]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/zpl_file.c
Introduce read/write kstats per dataset
[mirror_zfs.git] / module / zfs / zpl_file.c
CommitLineData
1efb473f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2011, Lawrence Livermore National Security, LLC.
5475aada 23 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
1efb473f
BB
24 */
25
26
f7b939bd
CIK
27#ifdef CONFIG_COMPAT
28#include <linux/compat.h>
29#endif
93ce2b4c 30#include <sys/file.h>
119a394a 31#include <sys/dmu_objset.h>
1efb473f
BB
32#include <sys/zfs_vfsops.h>
33#include <sys/zfs_vnops.h>
34#include <sys/zfs_znode.h>
9c5167d1 35#include <sys/zfs_project.h>
1efb473f
BB
36
37
126400a1
BB
38static int
39zpl_open(struct inode *ip, struct file *filp)
40{
81e97e21 41 cred_t *cr = CRED();
126400a1 42 int error;
40d06e3c 43 fstrans_cookie_t cookie;
126400a1 44
7dc71949
CC
45 error = generic_file_open(ip, filp);
46 if (error)
47 return (error);
48
81e97e21 49 crhold(cr);
40d06e3c 50 cookie = spl_fstrans_mark();
126400a1 51 error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr);
40d06e3c 52 spl_fstrans_unmark(cookie);
81e97e21 53 crfree(cr);
126400a1
BB
54 ASSERT3S(error, <=, 0);
55
7dc71949 56 return (error);
126400a1
BB
57}
58
59static int
60zpl_release(struct inode *ip, struct file *filp)
61{
81e97e21 62 cred_t *cr = CRED();
126400a1 63 int error;
40d06e3c 64 fstrans_cookie_t cookie;
126400a1 65
40d06e3c 66 cookie = spl_fstrans_mark();
78d7a5d7 67 if (ITOZ(ip)->z_atime_dirty)
1e8db771 68 zfs_mark_inode_dirty(ip);
78d7a5d7 69
81e97e21 70 crhold(cr);
126400a1 71 error = -zfs_close(ip, filp->f_flags, cr);
40d06e3c 72 spl_fstrans_unmark(cookie);
81e97e21 73 crfree(cr);
126400a1
BB
74 ASSERT3S(error, <=, 0);
75
76 return (error);
77}
78
1efb473f 79static int
9464b959 80zpl_iterate(struct file *filp, zpl_dir_context_t *ctx)
1efb473f 81{
81e97e21 82 cred_t *cr = CRED();
1efb473f 83 int error;
40d06e3c 84 fstrans_cookie_t cookie;
1efb473f 85
81e97e21 86 crhold(cr);
40d06e3c 87 cookie = spl_fstrans_mark();
d9c97ec0 88 error = -zfs_readdir(file_inode(filp), ctx, cr);
40d06e3c 89 spl_fstrans_unmark(cookie);
81e97e21 90 crfree(cr);
1efb473f
BB
91 ASSERT3S(error, <=, 0);
92
93 return (error);
94}
95
9baaa7de 96#if !defined(HAVE_VFS_ITERATE) && !defined(HAVE_VFS_ITERATE_SHARED)
0f37d0c8
RY
97static int
98zpl_readdir(struct file *filp, void *dirent, filldir_t filldir)
99{
9464b959
BB
100 zpl_dir_context_t ctx =
101 ZPL_DIR_CONTEXT_INIT(dirent, filldir, filp->f_pos);
0f37d0c8
RY
102 int error;
103
104 error = zpl_iterate(filp, &ctx);
105 filp->f_pos = ctx.pos;
106
107 return (error);
108}
9464b959 109#endif /* !HAVE_VFS_ITERATE && !HAVE_VFS_ITERATE_SHARED */
0f37d0c8 110
adcd70bd 111#if defined(HAVE_FSYNC_WITH_DENTRY)
3117dd0b 112/*
adcd70bd
BB
113 * Linux 2.6.x - 2.6.34 API,
114 * Through 2.6.34 the nfsd kernel server would pass a NULL 'file struct *'
115 * to the fops->fsync() hook. For this reason, we must be careful not to
116 * use filp unconditionally.
117 */
118static int
119zpl_fsync(struct file *filp, struct dentry *dentry, int datasync)
120{
121 cred_t *cr = CRED();
122 int error;
40d06e3c 123 fstrans_cookie_t cookie;
adcd70bd
BB
124
125 crhold(cr);
40d06e3c 126 cookie = spl_fstrans_mark();
adcd70bd 127 error = -zfs_fsync(dentry->d_inode, datasync, cr);
40d06e3c 128 spl_fstrans_unmark(cookie);
adcd70bd
BB
129 crfree(cr);
130 ASSERT3S(error, <=, 0);
131
132 return (error);
133}
134
7ca25051 135#ifdef HAVE_FILE_AIO_FSYNC
cd3939c5
RY
136static int
137zpl_aio_fsync(struct kiocb *kiocb, int datasync)
138{
139 struct file *filp = kiocb->ki_filp;
d9c97ec0 140 return (zpl_fsync(filp, file_dentry(filp), datasync));
cd3939c5 141}
7ca25051
D
142#endif
143
adcd70bd
BB
144#elif defined(HAVE_FSYNC_WITHOUT_DENTRY)
145/*
146 * Linux 2.6.35 - 3.0 API,
147 * As of 2.6.35 the dentry argument to the fops->fsync() hook was deemed
3117dd0b
BB
148 * redundant. The dentry is still accessible via filp->f_path.dentry,
149 * and we are guaranteed that filp will never be NULL.
3117dd0b 150 */
3117dd0b
BB
151static int
152zpl_fsync(struct file *filp, int datasync)
153{
adcd70bd
BB
154 struct inode *inode = filp->f_mapping->host;
155 cred_t *cr = CRED();
156 int error;
40d06e3c 157 fstrans_cookie_t cookie;
adcd70bd
BB
158
159 crhold(cr);
40d06e3c 160 cookie = spl_fstrans_mark();
adcd70bd 161 error = -zfs_fsync(inode, datasync, cr);
40d06e3c 162 spl_fstrans_unmark(cookie);
adcd70bd
BB
163 crfree(cr);
164 ASSERT3S(error, <=, 0);
165
166 return (error);
167}
168
7ca25051 169#ifdef HAVE_FILE_AIO_FSYNC
cd3939c5
RY
170static int
171zpl_aio_fsync(struct kiocb *kiocb, int datasync)
172{
173 return (zpl_fsync(kiocb->ki_filp, datasync));
174}
7ca25051
D
175#endif
176
adcd70bd
BB
177#elif defined(HAVE_FSYNC_RANGE)
178/*
179 * Linux 3.1 - 3.x API,
180 * As of 3.1 the responsibility to call filemap_write_and_wait_range() has
181 * been pushed down in to the .fsync() vfs hook. Additionally, the i_mutex
182 * lock is no longer held by the caller, for zfs we don't require the lock
183 * to be held so we don't acquire it.
184 */
3117dd0b 185static int
adcd70bd 186zpl_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
1efb473f 187{
adcd70bd 188 struct inode *inode = filp->f_mapping->host;
81e97e21 189 cred_t *cr = CRED();
1efb473f 190 int error;
40d06e3c 191 fstrans_cookie_t cookie;
1efb473f 192
adcd70bd
BB
193 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
194 if (error)
195 return (error);
196
81e97e21 197 crhold(cr);
40d06e3c 198 cookie = spl_fstrans_mark();
adcd70bd 199 error = -zfs_fsync(inode, datasync, cr);
40d06e3c 200 spl_fstrans_unmark(cookie);
81e97e21 201 crfree(cr);
1efb473f
BB
202 ASSERT3S(error, <=, 0);
203
204 return (error);
205}
cd3939c5 206
7ca25051 207#ifdef HAVE_FILE_AIO_FSYNC
cd3939c5
RY
208static int
209zpl_aio_fsync(struct kiocb *kiocb, int datasync)
210{
57ae8400 211 return (zpl_fsync(kiocb->ki_filp, kiocb->ki_pos, -1, datasync));
cd3939c5 212}
7ca25051
D
213#endif
214
adcd70bd
BB
215#else
216#error "Unsupported fops->fsync() implementation"
217#endif
1efb473f 218
5475aada 219static ssize_t
cd3939c5 220zpl_read_common_iovec(struct inode *ip, const struct iovec *iovp, size_t count,
5475aada
CC
221 unsigned long nr_segs, loff_t *ppos, uio_seg_t segment, int flags,
222 cred_t *cr, size_t skip)
1efb473f 223{
e3dc14b8 224 ssize_t read;
1efb473f 225 uio_t uio;
cd3939c5 226 int error;
40d06e3c 227 fstrans_cookie_t cookie;
1efb473f 228
5475aada
CC
229 uio.uio_iov = iovp;
230 uio.uio_skip = skip;
cd3939c5
RY
231 uio.uio_resid = count;
232 uio.uio_iovcnt = nr_segs;
233 uio.uio_loffset = *ppos;
1efb473f
BB
234 uio.uio_limit = MAXOFFSET_T;
235 uio.uio_segflg = segment;
236
40d06e3c 237 cookie = spl_fstrans_mark();
1efb473f 238 error = -zfs_read(ip, &uio, flags, cr);
40d06e3c 239 spl_fstrans_unmark(cookie);
1efb473f
BB
240 if (error < 0)
241 return (error);
242
cd3939c5
RY
243 read = count - uio.uio_resid;
244 *ppos += read;
e3dc14b8
BB
245
246 return (read);
1efb473f
BB
247}
248
cd3939c5
RY
249inline ssize_t
250zpl_read_common(struct inode *ip, const char *buf, size_t len, loff_t *ppos,
251 uio_seg_t segment, int flags, cred_t *cr)
252{
253 struct iovec iov;
254
255 iov.iov_base = (void *)buf;
256 iov.iov_len = len;
257
258 return (zpl_read_common_iovec(ip, &iov, len, 1, ppos, segment,
5475aada 259 flags, cr, 0));
cd3939c5
RY
260}
261
cd3939c5 262static ssize_t
57ae8400 263zpl_iter_read_common(struct kiocb *kiocb, const struct iovec *iovp,
5475aada 264 unsigned long nr_segs, size_t count, uio_seg_t seg, size_t skip)
cd3939c5
RY
265{
266 cred_t *cr = CRED();
267 struct file *filp = kiocb->ki_filp;
cd3939c5 268 ssize_t read;
cd3939c5
RY
269
270 crhold(cr);
5475aada
CC
271 read = zpl_read_common_iovec(filp->f_mapping->host, iovp, count,
272 nr_segs, &kiocb->ki_pos, seg, filp->f_flags, cr, skip);
cd3939c5
RY
273 crfree(cr);
274
0df9673f 275 file_accessed(filp);
1efb473f
BB
276 return (read);
277}
278
57ae8400
MK
279#if defined(HAVE_VFS_RW_ITERATE)
280static ssize_t
281zpl_iter_read(struct kiocb *kiocb, struct iov_iter *to)
282{
5475aada
CC
283 ssize_t ret;
284 uio_seg_t seg = UIO_USERSPACE;
285 if (to->type & ITER_KVEC)
286 seg = UIO_SYSSPACE;
287 if (to->type & ITER_BVEC)
288 seg = UIO_BVEC;
289 ret = zpl_iter_read_common(kiocb, to->iov, to->nr_segs,
290 iov_iter_count(to), seg, to->iov_offset);
291 if (ret > 0)
292 iov_iter_advance(to, ret);
293 return (ret);
57ae8400
MK
294}
295#else
296static ssize_t
297zpl_aio_read(struct kiocb *kiocb, const struct iovec *iovp,
298 unsigned long nr_segs, loff_t pos)
299{
933ec999
CC
300 ssize_t ret;
301 size_t count;
302
303 ret = generic_segment_checks(iovp, &nr_segs, &count, VERIFY_WRITE);
304 if (ret)
305 return (ret);
306
307 return (zpl_iter_read_common(kiocb, iovp, nr_segs, count,
5475aada 308 UIO_USERSPACE, 0));
57ae8400
MK
309}
310#endif /* HAVE_VFS_RW_ITERATE */
311
5475aada 312static ssize_t
cd3939c5 313zpl_write_common_iovec(struct inode *ip, const struct iovec *iovp, size_t count,
5475aada
CC
314 unsigned long nr_segs, loff_t *ppos, uio_seg_t segment, int flags,
315 cred_t *cr, size_t skip)
1efb473f 316{
e3dc14b8 317 ssize_t wrote;
1efb473f 318 uio_t uio;
cd3939c5 319 int error;
40d06e3c 320 fstrans_cookie_t cookie;
1efb473f 321
1efdc45e
BB
322 if (flags & O_APPEND)
323 *ppos = i_size_read(ip);
324
5475aada
CC
325 uio.uio_iov = iovp;
326 uio.uio_skip = skip;
cd3939c5
RY
327 uio.uio_resid = count;
328 uio.uio_iovcnt = nr_segs;
329 uio.uio_loffset = *ppos;
1efb473f
BB
330 uio.uio_limit = MAXOFFSET_T;
331 uio.uio_segflg = segment;
332
40d06e3c 333 cookie = spl_fstrans_mark();
1efb473f 334 error = -zfs_write(ip, &uio, flags, cr);
40d06e3c 335 spl_fstrans_unmark(cookie);
1efb473f
BB
336 if (error < 0)
337 return (error);
338
cd3939c5
RY
339 wrote = count - uio.uio_resid;
340 *ppos += wrote;
e3dc14b8
BB
341
342 return (wrote);
1efb473f 343}
933ec999 344
cd3939c5
RY
345inline ssize_t
346zpl_write_common(struct inode *ip, const char *buf, size_t len, loff_t *ppos,
347 uio_seg_t segment, int flags, cred_t *cr)
348{
349 struct iovec iov;
350
351 iov.iov_base = (void *)buf;
352 iov.iov_len = len;
353
354 return (zpl_write_common_iovec(ip, &iov, len, 1, ppos, segment,
5475aada 355 flags, cr, 0));
cd3939c5 356}
1efb473f 357
cd3939c5 358static ssize_t
57ae8400 359zpl_iter_write_common(struct kiocb *kiocb, const struct iovec *iovp,
5475aada 360 unsigned long nr_segs, size_t count, uio_seg_t seg, size_t skip)
cd3939c5
RY
361{
362 cred_t *cr = CRED();
363 struct file *filp = kiocb->ki_filp;
cd3939c5 364 ssize_t wrote;
cd3939c5
RY
365
366 crhold(cr);
5475aada
CC
367 wrote = zpl_write_common_iovec(filp->f_mapping->host, iovp, count,
368 nr_segs, &kiocb->ki_pos, seg, filp->f_flags, cr, skip);
cd3939c5
RY
369 crfree(cr);
370
1efb473f
BB
371 return (wrote);
372}
373
57ae8400
MK
374#if defined(HAVE_VFS_RW_ITERATE)
375static ssize_t
376zpl_iter_write(struct kiocb *kiocb, struct iov_iter *from)
377{
933ec999 378 size_t count;
5475aada
CC
379 ssize_t ret;
380 uio_seg_t seg = UIO_USERSPACE;
933ec999
CC
381
382#ifndef HAVE_GENERIC_WRITE_CHECKS_KIOCB
383 struct file *file = kiocb->ki_filp;
384 struct address_space *mapping = file->f_mapping;
385 struct inode *ip = mapping->host;
386 int isblk = S_ISBLK(ip->i_mode);
387
388 count = iov_iter_count(from);
389 ret = generic_write_checks(file, &kiocb->ki_pos, &count, isblk);
c7af63d6
CC
390 if (ret)
391 return (ret);
933ec999
CC
392#else
393 /*
394 * XXX - ideally this check should be in the same lock region with
395 * write operations, so that there's no TOCTTOU race when doing
396 * append and someone else grow the file.
397 */
398 ret = generic_write_checks(kiocb, from);
933ec999
CC
399 if (ret <= 0)
400 return (ret);
c7af63d6
CC
401 count = ret;
402#endif
933ec999 403
5475aada
CC
404 if (from->type & ITER_KVEC)
405 seg = UIO_SYSSPACE;
406 if (from->type & ITER_BVEC)
407 seg = UIO_BVEC;
933ec999 408
5475aada 409 ret = zpl_iter_write_common(kiocb, from->iov, from->nr_segs,
933ec999 410 count, seg, from->iov_offset);
5475aada
CC
411 if (ret > 0)
412 iov_iter_advance(from, ret);
933ec999 413
5475aada 414 return (ret);
57ae8400
MK
415}
416#else
417static ssize_t
418zpl_aio_write(struct kiocb *kiocb, const struct iovec *iovp,
419 unsigned long nr_segs, loff_t pos)
420{
933ec999
CC
421 struct file *file = kiocb->ki_filp;
422 struct address_space *mapping = file->f_mapping;
423 struct inode *ip = mapping->host;
424 int isblk = S_ISBLK(ip->i_mode);
425 size_t count;
426 ssize_t ret;
427
428 ret = generic_segment_checks(iovp, &nr_segs, &count, VERIFY_READ);
429 if (ret)
430 return (ret);
431
432 ret = generic_write_checks(file, &pos, &count, isblk);
433 if (ret)
434 return (ret);
435
436 return (zpl_iter_write_common(kiocb, iovp, nr_segs, count,
5475aada 437 UIO_USERSPACE, 0));
57ae8400
MK
438}
439#endif /* HAVE_VFS_RW_ITERATE */
440
802e7b5f
LD
441static loff_t
442zpl_llseek(struct file *filp, loff_t offset, int whence)
443{
444#if defined(SEEK_HOLE) && defined(SEEK_DATA)
40d06e3c
TC
445 fstrans_cookie_t cookie;
446
802e7b5f
LD
447 if (whence == SEEK_DATA || whence == SEEK_HOLE) {
448 struct inode *ip = filp->f_mapping->host;
449 loff_t maxbytes = ip->i_sb->s_maxbytes;
450 loff_t error;
451
9baaa7de 452 spl_inode_lock_shared(ip);
40d06e3c 453 cookie = spl_fstrans_mark();
802e7b5f 454 error = -zfs_holey(ip, whence, &offset);
40d06e3c 455 spl_fstrans_unmark(cookie);
802e7b5f
LD
456 if (error == 0)
457 error = lseek_execute(filp, ip, offset, maxbytes);
9baaa7de 458 spl_inode_unlock_shared(ip);
802e7b5f
LD
459
460 return (error);
461 }
462#endif /* SEEK_HOLE && SEEK_DATA */
463
d1d7e268 464 return (generic_file_llseek(filp, offset, whence));
802e7b5f
LD
465}
466
c0d35759
BB
467/*
468 * It's worth taking a moment to describe how mmap is implemented
469 * for zfs because it differs considerably from other Linux filesystems.
470 * However, this issue is handled the same way under OpenSolaris.
471 *
472 * The issue is that by design zfs bypasses the Linux page cache and
473 * leaves all caching up to the ARC. This has been shown to work
474 * well for the common read(2)/write(2) case. However, mmap(2)
475 * is problem because it relies on being tightly integrated with the
476 * page cache. To handle this we cache mmap'ed files twice, once in
477 * the ARC and a second time in the page cache. The code is careful
478 * to keep both copies synchronized.
479 *
480 * When a file with an mmap'ed region is written to using write(2)
481 * both the data in the ARC and existing pages in the page cache
482 * are updated. For a read(2) data will be read first from the page
483 * cache then the ARC if needed. Neither a write(2) or read(2) will
484 * will ever result in new pages being added to the page cache.
485 *
486 * New pages are added to the page cache only via .readpage() which
487 * is called when the vfs needs to read a page off disk to back the
488 * virtual memory region. These pages may be modified without
489 * notifying the ARC and will be written out periodically via
490 * .writepage(). This will occur due to either a sync or the usual
491 * page aging behavior. Note because a read(2) of a mmap'ed file
492 * will always check the page cache first even when the ARC is out
493 * of date correct data will still be returned.
494 *
495 * While this implementation ensures correct behavior it does have
496 * have some drawbacks. The most obvious of which is that it
497 * increases the required memory footprint when access mmap'ed
498 * files. It also adds additional complexity to the code keeping
499 * both caches synchronized.
500 *
501 * Longer term it may be possible to cleanly resolve this wart by
502 * mapping page cache pages directly on to the ARC buffers. The
503 * Linux address space operations are flexible enough to allow
504 * selection of which pages back a particular index. The trick
505 * would be working out the details of which subsystem is in
506 * charge, the ARC, the page cache, or both. It may also prove
507 * helpful to move the ARC buffers to a scatter-gather lists
508 * rather than a vmalloc'ed region.
509 */
510static int
511zpl_mmap(struct file *filp, struct vm_area_struct *vma)
512{
e2e7aa2d
BB
513 struct inode *ip = filp->f_mapping->host;
514 znode_t *zp = ITOZ(ip);
c0d35759 515 int error;
40d06e3c 516 fstrans_cookie_t cookie;
c0d35759 517
40d06e3c 518 cookie = spl_fstrans_mark();
e2e7aa2d
BB
519 error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start,
520 (size_t)(vma->vm_end - vma->vm_start), vma->vm_flags);
40d06e3c 521 spl_fstrans_unmark(cookie);
e2e7aa2d
BB
522 if (error)
523 return (error);
524
c0d35759
BB
525 error = generic_file_mmap(filp, vma);
526 if (error)
527 return (error);
528
529 mutex_enter(&zp->z_lock);
18a2485f 530 zp->z_is_mapped = B_TRUE;
c0d35759
BB
531 mutex_exit(&zp->z_lock);
532
533 return (error);
534}
535
536/*
537 * Populate a page with data for the Linux page cache. This function is
538 * only used to support mmap(2). There will be an identical copy of the
539 * data in the ARC which is kept up to date via .write() and .writepage().
540 *
541 * Current this function relies on zpl_read_common() and the O_DIRECT
542 * flag to read in a page. This works but the more correct way is to
543 * update zfs_fillpage() to be Linux friendly and use that interface.
544 */
545static int
546zpl_readpage(struct file *filp, struct page *pp)
547{
548 struct inode *ip;
dde471ef 549 struct page *pl[1];
c0d35759 550 int error = 0;
40d06e3c 551 fstrans_cookie_t cookie;
c0d35759
BB
552
553 ASSERT(PageLocked(pp));
554 ip = pp->mapping->host;
dde471ef 555 pl[0] = pp;
c0d35759 556
40d06e3c 557 cookie = spl_fstrans_mark();
dde471ef 558 error = -zfs_getpage(ip, pl, 1);
40d06e3c 559 spl_fstrans_unmark(cookie);
c0d35759 560
dde471ef
PJ
561 if (error) {
562 SetPageError(pp);
563 ClearPageUptodate(pp);
564 } else {
565 ClearPageError(pp);
566 SetPageUptodate(pp);
567 flush_dcache_page(pp);
568 }
c0d35759 569
dde471ef 570 unlock_page(pp);
d1d7e268 571 return (error);
dde471ef 572}
c0d35759 573
f3ab88d6
BB
574/*
575 * Populate a set of pages with data for the Linux page cache. This
576 * function will only be called for read ahead and never for demand
577 * paging. For simplicity, the code relies on read_cache_pages() to
578 * correctly lock each page for IO and call zpl_readpage().
579 */
580static int
581zpl_readpages(struct file *filp, struct address_space *mapping,
4ea3f864 582 struct list_head *pages, unsigned nr_pages)
f3ab88d6 583{
95d9fd02
BB
584 return (read_cache_pages(mapping, pages,
585 (filler_t *)zpl_readpage, filp));
f3ab88d6
BB
586}
587
dde471ef
PJ
588int
589zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data)
590{
3c0e5c0f 591 struct address_space *mapping = data;
92119cc2 592 fstrans_cookie_t cookie;
3c0e5c0f
BB
593
594 ASSERT(PageLocked(pp));
595 ASSERT(!PageWriteback(pp));
8630650a 596
92119cc2 597 cookie = spl_fstrans_mark();
62c4165a 598 (void) zfs_putpage(mapping->host, pp, wbc);
92119cc2 599 spl_fstrans_unmark(cookie);
c0d35759 600
3c0e5c0f 601 return (0);
dde471ef 602}
c0d35759 603
dde471ef
PJ
604static int
605zpl_writepages(struct address_space *mapping, struct writeback_control *wbc)
606{
119a394a 607 znode_t *zp = ITOZ(mapping->host);
0037b49e 608 zfsvfs_t *zfsvfs = ITOZSB(mapping->host);
119a394a
ED
609 enum writeback_sync_modes sync_mode;
610 int result;
611
0037b49e
BB
612 ZFS_ENTER(zfsvfs);
613 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
119a394a 614 wbc->sync_mode = WB_SYNC_ALL;
0037b49e 615 ZFS_EXIT(zfsvfs);
119a394a
ED
616 sync_mode = wbc->sync_mode;
617
618 /*
619 * We don't want to run write_cache_pages() in SYNC mode here, because
620 * that would make putpage() wait for a single page to be committed to
621 * disk every single time, resulting in atrocious performance. Instead
622 * we run it once in non-SYNC mode so that the ZIL gets all the data,
623 * and then we commit it all in one go.
624 */
625 wbc->sync_mode = WB_SYNC_NONE;
626 result = write_cache_pages(mapping, wbc, zpl_putpage, mapping);
627 if (sync_mode != wbc->sync_mode) {
0037b49e 628 ZFS_ENTER(zfsvfs);
119a394a 629 ZFS_VERIFY_ZP(zp);
0037b49e
BB
630 if (zfsvfs->z_log != NULL)
631 zil_commit(zfsvfs->z_log, zp->z_id);
632 ZFS_EXIT(zfsvfs);
119a394a
ED
633
634 /*
635 * We need to call write_cache_pages() again (we can't just
636 * return after the commit) because the previous call in
637 * non-SYNC mode does not guarantee that we got all the dirty
638 * pages (see the implementation of write_cache_pages() for
639 * details). That being said, this is a no-op in most cases.
640 */
641 wbc->sync_mode = sync_mode;
642 result = write_cache_pages(mapping, wbc, zpl_putpage, mapping);
643 }
644 return (result);
c0d35759
BB
645}
646
647/*
648 * Write out dirty pages to the ARC, this function is only required to
649 * support mmap(2). Mapped pages may be dirtied by memory operations
650 * which never call .write(). These dirty pages are kept in sync with
651 * the ARC buffers via this hook.
c0d35759
BB
652 */
653static int
654zpl_writepage(struct page *pp, struct writeback_control *wbc)
655{
119a394a
ED
656 if (ITOZSB(pp->mapping->host)->z_os->os_sync == ZFS_SYNC_ALWAYS)
657 wbc->sync_mode = WB_SYNC_ALL;
658
659 return (zpl_putpage(pp, wbc, pp->mapping));
c0d35759
BB
660}
661
cb2d1901
ED
662/*
663 * The only flag combination which matches the behavior of zfs_space()
223df016
TC
664 * is FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE. The FALLOC_FL_PUNCH_HOLE
665 * flag was introduced in the 2.6.38 kernel.
cb2d1901 666 */
223df016 667#if defined(HAVE_FILE_FALLOCATE) || defined(HAVE_INODE_FALLOCATE)
cb2d1901
ED
668long
669zpl_fallocate_common(struct inode *ip, int mode, loff_t offset, loff_t len)
670{
cb2d1901
ED
671 int error = -EOPNOTSUPP;
672
223df016
TC
673#if defined(FALLOC_FL_PUNCH_HOLE) && defined(FALLOC_FL_KEEP_SIZE)
674 cred_t *cr = CRED();
675 flock64_t bf;
676 loff_t olen;
40d06e3c 677 fstrans_cookie_t cookie;
223df016
TC
678
679 if (mode != (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
680 return (error);
cb2d1901 681
223df016
TC
682 if (offset < 0 || len <= 0)
683 return (-EINVAL);
cb2d1901 684
223df016
TC
685 spl_inode_lock(ip);
686 olen = i_size_read(ip);
cb2d1901 687
223df016
TC
688 if (offset > olen) {
689 spl_inode_unlock(ip);
690 return (0);
cb2d1901 691 }
223df016
TC
692 if (offset + len > olen)
693 len = olen - offset;
694 bf.l_type = F_WRLCK;
695 bf.l_whence = 0;
696 bf.l_start = offset;
697 bf.l_len = len;
698 bf.l_pid = 0;
699
9fa4db44 700 crhold(cr);
40d06e3c 701 cookie = spl_fstrans_mark();
223df016 702 error = -zfs_space(ip, F_FREESP, &bf, FWRITE, offset, cr);
40d06e3c 703 spl_fstrans_unmark(cookie);
223df016 704 spl_inode_unlock(ip);
cb2d1901
ED
705
706 crfree(cr);
223df016 707#endif /* defined(FALLOC_FL_PUNCH_HOLE) && defined(FALLOC_FL_KEEP_SIZE) */
cb2d1901
ED
708
709 ASSERT3S(error, <=, 0);
710 return (error);
711}
223df016 712#endif /* defined(HAVE_FILE_FALLOCATE) || defined(HAVE_INODE_FALLOCATE) */
cb2d1901
ED
713
714#ifdef HAVE_FILE_FALLOCATE
715static long
716zpl_fallocate(struct file *filp, int mode, loff_t offset, loff_t len)
717{
d9c97ec0 718 return zpl_fallocate_common(file_inode(filp),
cb2d1901
ED
719 mode, offset, len);
720}
721#endif /* HAVE_FILE_FALLOCATE */
722
9c5167d1
NF
723#define ZFS_FL_USER_VISIBLE (FS_FL_USER_VISIBLE | ZFS_PROJINHERIT_FL)
724#define ZFS_FL_USER_MODIFIABLE (FS_FL_USER_MODIFIABLE | ZFS_PROJINHERIT_FL)
725
726static uint32_t
727__zpl_ioctl_getflags(struct inode *ip)
9d317793 728{
9d317793 729 uint64_t zfs_flags = ITOZ(ip)->z_pflags;
9c5167d1 730 uint32_t ioctl_flags = 0;
9d317793
RY
731
732 if (zfs_flags & ZFS_IMMUTABLE)
733 ioctl_flags |= FS_IMMUTABLE_FL;
734
735 if (zfs_flags & ZFS_APPENDONLY)
736 ioctl_flags |= FS_APPEND_FL;
737
738 if (zfs_flags & ZFS_NODUMP)
739 ioctl_flags |= FS_NODUMP_FL;
740
9c5167d1
NF
741 if (zfs_flags & ZFS_PROJINHERIT)
742 ioctl_flags |= ZFS_PROJINHERIT_FL;
9d317793 743
9c5167d1
NF
744 return (ioctl_flags & ZFS_FL_USER_VISIBLE);
745}
9d317793 746
9c5167d1
NF
747/*
748 * Map zfs file z_pflags (xvattr_t) to linux file attributes. Only file
749 * attributes common to both Linux and Solaris are mapped.
750 */
751static int
752zpl_ioctl_getflags(struct file *filp, void __user *arg)
753{
754 uint32_t flags;
755 int err;
756
757 flags = __zpl_ioctl_getflags(file_inode(filp));
758 err = copy_to_user(arg, &flags, sizeof (flags));
759
760 return (err);
9d317793
RY
761}
762
763/*
764 * fchange() is a helper macro to detect if we have been asked to change a
765 * flag. This is ugly, but the requirement that we do this is a consequence of
766 * how the Linux file attribute interface was designed. Another consequence is
767 * that concurrent modification of files suffers from a TOCTOU race. Neither
768 * are things we can fix without modifying the kernel-userland interface, which
769 * is outside of our jurisdiction.
770 */
771
c360af54 772#define fchange(f0, f1, b0, b1) (!((f0) & (b0)) != !((f1) & (b1)))
9d317793
RY
773
774static int
9c5167d1 775__zpl_ioctl_setflags(struct inode *ip, uint32_t ioctl_flags, xvattr_t *xva)
9d317793 776{
9c5167d1
NF
777 uint64_t zfs_flags = ITOZ(ip)->z_pflags;
778 xoptattr_t *xoap;
9d317793 779
9c5167d1
NF
780 if (ioctl_flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | FS_NODUMP_FL |
781 ZFS_PROJINHERIT_FL))
9d317793
RY
782 return (-EOPNOTSUPP);
783
9c5167d1 784 if (ioctl_flags & ~ZFS_FL_USER_MODIFIABLE)
9d317793
RY
785 return (-EACCES);
786
787 if ((fchange(ioctl_flags, zfs_flags, FS_IMMUTABLE_FL, ZFS_IMMUTABLE) ||
788 fchange(ioctl_flags, zfs_flags, FS_APPEND_FL, ZFS_APPENDONLY)) &&
789 !capable(CAP_LINUX_IMMUTABLE))
790 return (-EACCES);
791
792 if (!zpl_inode_owner_or_capable(ip))
793 return (-EACCES);
794
9c5167d1
NF
795 xva_init(xva);
796 xoap = xva_getxoptattr(xva);
9d317793 797
9c5167d1 798 XVA_SET_REQ(xva, XAT_IMMUTABLE);
9d317793
RY
799 if (ioctl_flags & FS_IMMUTABLE_FL)
800 xoap->xoa_immutable = B_TRUE;
801
9c5167d1 802 XVA_SET_REQ(xva, XAT_APPENDONLY);
9d317793
RY
803 if (ioctl_flags & FS_APPEND_FL)
804 xoap->xoa_appendonly = B_TRUE;
805
9c5167d1 806 XVA_SET_REQ(xva, XAT_NODUMP);
9d317793
RY
807 if (ioctl_flags & FS_NODUMP_FL)
808 xoap->xoa_nodump = B_TRUE;
809
9c5167d1
NF
810 XVA_SET_REQ(xva, XAT_PROJINHERIT);
811 if (ioctl_flags & ZFS_PROJINHERIT_FL)
812 xoap->xoa_projinherit = B_TRUE;
813
814 return (0);
815}
816
817static int
818zpl_ioctl_setflags(struct file *filp, void __user *arg)
819{
820 struct inode *ip = file_inode(filp);
821 uint32_t flags;
822 cred_t *cr = CRED();
823 xvattr_t xva;
824 int err;
825 fstrans_cookie_t cookie;
826
827 if (copy_from_user(&flags, arg, sizeof (flags)))
828 return (-EFAULT);
829
830 err = __zpl_ioctl_setflags(ip, flags, &xva);
831 if (err)
832 return (err);
833
9d317793 834 crhold(cr);
40d06e3c 835 cookie = spl_fstrans_mark();
9c5167d1 836 err = -zfs_setattr(ip, (vattr_t *)&xva, 0, cr);
40d06e3c 837 spl_fstrans_unmark(cookie);
9d317793
RY
838 crfree(cr);
839
9c5167d1
NF
840 return (err);
841}
842
843static int
844zpl_ioctl_getxattr(struct file *filp, void __user *arg)
845{
846 zfsxattr_t fsx = { 0 };
847 struct inode *ip = file_inode(filp);
848 int err;
849
850 fsx.fsx_xflags = __zpl_ioctl_getflags(ip);
851 fsx.fsx_projid = ITOZ(ip)->z_projid;
852 err = copy_to_user(arg, &fsx, sizeof (fsx));
853
854 return (err);
855}
856
857static int
858zpl_ioctl_setxattr(struct file *filp, void __user *arg)
859{
860 struct inode *ip = file_inode(filp);
861 zfsxattr_t fsx;
862 cred_t *cr = CRED();
863 xvattr_t xva;
864 xoptattr_t *xoap;
865 int err;
866 fstrans_cookie_t cookie;
867
868 if (copy_from_user(&fsx, arg, sizeof (fsx)))
869 return (-EFAULT);
870
871 if (!zpl_is_valid_projid(fsx.fsx_projid))
872 return (-EINVAL);
873
874 err = __zpl_ioctl_setflags(ip, fsx.fsx_xflags, &xva);
875 if (err)
876 return (err);
877
878 xoap = xva_getxoptattr(&xva);
879 XVA_SET_REQ(&xva, XAT_PROJID);
880 xoap->xoa_projid = fsx.fsx_projid;
881
882 crhold(cr);
883 cookie = spl_fstrans_mark();
884 err = -zfs_setattr(ip, (vattr_t *)&xva, 0, cr);
885 spl_fstrans_unmark(cookie);
886 crfree(cr);
887
888 return (err);
9d317793
RY
889}
890
88c28395
BB
891static long
892zpl_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
893{
894 switch (cmd) {
9d317793
RY
895 case FS_IOC_GETFLAGS:
896 return (zpl_ioctl_getflags(filp, (void *)arg));
897 case FS_IOC_SETFLAGS:
898 return (zpl_ioctl_setflags(filp, (void *)arg));
9c5167d1
NF
899 case ZFS_IOC_FSGETXATTR:
900 return (zpl_ioctl_getxattr(filp, (void *)arg));
901 case ZFS_IOC_FSSETXATTR:
902 return (zpl_ioctl_setxattr(filp, (void *)arg));
88c28395
BB
903 default:
904 return (-ENOTTY);
905 }
906}
907
908#ifdef CONFIG_COMPAT
909static long
910zpl_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
911{
f7b939bd
CIK
912 switch (cmd) {
913 case FS_IOC32_GETFLAGS:
914 cmd = FS_IOC_GETFLAGS;
915 break;
916 case FS_IOC32_SETFLAGS:
917 cmd = FS_IOC_SETFLAGS;
918 break;
919 default:
920 return (-ENOTTY);
921 }
922 return (zpl_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)));
88c28395
BB
923}
924#endif /* CONFIG_COMPAT */
925
926
1efb473f 927const struct address_space_operations zpl_address_space_operations = {
dde471ef 928 .readpages = zpl_readpages,
1efb473f
BB
929 .readpage = zpl_readpage,
930 .writepage = zpl_writepage,
d1d7e268 931 .writepages = zpl_writepages,
1efb473f
BB
932};
933
934const struct file_operations zpl_file_operations = {
126400a1
BB
935 .open = zpl_open,
936 .release = zpl_release,
802e7b5f 937 .llseek = zpl_llseek,
57ae8400 938#ifdef HAVE_VFS_RW_ITERATE
7a789346
CC
939#ifdef HAVE_NEW_SYNC_READ
940 .read = new_sync_read,
941 .write = new_sync_write,
942#endif
57ae8400
MK
943 .read_iter = zpl_iter_read,
944 .write_iter = zpl_iter_write,
945#else
7a789346
CC
946 .read = do_sync_read,
947 .write = do_sync_write,
cd3939c5
RY
948 .aio_read = zpl_aio_read,
949 .aio_write = zpl_aio_write,
57ae8400 950#endif
c0d35759 951 .mmap = zpl_mmap,
1efb473f 952 .fsync = zpl_fsync,
7ca25051 953#ifdef HAVE_FILE_AIO_FSYNC
cd3939c5 954 .aio_fsync = zpl_aio_fsync,
7ca25051 955#endif
cb2d1901 956#ifdef HAVE_FILE_FALLOCATE
d1d7e268 957 .fallocate = zpl_fallocate,
cb2d1901 958#endif /* HAVE_FILE_FALLOCATE */
d1d7e268 959 .unlocked_ioctl = zpl_ioctl,
88c28395 960#ifdef CONFIG_COMPAT
d1d7e268 961 .compat_ioctl = zpl_compat_ioctl,
88c28395 962#endif
1efb473f
BB
963};
964
965const struct file_operations zpl_dir_file_operations = {
966 .llseek = generic_file_llseek,
967 .read = generic_read_dir,
9464b959 968#if defined(HAVE_VFS_ITERATE_SHARED)
9baaa7de
CC
969 .iterate_shared = zpl_iterate,
970#elif defined(HAVE_VFS_ITERATE)
0f37d0c8
RY
971 .iterate = zpl_iterate,
972#else
1efb473f 973 .readdir = zpl_readdir,
0f37d0c8 974#endif
1efb473f 975 .fsync = zpl_fsync,
88c28395
BB
976 .unlocked_ioctl = zpl_ioctl,
977#ifdef CONFIG_COMPAT
978 .compat_ioctl = zpl_compat_ioctl,
979#endif
1efb473f 980};