]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/zio_inject.c
FreeBSD: Add zfs_link_create() error handling
[mirror_zfs.git] / module / zfs / zio_inject.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
1d3ba0bf 9 * or https://opensource.org/licenses/CDDL-1.0.
34dc7c2f
BB
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
26ef0cc7 23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
0241e491 24 * Copyright (c) 2017, Intel Corporation.
c183d164 25 * Copyright (c) 2024, Klara Inc.
34dc7c2f
BB
26 */
27
34dc7c2f
BB
28/*
29 * ZFS fault injection
30 *
31 * To handle fault injection, we keep track of a series of zinject_record_t
32 * structures which describe which logical block(s) should be injected with a
33 * fault. These are kept in a global list. Each record corresponds to a given
34 * spa_t and maintains a special hold on the spa_t so that it cannot be deleted
35 * or exported while the injection record exists.
36 *
37 * Device level injection is done using the 'zi_guid' field. If this is set, it
38 * means that the error is destined for a particular device, not a piece of
39 * data.
40 *
41 * This is a rather poor data structure and algorithm, but we don't expect more
42 * than a few faults at any one time, so it should be sufficient for our needs.
43 */
44
45#include <sys/arc.h>
6a8fd57f 46#include <sys/zio.h>
34dc7c2f 47#include <sys/zfs_ioctl.h>
34dc7c2f 48#include <sys/vdev_impl.h>
428870ff 49#include <sys/dmu_objset.h>
e89f1295 50#include <sys/dsl_dataset.h>
b128c09f 51#include <sys/fs/zfs.h>
34dc7c2f 52
c409e464 53uint32_t zio_injection_enabled = 0;
34dc7c2f 54
26ef0cc7
TH
55/*
56 * Data describing each zinject handler registered on the system, and
57 * contains the list node linking the handler in the global zinject
58 * handler list.
59 */
34dc7c2f
BB
60typedef struct inject_handler {
61 int zi_id;
62 spa_t *zi_spa;
c183d164 63 char *zi_spa_name; /* ZINJECT_DELAY_IMPORT only */
34dc7c2f 64 zinject_record_t zi_record;
26ef0cc7
TH
65 uint64_t *zi_lanes;
66 int zi_next_lane;
34dc7c2f
BB
67 list_node_t zi_link;
68} inject_handler_t;
69
26ef0cc7
TH
70/*
71 * List of all zinject handlers registered on the system, protected by
72 * the inject_lock defined below.
73 */
34dc7c2f 74static list_t inject_handlers;
26ef0cc7
TH
75
76/*
77 * This protects insertion into, and traversal of, the inject handler
78 * list defined above; as well as the inject_delay_count. Any time a
79 * handler is inserted or removed from the list, this lock should be
80 * taken as a RW_WRITER; and any time traversal is done over the list
81 * (without modification to it) this lock should be taken as a RW_READER.
82 */
34dc7c2f 83static krwlock_t inject_lock;
26ef0cc7
TH
84
85/*
86 * This holds the number of zinject delay handlers that have been
87 * registered on the system. It is protected by the inject_lock defined
88 * above. Thus modifications to this count must be a RW_WRITER of the
89 * inject_lock, and reads of this count must be (at least) a RW_READER
90 * of the lock.
91 */
92static int inject_delay_count = 0;
93
94/*
95 * This lock is used only in zio_handle_io_delay(), refer to the comment
96 * in that function for more details.
97 */
98static kmutex_t inject_delay_mtx;
99
100/*
101 * Used to assign unique identifying numbers to each new zinject handler.
102 */
34dc7c2f
BB
103static int inject_next_id = 1;
104
0241e491
DB
105/*
106 * Test if the requested frequency was triggered
107 */
108static boolean_t
109freq_triggered(uint32_t frequency)
110{
111 /*
112 * zero implies always (100%)
113 */
114 if (frequency == 0)
115 return (B_TRUE);
116
117 /*
e1cfd73f 118 * Note: we still handle legacy (unscaled) frequency values
0241e491
DB
119 */
120 uint32_t maximum = (frequency <= 100) ? 100 : ZI_PERCENTAGE_MAX;
121
29274c9f 122 return (random_in_range(maximum) < frequency);
0241e491
DB
123}
124
34dc7c2f
BB
125/*
126 * Returns true if the given record matches the I/O in progress.
127 */
128static boolean_t
ab7615d9 129zio_match_handler(const zbookmark_phys_t *zb, uint64_t type, int dva,
34dc7c2f
BB
130 zinject_record_t *record, int error)
131{
132 /*
133 * Check for a match against the MOS, which is based on type
134 */
428870ff
BB
135 if (zb->zb_objset == DMU_META_OBJSET &&
136 record->zi_objset == DMU_META_OBJSET &&
137 record->zi_object == DMU_META_DNODE_OBJECT) {
34dc7c2f
BB
138 if (record->zi_type == DMU_OT_NONE ||
139 type == record->zi_type)
0241e491 140 return (freq_triggered(record->zi_freq));
34dc7c2f
BB
141 else
142 return (B_FALSE);
143 }
144
145 /*
146 * Check for an exact match.
147 */
148 if (zb->zb_objset == record->zi_objset &&
149 zb->zb_object == record->zi_object &&
150 zb->zb_level == record->zi_level &&
151 zb->zb_blkid >= record->zi_start &&
152 zb->zb_blkid <= record->zi_end &&
dad2b19f
AZ
153 (record->zi_dvas == 0 ||
154 (dva != ZI_NO_DVA && (record->zi_dvas & (1ULL << dva)))) &&
ab7615d9 155 error == record->zi_error) {
0241e491 156 return (freq_triggered(record->zi_freq));
ab7615d9 157 }
34dc7c2f
BB
158
159 return (B_FALSE);
160}
161
428870ff
BB
162/*
163 * Panic the system when a config change happens in the function
164 * specified by tag.
165 */
166void
dd66857d 167zio_handle_panic_injection(spa_t *spa, const char *tag, uint64_t type)
428870ff
BB
168{
169 inject_handler_t *handler;
170
171 rw_enter(&inject_lock, RW_READER);
172
173 for (handler = list_head(&inject_handlers); handler != NULL;
174 handler = list_next(&inject_handlers, handler)) {
175
176 if (spa != handler->zi_spa)
177 continue;
178
179 if (handler->zi_record.zi_type == type &&
180 strcmp(tag, handler->zi_record.zi_func) == 0)
181 panic("Panic requested in function %s\n", tag);
182 }
183
184 rw_exit(&inject_lock);
185}
186
be9a5c35
TC
187/*
188 * Inject a decryption failure. Decryption failures can occur in
189 * both the ARC and the ZIO layers.
190 */
191int
192zio_handle_decrypt_injection(spa_t *spa, const zbookmark_phys_t *zb,
193 uint64_t type, int error)
194{
195 int ret = 0;
196 inject_handler_t *handler;
197
198 rw_enter(&inject_lock, RW_READER);
199
200 for (handler = list_head(&inject_handlers); handler != NULL;
201 handler = list_next(&inject_handlers, handler)) {
202
203 if (spa != handler->zi_spa ||
204 handler->zi_record.zi_cmd != ZINJECT_DECRYPT_FAULT)
205 continue;
206
ab7615d9
TC
207 if (zio_match_handler(zb, type, ZI_NO_DVA,
208 &handler->zi_record, error)) {
be9a5c35
TC
209 ret = error;
210 break;
211 }
212 }
213
214 rw_exit(&inject_lock);
215 return (ret);
216}
217
ab7615d9
TC
218/*
219 * If this is a physical I/O for a vdev child determine which DVA it is
220 * for. We iterate backwards through the DVAs matching on the offset so
221 * that we end up with ZI_NO_DVA (-1) if we don't find a match.
222 */
223static int
224zio_match_dva(zio_t *zio)
225{
226 int i = ZI_NO_DVA;
227
228 if (zio->io_bp != NULL && zio->io_vd != NULL &&
229 zio->io_child_type == ZIO_CHILD_VDEV) {
230 for (i = BP_GET_NDVAS(zio->io_bp) - 1; i >= 0; i--) {
231 dva_t *dva = &zio->io_bp->blk_dva[i];
232 uint64_t off = DVA_GET_OFFSET(dva);
233 vdev_t *vd = vdev_lookup_top(zio->io_spa,
234 DVA_GET_VDEV(dva));
235
236 /* Compensate for vdev label added to leaves */
237 if (zio->io_vd->vdev_ops->vdev_op_leaf)
238 off += VDEV_LABEL_START_SIZE;
239
240 if (zio->io_vd == vd && zio->io_offset == off)
241 break;
242 }
243 }
244
245 return (i);
246}
247
248
34dc7c2f
BB
249/*
250 * Determine if the I/O in question should return failure. Returns the errno
251 * to be returned to the caller.
252 */
253int
254zio_handle_fault_injection(zio_t *zio, int error)
255{
256 int ret = 0;
257 inject_handler_t *handler;
258
259 /*
260 * Ignore I/O not associated with any logical data.
261 */
262 if (zio->io_logical == NULL)
263 return (0);
264
265 /*
266 * Currently, we only support fault injection on reads.
267 */
268 if (zio->io_type != ZIO_TYPE_READ)
269 return (0);
270
b2255edc
BB
271 /*
272 * A rebuild I/O has no checksum to verify.
273 */
274 if (zio->io_priority == ZIO_PRIORITY_REBUILD && error == ECKSUM)
275 return (0);
276
34dc7c2f
BB
277 rw_enter(&inject_lock, RW_READER);
278
279 for (handler = list_head(&inject_handlers); handler != NULL;
280 handler = list_next(&inject_handlers, handler)) {
cc92e9d0
GW
281 if (zio->io_spa != handler->zi_spa ||
282 handler->zi_record.zi_cmd != ZINJECT_DATA_FAULT)
34dc7c2f
BB
283 continue;
284
ab7615d9 285 /* If this handler matches, return the specified error */
34dc7c2f
BB
286 if (zio_match_handler(&zio->io_logical->io_bookmark,
287 zio->io_bp ? BP_GET_TYPE(zio->io_bp) : DMU_OT_NONE,
ab7615d9 288 zio_match_dva(zio), &handler->zi_record, error)) {
34dc7c2f
BB
289 ret = error;
290 break;
291 }
292 }
293
294 rw_exit(&inject_lock);
295
296 return (ret);
297}
298
b128c09f
BB
299/*
300 * Determine if the zio is part of a label update and has an injection
301 * handler associated with that portion of the label. Currently, we
302 * allow error injection in either the nvlist or the uberblock region of
303 * of the vdev label.
304 */
305int
306zio_handle_label_injection(zio_t *zio, int error)
307{
308 inject_handler_t *handler;
309 vdev_t *vd = zio->io_vd;
310 uint64_t offset = zio->io_offset;
311 int label;
312 int ret = 0;
313
428870ff 314 if (offset >= VDEV_LABEL_START_SIZE &&
b128c09f
BB
315 offset < vd->vdev_psize - VDEV_LABEL_END_SIZE)
316 return (0);
317
318 rw_enter(&inject_lock, RW_READER);
319
320 for (handler = list_head(&inject_handlers); handler != NULL;
321 handler = list_next(&inject_handlers, handler)) {
322 uint64_t start = handler->zi_record.zi_start;
323 uint64_t end = handler->zi_record.zi_end;
324
cc92e9d0 325 if (handler->zi_record.zi_cmd != ZINJECT_LABEL_FAULT)
b128c09f
BB
326 continue;
327
328 /*
329 * The injection region is the relative offsets within a
330 * vdev label. We must determine the label which is being
331 * updated and adjust our region accordingly.
332 */
333 label = vdev_label_number(vd->vdev_psize, offset);
334 start = vdev_label_offset(vd->vdev_psize, label, start);
335 end = vdev_label_offset(vd->vdev_psize, label, end);
336
337 if (zio->io_vd->vdev_guid == handler->zi_record.zi_guid &&
338 (offset >= start && offset <= end)) {
339 ret = error;
340 break;
341 }
342 }
343 rw_exit(&inject_lock);
344 return (ret);
345}
346
d977122d
DB
347static int
348zio_inject_bitflip_cb(void *data, size_t len, void *private)
349{
ef70eff1 350 zio_t *zio = private;
d977122d 351 uint8_t *buffer = data;
29274c9f 352 uint_t byte = random_in_range(len);
b128c09f 353
ef70eff1 354 ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
d977122d
DB
355
356 /* flip a single random bit in an abd data buffer */
29274c9f 357 buffer[byte] ^= 1 << random_in_range(8);
d977122d
DB
358
359 return (1); /* stop after first flip */
360}
361
362static int
363zio_handle_device_injection_impl(vdev_t *vd, zio_t *zio, int err1, int err2)
34dc7c2f
BB
364{
365 inject_handler_t *handler;
366 int ret = 0;
367
428870ff 368 /*
76d1dde9
RN
369 * We skip over faults in the labels unless it's during device open
370 * (i.e. zio == NULL) or a device flush (offset is meaningless)
428870ff 371 */
d7605ae7 372 if (zio != NULL && zio->io_type != ZIO_TYPE_FLUSH) {
428870ff
BB
373 uint64_t offset = zio->io_offset;
374
375 if (offset < VDEV_LABEL_START_SIZE ||
376 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE)
377 return (0);
378 }
379
34dc7c2f
BB
380 rw_enter(&inject_lock, RW_READER);
381
382 for (handler = list_head(&inject_handlers); handler != NULL;
383 handler = list_next(&inject_handlers, handler)) {
384
cc92e9d0 385 if (handler->zi_record.zi_cmd != ZINJECT_DEVICE_FAULT)
b128c09f
BB
386 continue;
387
34dc7c2f 388 if (vd->vdev_guid == handler->zi_record.zi_guid) {
9babb374
BB
389 if (handler->zi_record.zi_failfast &&
390 (zio == NULL || (zio->io_flags &
391 (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))) {
392 continue;
393 }
394
428870ff
BB
395 /* Handle type specific I/O failures */
396 if (zio != NULL &&
397 handler->zi_record.zi_iotype != ZIO_TYPES &&
398 handler->zi_record.zi_iotype != zio->io_type)
399 continue;
400
d977122d
DB
401 if (handler->zi_record.zi_error == err1 ||
402 handler->zi_record.zi_error == err2) {
0241e491
DB
403 /*
404 * limit error injection if requested
405 */
406 if (!freq_triggered(handler->zi_record.zi_freq))
407 continue;
408
34dc7c2f
BB
409 /*
410 * For a failed open, pretend like the device
411 * has gone away.
412 */
d977122d 413 if (err1 == ENXIO)
34dc7c2f
BB
414 vd->vdev_stat.vs_aux =
415 VDEV_AUX_OPEN_FAILED;
428870ff
BB
416
417 /*
418 * Treat these errors as if they had been
419 * retried so that all the appropriate stats
420 * and FMA events are generated.
421 */
422 if (!handler->zi_record.zi_failfast &&
423 zio != NULL)
424 zio->io_flags |= ZIO_FLAG_IO_RETRY;
425
d977122d
DB
426 /*
427 * EILSEQ means flip a bit after a read
428 */
429 if (handler->zi_record.zi_error == EILSEQ) {
430 if (zio == NULL)
431 break;
432
433 /* locate buffer data and flip a bit */
434 (void) abd_iterate_func(zio->io_abd, 0,
435 zio->io_size, zio_inject_bitflip_cb,
436 zio);
437 break;
438 }
439
440 ret = handler->zi_record.zi_error;
34dc7c2f
BB
441 break;
442 }
443 if (handler->zi_record.zi_error == ENXIO) {
2e528b49 444 ret = SET_ERROR(EIO);
34dc7c2f
BB
445 break;
446 }
447 }
448 }
449
450 rw_exit(&inject_lock);
451
452 return (ret);
453}
454
d977122d
DB
455int
456zio_handle_device_injection(vdev_t *vd, zio_t *zio, int error)
457{
458 return (zio_handle_device_injection_impl(vd, zio, error, INT_MAX));
459}
460
461int
462zio_handle_device_injections(vdev_t *vd, zio_t *zio, int err1, int err2)
463{
464 return (zio_handle_device_injection_impl(vd, zio, err1, err2));
465}
466
428870ff
BB
467/*
468 * Simulate hardware that ignores cache flushes. For requested number
469 * of seconds nix the actual writing to disk.
470 */
471void
472zio_handle_ignored_writes(zio_t *zio)
473{
474 inject_handler_t *handler;
475
476 rw_enter(&inject_lock, RW_READER);
477
478 for (handler = list_head(&inject_handlers); handler != NULL;
479 handler = list_next(&inject_handlers, handler)) {
480
481 /* Ignore errors not destined for this pool */
cc92e9d0
GW
482 if (zio->io_spa != handler->zi_spa ||
483 handler->zi_record.zi_cmd != ZINJECT_IGNORED_WRITES)
428870ff
BB
484 continue;
485
486 /*
487 * Positive duration implies # of seconds, negative
488 * a number of txgs
489 */
490 if (handler->zi_record.zi_timer == 0) {
491 if (handler->zi_record.zi_duration > 0)
492 handler->zi_record.zi_timer = ddi_get_lbolt64();
493 else
494 handler->zi_record.zi_timer = zio->io_txg;
495 }
496
497 /* Have a "problem" writing 60% of the time */
29274c9f 498 if (random_in_range(100) < 60)
428870ff
BB
499 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
500 break;
501 }
502
503 rw_exit(&inject_lock);
504}
505
506void
507spa_handle_ignored_writes(spa_t *spa)
508{
509 inject_handler_t *handler;
510
511 if (zio_injection_enabled == 0)
512 return;
513
514 rw_enter(&inject_lock, RW_READER);
515
516 for (handler = list_head(&inject_handlers); handler != NULL;
517 handler = list_next(&inject_handlers, handler)) {
518
cc92e9d0
GW
519 if (spa != handler->zi_spa ||
520 handler->zi_record.zi_cmd != ZINJECT_IGNORED_WRITES)
428870ff
BB
521 continue;
522
523 if (handler->zi_record.zi_duration > 0) {
524 VERIFY(handler->zi_record.zi_timer == 0 ||
0b75bdb3
CC
525 ddi_time_after64(
526 (int64_t)handler->zi_record.zi_timer +
527 handler->zi_record.zi_duration * hz,
528 ddi_get_lbolt64()));
428870ff
BB
529 } else {
530 /* duration is negative so the subtraction here adds */
531 VERIFY(handler->zi_record.zi_timer == 0 ||
532 handler->zi_record.zi_timer -
533 handler->zi_record.zi_duration >=
534 spa_syncing_txg(spa));
535 }
536 }
537
538 rw_exit(&inject_lock);
539}
540
26ef0cc7 541hrtime_t
cc92e9d0
GW
542zio_handle_io_delay(zio_t *zio)
543{
544 vdev_t *vd = zio->io_vd;
26ef0cc7
TH
545 inject_handler_t *min_handler = NULL;
546 hrtime_t min_target = 0;
cc92e9d0
GW
547
548 rw_enter(&inject_lock, RW_READER);
549
26ef0cc7
TH
550 /*
551 * inject_delay_count is a subset of zio_injection_enabled that
552 * is only incremented for delay handlers. These checks are
553 * mainly added to remind the reader why we're not explicitly
554 * checking zio_injection_enabled like the other functions.
555 */
556 IMPLY(inject_delay_count > 0, zio_injection_enabled > 0);
557 IMPLY(zio_injection_enabled == 0, inject_delay_count == 0);
558
559 /*
560 * If there aren't any inject delay handlers registered, then we
561 * can short circuit and simply return 0 here. A value of zero
562 * informs zio_delay_interrupt() that this request should not be
563 * delayed. This short circuit keeps us from acquiring the
564 * inject_delay_mutex unnecessarily.
565 */
566 if (inject_delay_count == 0) {
567 rw_exit(&inject_lock);
568 return (0);
569 }
570
571 /*
572 * Each inject handler has a number of "lanes" associated with
573 * it. Each lane is able to handle requests independently of one
574 * another, and at a latency defined by the inject handler
575 * record's zi_timer field. Thus if a handler in configured with
576 * a single lane with a 10ms latency, it will delay requests
577 * such that only a single request is completed every 10ms. So,
578 * if more than one request is attempted per each 10ms interval,
579 * the average latency of the requests will be greater than
580 * 10ms; but if only a single request is submitted each 10ms
581 * interval the average latency will be 10ms.
582 *
583 * We need to acquire this mutex to prevent multiple concurrent
584 * threads being assigned to the same lane of a given inject
585 * handler. The mutex allows us to perform the following two
586 * operations atomically:
587 *
588 * 1. determine the minimum handler and minimum target
589 * value of all the possible handlers
590 * 2. update that minimum handler's lane array
591 *
592 * Without atomicity, two (or more) threads could pick the same
593 * lane in step (1), and then conflict with each other in step
594 * (2). This could allow a single lane handler to process
595 * multiple requests simultaneously, which shouldn't be possible.
596 */
597 mutex_enter(&inject_delay_mtx);
cc92e9d0 598
1c27024e 599 for (inject_handler_t *handler = list_head(&inject_handlers);
26ef0cc7 600 handler != NULL; handler = list_next(&inject_handlers, handler)) {
cc92e9d0
GW
601 if (handler->zi_record.zi_cmd != ZINJECT_DELAY_IO)
602 continue;
603
0241e491 604 if (!freq_triggered(handler->zi_record.zi_freq))
c35b1882
BB
605 continue;
606
26ef0cc7
TH
607 if (vd->vdev_guid != handler->zi_record.zi_guid)
608 continue;
609
c3f2f1aa 610 /* also match on I/O type (e.g., -T read) */
cbe88229 611 if (handler->zi_record.zi_iotype != ZIO_TYPES &&
c3f2f1aa
DB
612 handler->zi_record.zi_iotype != zio->io_type) {
613 continue;
614 }
cbe88229 615
26ef0cc7
TH
616 /*
617 * Defensive; should never happen as the array allocation
618 * occurs prior to inserting this handler on the list.
619 */
620 ASSERT3P(handler->zi_lanes, !=, NULL);
621
622 /*
623 * This should never happen, the zinject command should
624 * prevent a user from setting an IO delay with zero lanes.
625 */
626 ASSERT3U(handler->zi_record.zi_nlanes, !=, 0);
627
628 ASSERT3U(handler->zi_record.zi_nlanes, >,
629 handler->zi_next_lane);
630
631 /*
632 * We want to issue this IO to the lane that will become
633 * idle the soonest, so we compare the soonest this
634 * specific handler can complete the IO with all other
635 * handlers, to find the lowest value of all possible
636 * lanes. We then use this lane to submit the request.
637 *
638 * Since each handler has a constant value for its
639 * delay, we can just use the "next" lane for that
640 * handler; as it will always be the lane with the
641 * lowest value for that particular handler (i.e. the
642 * lane that will become idle the soonest). This saves a
643 * scan of each handler's lanes array.
644 *
645 * There's two cases to consider when determining when
646 * this specific IO request should complete. If this
647 * lane is idle, we want to "submit" the request now so
648 * it will complete after zi_timer milliseconds. Thus,
649 * we set the target to now + zi_timer.
650 *
651 * If the lane is busy, we want this request to complete
652 * zi_timer milliseconds after the lane becomes idle.
653 * Since the 'zi_lanes' array holds the time at which
654 * each lane will become idle, we use that value to
655 * determine when this request should complete.
656 */
1c27024e
DB
657 hrtime_t idle = handler->zi_record.zi_timer + gethrtime();
658 hrtime_t busy = handler->zi_record.zi_timer +
26ef0cc7 659 handler->zi_lanes[handler->zi_next_lane];
1c27024e 660 hrtime_t target = MAX(idle, busy);
26ef0cc7
TH
661
662 if (min_handler == NULL) {
663 min_handler = handler;
664 min_target = target;
665 continue;
cc92e9d0
GW
666 }
667
26ef0cc7
TH
668 ASSERT3P(min_handler, !=, NULL);
669 ASSERT3U(min_target, !=, 0);
670
671 /*
672 * We don't yet increment the "next lane" variable since
673 * we still might find a lower value lane in another
674 * handler during any remaining iterations. Once we're
675 * sure we've selected the absolute minimum, we'll claim
676 * the lane and increment the handler's "next lane"
677 * field below.
678 */
679
680 if (target < min_target) {
681 min_handler = handler;
682 min_target = target;
683 }
cc92e9d0 684 }
26ef0cc7
TH
685
686 /*
687 * 'min_handler' will be NULL if no IO delays are registered for
688 * this vdev, otherwise it will point to the handler containing
689 * the lane that will become idle the soonest.
690 */
691 if (min_handler != NULL) {
692 ASSERT3U(min_target, !=, 0);
693 min_handler->zi_lanes[min_handler->zi_next_lane] = min_target;
694
695 /*
696 * If we've used all possible lanes for this handler,
697 * loop back and start using the first lane again;
698 * otherwise, just increment the lane index.
699 */
700 min_handler->zi_next_lane = (min_handler->zi_next_lane + 1) %
701 min_handler->zi_record.zi_nlanes;
702 }
703
704 mutex_exit(&inject_delay_mtx);
cc92e9d0 705 rw_exit(&inject_lock);
26ef0cc7
TH
706
707 return (min_target);
cc92e9d0
GW
708}
709
c183d164
GW
710static void
711zio_handle_pool_delay(spa_t *spa, hrtime_t elapsed, zinject_type_t command)
712{
713 inject_handler_t *handler;
714 hrtime_t delay = 0;
715 int id = 0;
716
717 rw_enter(&inject_lock, RW_READER);
718
719 for (handler = list_head(&inject_handlers);
720 handler != NULL && handler->zi_record.zi_cmd == command;
721 handler = list_next(&inject_handlers, handler)) {
722 ASSERT3P(handler->zi_spa_name, !=, NULL);
723 if (strcmp(spa_name(spa), handler->zi_spa_name) == 0) {
724 uint64_t pause =
725 SEC2NSEC(handler->zi_record.zi_duration);
726 if (pause > elapsed) {
727 delay = pause - elapsed;
728 }
729 id = handler->zi_id;
730 break;
731 }
732 }
733
734 rw_exit(&inject_lock);
735
736 if (delay) {
737 if (command == ZINJECT_DELAY_IMPORT) {
738 spa_import_progress_set_notes(spa, "injecting %llu "
739 "sec delay", (u_longlong_t)NSEC2SEC(delay));
740 }
741 zfs_sleep_until(gethrtime() + delay);
742 }
743 if (id) {
744 /* all done with this one-shot handler */
745 zio_clear_fault(id);
746 }
747}
748
749/*
750 * For testing, inject a delay during an import
751 */
752void
753zio_handle_import_delay(spa_t *spa, hrtime_t elapsed)
754{
755 zio_handle_pool_delay(spa, elapsed, ZINJECT_DELAY_IMPORT);
756}
757
758/*
759 * For testing, inject a delay during an export
760 */
761void
762zio_handle_export_delay(spa_t *spa, hrtime_t elapsed)
763{
764 zio_handle_pool_delay(spa, elapsed, ZINJECT_DELAY_EXPORT);
765}
766
e89f1295
DB
767static int
768zio_calculate_range(const char *pool, zinject_record_t *record)
769{
770 dsl_pool_t *dp;
771 dsl_dataset_t *ds;
772 objset_t *os = NULL;
773 dnode_t *dn = NULL;
774 int error;
775
776 /*
777 * Obtain the dnode for object using pool, objset, and object
778 */
779 error = dsl_pool_hold(pool, FTAG, &dp);
780 if (error)
781 return (error);
782
783 error = dsl_dataset_hold_obj(dp, record->zi_objset, FTAG, &ds);
784 dsl_pool_rele(dp, FTAG);
785 if (error)
786 return (error);
787
788 error = dmu_objset_from_ds(ds, &os);
789 dsl_dataset_rele(ds, FTAG);
790 if (error)
791 return (error);
792
793 error = dnode_hold(os, record->zi_object, FTAG, &dn);
794 if (error)
795 return (error);
796
797 /*
798 * Translate the range into block IDs
799 */
800 if (record->zi_start != 0 || record->zi_end != -1ULL) {
801 record->zi_start >>= dn->dn_datablkshift;
802 record->zi_end >>= dn->dn_datablkshift;
803 }
804 if (record->zi_level > 0) {
805 if (record->zi_level >= dn->dn_nlevels) {
806 dnode_rele(dn, FTAG);
807 return (SET_ERROR(EDOM));
808 }
809
810 if (record->zi_start != 0 || record->zi_end != 0) {
811 int shift = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
812
813 for (int level = record->zi_level; level > 0; level--) {
814 record->zi_start >>= shift;
815 record->zi_end >>= shift;
816 }
817 }
818 }
819
820 dnode_rele(dn, FTAG);
821 return (0);
822}
823
c183d164
GW
824static boolean_t
825zio_pool_handler_exists(const char *name, zinject_type_t command)
826{
827 boolean_t exists = B_FALSE;
828
829 rw_enter(&inject_lock, RW_READER);
830 for (inject_handler_t *handler = list_head(&inject_handlers);
831 handler != NULL; handler = list_next(&inject_handlers, handler)) {
832 if (command != handler->zi_record.zi_cmd)
833 continue;
834
835 const char *pool = (handler->zi_spa_name != NULL) ?
836 handler->zi_spa_name : spa_name(handler->zi_spa);
837 if (strcmp(name, pool) == 0) {
838 exists = B_TRUE;
839 break;
840 }
841 }
842 rw_exit(&inject_lock);
843
844 return (exists);
845}
34dc7c2f
BB
846/*
847 * Create a new handler for the given record. We add it to the list, adding
848 * a reference to the spa_t in the process. We increment zio_injection_enabled,
849 * which is the switch to trigger all fault injection.
850 */
851int
852zio_inject_fault(char *name, int flags, int *id, zinject_record_t *record)
853{
854 inject_handler_t *handler;
855 int error;
856 spa_t *spa;
857
858 /*
859 * If this is pool-wide metadata, make sure we unload the corresponding
860 * spa_t, so that the next attempt to load it will trigger the fault.
861 * We call spa_reset() to unload the pool appropriately.
862 */
863 if (flags & ZINJECT_UNLOAD_SPA)
864 if ((error = spa_reset(name)) != 0)
865 return (error);
866
26ef0cc7
TH
867 if (record->zi_cmd == ZINJECT_DELAY_IO) {
868 /*
869 * A value of zero for the number of lanes or for the
870 * delay time doesn't make sense.
871 */
872 if (record->zi_timer == 0 || record->zi_nlanes == 0)
873 return (SET_ERROR(EINVAL));
874
875 /*
876 * The number of lanes is directly mapped to the size of
877 * an array used by the handler. Thus, to ensure the
878 * user doesn't trigger an allocation that's "too large"
879 * we cap the number of lanes here.
880 */
881 if (record->zi_nlanes >= UINT16_MAX)
882 return (SET_ERROR(EINVAL));
883 }
884
e89f1295
DB
885 /*
886 * If the supplied range was in bytes -- calculate the actual blkid
887 */
888 if (flags & ZINJECT_CALC_RANGE) {
889 error = zio_calculate_range(name, record);
890 if (error != 0)
891 return (error);
892 }
893
34dc7c2f
BB
894 if (!(flags & ZINJECT_NULL)) {
895 /*
c183d164
GW
896 * Pool delays for import or export don't take an
897 * injection reference on the spa. Instead they
898 * rely on matching by name.
34dc7c2f 899 */
c183d164
GW
900 if (record->zi_cmd == ZINJECT_DELAY_IMPORT ||
901 record->zi_cmd == ZINJECT_DELAY_EXPORT) {
902 if (record->zi_duration <= 0)
903 return (SET_ERROR(EINVAL));
904 /*
905 * Only one import | export delay handler per pool.
906 */
907 if (zio_pool_handler_exists(name, record->zi_cmd))
908 return (SET_ERROR(EEXIST));
909
910 mutex_enter(&spa_namespace_lock);
911 boolean_t has_spa = spa_lookup(name) != NULL;
912 mutex_exit(&spa_namespace_lock);
913
914 if (record->zi_cmd == ZINJECT_DELAY_IMPORT && has_spa)
915 return (SET_ERROR(EEXIST));
916 if (record->zi_cmd == ZINJECT_DELAY_EXPORT && !has_spa)
917 return (SET_ERROR(ENOENT));
918 spa = NULL;
919 } else {
920 /*
921 * spa_inject_ref() will add an injection reference,
922 * which will prevent the pool from being removed
923 * from the namespace while still allowing it to be
924 * unloaded.
925 */
926 if ((spa = spa_inject_addref(name)) == NULL)
927 return (SET_ERROR(ENOENT));
928 }
34dc7c2f
BB
929
930 handler = kmem_alloc(sizeof (inject_handler_t), KM_SLEEP);
c183d164 931 handler->zi_spa = spa; /* note: can be NULL */
26ef0cc7
TH
932 handler->zi_record = *record;
933
934 if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
935 handler->zi_lanes = kmem_zalloc(
936 sizeof (*handler->zi_lanes) *
937 handler->zi_record.zi_nlanes, KM_SLEEP);
938 handler->zi_next_lane = 0;
939 } else {
940 handler->zi_lanes = NULL;
941 handler->zi_next_lane = 0;
942 }
943
c183d164
GW
944 if (handler->zi_spa == NULL)
945 handler->zi_spa_name = spa_strdup(name);
946 else
947 handler->zi_spa_name = NULL;
948
34dc7c2f
BB
949 rw_enter(&inject_lock, RW_WRITER);
950
26ef0cc7
TH
951 /*
952 * We can't move this increment into the conditional
953 * above because we need to hold the RW_WRITER lock of
954 * inject_lock, and we don't want to hold that while
955 * allocating the handler's zi_lanes array.
956 */
957 if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
958 ASSERT3S(inject_delay_count, >=, 0);
959 inject_delay_count++;
960 ASSERT3S(inject_delay_count, >, 0);
961 }
962
34dc7c2f 963 *id = handler->zi_id = inject_next_id++;
34dc7c2f 964 list_insert_tail(&inject_handlers, handler);
bc89ac84 965 atomic_inc_32(&zio_injection_enabled);
34dc7c2f
BB
966
967 rw_exit(&inject_lock);
968 }
969
970 /*
971 * Flush the ARC, so that any attempts to read this data will end up
972 * going to the ZIO layer. Note that this is a little overkill, but
973 * we don't have the necessary ARC interfaces to do anything else, and
974 * fault injection isn't a performance critical path.
975 */
976 if (flags & ZINJECT_FLUSH_ARC)
ca0bf58d
PS
977 /*
978 * We must use FALSE to ensure arc_flush returns, since
979 * we're not preventing concurrent ARC insertions.
980 */
981 arc_flush(NULL, FALSE);
34dc7c2f
BB
982
983 return (0);
984}
985
986/*
987 * Returns the next record with an ID greater than that supplied to the
988 * function. Used to iterate over all handlers in the system.
989 */
990int
991zio_inject_list_next(int *id, char *name, size_t buflen,
992 zinject_record_t *record)
993{
994 inject_handler_t *handler;
995 int ret;
996
997 mutex_enter(&spa_namespace_lock);
998 rw_enter(&inject_lock, RW_READER);
999
1000 for (handler = list_head(&inject_handlers); handler != NULL;
1001 handler = list_next(&inject_handlers, handler))
1002 if (handler->zi_id > *id)
1003 break;
1004
1005 if (handler) {
1006 *record = handler->zi_record;
1007 *id = handler->zi_id;
c183d164
GW
1008 ASSERT(handler->zi_spa || handler->zi_spa_name);
1009 if (handler->zi_spa != NULL)
1010 (void) strlcpy(name, spa_name(handler->zi_spa), buflen);
1011 else
1012 (void) strlcpy(name, handler->zi_spa_name, buflen);
34dc7c2f
BB
1013 ret = 0;
1014 } else {
2e528b49 1015 ret = SET_ERROR(ENOENT);
34dc7c2f
BB
1016 }
1017
1018 rw_exit(&inject_lock);
1019 mutex_exit(&spa_namespace_lock);
1020
1021 return (ret);
1022}
1023
1024/*
1025 * Clear the fault handler with the given identifier, or return ENOENT if none
1026 * exists.
1027 */
1028int
1029zio_clear_fault(int id)
1030{
1031 inject_handler_t *handler;
34dc7c2f
BB
1032
1033 rw_enter(&inject_lock, RW_WRITER);
1034
1035 for (handler = list_head(&inject_handlers); handler != NULL;
1036 handler = list_next(&inject_handlers, handler))
1037 if (handler->zi_id == id)
1038 break;
1039
1040 if (handler == NULL) {
572e2857 1041 rw_exit(&inject_lock);
2e528b49 1042 return (SET_ERROR(ENOENT));
34dc7c2f
BB
1043 }
1044
26ef0cc7
TH
1045 if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
1046 ASSERT3S(inject_delay_count, >, 0);
1047 inject_delay_count--;
1048 ASSERT3S(inject_delay_count, >=, 0);
1049 }
1050
572e2857 1051 list_remove(&inject_handlers, handler);
34dc7c2f
BB
1052 rw_exit(&inject_lock);
1053
26ef0cc7
TH
1054 if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
1055 ASSERT3P(handler->zi_lanes, !=, NULL);
1056 kmem_free(handler->zi_lanes, sizeof (*handler->zi_lanes) *
1057 handler->zi_record.zi_nlanes);
1058 } else {
1059 ASSERT3P(handler->zi_lanes, ==, NULL);
1060 }
1061
c183d164
GW
1062 if (handler->zi_spa_name != NULL)
1063 spa_strfree(handler->zi_spa_name);
1064
1065 if (handler->zi_spa != NULL)
1066 spa_inject_delref(handler->zi_spa);
572e2857 1067 kmem_free(handler, sizeof (inject_handler_t));
bc89ac84 1068 atomic_dec_32(&zio_injection_enabled);
572e2857
BB
1069
1070 return (0);
34dc7c2f
BB
1071}
1072
1073void
1074zio_inject_init(void)
1075{
b128c09f 1076 rw_init(&inject_lock, NULL, RW_DEFAULT, NULL);
26ef0cc7 1077 mutex_init(&inject_delay_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
1078 list_create(&inject_handlers, sizeof (inject_handler_t),
1079 offsetof(inject_handler_t, zi_link));
1080}
1081
1082void
1083zio_inject_fini(void)
1084{
1085 list_destroy(&inject_handlers);
26ef0cc7 1086 mutex_destroy(&inject_delay_mtx);
b128c09f 1087 rw_destroy(&inject_lock);
34dc7c2f 1088}
c409e464 1089
93ce2b4c 1090#if defined(_KERNEL)
e89bd697
IH
1091EXPORT_SYMBOL(zio_injection_enabled);
1092EXPORT_SYMBOL(zio_inject_fault);
1093EXPORT_SYMBOL(zio_inject_list_next);
1094EXPORT_SYMBOL(zio_clear_fault);
1095EXPORT_SYMBOL(zio_handle_fault_injection);
1096EXPORT_SYMBOL(zio_handle_device_injection);
1097EXPORT_SYMBOL(zio_handle_label_injection);
c409e464 1098#endif