]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/zpl_file.c
codebase style improvements for OpenZFS 6459 port
[mirror_zfs.git] / module / zfs / zpl_file.c
CommitLineData
1efb473f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2011, Lawrence Livermore National Security, LLC.
5475aada 23 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
1efb473f
BB
24 */
25
26
f7b939bd
CIK
27#ifdef CONFIG_COMPAT
28#include <linux/compat.h>
29#endif
119a394a 30#include <sys/dmu_objset.h>
1efb473f
BB
31#include <sys/zfs_vfsops.h>
32#include <sys/zfs_vnops.h>
33#include <sys/zfs_znode.h>
34#include <sys/zpl.h>
35
36
126400a1
BB
37static int
38zpl_open(struct inode *ip, struct file *filp)
39{
81e97e21 40 cred_t *cr = CRED();
126400a1 41 int error;
40d06e3c 42 fstrans_cookie_t cookie;
126400a1 43
7dc71949
CC
44 error = generic_file_open(ip, filp);
45 if (error)
46 return (error);
47
81e97e21 48 crhold(cr);
40d06e3c 49 cookie = spl_fstrans_mark();
126400a1 50 error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr);
40d06e3c 51 spl_fstrans_unmark(cookie);
81e97e21 52 crfree(cr);
126400a1
BB
53 ASSERT3S(error, <=, 0);
54
7dc71949 55 return (error);
126400a1
BB
56}
57
58static int
59zpl_release(struct inode *ip, struct file *filp)
60{
81e97e21 61 cred_t *cr = CRED();
126400a1 62 int error;
40d06e3c 63 fstrans_cookie_t cookie;
126400a1 64
40d06e3c 65 cookie = spl_fstrans_mark();
78d7a5d7 66 if (ITOZ(ip)->z_atime_dirty)
1e8db771 67 zfs_mark_inode_dirty(ip);
78d7a5d7 68
81e97e21 69 crhold(cr);
126400a1 70 error = -zfs_close(ip, filp->f_flags, cr);
40d06e3c 71 spl_fstrans_unmark(cookie);
81e97e21 72 crfree(cr);
126400a1
BB
73 ASSERT3S(error, <=, 0);
74
75 return (error);
76}
77
1efb473f 78static int
0f37d0c8 79zpl_iterate(struct file *filp, struct dir_context *ctx)
1efb473f 80{
81e97e21 81 cred_t *cr = CRED();
1efb473f 82 int error;
40d06e3c 83 fstrans_cookie_t cookie;
1efb473f 84
81e97e21 85 crhold(cr);
40d06e3c 86 cookie = spl_fstrans_mark();
d9c97ec0 87 error = -zfs_readdir(file_inode(filp), ctx, cr);
40d06e3c 88 spl_fstrans_unmark(cookie);
81e97e21 89 crfree(cr);
1efb473f
BB
90 ASSERT3S(error, <=, 0);
91
92 return (error);
93}
94
9baaa7de 95#if !defined(HAVE_VFS_ITERATE) && !defined(HAVE_VFS_ITERATE_SHARED)
0f37d0c8
RY
96static int
97zpl_readdir(struct file *filp, void *dirent, filldir_t filldir)
98{
99 struct dir_context ctx = DIR_CONTEXT_INIT(dirent, filldir, filp->f_pos);
100 int error;
101
102 error = zpl_iterate(filp, &ctx);
103 filp->f_pos = ctx.pos;
104
105 return (error);
106}
107#endif /* HAVE_VFS_ITERATE */
108
adcd70bd 109#if defined(HAVE_FSYNC_WITH_DENTRY)
3117dd0b 110/*
adcd70bd
BB
111 * Linux 2.6.x - 2.6.34 API,
112 * Through 2.6.34 the nfsd kernel server would pass a NULL 'file struct *'
113 * to the fops->fsync() hook. For this reason, we must be careful not to
114 * use filp unconditionally.
115 */
116static int
117zpl_fsync(struct file *filp, struct dentry *dentry, int datasync)
118{
119 cred_t *cr = CRED();
120 int error;
40d06e3c 121 fstrans_cookie_t cookie;
adcd70bd
BB
122
123 crhold(cr);
40d06e3c 124 cookie = spl_fstrans_mark();
adcd70bd 125 error = -zfs_fsync(dentry->d_inode, datasync, cr);
40d06e3c 126 spl_fstrans_unmark(cookie);
adcd70bd
BB
127 crfree(cr);
128 ASSERT3S(error, <=, 0);
129
130 return (error);
131}
132
7ca25051 133#ifdef HAVE_FILE_AIO_FSYNC
cd3939c5
RY
134static int
135zpl_aio_fsync(struct kiocb *kiocb, int datasync)
136{
137 struct file *filp = kiocb->ki_filp;
d9c97ec0 138 return (zpl_fsync(filp, file_dentry(filp), datasync));
cd3939c5 139}
7ca25051
D
140#endif
141
adcd70bd
BB
142#elif defined(HAVE_FSYNC_WITHOUT_DENTRY)
143/*
144 * Linux 2.6.35 - 3.0 API,
145 * As of 2.6.35 the dentry argument to the fops->fsync() hook was deemed
3117dd0b
BB
146 * redundant. The dentry is still accessible via filp->f_path.dentry,
147 * and we are guaranteed that filp will never be NULL.
3117dd0b 148 */
3117dd0b
BB
149static int
150zpl_fsync(struct file *filp, int datasync)
151{
adcd70bd
BB
152 struct inode *inode = filp->f_mapping->host;
153 cred_t *cr = CRED();
154 int error;
40d06e3c 155 fstrans_cookie_t cookie;
adcd70bd
BB
156
157 crhold(cr);
40d06e3c 158 cookie = spl_fstrans_mark();
adcd70bd 159 error = -zfs_fsync(inode, datasync, cr);
40d06e3c 160 spl_fstrans_unmark(cookie);
adcd70bd
BB
161 crfree(cr);
162 ASSERT3S(error, <=, 0);
163
164 return (error);
165}
166
7ca25051 167#ifdef HAVE_FILE_AIO_FSYNC
cd3939c5
RY
168static int
169zpl_aio_fsync(struct kiocb *kiocb, int datasync)
170{
171 return (zpl_fsync(kiocb->ki_filp, datasync));
172}
7ca25051
D
173#endif
174
adcd70bd
BB
175#elif defined(HAVE_FSYNC_RANGE)
176/*
177 * Linux 3.1 - 3.x API,
178 * As of 3.1 the responsibility to call filemap_write_and_wait_range() has
179 * been pushed down in to the .fsync() vfs hook. Additionally, the i_mutex
180 * lock is no longer held by the caller, for zfs we don't require the lock
181 * to be held so we don't acquire it.
182 */
3117dd0b 183static int
adcd70bd 184zpl_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
1efb473f 185{
adcd70bd 186 struct inode *inode = filp->f_mapping->host;
81e97e21 187 cred_t *cr = CRED();
1efb473f 188 int error;
40d06e3c 189 fstrans_cookie_t cookie;
1efb473f 190
adcd70bd
BB
191 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
192 if (error)
193 return (error);
194
81e97e21 195 crhold(cr);
40d06e3c 196 cookie = spl_fstrans_mark();
adcd70bd 197 error = -zfs_fsync(inode, datasync, cr);
40d06e3c 198 spl_fstrans_unmark(cookie);
81e97e21 199 crfree(cr);
1efb473f
BB
200 ASSERT3S(error, <=, 0);
201
202 return (error);
203}
cd3939c5 204
7ca25051 205#ifdef HAVE_FILE_AIO_FSYNC
cd3939c5
RY
206static int
207zpl_aio_fsync(struct kiocb *kiocb, int datasync)
208{
57ae8400 209 return (zpl_fsync(kiocb->ki_filp, kiocb->ki_pos, -1, datasync));
cd3939c5 210}
7ca25051
D
211#endif
212
adcd70bd
BB
213#else
214#error "Unsupported fops->fsync() implementation"
215#endif
1efb473f 216
5475aada 217static ssize_t
cd3939c5 218zpl_read_common_iovec(struct inode *ip, const struct iovec *iovp, size_t count,
5475aada
CC
219 unsigned long nr_segs, loff_t *ppos, uio_seg_t segment, int flags,
220 cred_t *cr, size_t skip)
1efb473f 221{
e3dc14b8 222 ssize_t read;
1efb473f 223 uio_t uio;
cd3939c5 224 int error;
40d06e3c 225 fstrans_cookie_t cookie;
1efb473f 226
5475aada
CC
227 uio.uio_iov = iovp;
228 uio.uio_skip = skip;
cd3939c5
RY
229 uio.uio_resid = count;
230 uio.uio_iovcnt = nr_segs;
231 uio.uio_loffset = *ppos;
1efb473f
BB
232 uio.uio_limit = MAXOFFSET_T;
233 uio.uio_segflg = segment;
234
40d06e3c 235 cookie = spl_fstrans_mark();
1efb473f 236 error = -zfs_read(ip, &uio, flags, cr);
40d06e3c 237 spl_fstrans_unmark(cookie);
1efb473f
BB
238 if (error < 0)
239 return (error);
240
cd3939c5
RY
241 read = count - uio.uio_resid;
242 *ppos += read;
e3dc14b8
BB
243 task_io_account_read(read);
244
245 return (read);
1efb473f
BB
246}
247
cd3939c5
RY
248inline ssize_t
249zpl_read_common(struct inode *ip, const char *buf, size_t len, loff_t *ppos,
250 uio_seg_t segment, int flags, cred_t *cr)
251{
252 struct iovec iov;
253
254 iov.iov_base = (void *)buf;
255 iov.iov_len = len;
256
257 return (zpl_read_common_iovec(ip, &iov, len, 1, ppos, segment,
5475aada 258 flags, cr, 0));
cd3939c5
RY
259}
260
1efb473f
BB
261static ssize_t
262zpl_read(struct file *filp, char __user *buf, size_t len, loff_t *ppos)
263{
81e97e21 264 cred_t *cr = CRED();
1efb473f
BB
265 ssize_t read;
266
81e97e21 267 crhold(cr);
cd3939c5 268 read = zpl_read_common(filp->f_mapping->host, buf, len, ppos,
1efb473f 269 UIO_USERSPACE, filp->f_flags, cr);
81e97e21 270 crfree(cr);
1efb473f 271
0df9673f 272 file_accessed(filp);
cd3939c5
RY
273 return (read);
274}
275
276static ssize_t
57ae8400 277zpl_iter_read_common(struct kiocb *kiocb, const struct iovec *iovp,
5475aada 278 unsigned long nr_segs, size_t count, uio_seg_t seg, size_t skip)
cd3939c5
RY
279{
280 cred_t *cr = CRED();
281 struct file *filp = kiocb->ki_filp;
cd3939c5 282 ssize_t read;
cd3939c5
RY
283
284 crhold(cr);
5475aada
CC
285 read = zpl_read_common_iovec(filp->f_mapping->host, iovp, count,
286 nr_segs, &kiocb->ki_pos, seg, filp->f_flags, cr, skip);
cd3939c5
RY
287 crfree(cr);
288
0df9673f 289 file_accessed(filp);
1efb473f
BB
290 return (read);
291}
292
57ae8400
MK
293#if defined(HAVE_VFS_RW_ITERATE)
294static ssize_t
295zpl_iter_read(struct kiocb *kiocb, struct iov_iter *to)
296{
5475aada
CC
297 ssize_t ret;
298 uio_seg_t seg = UIO_USERSPACE;
299 if (to->type & ITER_KVEC)
300 seg = UIO_SYSSPACE;
301 if (to->type & ITER_BVEC)
302 seg = UIO_BVEC;
303 ret = zpl_iter_read_common(kiocb, to->iov, to->nr_segs,
304 iov_iter_count(to), seg, to->iov_offset);
305 if (ret > 0)
306 iov_iter_advance(to, ret);
307 return (ret);
57ae8400
MK
308}
309#else
310static ssize_t
311zpl_aio_read(struct kiocb *kiocb, const struct iovec *iovp,
312 unsigned long nr_segs, loff_t pos)
313{
5475aada
CC
314 return (zpl_iter_read_common(kiocb, iovp, nr_segs, kiocb->ki_nbytes,
315 UIO_USERSPACE, 0));
57ae8400
MK
316}
317#endif /* HAVE_VFS_RW_ITERATE */
318
5475aada 319static ssize_t
cd3939c5 320zpl_write_common_iovec(struct inode *ip, const struct iovec *iovp, size_t count,
5475aada
CC
321 unsigned long nr_segs, loff_t *ppos, uio_seg_t segment, int flags,
322 cred_t *cr, size_t skip)
1efb473f 323{
e3dc14b8 324 ssize_t wrote;
1efb473f 325 uio_t uio;
cd3939c5 326 int error;
40d06e3c 327 fstrans_cookie_t cookie;
1efb473f 328
1efdc45e
BB
329 if (flags & O_APPEND)
330 *ppos = i_size_read(ip);
331
5475aada
CC
332 uio.uio_iov = iovp;
333 uio.uio_skip = skip;
cd3939c5
RY
334 uio.uio_resid = count;
335 uio.uio_iovcnt = nr_segs;
336 uio.uio_loffset = *ppos;
1efb473f
BB
337 uio.uio_limit = MAXOFFSET_T;
338 uio.uio_segflg = segment;
339
40d06e3c 340 cookie = spl_fstrans_mark();
1efb473f 341 error = -zfs_write(ip, &uio, flags, cr);
40d06e3c 342 spl_fstrans_unmark(cookie);
1efb473f
BB
343 if (error < 0)
344 return (error);
345
cd3939c5
RY
346 wrote = count - uio.uio_resid;
347 *ppos += wrote;
e3dc14b8
BB
348 task_io_account_write(wrote);
349
350 return (wrote);
1efb473f 351}
cd3939c5
RY
352inline ssize_t
353zpl_write_common(struct inode *ip, const char *buf, size_t len, loff_t *ppos,
354 uio_seg_t segment, int flags, cred_t *cr)
355{
356 struct iovec iov;
357
358 iov.iov_base = (void *)buf;
359 iov.iov_len = len;
360
361 return (zpl_write_common_iovec(ip, &iov, len, 1, ppos, segment,
5475aada 362 flags, cr, 0));
cd3939c5 363}
1efb473f
BB
364
365static ssize_t
366zpl_write(struct file *filp, const char __user *buf, size_t len, loff_t *ppos)
367{
81e97e21 368 cred_t *cr = CRED();
1efb473f
BB
369 ssize_t wrote;
370
81e97e21 371 crhold(cr);
cd3939c5 372 wrote = zpl_write_common(filp->f_mapping->host, buf, len, ppos,
1efb473f 373 UIO_USERSPACE, filp->f_flags, cr);
81e97e21 374 crfree(cr);
1efb473f 375
cd3939c5
RY
376 return (wrote);
377}
378
379static ssize_t
57ae8400 380zpl_iter_write_common(struct kiocb *kiocb, const struct iovec *iovp,
5475aada 381 unsigned long nr_segs, size_t count, uio_seg_t seg, size_t skip)
cd3939c5
RY
382{
383 cred_t *cr = CRED();
384 struct file *filp = kiocb->ki_filp;
cd3939c5 385 ssize_t wrote;
cd3939c5
RY
386
387 crhold(cr);
5475aada
CC
388 wrote = zpl_write_common_iovec(filp->f_mapping->host, iovp, count,
389 nr_segs, &kiocb->ki_pos, seg, filp->f_flags, cr, skip);
cd3939c5
RY
390 crfree(cr);
391
1efb473f
BB
392 return (wrote);
393}
394
57ae8400
MK
395#if defined(HAVE_VFS_RW_ITERATE)
396static ssize_t
397zpl_iter_write(struct kiocb *kiocb, struct iov_iter *from)
398{
5475aada
CC
399 ssize_t ret;
400 uio_seg_t seg = UIO_USERSPACE;
401 if (from->type & ITER_KVEC)
402 seg = UIO_SYSSPACE;
403 if (from->type & ITER_BVEC)
404 seg = UIO_BVEC;
405 ret = zpl_iter_write_common(kiocb, from->iov, from->nr_segs,
406 iov_iter_count(from), seg, from->iov_offset);
407 if (ret > 0)
408 iov_iter_advance(from, ret);
409 return (ret);
57ae8400
MK
410}
411#else
412static ssize_t
413zpl_aio_write(struct kiocb *kiocb, const struct iovec *iovp,
414 unsigned long nr_segs, loff_t pos)
415{
5475aada
CC
416 return (zpl_iter_write_common(kiocb, iovp, nr_segs, kiocb->ki_nbytes,
417 UIO_USERSPACE, 0));
57ae8400
MK
418}
419#endif /* HAVE_VFS_RW_ITERATE */
420
802e7b5f
LD
421static loff_t
422zpl_llseek(struct file *filp, loff_t offset, int whence)
423{
424#if defined(SEEK_HOLE) && defined(SEEK_DATA)
40d06e3c
TC
425 fstrans_cookie_t cookie;
426
802e7b5f
LD
427 if (whence == SEEK_DATA || whence == SEEK_HOLE) {
428 struct inode *ip = filp->f_mapping->host;
429 loff_t maxbytes = ip->i_sb->s_maxbytes;
430 loff_t error;
431
9baaa7de 432 spl_inode_lock_shared(ip);
40d06e3c 433 cookie = spl_fstrans_mark();
802e7b5f 434 error = -zfs_holey(ip, whence, &offset);
40d06e3c 435 spl_fstrans_unmark(cookie);
802e7b5f
LD
436 if (error == 0)
437 error = lseek_execute(filp, ip, offset, maxbytes);
9baaa7de 438 spl_inode_unlock_shared(ip);
802e7b5f
LD
439
440 return (error);
441 }
442#endif /* SEEK_HOLE && SEEK_DATA */
443
d1d7e268 444 return (generic_file_llseek(filp, offset, whence));
802e7b5f
LD
445}
446
c0d35759
BB
447/*
448 * It's worth taking a moment to describe how mmap is implemented
449 * for zfs because it differs considerably from other Linux filesystems.
450 * However, this issue is handled the same way under OpenSolaris.
451 *
452 * The issue is that by design zfs bypasses the Linux page cache and
453 * leaves all caching up to the ARC. This has been shown to work
454 * well for the common read(2)/write(2) case. However, mmap(2)
455 * is problem because it relies on being tightly integrated with the
456 * page cache. To handle this we cache mmap'ed files twice, once in
457 * the ARC and a second time in the page cache. The code is careful
458 * to keep both copies synchronized.
459 *
460 * When a file with an mmap'ed region is written to using write(2)
461 * both the data in the ARC and existing pages in the page cache
462 * are updated. For a read(2) data will be read first from the page
463 * cache then the ARC if needed. Neither a write(2) or read(2) will
464 * will ever result in new pages being added to the page cache.
465 *
466 * New pages are added to the page cache only via .readpage() which
467 * is called when the vfs needs to read a page off disk to back the
468 * virtual memory region. These pages may be modified without
469 * notifying the ARC and will be written out periodically via
470 * .writepage(). This will occur due to either a sync or the usual
471 * page aging behavior. Note because a read(2) of a mmap'ed file
472 * will always check the page cache first even when the ARC is out
473 * of date correct data will still be returned.
474 *
475 * While this implementation ensures correct behavior it does have
476 * have some drawbacks. The most obvious of which is that it
477 * increases the required memory footprint when access mmap'ed
478 * files. It also adds additional complexity to the code keeping
479 * both caches synchronized.
480 *
481 * Longer term it may be possible to cleanly resolve this wart by
482 * mapping page cache pages directly on to the ARC buffers. The
483 * Linux address space operations are flexible enough to allow
484 * selection of which pages back a particular index. The trick
485 * would be working out the details of which subsystem is in
486 * charge, the ARC, the page cache, or both. It may also prove
487 * helpful to move the ARC buffers to a scatter-gather lists
488 * rather than a vmalloc'ed region.
489 */
490static int
491zpl_mmap(struct file *filp, struct vm_area_struct *vma)
492{
e2e7aa2d
BB
493 struct inode *ip = filp->f_mapping->host;
494 znode_t *zp = ITOZ(ip);
c0d35759 495 int error;
40d06e3c 496 fstrans_cookie_t cookie;
c0d35759 497
40d06e3c 498 cookie = spl_fstrans_mark();
e2e7aa2d
BB
499 error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start,
500 (size_t)(vma->vm_end - vma->vm_start), vma->vm_flags);
40d06e3c 501 spl_fstrans_unmark(cookie);
e2e7aa2d
BB
502 if (error)
503 return (error);
504
c0d35759
BB
505 error = generic_file_mmap(filp, vma);
506 if (error)
507 return (error);
508
509 mutex_enter(&zp->z_lock);
510 zp->z_is_mapped = 1;
511 mutex_exit(&zp->z_lock);
512
513 return (error);
514}
515
516/*
517 * Populate a page with data for the Linux page cache. This function is
518 * only used to support mmap(2). There will be an identical copy of the
519 * data in the ARC which is kept up to date via .write() and .writepage().
520 *
521 * Current this function relies on zpl_read_common() and the O_DIRECT
522 * flag to read in a page. This works but the more correct way is to
523 * update zfs_fillpage() to be Linux friendly and use that interface.
524 */
525static int
526zpl_readpage(struct file *filp, struct page *pp)
527{
528 struct inode *ip;
dde471ef 529 struct page *pl[1];
c0d35759 530 int error = 0;
40d06e3c 531 fstrans_cookie_t cookie;
c0d35759
BB
532
533 ASSERT(PageLocked(pp));
534 ip = pp->mapping->host;
dde471ef 535 pl[0] = pp;
c0d35759 536
40d06e3c 537 cookie = spl_fstrans_mark();
dde471ef 538 error = -zfs_getpage(ip, pl, 1);
40d06e3c 539 spl_fstrans_unmark(cookie);
c0d35759 540
dde471ef
PJ
541 if (error) {
542 SetPageError(pp);
543 ClearPageUptodate(pp);
544 } else {
545 ClearPageError(pp);
546 SetPageUptodate(pp);
547 flush_dcache_page(pp);
548 }
c0d35759 549
dde471ef 550 unlock_page(pp);
d1d7e268 551 return (error);
dde471ef 552}
c0d35759 553
f3ab88d6
BB
554/*
555 * Populate a set of pages with data for the Linux page cache. This
556 * function will only be called for read ahead and never for demand
557 * paging. For simplicity, the code relies on read_cache_pages() to
558 * correctly lock each page for IO and call zpl_readpage().
559 */
560static int
561zpl_readpages(struct file *filp, struct address_space *mapping,
4ea3f864 562 struct list_head *pages, unsigned nr_pages)
f3ab88d6 563{
95d9fd02
BB
564 return (read_cache_pages(mapping, pages,
565 (filler_t *)zpl_readpage, filp));
f3ab88d6
BB
566}
567
dde471ef
PJ
568int
569zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data)
570{
3c0e5c0f 571 struct address_space *mapping = data;
92119cc2 572 fstrans_cookie_t cookie;
3c0e5c0f
BB
573
574 ASSERT(PageLocked(pp));
575 ASSERT(!PageWriteback(pp));
8630650a 576
92119cc2 577 cookie = spl_fstrans_mark();
62c4165a 578 (void) zfs_putpage(mapping->host, pp, wbc);
92119cc2 579 spl_fstrans_unmark(cookie);
c0d35759 580
3c0e5c0f 581 return (0);
dde471ef 582}
c0d35759 583
dde471ef
PJ
584static int
585zpl_writepages(struct address_space *mapping, struct writeback_control *wbc)
586{
119a394a
ED
587 znode_t *zp = ITOZ(mapping->host);
588 zfs_sb_t *zsb = ITOZSB(mapping->host);
589 enum writeback_sync_modes sync_mode;
590 int result;
591
592 ZFS_ENTER(zsb);
593 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
594 wbc->sync_mode = WB_SYNC_ALL;
595 ZFS_EXIT(zsb);
596 sync_mode = wbc->sync_mode;
597
598 /*
599 * We don't want to run write_cache_pages() in SYNC mode here, because
600 * that would make putpage() wait for a single page to be committed to
601 * disk every single time, resulting in atrocious performance. Instead
602 * we run it once in non-SYNC mode so that the ZIL gets all the data,
603 * and then we commit it all in one go.
604 */
605 wbc->sync_mode = WB_SYNC_NONE;
606 result = write_cache_pages(mapping, wbc, zpl_putpage, mapping);
607 if (sync_mode != wbc->sync_mode) {
608 ZFS_ENTER(zsb);
609 ZFS_VERIFY_ZP(zp);
1e8db771
BB
610 if (zsb->z_log != NULL)
611 zil_commit(zsb->z_log, zp->z_id);
119a394a
ED
612 ZFS_EXIT(zsb);
613
614 /*
615 * We need to call write_cache_pages() again (we can't just
616 * return after the commit) because the previous call in
617 * non-SYNC mode does not guarantee that we got all the dirty
618 * pages (see the implementation of write_cache_pages() for
619 * details). That being said, this is a no-op in most cases.
620 */
621 wbc->sync_mode = sync_mode;
622 result = write_cache_pages(mapping, wbc, zpl_putpage, mapping);
623 }
624 return (result);
c0d35759
BB
625}
626
627/*
628 * Write out dirty pages to the ARC, this function is only required to
629 * support mmap(2). Mapped pages may be dirtied by memory operations
630 * which never call .write(). These dirty pages are kept in sync with
631 * the ARC buffers via this hook.
c0d35759
BB
632 */
633static int
634zpl_writepage(struct page *pp, struct writeback_control *wbc)
635{
119a394a
ED
636 if (ITOZSB(pp->mapping->host)->z_os->os_sync == ZFS_SYNC_ALWAYS)
637 wbc->sync_mode = WB_SYNC_ALL;
638
639 return (zpl_putpage(pp, wbc, pp->mapping));
c0d35759
BB
640}
641
cb2d1901
ED
642/*
643 * The only flag combination which matches the behavior of zfs_space()
223df016
TC
644 * is FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE. The FALLOC_FL_PUNCH_HOLE
645 * flag was introduced in the 2.6.38 kernel.
cb2d1901 646 */
223df016 647#if defined(HAVE_FILE_FALLOCATE) || defined(HAVE_INODE_FALLOCATE)
cb2d1901
ED
648long
649zpl_fallocate_common(struct inode *ip, int mode, loff_t offset, loff_t len)
650{
cb2d1901
ED
651 int error = -EOPNOTSUPP;
652
223df016
TC
653#if defined(FALLOC_FL_PUNCH_HOLE) && defined(FALLOC_FL_KEEP_SIZE)
654 cred_t *cr = CRED();
655 flock64_t bf;
656 loff_t olen;
40d06e3c 657 fstrans_cookie_t cookie;
223df016
TC
658
659 if (mode != (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
660 return (error);
cb2d1901 661
223df016
TC
662 if (offset < 0 || len <= 0)
663 return (-EINVAL);
cb2d1901 664
223df016
TC
665 spl_inode_lock(ip);
666 olen = i_size_read(ip);
cb2d1901 667
223df016
TC
668 if (offset > olen) {
669 spl_inode_unlock(ip);
670 return (0);
cb2d1901 671 }
223df016
TC
672 if (offset + len > olen)
673 len = olen - offset;
674 bf.l_type = F_WRLCK;
675 bf.l_whence = 0;
676 bf.l_start = offset;
677 bf.l_len = len;
678 bf.l_pid = 0;
679
9fa4db44 680 crhold(cr);
40d06e3c 681 cookie = spl_fstrans_mark();
223df016 682 error = -zfs_space(ip, F_FREESP, &bf, FWRITE, offset, cr);
40d06e3c 683 spl_fstrans_unmark(cookie);
223df016 684 spl_inode_unlock(ip);
cb2d1901
ED
685
686 crfree(cr);
223df016 687#endif /* defined(FALLOC_FL_PUNCH_HOLE) && defined(FALLOC_FL_KEEP_SIZE) */
cb2d1901
ED
688
689 ASSERT3S(error, <=, 0);
690 return (error);
691}
223df016 692#endif /* defined(HAVE_FILE_FALLOCATE) || defined(HAVE_INODE_FALLOCATE) */
cb2d1901
ED
693
694#ifdef HAVE_FILE_FALLOCATE
695static long
696zpl_fallocate(struct file *filp, int mode, loff_t offset, loff_t len)
697{
d9c97ec0 698 return zpl_fallocate_common(file_inode(filp),
cb2d1901
ED
699 mode, offset, len);
700}
701#endif /* HAVE_FILE_FALLOCATE */
702
9d317793
RY
703/*
704 * Map zfs file z_pflags (xvattr_t) to linux file attributes. Only file
705 * attributes common to both Linux and Solaris are mapped.
706 */
707static int
708zpl_ioctl_getflags(struct file *filp, void __user *arg)
709{
534759fa 710 struct inode *ip = file_inode(filp);
9d317793
RY
711 unsigned int ioctl_flags = 0;
712 uint64_t zfs_flags = ITOZ(ip)->z_pflags;
713 int error;
714
715 if (zfs_flags & ZFS_IMMUTABLE)
716 ioctl_flags |= FS_IMMUTABLE_FL;
717
718 if (zfs_flags & ZFS_APPENDONLY)
719 ioctl_flags |= FS_APPEND_FL;
720
721 if (zfs_flags & ZFS_NODUMP)
722 ioctl_flags |= FS_NODUMP_FL;
723
724 ioctl_flags &= FS_FL_USER_VISIBLE;
725
726 error = copy_to_user(arg, &ioctl_flags, sizeof (ioctl_flags));
727
728 return (error);
729}
730
731/*
732 * fchange() is a helper macro to detect if we have been asked to change a
733 * flag. This is ugly, but the requirement that we do this is a consequence of
734 * how the Linux file attribute interface was designed. Another consequence is
735 * that concurrent modification of files suffers from a TOCTOU race. Neither
736 * are things we can fix without modifying the kernel-userland interface, which
737 * is outside of our jurisdiction.
738 */
739
c360af54 740#define fchange(f0, f1, b0, b1) (!((f0) & (b0)) != !((f1) & (b1)))
9d317793
RY
741
742static int
743zpl_ioctl_setflags(struct file *filp, void __user *arg)
744{
534759fa 745 struct inode *ip = file_inode(filp);
9d317793
RY
746 uint64_t zfs_flags = ITOZ(ip)->z_pflags;
747 unsigned int ioctl_flags;
748 cred_t *cr = CRED();
749 xvattr_t xva;
750 xoptattr_t *xoap;
751 int error;
40d06e3c 752 fstrans_cookie_t cookie;
9d317793
RY
753
754 if (copy_from_user(&ioctl_flags, arg, sizeof (ioctl_flags)))
755 return (-EFAULT);
756
757 if ((ioctl_flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | FS_NODUMP_FL)))
758 return (-EOPNOTSUPP);
759
760 if ((ioctl_flags & ~(FS_FL_USER_MODIFIABLE)))
761 return (-EACCES);
762
763 if ((fchange(ioctl_flags, zfs_flags, FS_IMMUTABLE_FL, ZFS_IMMUTABLE) ||
764 fchange(ioctl_flags, zfs_flags, FS_APPEND_FL, ZFS_APPENDONLY)) &&
765 !capable(CAP_LINUX_IMMUTABLE))
766 return (-EACCES);
767
768 if (!zpl_inode_owner_or_capable(ip))
769 return (-EACCES);
770
771 xva_init(&xva);
772 xoap = xva_getxoptattr(&xva);
773
774 XVA_SET_REQ(&xva, XAT_IMMUTABLE);
775 if (ioctl_flags & FS_IMMUTABLE_FL)
776 xoap->xoa_immutable = B_TRUE;
777
778 XVA_SET_REQ(&xva, XAT_APPENDONLY);
779 if (ioctl_flags & FS_APPEND_FL)
780 xoap->xoa_appendonly = B_TRUE;
781
782 XVA_SET_REQ(&xva, XAT_NODUMP);
783 if (ioctl_flags & FS_NODUMP_FL)
784 xoap->xoa_nodump = B_TRUE;
785
786 crhold(cr);
40d06e3c 787 cookie = spl_fstrans_mark();
9d317793 788 error = -zfs_setattr(ip, (vattr_t *)&xva, 0, cr);
40d06e3c 789 spl_fstrans_unmark(cookie);
9d317793
RY
790 crfree(cr);
791
792 return (error);
793}
794
88c28395
BB
795static long
796zpl_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
797{
798 switch (cmd) {
9d317793
RY
799 case FS_IOC_GETFLAGS:
800 return (zpl_ioctl_getflags(filp, (void *)arg));
801 case FS_IOC_SETFLAGS:
802 return (zpl_ioctl_setflags(filp, (void *)arg));
88c28395
BB
803 default:
804 return (-ENOTTY);
805 }
806}
807
808#ifdef CONFIG_COMPAT
809static long
810zpl_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
811{
f7b939bd
CIK
812 switch (cmd) {
813 case FS_IOC32_GETFLAGS:
814 cmd = FS_IOC_GETFLAGS;
815 break;
816 case FS_IOC32_SETFLAGS:
817 cmd = FS_IOC_SETFLAGS;
818 break;
819 default:
820 return (-ENOTTY);
821 }
822 return (zpl_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)));
88c28395
BB
823}
824#endif /* CONFIG_COMPAT */
825
826
1efb473f 827const struct address_space_operations zpl_address_space_operations = {
dde471ef 828 .readpages = zpl_readpages,
1efb473f
BB
829 .readpage = zpl_readpage,
830 .writepage = zpl_writepage,
d1d7e268 831 .writepages = zpl_writepages,
1efb473f
BB
832};
833
834const struct file_operations zpl_file_operations = {
126400a1
BB
835 .open = zpl_open,
836 .release = zpl_release,
802e7b5f 837 .llseek = zpl_llseek,
c0d35759
BB
838 .read = zpl_read,
839 .write = zpl_write,
57ae8400
MK
840#ifdef HAVE_VFS_RW_ITERATE
841 .read_iter = zpl_iter_read,
842 .write_iter = zpl_iter_write,
843#else
cd3939c5
RY
844 .aio_read = zpl_aio_read,
845 .aio_write = zpl_aio_write,
57ae8400 846#endif
c0d35759 847 .mmap = zpl_mmap,
1efb473f 848 .fsync = zpl_fsync,
7ca25051 849#ifdef HAVE_FILE_AIO_FSYNC
cd3939c5 850 .aio_fsync = zpl_aio_fsync,
7ca25051 851#endif
cb2d1901 852#ifdef HAVE_FILE_FALLOCATE
d1d7e268 853 .fallocate = zpl_fallocate,
cb2d1901 854#endif /* HAVE_FILE_FALLOCATE */
d1d7e268 855 .unlocked_ioctl = zpl_ioctl,
88c28395 856#ifdef CONFIG_COMPAT
d1d7e268 857 .compat_ioctl = zpl_compat_ioctl,
88c28395 858#endif
1efb473f
BB
859};
860
861const struct file_operations zpl_dir_file_operations = {
862 .llseek = generic_file_llseek,
863 .read = generic_read_dir,
9baaa7de
CC
864#ifdef HAVE_VFS_ITERATE_SHARED
865 .iterate_shared = zpl_iterate,
866#elif defined(HAVE_VFS_ITERATE)
0f37d0c8
RY
867 .iterate = zpl_iterate,
868#else
1efb473f 869 .readdir = zpl_readdir,
0f37d0c8 870#endif
1efb473f 871 .fsync = zpl_fsync,
88c28395
BB
872 .unlocked_ioctl = zpl_ioctl,
873#ifdef CONFIG_COMPAT
874 .compat_ioctl = zpl_compat_ioctl,
875#endif
1efb473f 876};