]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/zpl_file.c
Remove unused MMAP functions
[mirror_zfs.git] / module / zfs / zpl_file.c
CommitLineData
1efb473f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2011, Lawrence Livermore National Security, LLC.
23 */
24
25
26#include <sys/zfs_vfsops.h>
27#include <sys/zfs_vnops.h>
28#include <sys/zfs_znode.h>
29#include <sys/zpl.h>
30
31
126400a1
BB
32static int
33zpl_open(struct inode *ip, struct file *filp)
34{
81e97e21 35 cred_t *cr = CRED();
126400a1
BB
36 int error;
37
81e97e21 38 crhold(cr);
126400a1 39 error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr);
81e97e21 40 crfree(cr);
126400a1
BB
41 ASSERT3S(error, <=, 0);
42
43 if (error)
44 return (error);
45
46 return generic_file_open(ip, filp);
47}
48
49static int
50zpl_release(struct inode *ip, struct file *filp)
51{
81e97e21 52 cred_t *cr = CRED();
126400a1
BB
53 int error;
54
81e97e21 55 crhold(cr);
126400a1 56 error = -zfs_close(ip, filp->f_flags, cr);
81e97e21 57 crfree(cr);
126400a1
BB
58 ASSERT3S(error, <=, 0);
59
60 return (error);
61}
62
1efb473f
BB
63static int
64zpl_readdir(struct file *filp, void *dirent, filldir_t filldir)
65{
66 struct dentry *dentry = filp->f_path.dentry;
81e97e21 67 cred_t *cr = CRED();
1efb473f
BB
68 int error;
69
81e97e21 70 crhold(cr);
1efb473f
BB
71 error = -zfs_readdir(dentry->d_inode, dirent, filldir,
72 &filp->f_pos, cr);
81e97e21 73 crfree(cr);
1efb473f
BB
74 ASSERT3S(error, <=, 0);
75
76 return (error);
77}
78
3117dd0b
BB
79/*
80 * 2.6.35 API change,
81 * As of 2.6.35 the dentry argument to the .fsync() vfs hook was deemed
82 * redundant. The dentry is still accessible via filp->f_path.dentry,
83 * and we are guaranteed that filp will never be NULL.
84 *
85 * 2.6.34 API change,
86 * Prior to 2.6.34 the nfsd kernel server would pass a NULL file struct *
87 * to the .fsync() hook. For this reason, we must be careful not to use
88 * filp unconditionally in the 3 argument case.
89 */
90#ifdef HAVE_2ARGS_FSYNC
91static int
92zpl_fsync(struct file *filp, int datasync)
93{
94 struct dentry *dentry = filp->f_path.dentry;
95#else
96static int
97zpl_fsync(struct file *filp, struct dentry *dentry, int datasync)
1efb473f 98{
3117dd0b 99#endif /* HAVE_2ARGS_FSYNC */
81e97e21 100 cred_t *cr = CRED();
1efb473f
BB
101 int error;
102
81e97e21 103 crhold(cr);
3117dd0b 104 error = -zfs_fsync(dentry->d_inode, datasync, cr);
81e97e21 105 crfree(cr);
1efb473f
BB
106 ASSERT3S(error, <=, 0);
107
108 return (error);
109}
110
111ssize_t
112zpl_read_common(struct inode *ip, const char *buf, size_t len, loff_t pos,
113 uio_seg_t segment, int flags, cred_t *cr)
114{
115 int error;
116 struct iovec iov;
117 uio_t uio;
118
119 iov.iov_base = (void *)buf;
120 iov.iov_len = len;
121
122 uio.uio_iov = &iov;
123 uio.uio_resid = len;
124 uio.uio_iovcnt = 1;
125 uio.uio_loffset = pos;
126 uio.uio_limit = MAXOFFSET_T;
127 uio.uio_segflg = segment;
128
129 error = -zfs_read(ip, &uio, flags, cr);
130 if (error < 0)
131 return (error);
132
133 return (len - uio.uio_resid);
134}
135
136static ssize_t
137zpl_read(struct file *filp, char __user *buf, size_t len, loff_t *ppos)
138{
81e97e21 139 cred_t *cr = CRED();
1efb473f
BB
140 ssize_t read;
141
81e97e21 142 crhold(cr);
1efb473f
BB
143 read = zpl_read_common(filp->f_mapping->host, buf, len, *ppos,
144 UIO_USERSPACE, filp->f_flags, cr);
81e97e21 145 crfree(cr);
1efb473f
BB
146
147 if (read < 0)
148 return (read);
149
150 *ppos += read;
151 return (read);
152}
153
154ssize_t
155zpl_write_common(struct inode *ip, const char *buf, size_t len, loff_t pos,
156 uio_seg_t segment, int flags, cred_t *cr)
157{
158 int error;
159 struct iovec iov;
160 uio_t uio;
161
162 iov.iov_base = (void *)buf;
163 iov.iov_len = len;
164
165 uio.uio_iov = &iov;
166 uio.uio_resid = len,
167 uio.uio_iovcnt = 1;
168 uio.uio_loffset = pos;
169 uio.uio_limit = MAXOFFSET_T;
170 uio.uio_segflg = segment;
171
172 error = -zfs_write(ip, &uio, flags, cr);
173 if (error < 0)
174 return (error);
175
176 return (len - uio.uio_resid);
177}
178
179static ssize_t
180zpl_write(struct file *filp, const char __user *buf, size_t len, loff_t *ppos)
181{
81e97e21 182 cred_t *cr = CRED();
1efb473f
BB
183 ssize_t wrote;
184
81e97e21 185 crhold(cr);
1efb473f
BB
186 wrote = zpl_write_common(filp->f_mapping->host, buf, len, *ppos,
187 UIO_USERSPACE, filp->f_flags, cr);
81e97e21 188 crfree(cr);
1efb473f
BB
189
190 if (wrote < 0)
191 return (wrote);
192
193 *ppos += wrote;
194 return (wrote);
195}
196
c0d35759
BB
197/*
198 * It's worth taking a moment to describe how mmap is implemented
199 * for zfs because it differs considerably from other Linux filesystems.
200 * However, this issue is handled the same way under OpenSolaris.
201 *
202 * The issue is that by design zfs bypasses the Linux page cache and
203 * leaves all caching up to the ARC. This has been shown to work
204 * well for the common read(2)/write(2) case. However, mmap(2)
205 * is problem because it relies on being tightly integrated with the
206 * page cache. To handle this we cache mmap'ed files twice, once in
207 * the ARC and a second time in the page cache. The code is careful
208 * to keep both copies synchronized.
209 *
210 * When a file with an mmap'ed region is written to using write(2)
211 * both the data in the ARC and existing pages in the page cache
212 * are updated. For a read(2) data will be read first from the page
213 * cache then the ARC if needed. Neither a write(2) or read(2) will
214 * will ever result in new pages being added to the page cache.
215 *
216 * New pages are added to the page cache only via .readpage() which
217 * is called when the vfs needs to read a page off disk to back the
218 * virtual memory region. These pages may be modified without
219 * notifying the ARC and will be written out periodically via
220 * .writepage(). This will occur due to either a sync or the usual
221 * page aging behavior. Note because a read(2) of a mmap'ed file
222 * will always check the page cache first even when the ARC is out
223 * of date correct data will still be returned.
224 *
225 * While this implementation ensures correct behavior it does have
226 * have some drawbacks. The most obvious of which is that it
227 * increases the required memory footprint when access mmap'ed
228 * files. It also adds additional complexity to the code keeping
229 * both caches synchronized.
230 *
231 * Longer term it may be possible to cleanly resolve this wart by
232 * mapping page cache pages directly on to the ARC buffers. The
233 * Linux address space operations are flexible enough to allow
234 * selection of which pages back a particular index. The trick
235 * would be working out the details of which subsystem is in
236 * charge, the ARC, the page cache, or both. It may also prove
237 * helpful to move the ARC buffers to a scatter-gather lists
238 * rather than a vmalloc'ed region.
239 */
240static int
241zpl_mmap(struct file *filp, struct vm_area_struct *vma)
242{
243 znode_t *zp = ITOZ(filp->f_mapping->host);
244 int error;
245
246 error = generic_file_mmap(filp, vma);
247 if (error)
248 return (error);
249
250 mutex_enter(&zp->z_lock);
251 zp->z_is_mapped = 1;
252 mutex_exit(&zp->z_lock);
253
254 return (error);
255}
256
dde471ef
PJ
257static struct page **
258pages_vector_from_list(struct list_head *pages, unsigned nr_pages)
259{
260 struct page **pl;
261 struct page *t;
262 unsigned page_idx;
263
264 pl = kmalloc(sizeof(*pl) * nr_pages, GFP_NOFS);
265 if (!pl)
266 return ERR_PTR(-ENOMEM);
267
268 page_idx = 0;
269 list_for_each_entry_reverse(t, pages, lru) {
270 pl[page_idx] = t;
271 page_idx++;
272 }
273
274 return pl;
275}
276
277static int
278zpl_readpages(struct file *file, struct address_space *mapping,
279 struct list_head *pages, unsigned nr_pages)
280{
281 struct inode *ip;
282 struct page **pl;
283 struct page *p, *n;
284 int error;
285
286 ip = mapping->host;
287
288 pl = pages_vector_from_list(pages, nr_pages);
289 if (IS_ERR(pl))
290 return PTR_ERR(pl);
291
292 error = -zfs_getpage(ip, pl, nr_pages);
293 if (error)
294 goto error;
295
296 list_for_each_entry_safe_reverse(p, n, pages, lru) {
297
298 list_del(&p->lru);
299
300 flush_dcache_page(p);
301 SetPageUptodate(p);
302 unlock_page(p);
303 page_cache_release(p);
304 }
305
306error:
307 kfree(pl);
308 return error;
309}
310
c0d35759
BB
311/*
312 * Populate a page with data for the Linux page cache. This function is
313 * only used to support mmap(2). There will be an identical copy of the
314 * data in the ARC which is kept up to date via .write() and .writepage().
315 *
316 * Current this function relies on zpl_read_common() and the O_DIRECT
317 * flag to read in a page. This works but the more correct way is to
318 * update zfs_fillpage() to be Linux friendly and use that interface.
319 */
320static int
321zpl_readpage(struct file *filp, struct page *pp)
322{
323 struct inode *ip;
dde471ef 324 struct page *pl[1];
c0d35759
BB
325 int error = 0;
326
327 ASSERT(PageLocked(pp));
328 ip = pp->mapping->host;
dde471ef 329 pl[0] = pp;
c0d35759 330
dde471ef 331 error = -zfs_getpage(ip, pl, 1);
c0d35759 332
dde471ef
PJ
333 if (error) {
334 SetPageError(pp);
335 ClearPageUptodate(pp);
336 } else {
337 ClearPageError(pp);
338 SetPageUptodate(pp);
339 flush_dcache_page(pp);
340 }
c0d35759 341
dde471ef
PJ
342 unlock_page(pp);
343 return error;
344}
c0d35759 345
dde471ef
PJ
346int
347zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data)
348{
349 int error;
c0d35759 350
dde471ef 351 error = -zfs_putpage(pp, wbc, data);
c0d35759
BB
352
353 if (error) {
354 SetPageError(pp);
355 ClearPageUptodate(pp);
356 } else {
357 ClearPageError(pp);
358 SetPageUptodate(pp);
359 flush_dcache_page(pp);
360 }
361
362 unlock_page(pp);
dde471ef
PJ
363 return error;
364}
c0d35759 365
dde471ef
PJ
366static int
367zpl_writepages(struct address_space *mapping, struct writeback_control *wbc)
368{
369 return write_cache_pages(mapping, wbc, zpl_putpage, mapping);
c0d35759
BB
370}
371
372/*
373 * Write out dirty pages to the ARC, this function is only required to
374 * support mmap(2). Mapped pages may be dirtied by memory operations
375 * which never call .write(). These dirty pages are kept in sync with
376 * the ARC buffers via this hook.
c0d35759
BB
377 */
378static int
379zpl_writepage(struct page *pp, struct writeback_control *wbc)
380{
dde471ef 381 return zpl_putpage(pp, wbc, pp->mapping);
c0d35759
BB
382}
383
1efb473f 384const struct address_space_operations zpl_address_space_operations = {
dde471ef 385 .readpages = zpl_readpages,
1efb473f
BB
386 .readpage = zpl_readpage,
387 .writepage = zpl_writepage,
dde471ef 388 .writepages = zpl_writepages,
1efb473f
BB
389};
390
391const struct file_operations zpl_file_operations = {
126400a1
BB
392 .open = zpl_open,
393 .release = zpl_release,
1efb473f 394 .llseek = generic_file_llseek,
c0d35759
BB
395 .read = zpl_read,
396 .write = zpl_write,
1efb473f 397 .readdir = zpl_readdir,
c0d35759 398 .mmap = zpl_mmap,
1efb473f 399 .fsync = zpl_fsync,
1efb473f
BB
400};
401
402const struct file_operations zpl_dir_file_operations = {
403 .llseek = generic_file_llseek,
404 .read = generic_read_dir,
405 .readdir = zpl_readdir,
406 .fsync = zpl_fsync,
407};