]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/zio_crypt.c
Fix config issues: frame size and headers
[mirror_zfs.git] / module / zfs / zio_crypt.c
CommitLineData
b5256303
TC
1/*
2 * CDDL HEADER START
3 *
4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
7 * 1.0 of the CDDL.
8 *
9 * A full copy of the text of the CDDL should have accompanied this
10 * source. A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
12 *
13 * CDDL HEADER END
14 */
15
16/*
17 * Copyright (c) 2017, Datto, Inc. All rights reserved.
18 */
19
20#include <sys/zio_crypt.h>
21#include <sys/dmu.h>
22#include <sys/dmu_objset.h>
23#include <sys/dnode.h>
24#include <sys/fs/zfs.h>
25#include <sys/zio.h>
26#include <sys/zil.h>
27#include <sys/sha2.h>
4807c0ba 28#include <sys/hkdf.h>
b5256303
TC
29
30/*
31 * This file is responsible for handling all of the details of generating
32 * encryption parameters and performing encryption and authentication.
33 *
34 * BLOCK ENCRYPTION PARAMETERS:
35 * Encryption /Authentication Algorithm Suite (crypt):
36 * The encryption algorithm, mode, and key length we are going to use. We
37 * currently support AES in either GCM or CCM modes with 128, 192, and 256 bit
38 * keys. All authentication is currently done with SHA512-HMAC.
39 *
40 * Plaintext:
41 * The unencrypted data that we want to encrypt.
42 *
43 * Initialization Vector (IV):
44 * An initialization vector for the encryption algorithms. This is used to
45 * "tweak" the encryption algorithms so that two blocks of the same data are
46 * encrypted into different ciphertext outputs, thus obfuscating block patterns.
47 * The supported encryption modes (AES-GCM and AES-CCM) require that an IV is
48 * never reused with the same encryption key. This value is stored unencrypted
49 * and must simply be provided to the decryption function. We use a 96 bit IV
50 * (as recommended by NIST) for all block encryption. For non-dedup blocks we
51 * derive the IV randomly. The first 64 bits of the IV are stored in the second
52 * word of DVA[2] and the remaining 32 bits are stored in the upper 32 bits of
53 * blk_fill. This is safe because encrypted blocks can't use the upper 32 bits
54 * of blk_fill. We only encrypt level 0 blocks, which normally have a fill count
55 * of 1. The only exception is for DMU_OT_DNODE objects, where the fill count of
56 * level 0 blocks is the number of allocated dnodes in that block. The on-disk
57 * format supports at most 2^15 slots per L0 dnode block, because the maximum
58 * block size is 16MB (2^24). In either case, for level 0 blocks this number
59 * will still be smaller than UINT32_MAX so it is safe to store the IV in the
60 * top 32 bits of blk_fill, while leaving the bottom 32 bits of the fill count
61 * for the dnode code.
62 *
63 * Master key:
64 * This is the most important secret data of an encrypted dataset. It is used
65 * along with the salt to generate that actual encryption keys via HKDF. We
66 * do not use the master key to directly encrypt any data because there are
67 * theoretical limits on how much data can actually be safely encrypted with
68 * any encryption mode. The master key is stored encrypted on disk with the
69 * user's wrapping key. Its length is determined by the encryption algorithm.
70 * For details on how this is stored see the block comment in dsl_crypt.c
71 *
72 * Salt:
73 * Used as an input to the HKDF function, along with the master key. We use a
74 * 64 bit salt, stored unencrypted in the first word of DVA[2]. Any given salt
75 * can be used for encrypting many blocks, so we cache the current salt and the
76 * associated derived key in zio_crypt_t so we do not need to derive it again
77 * needlessly.
78 *
79 * Encryption Key:
80 * A secret binary key, generated from an HKDF function used to encrypt and
81 * decrypt data.
82 *
83 * Message Authenication Code (MAC)
84 * The MAC is an output of authenticated encryption modes such as AES-GCM and
85 * AES-CCM. Its purpose is to ensure that an attacker cannot modify encrypted
86 * data on disk and return garbage to the application. Effectively, it is a
87 * checksum that can not be reproduced by an attacker. We store the MAC in the
88 * second 128 bits of blk_cksum, leaving the first 128 bits for a truncated
89 * regular checksum of the ciphertext which can be used for scrubbing.
90 *
91 * OBJECT AUTHENTICATION:
92 * Some object types, such as DMU_OT_MASTER_NODE cannot be encrypted because
93 * they contain some info that always needs to be readable. To prevent this
94 * data from being altered, we authenticate this data using SHA512-HMAC. This
95 * will produce a MAC (similar to the one produced via encryption) which can
96 * be used to verify the object was not modified. HMACs do not require key
97 * rotation or IVs, so we can keep up to the full 3 copies of authenticated
98 * data.
99 *
100 * ZIL ENCRYPTION:
101 * ZIL blocks have their bp written to disk ahead of the associated data, so we
102 * cannot store the MAC there as we normally do. For these blocks the MAC is
103 * stored in the embedded checksum within the zil_chain_t header. The salt and
104 * IV are generated for the block on bp allocation instead of at encryption
105 * time. In addition, ZIL blocks have some pieces that must be left in plaintext
106 * for claiming even though all of the sensitive user data still needs to be
107 * encrypted. The function zio_crypt_init_uios_zil() handles parsing which
108 * pieces of the block need to be encrypted. All data that is not encrypted is
109 * authenticated using the AAD mechanisms that the supported encryption modes
110 * provide for. In order to preserve the semantics of the ZIL for encrypted
111 * datasets, the ZIL is not protected at the objset level as described below.
112 *
113 * DNODE ENCRYPTION:
114 * Similarly to ZIL blocks, the core part of each dnode_phys_t needs to be left
115 * in plaintext for scrubbing and claiming, but the bonus buffers might contain
116 * sensitive user data. The function zio_crypt_init_uios_dnode() handles parsing
117 * which which pieces of the block need to be encrypted. For more details about
118 * dnode authentication and encryption, see zio_crypt_init_uios_dnode().
119 *
120 * OBJECT SET AUTHENTICATION:
121 * Up to this point, everything we have encrypted and authenticated has been
122 * at level 0 (or -2 for the ZIL). If we did not do any further work the
123 * on-disk format would be susceptible to attacks that deleted or rearrannged
124 * the order of level 0 blocks. Ideally, the cleanest solution would be to
125 * maintain a tree of authentication MACs going up the bp tree. However, this
126 * presents a problem for raw sends. Send files do not send information about
127 * indirect blocks so there would be no convenient way to transfer the MACs and
128 * they cannot be recalculated on the receive side without the master key which
129 * would defeat one of the purposes of raw sends in the first place. Instead,
130 * for the indirect levels of the bp tree, we use a regular SHA512 of the MACs
131 * from the level below. We also include some portable fields from blk_prop such
132 * as the lsize and compression algorithm to prevent the data from being
133 * misinterpretted.
134 *
135 * At the objset level, we maintain 2 seperate 256 bit MACs in the
136 * objset_phys_t. The first one is "portable" and is the logical root of the
137 * MAC tree maintianed in the metadnode's bps. The second, is "local" and is
138 * used as the root MAC for the user accounting objects, which are also not
139 * transferred via "zfs send". The portable MAC is sent in the DRR_BEGIN payload
140 * of the send file. The useraccounting code ensures that the useraccounting
141 * info is not present upon a receive, so the local MAC can simply be cleared
142 * out at that time. For more info about objset_phys_t authentication, see
143 * zio_crypt_do_objset_hmacs().
144 *
145 * CONSIDERATIONS FOR DEDUP:
146 * In order for dedup to work, blocks that we want to dedup with one another
147 * need to use the same IV and encryption key, so that they will have the same
148 * ciphertext. Normally, one should never reuse an IV with the same encryption
149 * key or else AES-GCM and AES-CCM can both actually leak the plaintext of both
150 * blocks. In this case, however, since we are using the same plaindata as
151 * well all that we end up with is a duplicate of the original ciphertext we
152 * already had. As a result, an attacker with read access to the raw disk will
153 * be able to tell which blocks are the same but this information is given away
154 * by dedup anyway. In order to get the same IVs and encryption keys for
155 * equivalent blocks of data we use an HMAC of the plaindata. We use an HMAC
156 * here so that a reproducible checksum of the plaindata is never available to
157 * the attacker. The HMAC key is kept alongside the master key, encrypted on
158 * disk. The first 64 bits of the HMAC are used in place of the random salt, and
159 * the next 96 bits are used as the IV. As a result of this mechanism, dedup
160 * will only work within a clone family since encrypted dedup requires use of
161 * the same master and HMAC keys.
162 */
163
164/*
165 * After encrypting many blocks with the same key we may start to run up
166 * against the theoretical limits of how much data can securely be encrypted
167 * with a single key using the supported encryption modes. The most obvious
168 * limitation is that our risk of generating 2 equivalent 96 bit IVs increases
169 * the more IVs we generate (which both GCM and CCM modes strictly forbid).
170 * This risk actually grows surprisingly quickly over time according to the
171 * Birthday Problem. With a total IV space of 2^(96 bits), and assuming we have
172 * generated n IVs with a cryptographically secure RNG, the approximate
173 * probability p(n) of a collision is given as:
174 *
175 * p(n) ~= e^(-n*(n-1)/(2*(2^96)))
176 *
177 * [http://www.math.cornell.edu/~mec/2008-2009/TianyiZheng/Birthday.html]
178 *
179 * Assuming that we want to ensure that p(n) never goes over 1 / 1 trillion
180 * we must not write more than 398,065,730 blocks with the same encryption key.
181 * Therefore, we rotate our keys after 400,000,000 blocks have been written by
182 * generating a new random 64 bit salt for our HKDF encryption key generation
183 * function.
184 */
185#define ZFS_KEY_MAX_SALT_USES_DEFAULT 400000000
186#define ZFS_CURRENT_MAX_SALT_USES \
187 (MIN(zfs_key_max_salt_uses, ZFS_KEY_MAX_SALT_USES_DEFAULT))
188unsigned long zfs_key_max_salt_uses = ZFS_KEY_MAX_SALT_USES_DEFAULT;
189
ae76f45c
TC
190typedef struct blkptr_auth_buf {
191 uint64_t bab_prop; /* blk_prop - portable mask */
192 uint8_t bab_mac[ZIO_DATA_MAC_LEN]; /* MAC from blk_cksum */\r
193 uint64_t bab_pad; /* reserved for future use */
194} blkptr_auth_buf_t;
195
b5256303
TC
196zio_crypt_info_t zio_crypt_table[ZIO_CRYPT_FUNCTIONS] = {
197 {"", ZC_TYPE_NONE, 0, "inherit"},
198 {"", ZC_TYPE_NONE, 0, "on"},
199 {"", ZC_TYPE_NONE, 0, "off"},
200 {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 16, "aes-128-ccm"},
201 {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 24, "aes-192-ccm"},
202 {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 32, "aes-256-ccm"},
203 {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 16, "aes-128-gcm"},
204 {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 24, "aes-192-gcm"},
205 {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 32, "aes-256-gcm"}
206};
207
b5256303
TC
208void
209zio_crypt_key_destroy(zio_crypt_key_t *key)
210{
211 rw_destroy(&key->zk_salt_lock);
212
213 /* free crypto templates */
214 crypto_destroy_ctx_template(key->zk_current_tmpl);
215 crypto_destroy_ctx_template(key->zk_hmac_tmpl);
216
217 /* zero out sensitive data */
218 bzero(key, sizeof (zio_crypt_key_t));
219}
220
221int
222zio_crypt_key_init(uint64_t crypt, zio_crypt_key_t *key)
223{
224 int ret;
225 crypto_mechanism_t mech;
226 uint_t keydata_len;
227
228 ASSERT(key != NULL);
229 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
230
231 keydata_len = zio_crypt_table[crypt].ci_keylen;
232 bzero(key, sizeof (zio_crypt_key_t));
233
234 /* fill keydata buffers and salt with random data */
235 ret = random_get_bytes((uint8_t *)&key->zk_guid, sizeof (uint64_t));
236 if (ret != 0)
237 goto error;
238
239 ret = random_get_bytes(key->zk_master_keydata, keydata_len);
240 if (ret != 0)
241 goto error;
242
243 ret = random_get_bytes(key->zk_hmac_keydata, SHA512_HMAC_KEYLEN);
244 if (ret != 0)
245 goto error;
246
247 ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
248 if (ret != 0)
249 goto error;
250
251 /* derive the current key from the master key */
252 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
253 key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
254 keydata_len);
255 if (ret != 0)
256 goto error;
257
258 /* initialize keys for the ICP */
259 key->zk_current_key.ck_format = CRYPTO_KEY_RAW;
260 key->zk_current_key.ck_data = key->zk_current_keydata;
4807c0ba 261 key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
b5256303
TC
262
263 key->zk_hmac_key.ck_format = CRYPTO_KEY_RAW;
264 key->zk_hmac_key.ck_data = &key->zk_hmac_key;
4807c0ba 265 key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
b5256303
TC
266
267 /*
268 * Initialize the crypto templates. It's ok if this fails because
269 * this is just an optimization.
270 */
271 mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname);
272 ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
273 &key->zk_current_tmpl, KM_SLEEP);
274 if (ret != CRYPTO_SUCCESS)
275 key->zk_current_tmpl = NULL;
276
277 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
278 ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key,
279 &key->zk_hmac_tmpl, KM_SLEEP);
280 if (ret != CRYPTO_SUCCESS)
281 key->zk_hmac_tmpl = NULL;
282
283 key->zk_crypt = crypt;
ae76f45c 284 key->zk_version = ZIO_CRYPT_KEY_CURRENT_VERSION;
b5256303
TC
285 key->zk_salt_count = 0;
286 rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
287
288 return (0);
289
290error:
291 zio_crypt_key_destroy(key);
292 return (ret);
293}
294
295static int
296zio_crypt_key_change_salt(zio_crypt_key_t *key)
297{
298 int ret = 0;
299 uint8_t salt[ZIO_DATA_SALT_LEN];
300 crypto_mechanism_t mech;
301 uint_t keydata_len = zio_crypt_table[key->zk_crypt].ci_keylen;
302
303 /* generate a new salt */
304 ret = random_get_bytes(salt, ZIO_DATA_SALT_LEN);
305 if (ret != 0)
306 goto error;
307
308 rw_enter(&key->zk_salt_lock, RW_WRITER);
309
310 /* someone beat us to the salt rotation, just unlock and return */
311 if (key->zk_salt_count < ZFS_CURRENT_MAX_SALT_USES)
312 goto out_unlock;
313
314 /* derive the current key from the master key and the new salt */
315 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
316 salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata, keydata_len);
317 if (ret != 0)
318 goto out_unlock;
319
320 /* assign the salt and reset the usage count */
321 bcopy(salt, key->zk_salt, ZIO_DATA_SALT_LEN);
322 key->zk_salt_count = 0;
323
324 /* destroy the old context template and create the new one */
325 crypto_destroy_ctx_template(key->zk_current_tmpl);
326 ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
327 &key->zk_current_tmpl, KM_SLEEP);
328 if (ret != CRYPTO_SUCCESS)
329 key->zk_current_tmpl = NULL;
330
331 rw_exit(&key->zk_salt_lock);
332
333 return (0);
334
335out_unlock:
336 rw_exit(&key->zk_salt_lock);
337error:
338 return (ret);
339}
340
341/* See comment above zfs_key_max_salt_uses definition for details */
342int
343zio_crypt_key_get_salt(zio_crypt_key_t *key, uint8_t *salt)
344{
345 int ret;
346 boolean_t salt_change;
347
348 rw_enter(&key->zk_salt_lock, RW_READER);
349
350 bcopy(key->zk_salt, salt, ZIO_DATA_SALT_LEN);
351 salt_change = (atomic_inc_64_nv(&key->zk_salt_count) >=
352 ZFS_CURRENT_MAX_SALT_USES);
353
354 rw_exit(&key->zk_salt_lock);
355
356 if (salt_change) {
357 ret = zio_crypt_key_change_salt(key);
358 if (ret != 0)
359 goto error;
360 }
361
362 return (0);
363
364error:
365 return (ret);
366}
367
368/*
369 * This function handles all encryption and decryption in zfs. When
370 * encrypting it expects puio to reference the plaintext and cuio to
371 * reference the cphertext. cuio must have enough space for the
372 * ciphertext + room for a MAC. datalen should be the length of the
373 * plaintext / ciphertext alone.
374 */
375static int
376zio_do_crypt_uio(boolean_t encrypt, uint64_t crypt, crypto_key_t *key,
377 crypto_ctx_template_t tmpl, uint8_t *ivbuf, uint_t datalen,
378 uio_t *puio, uio_t *cuio, uint8_t *authbuf, uint_t auth_len)
379{
380 int ret;
381 crypto_data_t plaindata, cipherdata;
382 CK_AES_CCM_PARAMS ccmp;
383 CK_AES_GCM_PARAMS gcmp;
384 crypto_mechanism_t mech;
385 zio_crypt_info_t crypt_info;
386 uint_t plain_full_len, maclen;
387
388 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
389 ASSERT3U(key->ck_format, ==, CRYPTO_KEY_RAW);
390
391 /* lookup the encryption info */
392 crypt_info = zio_crypt_table[crypt];
393
394 /* the mac will always be the last iovec_t in the cipher uio */
395 maclen = cuio->uio_iov[cuio->uio_iovcnt - 1].iov_len;
396
397 ASSERT(maclen <= ZIO_DATA_MAC_LEN);
398
399 /* setup encryption mechanism (same as crypt) */
400 mech.cm_type = crypto_mech2id(crypt_info.ci_mechname);
401
402 /*
403 * Strangely, the ICP requires that plain_full_len must include
404 * the MAC length when decrypting, even though the UIO does not
405 * need to have the extra space allocated.
406 */
407 if (encrypt) {
408 plain_full_len = datalen;
409 } else {
410 plain_full_len = datalen + maclen;
411 }
412
413 /*
414 * setup encryption params (currently only AES CCM and AES GCM
415 * are supported)
416 */
417 if (crypt_info.ci_crypt_type == ZC_TYPE_CCM) {
418 ccmp.ulNonceSize = ZIO_DATA_IV_LEN;
419 ccmp.ulAuthDataSize = auth_len;
420 ccmp.authData = authbuf;
421 ccmp.ulMACSize = maclen;
422 ccmp.nonce = ivbuf;
423 ccmp.ulDataSize = plain_full_len;
424
425 mech.cm_param = (char *)(&ccmp);
426 mech.cm_param_len = sizeof (CK_AES_CCM_PARAMS);
427 } else {
428 gcmp.ulIvLen = ZIO_DATA_IV_LEN;
4807c0ba 429 gcmp.ulIvBits = CRYPTO_BYTES2BITS(ZIO_DATA_IV_LEN);
b5256303
TC
430 gcmp.ulAADLen = auth_len;
431 gcmp.pAAD = authbuf;
4807c0ba 432 gcmp.ulTagBits = CRYPTO_BYTES2BITS(maclen);
b5256303
TC
433 gcmp.pIv = ivbuf;
434
435 mech.cm_param = (char *)(&gcmp);
436 mech.cm_param_len = sizeof (CK_AES_GCM_PARAMS);
437 }
438
439 /* populate the cipher and plain data structs. */
440 plaindata.cd_format = CRYPTO_DATA_UIO;
441 plaindata.cd_offset = 0;
442 plaindata.cd_uio = puio;
443 plaindata.cd_miscdata = NULL;
444 plaindata.cd_length = plain_full_len;
445
446 cipherdata.cd_format = CRYPTO_DATA_UIO;
447 cipherdata.cd_offset = 0;
448 cipherdata.cd_uio = cuio;
449 cipherdata.cd_miscdata = NULL;
450 cipherdata.cd_length = datalen + maclen;
451
452 /* perform the actual encryption */
453 if (encrypt) {
454 ret = crypto_encrypt(&mech, &plaindata, key, tmpl, &cipherdata,
455 NULL);
456 if (ret != CRYPTO_SUCCESS) {
457 ret = SET_ERROR(EIO);
458 goto error;
459 }
460 } else {
461 ret = crypto_decrypt(&mech, &cipherdata, key, tmpl, &plaindata,
462 NULL);
463 if (ret != CRYPTO_SUCCESS) {
464 ASSERT3U(ret, ==, CRYPTO_INVALID_MAC);
465 ret = SET_ERROR(ECKSUM);
466 goto error;
467 }
468 }
469
470 return (0);
471
472error:
473 return (ret);
474}
475
476int
477zio_crypt_key_wrap(crypto_key_t *cwkey, zio_crypt_key_t *key, uint8_t *iv,
478 uint8_t *mac, uint8_t *keydata_out, uint8_t *hmac_keydata_out)
479{
480 int ret;
481 uio_t puio, cuio;
ae76f45c 482 uint64_t aad[3];
b5256303
TC
483 iovec_t plain_iovecs[2], cipher_iovecs[3];
484 uint64_t crypt = key->zk_crypt;
ae76f45c 485 uint_t enc_len, keydata_len, aad_len;
b5256303
TC
486
487 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
488 ASSERT3U(cwkey->ck_format, ==, CRYPTO_KEY_RAW);
489
490 keydata_len = zio_crypt_table[crypt].ci_keylen;
491
492 /* generate iv for wrapping the master and hmac key */
493 ret = random_get_pseudo_bytes(iv, WRAPPING_IV_LEN);
494 if (ret != 0)
495 goto error;
496
497 /* initialize uio_ts */
498 plain_iovecs[0].iov_base = key->zk_master_keydata;
499 plain_iovecs[0].iov_len = keydata_len;
500 plain_iovecs[1].iov_base = key->zk_hmac_keydata;
501 plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
502
503 cipher_iovecs[0].iov_base = keydata_out;
504 cipher_iovecs[0].iov_len = keydata_len;
505 cipher_iovecs[1].iov_base = hmac_keydata_out;
506 cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
507 cipher_iovecs[2].iov_base = mac;
508 cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN;
509
ae76f45c
TC
510 /*
511 * Although we don't support writing to the old format, we do
512 * support rewrapping the key so that the user can move and
513 * quarantine datasets on the old format.
514 */
515 if (key->zk_version == 0) {
516 aad_len = sizeof (uint64_t);
517 aad[0] = LE_64(key->zk_guid);
518 } else {
519 ASSERT3U(key->zk_version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
520 aad_len = sizeof (uint64_t) * 3;
521 aad[0] = LE_64(key->zk_guid);
522 aad[1] = LE_64(crypt);
523 aad[2] = LE_64(key->zk_version);
524 }
525
b5256303
TC
526 enc_len = zio_crypt_table[crypt].ci_keylen + SHA512_HMAC_KEYLEN;
527 puio.uio_iov = plain_iovecs;
528 puio.uio_iovcnt = 2;
529 puio.uio_segflg = UIO_SYSSPACE;
530 cuio.uio_iov = cipher_iovecs;
531 cuio.uio_iovcnt = 3;
532 cuio.uio_segflg = UIO_SYSSPACE;
533
534 /* encrypt the keys and store the resulting ciphertext and mac */
535 ret = zio_do_crypt_uio(B_TRUE, crypt, cwkey, NULL, iv, enc_len,
ae76f45c 536 &puio, &cuio, (uint8_t *)aad, aad_len);
b5256303
TC
537 if (ret != 0)
538 goto error;
539
540 return (0);
541
542error:
543 return (ret);
544}
545
546int
ae76f45c
TC
547zio_crypt_key_unwrap(crypto_key_t *cwkey, uint64_t crypt, uint64_t version,
548 uint64_t guid, uint8_t *keydata, uint8_t *hmac_keydata, uint8_t *iv,
549 uint8_t *mac, zio_crypt_key_t *key)
b5256303
TC
550{
551 int ret;
552 crypto_mechanism_t mech;
553 uio_t puio, cuio;
ae76f45c 554 uint64_t aad[3];
b5256303 555 iovec_t plain_iovecs[2], cipher_iovecs[3];
ae76f45c 556 uint_t enc_len, keydata_len, aad_len;
b5256303
TC
557
558 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
559 ASSERT3U(cwkey->ck_format, ==, CRYPTO_KEY_RAW);
560
561 keydata_len = zio_crypt_table[crypt].ci_keylen;
562
563 /* initialize uio_ts */
564 plain_iovecs[0].iov_base = key->zk_master_keydata;
565 plain_iovecs[0].iov_len = keydata_len;
566 plain_iovecs[1].iov_base = key->zk_hmac_keydata;
567 plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
568
569 cipher_iovecs[0].iov_base = keydata;
570 cipher_iovecs[0].iov_len = keydata_len;
571 cipher_iovecs[1].iov_base = hmac_keydata;
572 cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
573 cipher_iovecs[2].iov_base = mac;
574 cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN;
575
ae76f45c
TC
576 if (version == 0) {
577 aad_len = sizeof (uint64_t);
578 aad[0] = LE_64(guid);
579 } else {
580 ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
581 aad_len = sizeof (uint64_t) * 3;
582 aad[0] = LE_64(guid);
583 aad[1] = LE_64(crypt);
584 aad[2] = LE_64(version);
585 }
586
b5256303
TC
587 enc_len = keydata_len + SHA512_HMAC_KEYLEN;
588 puio.uio_iov = plain_iovecs;
589 puio.uio_segflg = UIO_SYSSPACE;
590 puio.uio_iovcnt = 2;
591 cuio.uio_iov = cipher_iovecs;
592 cuio.uio_iovcnt = 3;
593 cuio.uio_segflg = UIO_SYSSPACE;
594
595 /* decrypt the keys and store the result in the output buffers */
596 ret = zio_do_crypt_uio(B_FALSE, crypt, cwkey, NULL, iv, enc_len,
ae76f45c 597 &puio, &cuio, (uint8_t *)aad, aad_len);
b5256303
TC
598 if (ret != 0)
599 goto error;
600
601 /* generate a fresh salt */
602 ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
603 if (ret != 0)
604 goto error;
605
606 /* derive the current key from the master key */
607 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
608 key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
609 keydata_len);
610 if (ret != 0)
611 goto error;
612
613 /* initialize keys for ICP */
614 key->zk_current_key.ck_format = CRYPTO_KEY_RAW;
615 key->zk_current_key.ck_data = key->zk_current_keydata;
4807c0ba 616 key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
b5256303
TC
617
618 key->zk_hmac_key.ck_format = CRYPTO_KEY_RAW;
619 key->zk_hmac_key.ck_data = key->zk_hmac_keydata;
4807c0ba 620 key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
b5256303
TC
621
622 /*
623 * Initialize the crypto templates. It's ok if this fails because
624 * this is just an optimization.
625 */
626 mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname);
627 ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
628 &key->zk_current_tmpl, KM_SLEEP);
629 if (ret != CRYPTO_SUCCESS)
630 key->zk_current_tmpl = NULL;
631
632 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
633 ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key,
634 &key->zk_hmac_tmpl, KM_SLEEP);
635 if (ret != CRYPTO_SUCCESS)
636 key->zk_hmac_tmpl = NULL;
637
638 key->zk_crypt = crypt;
ae76f45c 639 key->zk_version = version;
b5256303
TC
640 key->zk_guid = guid;
641 key->zk_salt_count = 0;
642 rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
643
644 return (0);
645
646error:
647 zio_crypt_key_destroy(key);
648 return (ret);
649}
650
651int
652zio_crypt_generate_iv(uint8_t *ivbuf)
653{
654 int ret;
655
656 /* randomly generate the IV */
657 ret = random_get_pseudo_bytes(ivbuf, ZIO_DATA_IV_LEN);
658 if (ret != 0)
659 goto error;
660
661 return (0);
662
663error:
664 bzero(ivbuf, ZIO_DATA_IV_LEN);
665 return (ret);
666}
667
668int
669zio_crypt_do_hmac(zio_crypt_key_t *key, uint8_t *data, uint_t datalen,
4807c0ba 670 uint8_t *digestbuf, uint_t digestlen)
b5256303
TC
671{
672 int ret;
673 crypto_mechanism_t mech;
674 crypto_data_t in_data, digest_data;
4807c0ba
TC
675 uint8_t raw_digestbuf[SHA512_DIGEST_LENGTH];
676
677 ASSERT3U(digestlen, <=, SHA512_DIGEST_LENGTH);
b5256303
TC
678
679 /* initialize sha512-hmac mechanism and crypto data */
680 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
681 mech.cm_param = NULL;
682 mech.cm_param_len = 0;
683
684 /* initialize the crypto data */
685 in_data.cd_format = CRYPTO_DATA_RAW;
686 in_data.cd_offset = 0;
687 in_data.cd_length = datalen;
688 in_data.cd_raw.iov_base = (char *)data;
689 in_data.cd_raw.iov_len = in_data.cd_length;
690
691 digest_data.cd_format = CRYPTO_DATA_RAW;
692 digest_data.cd_offset = 0;
4807c0ba 693 digest_data.cd_length = SHA512_DIGEST_LENGTH;
b5256303
TC
694 digest_data.cd_raw.iov_base = (char *)raw_digestbuf;
695 digest_data.cd_raw.iov_len = digest_data.cd_length;
696
697 /* generate the hmac */
698 ret = crypto_mac(&mech, &in_data, &key->zk_hmac_key, key->zk_hmac_tmpl,
699 &digest_data, NULL);
700 if (ret != CRYPTO_SUCCESS) {
701 ret = SET_ERROR(EIO);
702 goto error;
703 }
704
4807c0ba 705 bcopy(raw_digestbuf, digestbuf, digestlen);
b5256303
TC
706
707 return (0);
708
709error:
4807c0ba 710 bzero(digestbuf, digestlen);
b5256303
TC
711 return (ret);
712}
713
714int
715zio_crypt_generate_iv_salt_dedup(zio_crypt_key_t *key, uint8_t *data,
716 uint_t datalen, uint8_t *ivbuf, uint8_t *salt)
717{
718 int ret;
4807c0ba 719 uint8_t digestbuf[SHA512_DIGEST_LENGTH];
b5256303 720
4807c0ba
TC
721 ret = zio_crypt_do_hmac(key, data, datalen,
722 digestbuf, SHA512_DIGEST_LENGTH);
b5256303
TC
723 if (ret != 0)
724 return (ret);
725
726 bcopy(digestbuf, salt, ZIO_DATA_SALT_LEN);
727 bcopy(digestbuf + ZIO_DATA_SALT_LEN, ivbuf, ZIO_DATA_IV_LEN);
728
729 return (0);
730}
731
732/*
733 * The following functions are used to encode and decode encryption parameters
734 * into blkptr_t and zil_header_t. The ICP wants to use these parameters as
735 * byte strings, which normally means that these strings would not need to deal
736 * with byteswapping at all. However, both blkptr_t and zil_header_t may be
737 * byteswapped by lower layers and so we must "undo" that byteswap here upon
ae76f45c
TC
738 * decoding and encoding in a non-native byteorder. These functions require
739 * that the byteorder bit is correct before being called.
b5256303
TC
740 */
741void
742zio_crypt_encode_params_bp(blkptr_t *bp, uint8_t *salt, uint8_t *iv)
743{
ae76f45c 744 uint64_t val64;
b5256303
TC
745 uint32_t val32;
746
747 ASSERT(BP_IS_ENCRYPTED(bp));
748
ae76f45c
TC
749 if (!BP_SHOULD_BYTESWAP(bp)) {
750 bcopy(salt, &bp->blk_dva[2].dva_word[0], sizeof (uint64_t));
751 bcopy(iv, &bp->blk_dva[2].dva_word[1], sizeof (uint64_t));
752 bcopy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
753 BP_SET_IV2(bp, val32);
754 } else {
755 bcopy(salt, &val64, sizeof (uint64_t));
756 bp->blk_dva[2].dva_word[0] = BSWAP_64(val64);
757
758 bcopy(iv, &val64, sizeof (uint64_t));
759 bp->blk_dva[2].dva_word[1] = BSWAP_64(val64);
760
761 bcopy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
762 BP_SET_IV2(bp, BSWAP_32(val32));
763 }
b5256303
TC
764}
765
766void
767zio_crypt_decode_params_bp(const blkptr_t *bp, uint8_t *salt, uint8_t *iv)
768{
769 uint64_t val64;
770 uint32_t val32;
771
772 ASSERT(BP_IS_PROTECTED(bp));
773
774 /* for convenience, so callers don't need to check */
775 if (BP_IS_AUTHENTICATED(bp)) {
776 bzero(salt, ZIO_DATA_SALT_LEN);
777 bzero(iv, ZIO_DATA_IV_LEN);
778 return;
779 }
780
781 if (!BP_SHOULD_BYTESWAP(bp)) {
782 bcopy(&bp->blk_dva[2].dva_word[0], salt, sizeof (uint64_t));
783 bcopy(&bp->blk_dva[2].dva_word[1], iv, sizeof (uint64_t));
784
785 val32 = (uint32_t)BP_GET_IV2(bp);
786 bcopy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
787 } else {
788 val64 = BSWAP_64(bp->blk_dva[2].dva_word[0]);
789 bcopy(&val64, salt, sizeof (uint64_t));
790
791 val64 = BSWAP_64(bp->blk_dva[2].dva_word[1]);
792 bcopy(&val64, iv, sizeof (uint64_t));
793
794 val32 = BSWAP_32((uint32_t)BP_GET_IV2(bp));
795 bcopy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
796 }
797}
798
799void
800zio_crypt_encode_mac_bp(blkptr_t *bp, uint8_t *mac)
801{
ae76f45c
TC
802 uint64_t val64;
803
b5256303
TC
804 ASSERT(BP_USES_CRYPT(bp));
805 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_OBJSET);
806
ae76f45c
TC
807 if (!BP_SHOULD_BYTESWAP(bp)) {
808 bcopy(mac, &bp->blk_cksum.zc_word[2], sizeof (uint64_t));
809 bcopy(mac + sizeof (uint64_t), &bp->blk_cksum.zc_word[3],
810 sizeof (uint64_t));
811 } else {
812 bcopy(mac, &val64, sizeof (uint64_t));
813 bp->blk_cksum.zc_word[2] = BSWAP_64(val64);
814
815 bcopy(mac + sizeof (uint64_t), &val64, sizeof (uint64_t));
816 bp->blk_cksum.zc_word[3] = BSWAP_64(val64);
817 }
b5256303
TC
818}
819
820void
821zio_crypt_decode_mac_bp(const blkptr_t *bp, uint8_t *mac)
822{
823 uint64_t val64;
824
825 ASSERT(BP_USES_CRYPT(bp) || BP_IS_HOLE(bp));
826
827 /* for convenience, so callers don't need to check */
828 if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
829 bzero(mac, ZIO_DATA_MAC_LEN);
830 return;
831 }
832
833 if (!BP_SHOULD_BYTESWAP(bp)) {
834 bcopy(&bp->blk_cksum.zc_word[2], mac, sizeof (uint64_t));
835 bcopy(&bp->blk_cksum.zc_word[3], mac + sizeof (uint64_t),
836 sizeof (uint64_t));
837 } else {
838 val64 = BSWAP_64(bp->blk_cksum.zc_word[2]);
839 bcopy(&val64, mac, sizeof (uint64_t));
840
841 val64 = BSWAP_64(bp->blk_cksum.zc_word[3]);
842 bcopy(&val64, mac + sizeof (uint64_t), sizeof (uint64_t));
843 }
844}
845
846void
847zio_crypt_encode_mac_zil(void *data, uint8_t *mac)
848{
849 zil_chain_t *zilc = data;
850
851 bcopy(mac, &zilc->zc_eck.zec_cksum.zc_word[2], sizeof (uint64_t));
852 bcopy(mac + sizeof (uint64_t), &zilc->zc_eck.zec_cksum.zc_word[3],
853 sizeof (uint64_t));
854}
855
856void
857zio_crypt_decode_mac_zil(const void *data, uint8_t *mac)
858{
859 /*
860 * The ZIL MAC is embedded in the block it protects, which will
861 * not have been byteswapped by the time this function has been called.
862 * As a result, we don't need to worry about byteswapping the MAC.
863 */
864 const zil_chain_t *zilc = data;
865
866 bcopy(&zilc->zc_eck.zec_cksum.zc_word[2], mac, sizeof (uint64_t));
867 bcopy(&zilc->zc_eck.zec_cksum.zc_word[3], mac + sizeof (uint64_t),
868 sizeof (uint64_t));
869}
870
871/*
872 * This routine takes a block of dnodes (src_abd) and copies only the bonus
873 * buffers to the same offsets in the dst buffer. datalen should be the size
874 * of both the src_abd and the dst buffer (not just the length of the bonus
875 * buffers).
876 */
877void
878zio_crypt_copy_dnode_bonus(abd_t *src_abd, uint8_t *dst, uint_t datalen)
879{
880 uint_t i, max_dnp = datalen >> DNODE_SHIFT;
881 uint8_t *src;
882 dnode_phys_t *dnp, *sdnp, *ddnp;
883
884 src = abd_borrow_buf_copy(src_abd, datalen);
885
886 sdnp = (dnode_phys_t *)src;
887 ddnp = (dnode_phys_t *)dst;
888
889 for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
890 dnp = &sdnp[i];
891 if (dnp->dn_type != DMU_OT_NONE &&
892 DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
893 dnp->dn_bonuslen != 0) {
894 bcopy(DN_BONUS(dnp), DN_BONUS(&ddnp[i]),
895 DN_MAX_BONUS_LEN(dnp));
896 }
897 }
898
899 abd_return_buf(src_abd, src, datalen);
900}
901
ae76f45c
TC
902/*
903 * This function decides what fields from blk_prop are included in
904 * the on-disk various MAC algorithms.
905 */
b5256303 906static void
ae76f45c 907zio_crypt_bp_zero_nonportable_blkprop(blkptr_t *bp, uint64_t version)
b5256303 908{
ae76f45c
TC
909 /*
910 * Version 0 did not properly zero out all non-portable fields
911 * as it should have done. We maintain this code so that we can
912 * do read-only imports of pools on this version.
913 */
914 if (version == 0) {
915 BP_SET_DEDUP(bp, 0);
916 BP_SET_CHECKSUM(bp, 0);
917 BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE);
918 return;
919 }
920
921 ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
922
923 /*
924 * The hole_birth feature might set these fields even if this bp
925 * is a hole. We zero them out here to guarantee that raw sends
926 * will function with or without the feature.
927 */
928 if (BP_IS_HOLE(bp)) {
929 bp->blk_prop = 0ULL;
930 return;
931 }
b5256303
TC
932
933 /*
ae76f45c
TC
934 * At L0 we want to verify these fields to ensure that data blocks
935 * can not be reinterpretted. For instance, we do not want an attacker
936 * to trick us into returning raw lz4 compressed data to the user
937 * by modifying the compression bits. At higher levels, we cannot
938 * enforce this policy since raw sends do not convey any information
939 * about indirect blocks, so these values might be different on the
940 * receive side. Fortunately, this does not open any new attack
941 * vectors, since any alterations that can be made to a higher level
942 * bp must still verify the correct order of the layer below it.
b5256303 943 */
ae76f45c
TC
944 if (BP_GET_LEVEL(bp) != 0) {
945 BP_SET_BYTEORDER(bp, 0);
946 BP_SET_COMPRESS(bp, 0);
947
948 /*
949 * psize cannot be set to zero or it will trigger
950 * asserts, but the value doesn't really matter as
951 * long as it is constant.
952 */
953 BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE);
954 }
955
956 BP_SET_DEDUP(bp, 0);
957 BP_SET_CHECKSUM(bp, 0);
b5256303
TC
958}
959
ae76f45c
TC
960static void
961zio_crypt_bp_auth_init(uint64_t version, boolean_t should_bswap, blkptr_t *bp,
962 blkptr_auth_buf_t *bab, uint_t *bab_len)
b5256303 963{
b5256303 964 blkptr_t tmpbp = *bp;
b5256303
TC
965
966 if (should_bswap)
967 byteswap_uint64_array(&tmpbp, sizeof (blkptr_t));
968
969 ASSERT(BP_USES_CRYPT(&tmpbp) || BP_IS_HOLE(&tmpbp));
970 ASSERT0(BP_IS_EMBEDDED(&tmpbp));
b5256303 971
ae76f45c 972 zio_crypt_decode_mac_bp(&tmpbp, bab->bab_mac);
b5256303 973
ae76f45c
TC
974 /*
975 * We always MAC blk_prop in LE to ensure portability. This
976 * must be done after decoding the mac, since the endianness
977 * will get zero'd out here.
978 */
979 zio_crypt_bp_zero_nonportable_blkprop(&tmpbp, version);
980 bab->bab_prop = LE_64(tmpbp.blk_prop);
981 bab->bab_pad = 0ULL;
982
983 /* version 0 did not include the padding */
984 *bab_len = sizeof (blkptr_auth_buf_t);
985 if (version == 0)
986 *bab_len -= sizeof (uint64_t);
987}
b5256303 988
ae76f45c
TC
989static int
990zio_crypt_bp_do_hmac_updates(crypto_context_t ctx, uint64_t version,
991 boolean_t should_bswap, blkptr_t *bp)
992{
993 int ret;
994 uint_t bab_len;
995 blkptr_auth_buf_t bab;
996 crypto_data_t cd;
b5256303 997
ae76f45c
TC
998 zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
999 cd.cd_format = CRYPTO_DATA_RAW;
1000 cd.cd_offset = 0;
1001 cd.cd_length = bab_len;
1002 cd.cd_raw.iov_base = (char *)&bab;
b5256303
TC
1003 cd.cd_raw.iov_len = cd.cd_length;
1004
1005 ret = crypto_mac_update(ctx, &cd, NULL);
1006 if (ret != CRYPTO_SUCCESS) {
1007 ret = SET_ERROR(EIO);
1008 goto error;
1009 }
1010
1011 return (0);
1012
1013error:
1014 return (ret);
1015}
1016
1017static void
ae76f45c
TC
1018zio_crypt_bp_do_indrect_checksum_updates(SHA2_CTX *ctx, uint64_t version,
1019 boolean_t should_bswap, blkptr_t *bp)
b5256303 1020{
ae76f45c
TC
1021 uint_t bab_len;
1022 blkptr_auth_buf_t bab;
b5256303 1023
ae76f45c
TC
1024 zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
1025 SHA2Update(ctx, &bab, bab_len);
b5256303
TC
1026}
1027
1028static void
ae76f45c 1029zio_crypt_bp_do_aad_updates(uint8_t **aadp, uint_t *aad_len, uint64_t version,
b5256303
TC
1030 boolean_t should_bswap, blkptr_t *bp)
1031{
ae76f45c
TC
1032 uint_t bab_len;
1033 blkptr_auth_buf_t bab;
b5256303 1034
ae76f45c
TC
1035 zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
1036 bcopy(&bab, *aadp, bab_len);
1037 *aadp += bab_len;
1038 *aad_len += bab_len;
b5256303
TC
1039}
1040
1041static int
ae76f45c
TC
1042zio_crypt_do_dnode_hmac_updates(crypto_context_t ctx, uint64_t version,
1043 boolean_t should_bswap, dnode_phys_t *dnp)
b5256303
TC
1044{
1045 int ret, i;
1046 dnode_phys_t *adnp;
1047 boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
1048 crypto_data_t cd;
1049 uint8_t tmp_dncore[offsetof(dnode_phys_t, dn_blkptr)];
1050
1051 cd.cd_format = CRYPTO_DATA_RAW;
1052 cd.cd_offset = 0;
1053
1054 /* authenticate the core dnode (masking out non-portable bits) */
1055 bcopy(dnp, tmp_dncore, sizeof (tmp_dncore));
1056 adnp = (dnode_phys_t *)tmp_dncore;
1057 if (le_bswap) {
1058 adnp->dn_datablkszsec = BSWAP_16(adnp->dn_datablkszsec);
1059 adnp->dn_bonuslen = BSWAP_16(adnp->dn_bonuslen);
1060 adnp->dn_maxblkid = BSWAP_64(adnp->dn_maxblkid);
1061 adnp->dn_used = BSWAP_64(adnp->dn_used);
1062 }
1063 adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
1064 adnp->dn_used = 0;
1065
1066 cd.cd_length = sizeof (tmp_dncore);
1067 cd.cd_raw.iov_base = (char *)adnp;
1068 cd.cd_raw.iov_len = cd.cd_length;
1069
1070 ret = crypto_mac_update(ctx, &cd, NULL);
1071 if (ret != CRYPTO_SUCCESS) {
1072 ret = SET_ERROR(EIO);
1073 goto error;
1074 }
1075
1076 for (i = 0; i < dnp->dn_nblkptr; i++) {
ae76f45c 1077 ret = zio_crypt_bp_do_hmac_updates(ctx, version,
b5256303
TC
1078 should_bswap, &dnp->dn_blkptr[i]);
1079 if (ret != 0)
1080 goto error;
1081 }
1082
1083 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
ae76f45c 1084 ret = zio_crypt_bp_do_hmac_updates(ctx, version,
b5256303
TC
1085 should_bswap, DN_SPILL_BLKPTR(dnp));
1086 if (ret != 0)
1087 goto error;
1088 }
1089
1090 return (0);
1091
1092error:
1093 return (ret);
1094}
1095
1096/*
1097 * objset_phys_t blocks introduce a number of exceptions to the normal
1098 * authentication process. objset_phys_t's contain 2 seperate HMACS for
1099 * protecting the integrity of their data. The portable_mac protects the
1100 * the metadnode. This MAC can be sent with a raw send and protects against
1101 * reordering of data within the metadnode. The local_mac protects the user
1102 * accounting objects which are not sent from one system to another.
1103 *
1104 * In addition, objset blocks are the only blocks that can be modified and
1105 * written to disk without the key loaded under certain circumstances. During
1106 * zil_claim() we need to be able to update the zil_header_t to complete
1107 * claiming log blocks and during raw receives we need to write out the
1108 * portable_mac from the send file. Both of these actions are possible
1109 * because these fields are not protected by either MAC so neither one will
1110 * need to modify the MACs without the key. However, when the modified blocks
1111 * are written out they will be byteswapped into the host machine's native
1112 * endianness which will modify fields protected by the MAC. As a result, MAC
1113 * calculation for objset blocks works slightly differently from other block
1114 * types. Where other block types MAC the data in whatever endianness is
1115 * written to disk, objset blocks always MAC little endian version of their
1116 * values. In the code, should_bswap is the value from BP_SHOULD_BYTESWAP()
1117 * and le_bswap indicates whether a byteswap is needed to get this block
1118 * into little endian format.
1119 */
1120int
1121zio_crypt_do_objset_hmacs(zio_crypt_key_t *key, void *data, uint_t datalen,
1122 boolean_t should_bswap, uint8_t *portable_mac, uint8_t *local_mac)
1123{
1124 int ret;
1125 crypto_mechanism_t mech;
1126 crypto_context_t ctx;
1127 crypto_data_t cd;
1128 objset_phys_t *osp = data;
1129 uint64_t intval;
1130 boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
4807c0ba
TC
1131 uint8_t raw_portable_mac[SHA512_DIGEST_LENGTH];
1132 uint8_t raw_local_mac[SHA512_DIGEST_LENGTH];
b5256303
TC
1133
1134 /* initialize HMAC mechanism */
1135 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
1136 mech.cm_param = NULL;
1137 mech.cm_param_len = 0;
1138
1139 cd.cd_format = CRYPTO_DATA_RAW;
1140 cd.cd_offset = 0;
1141
1142 /* calculate the portable MAC from the portable fields and metadnode */
1143 ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx, NULL);
1144 if (ret != CRYPTO_SUCCESS) {
1145 ret = SET_ERROR(EIO);
1146 goto error;
1147 }
1148
1149 /* add in the os_type */
1150 intval = (le_bswap) ? osp->os_type : BSWAP_64(osp->os_type);
1151 cd.cd_length = sizeof (uint64_t);
1152 cd.cd_raw.iov_base = (char *)&intval;
1153 cd.cd_raw.iov_len = cd.cd_length;
1154
1155 ret = crypto_mac_update(ctx, &cd, NULL);
1156 if (ret != CRYPTO_SUCCESS) {
1157 ret = SET_ERROR(EIO);
1158 goto error;
1159 }
1160
1161 /* add in the portable os_flags */
1162 intval = osp->os_flags;
1163 if (should_bswap)
1164 intval = BSWAP_64(intval);
1165 intval &= OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
1166 if (!ZFS_HOST_BYTEORDER)
1167 intval = BSWAP_64(intval);
1168
1169 cd.cd_length = sizeof (uint64_t);
1170 cd.cd_raw.iov_base = (char *)&intval;
1171 cd.cd_raw.iov_len = cd.cd_length;
1172
1173 ret = crypto_mac_update(ctx, &cd, NULL);
1174 if (ret != CRYPTO_SUCCESS) {
1175 ret = SET_ERROR(EIO);
1176 goto error;
1177 }
1178
1179 /* add in fields from the metadnode */
ae76f45c
TC
1180 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1181 should_bswap, &osp->os_meta_dnode);
b5256303
TC
1182 if (ret)
1183 goto error;
1184
1185 /* store the final digest in a temporary buffer and copy what we need */
4807c0ba 1186 cd.cd_length = SHA512_DIGEST_LENGTH;
b5256303
TC
1187 cd.cd_raw.iov_base = (char *)raw_portable_mac;
1188 cd.cd_raw.iov_len = cd.cd_length;
1189
1190 ret = crypto_mac_final(ctx, &cd, NULL);
1191 if (ret != CRYPTO_SUCCESS) {
1192 ret = SET_ERROR(EIO);
1193 goto error;
1194 }
1195
1196 bcopy(raw_portable_mac, portable_mac, ZIO_OBJSET_MAC_LEN);
1197
1198 /*
1199 * The local MAC protects the user and group accounting. If these
1200 * objects are not present, the local MAC is zeroed out.
1201 */
1202 if (osp->os_userused_dnode.dn_type == DMU_OT_NONE &&
4807c0ba 1203 osp->os_groupused_dnode.dn_type == DMU_OT_NONE) {
b5256303
TC
1204 bzero(local_mac, ZIO_OBJSET_MAC_LEN);
1205 return (0);
1206 }
1207
1208 /* calculate the local MAC from the userused and groupused dnodes */
1209 ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx, NULL);
1210 if (ret != CRYPTO_SUCCESS) {
1211 ret = SET_ERROR(EIO);
1212 goto error;
1213 }
1214
1215 /* add in the non-portable os_flags */
1216 intval = osp->os_flags;
1217 if (should_bswap)
1218 intval = BSWAP_64(intval);
1219 intval &= ~OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
1220 if (!ZFS_HOST_BYTEORDER)
1221 intval = BSWAP_64(intval);
1222
1223 cd.cd_length = sizeof (uint64_t);
1224 cd.cd_raw.iov_base = (char *)&intval;
1225 cd.cd_raw.iov_len = cd.cd_length;
1226
1227 ret = crypto_mac_update(ctx, &cd, NULL);
1228 if (ret != CRYPTO_SUCCESS) {
1229 ret = SET_ERROR(EIO);
1230 goto error;
1231 }
1232
1233 /* add in fields from the user accounting dnodes */
ae76f45c
TC
1234 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1235 should_bswap, &osp->os_userused_dnode);
b5256303
TC
1236 if (ret)
1237 goto error;
1238
ae76f45c
TC
1239 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1240 should_bswap, &osp->os_groupused_dnode);
b5256303
TC
1241 if (ret)
1242 goto error;
1243
1244 /* store the final digest in a temporary buffer and copy what we need */
4807c0ba 1245 cd.cd_length = SHA512_DIGEST_LENGTH;
b5256303
TC
1246 cd.cd_raw.iov_base = (char *)raw_local_mac;
1247 cd.cd_raw.iov_len = cd.cd_length;
1248
1249 ret = crypto_mac_final(ctx, &cd, NULL);
1250 if (ret != CRYPTO_SUCCESS) {
1251 ret = SET_ERROR(EIO);
1252 goto error;
1253 }
1254
1255 bcopy(raw_local_mac, local_mac, ZIO_OBJSET_MAC_LEN);
1256
1257 return (0);
1258
1259error:
1260 bzero(portable_mac, ZIO_OBJSET_MAC_LEN);
1261 bzero(local_mac, ZIO_OBJSET_MAC_LEN);
1262 return (ret);
1263}
1264
1265static void
1266zio_crypt_destroy_uio(uio_t *uio)
1267{
1268 if (uio->uio_iov)
1269 kmem_free(uio->uio_iov, uio->uio_iovcnt * sizeof (iovec_t));
1270}
1271
1272/*
1273 * This function parses an uncompressed indirect block and returns a checksum
1274 * of all the portable fields from all of the contained bps. The portable
1275 * fields are the MAC and all of the fields from blk_prop except for the dedup,
1276 * checksum, and psize bits. For an explanation of the purpose of this, see
1277 * the comment block on object set authentication.
1278 */
ae76f45c
TC
1279static int
1280zio_crypt_do_indirect_mac_checksum_impl(boolean_t generate, void *buf,
1281 uint_t datalen, uint64_t version, boolean_t byteswap, uint8_t *cksum)
b5256303
TC
1282{
1283 blkptr_t *bp;
1284 int i, epb = datalen >> SPA_BLKPTRSHIFT;
1285 SHA2_CTX ctx;
4807c0ba 1286 uint8_t digestbuf[SHA512_DIGEST_LENGTH];
b5256303
TC
1287
1288 /* checksum all of the MACs from the layer below */
1289 SHA2Init(SHA512, &ctx);
1290 for (i = 0, bp = buf; i < epb; i++, bp++) {
ae76f45c
TC
1291 zio_crypt_bp_do_indrect_checksum_updates(&ctx, version,
1292 byteswap, bp);
b5256303
TC
1293 }
1294 SHA2Final(digestbuf, &ctx);
1295
1296 if (generate) {
1297 bcopy(digestbuf, cksum, ZIO_DATA_MAC_LEN);
1298 return (0);
1299 }
1300
1301 if (bcmp(digestbuf, cksum, ZIO_DATA_MAC_LEN) != 0)
1302 return (SET_ERROR(ECKSUM));
1303
1304 return (0);
1305}
1306
1307int
ae76f45c 1308zio_crypt_do_indirect_mac_checksum(boolean_t generate, void *buf,
b5256303
TC
1309 uint_t datalen, boolean_t byteswap, uint8_t *cksum)
1310{
ae76f45c 1311 int ret;
b5256303 1312
ae76f45c
TC
1313 /*
1314 * Unfortunately, callers of this function will not always have
1315 * easy access to the on-disk format version. This info is
1316 * normally found in the DSL Crypto Key, but the checksum-of-MACs
1317 * is expected to be verifiable even when the key isn't loaded.
1318 * Here, instead of doing a ZAP lookup for the version for each
1319 * zio, we simply try both existing formats.
1320 */
1321 ret = zio_crypt_do_indirect_mac_checksum_impl(generate, buf,
1322 datalen, ZIO_CRYPT_KEY_CURRENT_VERSION, byteswap, cksum);
1323 if (ret == ECKSUM) {
1324 ASSERT(!generate);
1325 ret = zio_crypt_do_indirect_mac_checksum_impl(generate,
1326 buf, datalen, 0, byteswap, cksum);
1327 }
1328
1329 return (ret);
1330}
1331
1332int
1333zio_crypt_do_indirect_mac_checksum_abd(boolean_t generate, abd_t *abd,
1334 uint_t datalen, boolean_t byteswap, uint8_t *cksum)
1335{
b5256303
TC
1336 int ret;
1337 void *buf;
1338
1339 buf = abd_borrow_buf_copy(abd, datalen);
1340 ret = zio_crypt_do_indirect_mac_checksum(generate, buf, datalen,
1341 byteswap, cksum);
1342 abd_return_buf(abd, buf, datalen);
1343
1344 return (ret);
1345}
1346
1347/*
1348 * Special case handling routine for encrypting / decrypting ZIL blocks.
1349 * We do not check for the older ZIL chain because the encryption feature
1350 * was not available before the newer ZIL chain was introduced. The goal
1351 * here is to encrypt everything except the blkptr_t of a lr_write_t and
1352 * the zil_chain_t header. Everything that is not encrypted is authenticated.
1353 */
1354static int
1355zio_crypt_init_uios_zil(boolean_t encrypt, uint8_t *plainbuf,
1356 uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap, uio_t *puio,
1357 uio_t *cuio, uint_t *enc_len, uint8_t **authbuf, uint_t *auth_len,
1358 boolean_t *no_crypt)
1359{
1360 int ret;
9bae371c
TC
1361 uint64_t txtype, lr_len;
1362 uint_t nr_src, nr_dst, crypt_len;
b5256303
TC
1363 uint_t aad_len = 0, nr_iovecs = 0, total_len = 0;
1364 iovec_t *src_iovecs = NULL, *dst_iovecs = NULL;
1365 uint8_t *src, *dst, *slrp, *dlrp, *blkend, *aadp;
1366 zil_chain_t *zilc;
1367 lr_t *lr;
1368 uint8_t *aadbuf = zio_buf_alloc(datalen);
1369
1370 /* cipherbuf always needs an extra iovec for the MAC */
1371 if (encrypt) {
1372 src = plainbuf;
1373 dst = cipherbuf;
1374 nr_src = 0;
1375 nr_dst = 1;
1376 } else {
1377 src = cipherbuf;
1378 dst = plainbuf;
1379 nr_src = 1;
1380 nr_dst = 0;
1381 }
1382
1383 /* find the start and end record of the log block */
1384 zilc = (zil_chain_t *)src;
1385 slrp = src + sizeof (zil_chain_t);
1386 aadp = aadbuf;
1387 blkend = src + ((byteswap) ? BSWAP_64(zilc->zc_nused) : zilc->zc_nused);
1388
1389 /* calculate the number of encrypted iovecs we will need */
1390 for (; slrp < blkend; slrp += lr_len) {
1391 lr = (lr_t *)slrp;
1392
1393 if (!byteswap) {
1394 txtype = lr->lrc_txtype;
1395 lr_len = lr->lrc_reclen;
1396 } else {
1397 txtype = BSWAP_64(lr->lrc_txtype);
1398 lr_len = BSWAP_64(lr->lrc_reclen);
1399 }
1400
1401 nr_iovecs++;
1402 if (txtype == TX_WRITE && lr_len != sizeof (lr_write_t))
1403 nr_iovecs++;
1404 }
1405
1406 nr_src += nr_iovecs;
1407 nr_dst += nr_iovecs;
1408
1409 /* allocate the iovec arrays */
1410 if (nr_src != 0) {
1411 src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP);
4807c0ba 1412 if (src_iovecs == NULL) {
b5256303
TC
1413 ret = SET_ERROR(ENOMEM);
1414 goto error;
1415 }
1416 }
1417
1418 if (nr_dst != 0) {
1419 dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP);
4807c0ba 1420 if (dst_iovecs == NULL) {
b5256303
TC
1421 ret = SET_ERROR(ENOMEM);
1422 goto error;
1423 }
1424 }
1425
1426 /*
1427 * Copy the plain zil header over and authenticate everything except
1428 * the checksum that will store our MAC. If we are writing the data
1429 * the embedded checksum will not have been calculated yet, so we don't
1430 * authenticate that.
1431 */
1432 bcopy(src, dst, sizeof (zil_chain_t));
1433 bcopy(src, aadp, sizeof (zil_chain_t) - sizeof (zio_eck_t));
1434 aadp += sizeof (zil_chain_t) - sizeof (zio_eck_t);
1435 aad_len += sizeof (zil_chain_t) - sizeof (zio_eck_t);
1436
1437 /* loop over records again, filling in iovecs */
1438 nr_iovecs = 0;
1439 slrp = src + sizeof (zil_chain_t);
1440 dlrp = dst + sizeof (zil_chain_t);
1441
1442 for (; slrp < blkend; slrp += lr_len, dlrp += lr_len) {
1443 lr = (lr_t *)slrp;
1444
1445 if (!byteswap) {
1446 txtype = lr->lrc_txtype;
1447 lr_len = lr->lrc_reclen;
1448 } else {
1449 txtype = BSWAP_64(lr->lrc_txtype);
1450 lr_len = BSWAP_64(lr->lrc_reclen);
1451 }
1452
1453 /* copy the common lr_t */
1454 bcopy(slrp, dlrp, sizeof (lr_t));
1455 bcopy(slrp, aadp, sizeof (lr_t));
1456 aadp += sizeof (lr_t);
1457 aad_len += sizeof (lr_t);
1458
4807c0ba
TC
1459 ASSERT3P(src_iovecs, !=, NULL);
1460 ASSERT3P(dst_iovecs, !=, NULL);
1461
b5256303
TC
1462 /*
1463 * If this is a TX_WRITE record we want to encrypt everything
1464 * except the bp if exists. If the bp does exist we want to
1465 * authenticate it.
1466 */
1467 if (txtype == TX_WRITE) {
1468 crypt_len = sizeof (lr_write_t) -
1469 sizeof (lr_t) - sizeof (blkptr_t);
1470 src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t);
1471 src_iovecs[nr_iovecs].iov_len = crypt_len;
1472 dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t);
1473 dst_iovecs[nr_iovecs].iov_len = crypt_len;
1474
1475 /* copy the bp now since it will not be encrypted */
1476 bcopy(slrp + sizeof (lr_write_t) - sizeof (blkptr_t),
1477 dlrp + sizeof (lr_write_t) - sizeof (blkptr_t),
1478 sizeof (blkptr_t));
1479 bcopy(slrp + sizeof (lr_write_t) - sizeof (blkptr_t),
1480 aadp, sizeof (blkptr_t));
1481 aadp += sizeof (blkptr_t);
1482 aad_len += sizeof (blkptr_t);
1483 nr_iovecs++;
1484 total_len += crypt_len;
1485
1486 if (lr_len != sizeof (lr_write_t)) {
1487 crypt_len = lr_len - sizeof (lr_write_t);
1488 src_iovecs[nr_iovecs].iov_base =
1489 slrp + sizeof (lr_write_t);
1490 src_iovecs[nr_iovecs].iov_len = crypt_len;
1491 dst_iovecs[nr_iovecs].iov_base =
1492 dlrp + sizeof (lr_write_t);
1493 dst_iovecs[nr_iovecs].iov_len = crypt_len;
1494 nr_iovecs++;
1495 total_len += crypt_len;
1496 }
1497 } else {
1498 crypt_len = lr_len - sizeof (lr_t);
1499 src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t);
1500 src_iovecs[nr_iovecs].iov_len = crypt_len;
1501 dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t);
1502 dst_iovecs[nr_iovecs].iov_len = crypt_len;
1503 nr_iovecs++;
1504 total_len += crypt_len;
1505 }
1506 }
1507
1508 *no_crypt = (nr_iovecs == 0);
1509 *enc_len = total_len;
1510 *authbuf = aadbuf;
1511 *auth_len = aad_len;
1512
1513 if (encrypt) {
1514 puio->uio_iov = src_iovecs;
1515 puio->uio_iovcnt = nr_src;
1516 cuio->uio_iov = dst_iovecs;
1517 cuio->uio_iovcnt = nr_dst;
1518 } else {
1519 puio->uio_iov = dst_iovecs;
1520 puio->uio_iovcnt = nr_dst;
1521 cuio->uio_iov = src_iovecs;
1522 cuio->uio_iovcnt = nr_src;
1523 }
1524
1525 return (0);
1526
1527error:
1528 zio_buf_free(aadbuf, datalen);
1529 if (src_iovecs != NULL)
1530 kmem_free(src_iovecs, nr_src * sizeof (iovec_t));
1531 if (dst_iovecs != NULL)
1532 kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t));
1533
1534 *enc_len = 0;
1535 *authbuf = NULL;
1536 *auth_len = 0;
1537 *no_crypt = B_FALSE;
1538 puio->uio_iov = NULL;
1539 puio->uio_iovcnt = 0;
1540 cuio->uio_iov = NULL;
1541 cuio->uio_iovcnt = 0;
1542 return (ret);
1543}
1544
1545/*
1546 * Special case handling routine for encrypting / decrypting dnode blocks.
1547 */
1548static int
ae76f45c
TC
1549zio_crypt_init_uios_dnode(boolean_t encrypt, uint64_t version,
1550 uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
1551 uio_t *puio, uio_t *cuio, uint_t *enc_len, uint8_t **authbuf,
1552 uint_t *auth_len, boolean_t *no_crypt)
b5256303
TC
1553{
1554 int ret;
1555 uint_t nr_src, nr_dst, crypt_len;
1556 uint_t aad_len = 0, nr_iovecs = 0, total_len = 0;
1557 uint_t i, j, max_dnp = datalen >> DNODE_SHIFT;
1558 iovec_t *src_iovecs = NULL, *dst_iovecs = NULL;
1559 uint8_t *src, *dst, *aadp;
1560 dnode_phys_t *dnp, *adnp, *sdnp, *ddnp;
1561 uint8_t *aadbuf = zio_buf_alloc(datalen);
1562
1563 if (encrypt) {
1564 src = plainbuf;
1565 dst = cipherbuf;
1566 nr_src = 0;
1567 nr_dst = 1;
1568 } else {
1569 src = cipherbuf;
1570 dst = plainbuf;
1571 nr_src = 1;
1572 nr_dst = 0;
1573 }
1574
1575 sdnp = (dnode_phys_t *)src;
1576 ddnp = (dnode_phys_t *)dst;
1577 aadp = aadbuf;
1578
1579 /*
1580 * Count the number of iovecs we will need to do the encryption by
1581 * counting the number of bonus buffers that need to be encrypted.
1582 */
1583 for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
1584 /*
1585 * This block may still be byteswapped. However, all of the
1586 * values we use are either uint8_t's (for which byteswapping
1587 * is a noop) or a * != 0 check, which will work regardless
1588 * of whether or not we byteswap.
1589 */
1590 if (sdnp[i].dn_type != DMU_OT_NONE &&
1591 DMU_OT_IS_ENCRYPTED(sdnp[i].dn_bonustype) &&
1592 sdnp[i].dn_bonuslen != 0) {
1593 nr_iovecs++;
1594 }
1595 }
1596
1597 nr_src += nr_iovecs;
1598 nr_dst += nr_iovecs;
1599
1600 if (nr_src != 0) {
1601 src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP);
4807c0ba 1602 if (src_iovecs == NULL) {
b5256303
TC
1603 ret = SET_ERROR(ENOMEM);
1604 goto error;
1605 }
1606 }
1607
1608 if (nr_dst != 0) {
1609 dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP);
4807c0ba 1610 if (dst_iovecs == NULL) {
b5256303
TC
1611 ret = SET_ERROR(ENOMEM);
1612 goto error;
1613 }
1614 }
1615
1616 nr_iovecs = 0;
1617
1618 /*
1619 * Iterate through the dnodes again, this time filling in the uios
1620 * we allocated earlier. We also concatenate any data we want to
1621 * authenticate onto aadbuf.
1622 */
1623 for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
1624 dnp = &sdnp[i];
1625
1626 /* copy over the core fields and blkptrs (kept as plaintext) */
1627 bcopy(dnp, &ddnp[i], (uint8_t *)DN_BONUS(dnp) - (uint8_t *)dnp);
1628
1629 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1630 bcopy(DN_SPILL_BLKPTR(dnp), DN_SPILL_BLKPTR(&ddnp[i]),
1631 sizeof (blkptr_t));
1632 }
1633
1634 /*
1635 * Handle authenticated data. We authenticate everything in
1636 * the dnode that can be brought over when we do a raw send.
1637 * This includes all of the core fields as well as the MACs
1638 * stored in the bp checksums and all of the portable bits
1639 * from blk_prop. We include the dnode padding here in case it
1640 * ever gets used in the future. Some dn_flags and dn_used are
1641 * not portable so we mask those out values out of the
1642 * authenticated data.
1643 */
1644 crypt_len = offsetof(dnode_phys_t, dn_blkptr);
1645 bcopy(dnp, aadp, crypt_len);
1646 adnp = (dnode_phys_t *)aadp;
1647 adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
1648 adnp->dn_used = 0;
1649 aadp += crypt_len;
1650 aad_len += crypt_len;
1651
1652 for (j = 0; j < dnp->dn_nblkptr; j++) {
1653 zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
ae76f45c 1654 version, byteswap, &dnp->dn_blkptr[j]);
b5256303
TC
1655 }
1656
1657 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1658 zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
ae76f45c 1659 version, byteswap, DN_SPILL_BLKPTR(dnp));
b5256303
TC
1660 }
1661
1662 /*
1663 * If this bonus buffer needs to be encrypted, we prepare an
1664 * iovec_t. The encryption / decryption functions will fill
1665 * this in for us with the encrypted or decrypted data.
1666 * Otherwise we add the bonus buffer to the authenticated
1667 * data buffer and copy it over to the destination. The
1668 * encrypted iovec extends to DN_MAX_BONUS_LEN(dnp) so that
1669 * we can guarantee alignment with the AES block size
1670 * (128 bits).
1671 */
1672 crypt_len = DN_MAX_BONUS_LEN(dnp);
1673 if (dnp->dn_type != DMU_OT_NONE &&
1674 DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
1675 dnp->dn_bonuslen != 0) {
4807c0ba
TC
1676 ASSERT3U(nr_iovecs, <, nr_src);
1677 ASSERT3U(nr_iovecs, <, nr_dst);
1678 ASSERT3P(src_iovecs, !=, NULL);
1679 ASSERT3P(dst_iovecs, !=, NULL);
b5256303
TC
1680 src_iovecs[nr_iovecs].iov_base = DN_BONUS(dnp);
1681 src_iovecs[nr_iovecs].iov_len = crypt_len;
1682 dst_iovecs[nr_iovecs].iov_base = DN_BONUS(&ddnp[i]);
1683 dst_iovecs[nr_iovecs].iov_len = crypt_len;
1684
1685 nr_iovecs++;
1686 total_len += crypt_len;
1687 } else {
1688 bcopy(DN_BONUS(dnp), DN_BONUS(&ddnp[i]), crypt_len);
1689 bcopy(DN_BONUS(dnp), aadp, crypt_len);
1690 aadp += crypt_len;
1691 aad_len += crypt_len;
1692 }
1693 }
1694
1695 *no_crypt = (nr_iovecs == 0);
1696 *enc_len = total_len;
1697 *authbuf = aadbuf;
1698 *auth_len = aad_len;
1699
1700 if (encrypt) {
1701 puio->uio_iov = src_iovecs;
1702 puio->uio_iovcnt = nr_src;
1703 cuio->uio_iov = dst_iovecs;
1704 cuio->uio_iovcnt = nr_dst;
1705 } else {
1706 puio->uio_iov = dst_iovecs;
1707 puio->uio_iovcnt = nr_dst;
1708 cuio->uio_iov = src_iovecs;
1709 cuio->uio_iovcnt = nr_src;
1710 }
1711
1712 return (0);
1713
1714error:
1715 zio_buf_free(aadbuf, datalen);
1716 if (src_iovecs != NULL)
1717 kmem_free(src_iovecs, nr_src * sizeof (iovec_t));
1718 if (dst_iovecs != NULL)
1719 kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t));
1720
1721 *enc_len = 0;
1722 *authbuf = NULL;
1723 *auth_len = 0;
1724 *no_crypt = B_FALSE;
1725 puio->uio_iov = NULL;
1726 puio->uio_iovcnt = 0;
1727 cuio->uio_iov = NULL;
1728 cuio->uio_iovcnt = 0;
1729 return (ret);
1730}
1731
1732static int
1733zio_crypt_init_uios_normal(boolean_t encrypt, uint8_t *plainbuf,
1734 uint8_t *cipherbuf, uint_t datalen, uio_t *puio, uio_t *cuio,
1735 uint_t *enc_len)
1736{
1737 int ret;
1738 uint_t nr_plain = 1, nr_cipher = 2;
1739 iovec_t *plain_iovecs = NULL, *cipher_iovecs = NULL;
1740
1741 /* allocate the iovecs for the plain and cipher data */
1742 plain_iovecs = kmem_alloc(nr_plain * sizeof (iovec_t),
1743 KM_SLEEP);
1744 if (!plain_iovecs) {
1745 ret = SET_ERROR(ENOMEM);
1746 goto error;
1747 }
1748
1749 cipher_iovecs = kmem_alloc(nr_cipher * sizeof (iovec_t),
1750 KM_SLEEP);
1751 if (!cipher_iovecs) {
1752 ret = SET_ERROR(ENOMEM);
1753 goto error;
1754 }
1755
1756 plain_iovecs[0].iov_base = plainbuf;
1757 plain_iovecs[0].iov_len = datalen;
1758 cipher_iovecs[0].iov_base = cipherbuf;
1759 cipher_iovecs[0].iov_len = datalen;
1760
1761 *enc_len = datalen;
1762 puio->uio_iov = plain_iovecs;
1763 puio->uio_iovcnt = nr_plain;
1764 cuio->uio_iov = cipher_iovecs;
1765 cuio->uio_iovcnt = nr_cipher;
1766
1767 return (0);
1768
1769error:
1770 if (plain_iovecs != NULL)
1771 kmem_free(plain_iovecs, nr_plain * sizeof (iovec_t));
1772 if (cipher_iovecs != NULL)
1773 kmem_free(cipher_iovecs, nr_cipher * sizeof (iovec_t));
1774
1775 *enc_len = 0;
1776 puio->uio_iov = NULL;
1777 puio->uio_iovcnt = 0;
1778 cuio->uio_iov = NULL;
1779 cuio->uio_iovcnt = 0;
1780 return (ret);
1781}
1782
1783/*
1784 * This function builds up the plaintext (puio) and ciphertext (cuio) uios so
1785 * that they can be used for encryption and decryption by zio_do_crypt_uio().
1786 * Most blocks will use zio_crypt_init_uios_normal(), with ZIL and dnode blocks
1787 * requiring special handling to parse out pieces that are to be encrypted. The
1788 * authbuf is used by these special cases to store additional authenticated
1789 * data (AAD) for the encryption modes.
1790 */
1791static int
ae76f45c
TC
1792zio_crypt_init_uios(boolean_t encrypt, uint64_t version, dmu_object_type_t ot,
1793 uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
1794 uint8_t *mac, uio_t *puio, uio_t *cuio, uint_t *enc_len, uint8_t **authbuf,
b5256303
TC
1795 uint_t *auth_len, boolean_t *no_crypt)
1796{
1797 int ret;
1798 iovec_t *mac_iov;
1799
1800 ASSERT(DMU_OT_IS_ENCRYPTED(ot) || ot == DMU_OT_NONE);
1801
1802 /* route to handler */
1803 switch (ot) {
1804 case DMU_OT_INTENT_LOG:
1805 ret = zio_crypt_init_uios_zil(encrypt, plainbuf, cipherbuf,
1806 datalen, byteswap, puio, cuio, enc_len, authbuf, auth_len,
1807 no_crypt);
1808 break;
1809 case DMU_OT_DNODE:
ae76f45c
TC
1810 ret = zio_crypt_init_uios_dnode(encrypt, version, plainbuf,
1811 cipherbuf, datalen, byteswap, puio, cuio, enc_len, authbuf,
1812 auth_len, no_crypt);
b5256303
TC
1813 break;
1814 default:
1815 ret = zio_crypt_init_uios_normal(encrypt, plainbuf, cipherbuf,
1816 datalen, puio, cuio, enc_len);
1817 *authbuf = NULL;
1818 *auth_len = 0;
1819 *no_crypt = B_FALSE;
1820 break;
1821 }
1822
1823 if (ret != 0)
1824 goto error;
1825
1826 /* populate the uios */
1827 puio->uio_segflg = UIO_SYSSPACE;
1828 cuio->uio_segflg = UIO_SYSSPACE;
1829
1830 mac_iov = ((iovec_t *)&cuio->uio_iov[cuio->uio_iovcnt - 1]);
1831 mac_iov->iov_base = mac;
1832 mac_iov->iov_len = ZIO_DATA_MAC_LEN;
1833
1834 return (0);
1835
1836error:
1837 return (ret);
1838}
1839
1840/*
1841 * Primary encryption / decryption entrypoint for zio data.
1842 */
1843int
1844zio_do_crypt_data(boolean_t encrypt, zio_crypt_key_t *key, uint8_t *salt,
1845 dmu_object_type_t ot, uint8_t *iv, uint8_t *mac, uint_t datalen,
1846 boolean_t byteswap, uint8_t *plainbuf, uint8_t *cipherbuf,
1847 boolean_t *no_crypt)
1848{
1849 int ret;
1850 boolean_t locked = B_FALSE;
1851 uint64_t crypt = key->zk_crypt;
1852 uint_t keydata_len = zio_crypt_table[crypt].ci_keylen;
1853 uint_t enc_len, auth_len;
1854 uio_t puio, cuio;
1855 uint8_t enc_keydata[MASTER_KEY_MAX_LEN];
1856 crypto_key_t tmp_ckey, *ckey = NULL;
1857 crypto_ctx_template_t tmpl;
1858 uint8_t *authbuf = NULL;
1859
1860 bzero(&puio, sizeof (uio_t));
1861 bzero(&cuio, sizeof (uio_t));
1862
1863 /* create uios for encryption */
ae76f45c
TC
1864 ret = zio_crypt_init_uios(encrypt, key->zk_version, ot, plainbuf,
1865 cipherbuf, datalen, byteswap, mac, &puio, &cuio, &enc_len,
1866 &authbuf, &auth_len, no_crypt);
b5256303
TC
1867 if (ret != 0)
1868 return (ret);
1869
1870 /*
1871 * If the needed key is the current one, just use it. Otherwise we
1872 * need to generate a temporary one from the given salt + master key.
1873 * If we are encrypting, we must return a copy of the current salt
1874 * so that it can be stored in the blkptr_t.
1875 */
1876 rw_enter(&key->zk_salt_lock, RW_READER);
1877 locked = B_TRUE;
1878
1879 if (bcmp(salt, key->zk_salt, ZIO_DATA_SALT_LEN) == 0) {
1880 ckey = &key->zk_current_key;
1881 tmpl = key->zk_current_tmpl;
1882 } else {
1883 rw_exit(&key->zk_salt_lock);
1884 locked = B_FALSE;
1885
1886 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
1887 salt, ZIO_DATA_SALT_LEN, enc_keydata, keydata_len);
1888 if (ret != 0)
1889 goto error;
1890
1891 tmp_ckey.ck_format = CRYPTO_KEY_RAW;
1892 tmp_ckey.ck_data = enc_keydata;
4807c0ba 1893 tmp_ckey.ck_length = CRYPTO_BYTES2BITS(keydata_len);
b5256303
TC
1894
1895 ckey = &tmp_ckey;
1896 tmpl = NULL;
1897 }
1898
1899 /* perform the encryption / decryption */
1900 ret = zio_do_crypt_uio(encrypt, key->zk_crypt, ckey, tmpl, iv, enc_len,
1901 &puio, &cuio, authbuf, auth_len);
1902 if (ret != 0)
1903 goto error;
1904
1905 if (locked) {
1906 rw_exit(&key->zk_salt_lock);
1907 locked = B_FALSE;
1908 }
1909
1910 if (authbuf != NULL)
1911 zio_buf_free(authbuf, datalen);
1912 if (ckey == &tmp_ckey)
1913 bzero(enc_keydata, keydata_len);
1914 zio_crypt_destroy_uio(&puio);
1915 zio_crypt_destroy_uio(&cuio);
1916
1917 return (0);
1918
1919error:
1920 if (locked)
1921 rw_exit(&key->zk_salt_lock);
1922 if (authbuf != NULL)
1923 zio_buf_free(authbuf, datalen);
1924 if (ckey == &tmp_ckey)
1925 bzero(enc_keydata, keydata_len);
1926 zio_crypt_destroy_uio(&puio);
1927 zio_crypt_destroy_uio(&cuio);
1928
1929 return (ret);
1930}
1931
1932/*
1933 * Simple wrapper around zio_do_crypt_data() to work with abd's instead of
1934 * linear buffers.
1935 */
1936int
1937zio_do_crypt_abd(boolean_t encrypt, zio_crypt_key_t *key, uint8_t *salt,
1938 dmu_object_type_t ot, uint8_t *iv, uint8_t *mac, uint_t datalen,
1939 boolean_t byteswap, abd_t *pabd, abd_t *cabd, boolean_t *no_crypt)
1940{
1941 int ret;
1942 void *ptmp, *ctmp;
1943
1944 if (encrypt) {
1945 ptmp = abd_borrow_buf_copy(pabd, datalen);
1946 ctmp = abd_borrow_buf(cabd, datalen);
1947 } else {
1948 ptmp = abd_borrow_buf(pabd, datalen);
1949 ctmp = abd_borrow_buf_copy(cabd, datalen);
1950 }
1951
1952 ret = zio_do_crypt_data(encrypt, key, salt, ot, iv, mac,
1953 datalen, byteswap, ptmp, ctmp, no_crypt);
1954 if (ret != 0)
1955 goto error;
1956
1957 if (encrypt) {
1958 abd_return_buf(pabd, ptmp, datalen);
1959 abd_return_buf_copy(cabd, ctmp, datalen);
1960 } else {
1961 abd_return_buf_copy(pabd, ptmp, datalen);
1962 abd_return_buf(cabd, ctmp, datalen);
1963 }
1964
1965 return (0);
1966
1967error:
1968 if (encrypt) {
1969 abd_return_buf(pabd, ptmp, datalen);
1970 abd_return_buf_copy(cabd, ctmp, datalen);
1971 } else {
1972 abd_return_buf_copy(pabd, ptmp, datalen);
1973 abd_return_buf(cabd, ctmp, datalen);
1974 }
1975
1976 return (ret);
1977}
1978
1979#if defined(_KERNEL) && defined(HAVE_SPL)
1980/* BEGIN CSTYLED */
1981module_param(zfs_key_max_salt_uses, ulong, 0644);
1982MODULE_PARM_DESC(zfs_key_max_salt_uses, "Max number of times a salt value "
1983 "can be used for generating encryption keys before it is rotated");
1984/* END CSTYLED */
1985#endif