]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/zpl_file.c
Suppress packaging warning
[mirror_zfs.git] / module / zfs / zpl_file.c
CommitLineData
1efb473f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2011, Lawrence Livermore National Security, LLC.
23 */
24
25
26#include <sys/zfs_vfsops.h>
27#include <sys/zfs_vnops.h>
28#include <sys/zfs_znode.h>
29#include <sys/zpl.h>
30
31
126400a1
BB
32static int
33zpl_open(struct inode *ip, struct file *filp)
34{
81e97e21 35 cred_t *cr = CRED();
126400a1
BB
36 int error;
37
81e97e21 38 crhold(cr);
126400a1 39 error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr);
81e97e21 40 crfree(cr);
126400a1
BB
41 ASSERT3S(error, <=, 0);
42
43 if (error)
44 return (error);
45
46 return generic_file_open(ip, filp);
47}
48
49static int
50zpl_release(struct inode *ip, struct file *filp)
51{
81e97e21 52 cred_t *cr = CRED();
126400a1
BB
53 int error;
54
81e97e21 55 crhold(cr);
126400a1 56 error = -zfs_close(ip, filp->f_flags, cr);
81e97e21 57 crfree(cr);
126400a1
BB
58 ASSERT3S(error, <=, 0);
59
60 return (error);
61}
62
1efb473f
BB
63static int
64zpl_readdir(struct file *filp, void *dirent, filldir_t filldir)
65{
66 struct dentry *dentry = filp->f_path.dentry;
81e97e21 67 cred_t *cr = CRED();
1efb473f
BB
68 int error;
69
81e97e21 70 crhold(cr);
1efb473f
BB
71 error = -zfs_readdir(dentry->d_inode, dirent, filldir,
72 &filp->f_pos, cr);
81e97e21 73 crfree(cr);
1efb473f
BB
74 ASSERT3S(error, <=, 0);
75
76 return (error);
77}
78
3117dd0b
BB
79/*
80 * 2.6.35 API change,
81 * As of 2.6.35 the dentry argument to the .fsync() vfs hook was deemed
82 * redundant. The dentry is still accessible via filp->f_path.dentry,
83 * and we are guaranteed that filp will never be NULL.
84 *
85 * 2.6.34 API change,
86 * Prior to 2.6.34 the nfsd kernel server would pass a NULL file struct *
87 * to the .fsync() hook. For this reason, we must be careful not to use
88 * filp unconditionally in the 3 argument case.
89 */
90#ifdef HAVE_2ARGS_FSYNC
91static int
92zpl_fsync(struct file *filp, int datasync)
93{
94 struct dentry *dentry = filp->f_path.dentry;
95#else
96static int
97zpl_fsync(struct file *filp, struct dentry *dentry, int datasync)
1efb473f 98{
3117dd0b 99#endif /* HAVE_2ARGS_FSYNC */
81e97e21 100 cred_t *cr = CRED();
1efb473f
BB
101 int error;
102
81e97e21 103 crhold(cr);
3117dd0b 104 error = -zfs_fsync(dentry->d_inode, datasync, cr);
81e97e21 105 crfree(cr);
1efb473f
BB
106 ASSERT3S(error, <=, 0);
107
108 return (error);
109}
110
111ssize_t
112zpl_read_common(struct inode *ip, const char *buf, size_t len, loff_t pos,
113 uio_seg_t segment, int flags, cred_t *cr)
114{
115 int error;
116 struct iovec iov;
117 uio_t uio;
118
119 iov.iov_base = (void *)buf;
120 iov.iov_len = len;
121
122 uio.uio_iov = &iov;
123 uio.uio_resid = len;
124 uio.uio_iovcnt = 1;
125 uio.uio_loffset = pos;
126 uio.uio_limit = MAXOFFSET_T;
127 uio.uio_segflg = segment;
128
129 error = -zfs_read(ip, &uio, flags, cr);
130 if (error < 0)
131 return (error);
132
133 return (len - uio.uio_resid);
134}
135
136static ssize_t
137zpl_read(struct file *filp, char __user *buf, size_t len, loff_t *ppos)
138{
81e97e21 139 cred_t *cr = CRED();
1efb473f
BB
140 ssize_t read;
141
81e97e21 142 crhold(cr);
1efb473f
BB
143 read = zpl_read_common(filp->f_mapping->host, buf, len, *ppos,
144 UIO_USERSPACE, filp->f_flags, cr);
81e97e21 145 crfree(cr);
1efb473f
BB
146
147 if (read < 0)
148 return (read);
149
150 *ppos += read;
151 return (read);
152}
153
154ssize_t
155zpl_write_common(struct inode *ip, const char *buf, size_t len, loff_t pos,
156 uio_seg_t segment, int flags, cred_t *cr)
157{
158 int error;
159 struct iovec iov;
160 uio_t uio;
161
162 iov.iov_base = (void *)buf;
163 iov.iov_len = len;
164
165 uio.uio_iov = &iov;
166 uio.uio_resid = len,
167 uio.uio_iovcnt = 1;
168 uio.uio_loffset = pos;
169 uio.uio_limit = MAXOFFSET_T;
170 uio.uio_segflg = segment;
171
172 error = -zfs_write(ip, &uio, flags, cr);
173 if (error < 0)
174 return (error);
175
176 return (len - uio.uio_resid);
177}
178
179static ssize_t
180zpl_write(struct file *filp, const char __user *buf, size_t len, loff_t *ppos)
181{
81e97e21 182 cred_t *cr = CRED();
1efb473f
BB
183 ssize_t wrote;
184
81e97e21 185 crhold(cr);
1efb473f
BB
186 wrote = zpl_write_common(filp->f_mapping->host, buf, len, *ppos,
187 UIO_USERSPACE, filp->f_flags, cr);
81e97e21 188 crfree(cr);
1efb473f
BB
189
190 if (wrote < 0)
191 return (wrote);
192
193 *ppos += wrote;
194 return (wrote);
195}
196
c0d35759
BB
197/*
198 * It's worth taking a moment to describe how mmap is implemented
199 * for zfs because it differs considerably from other Linux filesystems.
200 * However, this issue is handled the same way under OpenSolaris.
201 *
202 * The issue is that by design zfs bypasses the Linux page cache and
203 * leaves all caching up to the ARC. This has been shown to work
204 * well for the common read(2)/write(2) case. However, mmap(2)
205 * is problem because it relies on being tightly integrated with the
206 * page cache. To handle this we cache mmap'ed files twice, once in
207 * the ARC and a second time in the page cache. The code is careful
208 * to keep both copies synchronized.
209 *
210 * When a file with an mmap'ed region is written to using write(2)
211 * both the data in the ARC and existing pages in the page cache
212 * are updated. For a read(2) data will be read first from the page
213 * cache then the ARC if needed. Neither a write(2) or read(2) will
214 * will ever result in new pages being added to the page cache.
215 *
216 * New pages are added to the page cache only via .readpage() which
217 * is called when the vfs needs to read a page off disk to back the
218 * virtual memory region. These pages may be modified without
219 * notifying the ARC and will be written out periodically via
220 * .writepage(). This will occur due to either a sync or the usual
221 * page aging behavior. Note because a read(2) of a mmap'ed file
222 * will always check the page cache first even when the ARC is out
223 * of date correct data will still be returned.
224 *
225 * While this implementation ensures correct behavior it does have
226 * have some drawbacks. The most obvious of which is that it
227 * increases the required memory footprint when access mmap'ed
228 * files. It also adds additional complexity to the code keeping
229 * both caches synchronized.
230 *
231 * Longer term it may be possible to cleanly resolve this wart by
232 * mapping page cache pages directly on to the ARC buffers. The
233 * Linux address space operations are flexible enough to allow
234 * selection of which pages back a particular index. The trick
235 * would be working out the details of which subsystem is in
236 * charge, the ARC, the page cache, or both. It may also prove
237 * helpful to move the ARC buffers to a scatter-gather lists
238 * rather than a vmalloc'ed region.
239 */
240static int
241zpl_mmap(struct file *filp, struct vm_area_struct *vma)
242{
e2e7aa2d
BB
243 struct inode *ip = filp->f_mapping->host;
244 znode_t *zp = ITOZ(ip);
c0d35759
BB
245 int error;
246
e2e7aa2d
BB
247 error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start,
248 (size_t)(vma->vm_end - vma->vm_start), vma->vm_flags);
249 if (error)
250 return (error);
251
c0d35759
BB
252 error = generic_file_mmap(filp, vma);
253 if (error)
254 return (error);
255
256 mutex_enter(&zp->z_lock);
257 zp->z_is_mapped = 1;
258 mutex_exit(&zp->z_lock);
259
260 return (error);
261}
262
263/*
264 * Populate a page with data for the Linux page cache. This function is
265 * only used to support mmap(2). There will be an identical copy of the
266 * data in the ARC which is kept up to date via .write() and .writepage().
267 *
268 * Current this function relies on zpl_read_common() and the O_DIRECT
269 * flag to read in a page. This works but the more correct way is to
270 * update zfs_fillpage() to be Linux friendly and use that interface.
271 */
272static int
273zpl_readpage(struct file *filp, struct page *pp)
274{
275 struct inode *ip;
dde471ef 276 struct page *pl[1];
c0d35759
BB
277 int error = 0;
278
279 ASSERT(PageLocked(pp));
280 ip = pp->mapping->host;
dde471ef 281 pl[0] = pp;
c0d35759 282
dde471ef 283 error = -zfs_getpage(ip, pl, 1);
c0d35759 284
dde471ef
PJ
285 if (error) {
286 SetPageError(pp);
287 ClearPageUptodate(pp);
288 } else {
289 ClearPageError(pp);
290 SetPageUptodate(pp);
291 flush_dcache_page(pp);
292 }
c0d35759 293
dde471ef
PJ
294 unlock_page(pp);
295 return error;
296}
c0d35759 297
f3ab88d6
BB
298/*
299 * Populate a set of pages with data for the Linux page cache. This
300 * function will only be called for read ahead and never for demand
301 * paging. For simplicity, the code relies on read_cache_pages() to
302 * correctly lock each page for IO and call zpl_readpage().
303 */
304static int
305zpl_readpages(struct file *filp, struct address_space *mapping,
306 struct list_head *pages, unsigned nr_pages)
307{
95d9fd02
BB
308 return (read_cache_pages(mapping, pages,
309 (filler_t *)zpl_readpage, filp));
f3ab88d6
BB
310}
311
dde471ef
PJ
312int
313zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data)
314{
3c0e5c0f
BB
315 struct address_space *mapping = data;
316
317 ASSERT(PageLocked(pp));
318 ASSERT(!PageWriteback(pp));
c0d35759 319
cfc9a5c8
BB
320 /*
321 * Disable the normal reclaim path for zpl_putpage(). This
322 * ensures that all memory allocations under this call path
323 * will never enter direct reclaim. If this were to happen
324 * the VM might try to write out additional pages by calling
325 * zpl_putpage() again resulting in a deadlock.
326 */
6a95d0b7
BB
327 if (current->flags & PF_MEMALLOC) {
328 (void) zfs_putpage(mapping->host, pp, wbc);
329 } else {
330 current->flags |= PF_MEMALLOC;
331 (void) zfs_putpage(mapping->host, pp, wbc);
332 current->flags &= ~PF_MEMALLOC;
333 }
c0d35759 334
3c0e5c0f 335 return (0);
dde471ef 336}
c0d35759 337
dde471ef
PJ
338static int
339zpl_writepages(struct address_space *mapping, struct writeback_control *wbc)
340{
341 return write_cache_pages(mapping, wbc, zpl_putpage, mapping);
c0d35759
BB
342}
343
344/*
345 * Write out dirty pages to the ARC, this function is only required to
346 * support mmap(2). Mapped pages may be dirtied by memory operations
347 * which never call .write(). These dirty pages are kept in sync with
348 * the ARC buffers via this hook.
c0d35759
BB
349 */
350static int
351zpl_writepage(struct page *pp, struct writeback_control *wbc)
352{
dde471ef 353 return zpl_putpage(pp, wbc, pp->mapping);
c0d35759
BB
354}
355
1efb473f 356const struct address_space_operations zpl_address_space_operations = {
dde471ef 357 .readpages = zpl_readpages,
1efb473f
BB
358 .readpage = zpl_readpage,
359 .writepage = zpl_writepage,
dde471ef 360 .writepages = zpl_writepages,
1efb473f
BB
361};
362
363const struct file_operations zpl_file_operations = {
126400a1
BB
364 .open = zpl_open,
365 .release = zpl_release,
1efb473f 366 .llseek = generic_file_llseek,
c0d35759
BB
367 .read = zpl_read,
368 .write = zpl_write,
1efb473f 369 .readdir = zpl_readdir,
c0d35759 370 .mmap = zpl_mmap,
1efb473f 371 .fsync = zpl_fsync,
1efb473f
BB
372};
373
374const struct file_operations zpl_dir_file_operations = {
375 .llseek = generic_file_llseek,
376 .read = generic_read_dir,
377 .readdir = zpl_readdir,
378 .fsync = zpl_fsync,
379};