_plain * sizeof (iovec_t),
1762 KM_SLEEP);
1763 if (!plain_iovecs) {
1764 ret = SET_ERROR(ENOMEM);
1765 goto error;
1766 }
1767
1768 cipher_iovecs = kmem_alloc(nr_cipher * sizeof (iovec_t),
1769 KM_SLEEP);
1770 if (!cipher_iovecs) {
1771 ret = SET_ERROR(ENOMEM);
1772 goto error;
1773 }
1774
1775 plain_iovecs[0].iov_base = plainbuf;
1776 plain_iovecs[0].iov_len = datalen;
1777 cipher_iovecs[0].iov_base = cipherbuf;
1778 cipher_iovecs[0].iov_len = datalen;
1779
1780 *enc_len = datalen;
1781 puio->uio_iov = plain_iovecs;
1782 puio->uio_iovcnt = nr_plain;
1783 cuio->uio_iov = cipher_iovecs;
1784 cuio->uio_iovcnt = nr_cipher;
1785
1786 return (0);
1787
1788error:
1789 if (plain_iovecs != NULL)
1790 kmem_free(plain_iovecs, nr_plain * sizeof (iovec_t));
1791 if (cipher_iovecs != NULL)
1792 kmem_free(cipher_iovecs, nr_cipher * sizeof (iovec_t));
1793
1794 *enc_len = 0;
1795 puio->uio_iov = NULL;
1796 puio->uio_iovcnt = 0;
1797 cuio->uio_iov = NULL;
1798 cuio->uio_iovcnt = 0;
1799 return (ret);
1800}
1801
1802/*
1803 * This function builds up the plaintext (puio) and ciphertext (cuio) uios so
1804 * that they can be used for encryption and decryption by zio_do_crypt_uio().
1805 * Most blocks will use zio_crypt_init_uios_normal(), with ZIL and dnode blocks
1806 * requiring special handling to parse out pieces that are to be encrypted. The
1807 * authbuf is used by these special cases to store additional authenticated
1808 * data (AAD) for the encryption modes.
1809 */
1810static int
ae76f45c
TC
1811zio_crypt_init_uios(boolean_t encrypt, uint64_t version, dmu_object_type_t ot,
1812 uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
1813 uint8_t *mac, uio_t *puio, uio_t *cuio, uint_t *enc_len, uint8_t **authbuf,
b5256303
TC
1814 uint_t *auth_len, boolean_t *no_crypt)
1815{
1816 int ret;
1817 iovec_t *mac_iov;
1818
1819 ASSERT(DMU_OT_IS_ENCRYPTED(ot) || ot == DMU_OT_NONE);
1820
1821 /* route to handler */
1822 switch (ot) {
1823 case DMU_OT_INTENT_LOG:
1824 ret = zio_crypt_init_uios_zil(encrypt, plainbuf, cipherbuf,
1825 datalen, byteswap, puio, cuio, enc_len, authbuf, auth_len,
1826 no_crypt);
1827 break;
1828 case DMU_OT_DNODE:
ae76f45c
TC
1829 ret = zio_crypt_init_uios_dnode(encrypt, version, plainbuf,
1830 cipherbuf, datalen, byteswap, puio, cuio, enc_len, authbuf,
1831 auth_len, no_crypt);
b5256303
TC
1832 break;
1833 default:
1834 ret = zio_crypt_init_uios_normal(encrypt, plainbuf, cipherbuf,
1835 datalen, puio, cuio, enc_len);
1836 *authbuf = NULL;
1837 *auth_len = 0;
1838 *no_crypt = B_FALSE;
1839 break;
1840 }
1841
1842 if (ret != 0)
1843 goto error;
1844
1845 /* populate the uios */
1846 puio->uio_segflg = UIO_SYSSPACE;
1847 cuio->uio_segflg = UIO_SYSSPACE;
1848
1849 mac_iov = ((iovec_t *)&cuio->uio_iov[cuio->uio_iovcnt - 1]);
1850 mac_iov->iov_base = mac;
1851 mac_iov->iov_len = ZIO_DATA_MAC_LEN;
1852
1853 return (0);
1854
1855error:
1856 return (ret);
1857}
1858
1859/*
1860 * Primary encryption / decryption entrypoint for zio data.
1861 */
1862int
1863zio_do_crypt_data(boolean_t encrypt, zio_crypt_key_t *key, uint8_t *salt,
1864 dmu_object_type_t ot, uint8_t *iv, uint8_t *mac, uint_t datalen,
1865 boolean_t byteswap, uint8_t *plainbuf, uint8_t *cipherbuf,
1866 boolean_t *no_crypt)
1867{
1868 int ret;
1869 boolean_t locked = B_FALSE;
1870 uint64_t crypt = key->zk_crypt;
1871 uint_t keydata_len = zio_crypt_table[crypt].ci_keylen;
1872 uint_t enc_len, auth_len;
1873 uio_t puio, cuio;
1874 uint8_t enc_keydata[MASTER_KEY_MAX_LEN];
1875 crypto_key_t tmp_ckey, *ckey = NULL;
1876 crypto_ctx_template_t tmpl;
1877 uint8_t *authbuf = NULL;
1878
b5256303
TC
1879 /*
1880 * If the needed key is the current one, just use it. Otherwise we
1881 * need to generate a temporary one from the given salt + master key.
1882 * If we are encrypting, we must return a copy of the current salt
1883 * so that it can be stored in the blkptr_t.
1884 */
1885 rw_enter(&key->zk_salt_lock, RW_READER);
1886 locked = B_TRUE;
1887
1888 if (bcmp(salt, key->zk_salt, ZIO_DATA_SALT_LEN) == 0) {
1889 ckey = &key->zk_current_key;
1890 tmpl = key->zk_current_tmpl;
1891 } else {
1892 rw_exit(&key->zk_salt_lock);
1893 locked = B_FALSE;
1894
1895 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
1896 salt, ZIO_DATA_SALT_LEN, enc_keydata, keydata_len);
1897 if (ret != 0)
1898 goto error;
1899
1900 tmp_ckey.ck_format = CRYPTO_KEY_RAW;
1901 tmp_ckey.ck_data = enc_keydata;
4807c0ba 1902 tmp_ckey.ck_length = CRYPTO_BYTES2BITS(keydata_len);
b5256303
TC
1903
1904 ckey = &tmp_ckey;
1905 tmpl = NULL;
1906 }
1907
cf637391
TC
1908 /*
1909 * Attempt to use QAT acceleration if we can. We currently don't
1910 * do this for metadnode and ZIL blocks, since they have a much
1911 * more involved buffer layout and the qat_crypt() function only
1912 * works in-place.
1913 */
1914 if (qat_crypt_use_accel(datalen) &&
1915 ot != DMU_OT_INTENT_LOG && ot != DMU_OT_DNODE) {
1916 uint8_t *srcbuf, *dstbuf;
1917
1918 if (encrypt) {
1919 srcbuf = plainbuf;
1920 dstbuf = cipherbuf;
1921 } else {
1922 srcbuf = cipherbuf;
1923 dstbuf = plainbuf;
1924 }
1925
1926 ret = qat_crypt((encrypt) ? QAT_ENCRYPT : QAT_DECRYPT, srcbuf,
1927 dstbuf, NULL, 0, iv, mac, ckey, key->zk_crypt, datalen);
1928 if (ret == CPA_STATUS_SUCCESS) {
1929 if (locked) {
1930 rw_exit(&key->zk_salt_lock);
1931 locked = B_FALSE;
1932 }
1933
1934 return (0);
1935 }
1936 /* If the hardware implementation fails fall back to software */
1937 }
1938
1939 bzero(&puio, sizeof (uio_t));
1940 bzero(&cuio, sizeof (uio_t));
1941
1942 /* create uios for encryption */
1943 ret = zio_crypt_init_uios(encrypt, key->zk_version, ot, plainbuf,
1944 cipherbuf, datalen, byteswap, mac, &puio, &cuio, &enc_len,
1945 &authbuf, &auth_len, no_crypt);
1946 if (ret != 0)
1947 goto error;
1948
1949 /* perform the encryption / decryption in software */
b5256303
TC
1950 ret = zio_do_crypt_uio(encrypt, key->zk_crypt, ckey, tmpl, iv, enc_len,
1951 &puio, &cuio, authbuf, auth_len);
1952 if (ret != 0)
1953 goto error;
1954
1955 if (locked) {
1956 rw_exit(&key->zk_salt_lock);
1957 locked = B_FALSE;
1958 }
1959
1960 if (authbuf != NULL)
1961 zio_buf_free(authbuf, datalen);
1962 if (ckey == &tmp_ckey)
1963 bzero(enc_keydata, keydata_len);
1964 zio_crypt_destroy_uio(&puio);
1965 zio_crypt_destroy_uio(&cuio);
1966
1967 return (0);
1968
1969error:
1970 if (locked)
1971 rw_exit(&key->zk_salt_lock);
1972 if (authbuf != NULL)
1973 zio_buf_free(authbuf, datalen);
1974 if (ckey == &tmp_ckey)
1975 bzero(enc_keydata, keydata_len);
1976 zio_crypt_destroy_uio(&puio);
1977 zio_crypt_destroy_uio(&cuio);
1978
1979 return (ret);
1980}
1981
1982/*
1983 * Simple wrapper around zio_do_crypt_data() to work with abd's instead of
1984 * linear buffers.
1985 */
1986int
1987zio_do_crypt_abd(boolean_t encrypt, zio_crypt_key_t *key, uint8_t *salt,
1988 dmu_object_type_t ot, uint8_t *iv, uint8_t *mac, uint_t datalen,
1989 boolean_t byteswap, abd_t *pabd, abd_t *cabd, boolean_t *no_crypt)
1990{
1991 int ret;
1992 void *ptmp, *ctmp;
1993
1994 if (encrypt) {
1995 ptmp = abd_borrow_buf_copy(pabd, datalen);
1996 ctmp = abd_borrow_buf(cabd, datalen);
1997 } else {
1998 ptmp = abd_borrow_buf(pabd, datalen);
1999 ctmp = abd_borrow_buf_copy(cabd, datalen);
2000 }
2001
2002 ret = zio_do_crypt_data(encrypt, key, salt, ot, iv, mac,
2003 datalen, byteswap, ptmp, ctmp, no_crypt);
2004 if (ret != 0)
2005 goto error;
2006
2007 if (encrypt) {
2008 abd_return_buf(pabd, ptmp, datalen);
2009 abd_return_buf_copy(cabd, ctmp, datalen);
2010 } else {
2011 abd_return_buf_copy(pabd, ptmp, datalen);
2012 abd_return_buf(cabd, ctmp, datalen);
2013 }
2014
2015 return (0);
2016
2017error:
2018 if (encrypt) {
2019 abd_return_buf(pabd, ptmp, datalen);
2020 abd_return_buf_copy(cabd, ctmp, datalen);
2021 } else {
2022 abd_return_buf_copy(pabd, ptmp, datalen);
2023 abd_return_buf(cabd, ctmp, datalen);
2024 }
2025
2026 return (ret);
2027}
2028
2029#if defined(_KERNEL) && defined(HAVE_SPL)
2030/* BEGIN CSTYLED */
2031module_param(zfs_key_max_salt_uses, ulong, 0644);
2032MODULE_PARM_DESC(zfs_key_max_salt_uses, "Max number of times a salt value "
2033 "can be used for generating encryption keys before it is rotated");
2034/* END CSTYLED */
2035#endif