]> git.proxmox.com Git - mirror_zfs-debian.git/blame - module/zfs/zvol.c
Linux 2.6.36 compat, sops->evict_inode()
[mirror_zfs-debian.git] / module / zfs / zvol.c
CommitLineData
60101509
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25 * LLNL-CODE-403049.
26 *
27 * ZFS volume emulation driver.
28 *
29 * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
30 * Volumes are accessed through the symbolic links named:
31 *
32 * /dev/<pool_name>/<dataset_name>
33 *
34 * Volumes are persistent through reboot and module load. No user command
35 * needs to be run before opening and using a device.
36 */
37
38#include <sys/dmu_traverse.h>
39#include <sys/dsl_dataset.h>
40#include <sys/dsl_prop.h>
41#include <sys/zap.h>
42#include <sys/zil_impl.h>
43#include <sys/zio.h>
44#include <sys/zfs_rlock.h>
45#include <sys/zfs_znode.h>
46#include <sys/zvol.h>
47
48unsigned int zvol_major = ZVOL_MAJOR;
49unsigned int zvol_threads = 0;
50
51static taskq_t *zvol_taskq;
52static kmutex_t zvol_state_lock;
53static list_t zvol_state_list;
54static char *zvol_tag = "zvol_tag";
55
56/*
57 * The in-core state of each volume.
58 */
59typedef struct zvol_state {
60 char zv_name[DISK_NAME_LEN]; /* name */
61 uint64_t zv_volsize; /* advertised space */
62 uint64_t zv_volblocksize;/* volume block size */
63 objset_t *zv_objset; /* objset handle */
64 uint32_t zv_flags; /* ZVOL_* flags */
65 uint32_t zv_open_count; /* open counts */
66 uint32_t zv_changed; /* disk changed */
67 zilog_t *zv_zilog; /* ZIL handle */
68 znode_t zv_znode; /* for range locking */
69 dmu_buf_t *zv_dbuf; /* bonus handle */
70 dev_t zv_dev; /* device id */
71 struct gendisk *zv_disk; /* generic disk */
72 struct request_queue *zv_queue; /* request queue */
73 spinlock_t zv_lock; /* request queue lock */
74 list_node_t zv_next; /* next zvol_state_t linkage */
75} zvol_state_t;
76
77#define ZVOL_RDONLY 0x1
78
79/*
80 * Find the next available range of ZVOL_MINORS minor numbers. The
81 * zvol_state_list is kept in ascending minor order so we simply need
82 * to scan the list for the first gap in the sequence. This allows us
83 * to recycle minor number as devices are created and removed.
84 */
85static int
86zvol_find_minor(unsigned *minor)
87{
88 zvol_state_t *zv;
89
90 *minor = 0;
91 ASSERT(MUTEX_HELD(&zvol_state_lock));
92 for (zv = list_head(&zvol_state_list); zv != NULL;
93 zv = list_next(&zvol_state_list, zv), *minor += ZVOL_MINORS) {
94 if (MINOR(zv->zv_dev) != MINOR(*minor))
95 break;
96 }
97
98 /* All minors are in use */
99 if (*minor >= (1 << MINORBITS))
100 return ENXIO;
101
102 return 0;
103}
104
105/*
106 * Find a zvol_state_t given the full major+minor dev_t.
107 */
108static zvol_state_t *
109zvol_find_by_dev(dev_t dev)
110{
111 zvol_state_t *zv;
112
113 ASSERT(MUTEX_HELD(&zvol_state_lock));
114 for (zv = list_head(&zvol_state_list); zv != NULL;
115 zv = list_next(&zvol_state_list, zv)) {
116 if (zv->zv_dev == dev)
117 return zv;
118 }
119
120 return NULL;
121}
122
123/*
124 * Find a zvol_state_t given the name provided at zvol_alloc() time.
125 */
126static zvol_state_t *
127zvol_find_by_name(const char *name)
128{
129 zvol_state_t *zv;
130
131 ASSERT(MUTEX_HELD(&zvol_state_lock));
132 for (zv = list_head(&zvol_state_list); zv != NULL;
133 zv = list_next(&zvol_state_list, zv)) {
134 if (!strncmp(zv->zv_name, name, DISK_NAME_LEN))
135 return zv;
136 }
137
138 return NULL;
139}
140
141/*
142 * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
143 */
144void
145zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
146{
147 zfs_creat_t *zct = arg;
148 nvlist_t *nvprops = zct->zct_props;
149 int error;
150 uint64_t volblocksize, volsize;
151
152 VERIFY(nvlist_lookup_uint64(nvprops,
153 zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
154 if (nvlist_lookup_uint64(nvprops,
155 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
156 volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
157
158 /*
159 * These properties must be removed from the list so the generic
160 * property setting step won't apply to them.
161 */
162 VERIFY(nvlist_remove_all(nvprops,
163 zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
164 (void) nvlist_remove_all(nvprops,
165 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
166
167 error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
168 DMU_OT_NONE, 0, tx);
169 ASSERT(error == 0);
170
171 error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
172 DMU_OT_NONE, 0, tx);
173 ASSERT(error == 0);
174
175 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
176 ASSERT(error == 0);
177}
178
179/*
180 * ZFS_IOC_OBJSET_STATS entry point.
181 */
182int
183zvol_get_stats(objset_t *os, nvlist_t *nv)
184{
185 int error;
186 dmu_object_info_t *doi;
187 uint64_t val;
188
189 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
190 if (error)
191 return (error);
192
193 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
194 doi = kmem_alloc(sizeof(dmu_object_info_t), KM_SLEEP);
195 error = dmu_object_info(os, ZVOL_OBJ, doi);
196
197 if (error == 0) {
198 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
199 doi->doi_data_block_size);
200 }
201
202 kmem_free(doi, sizeof(dmu_object_info_t));
203
204 return (error);
205}
206
207/*
208 * Sanity check volume size.
209 */
210int
211zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
212{
213 if (volsize == 0)
214 return (EINVAL);
215
216 if (volsize % blocksize != 0)
217 return (EINVAL);
218
219#ifdef _ILP32
220 if (volsize - 1 > MAXOFFSET_T)
221 return (EOVERFLOW);
222#endif
223 return (0);
224}
225
226/*
227 * Ensure the zap is flushed then inform the VFS of the capacity change.
228 */
229static int
230zvol_update_volsize(zvol_state_t *zv, uint64_t volsize)
231{
232 struct block_device *bdev;
233 dmu_tx_t *tx;
234 int error;
235
236 ASSERT(MUTEX_HELD(&zvol_state_lock));
237
238 tx = dmu_tx_create(zv->zv_objset);
239 dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
240 error = dmu_tx_assign(tx, TXG_WAIT);
241 if (error) {
242 dmu_tx_abort(tx);
243 return (error);
244 }
245
246 error = zap_update(zv->zv_objset, ZVOL_ZAP_OBJ, "size", 8, 1,
247 &volsize, tx);
248 dmu_tx_commit(tx);
249
250 if (error)
251 return (error);
252
253 error = dmu_free_long_range(zv->zv_objset,
254 ZVOL_OBJ, volsize, DMU_OBJECT_END);
255 if (error)
256 return (error);
257
258 zv->zv_volsize = volsize;
259 zv->zv_changed = 1;
260
261 bdev = bdget_disk(zv->zv_disk, 0);
262 if (!bdev)
263 return EIO;
264
265 error = check_disk_change(bdev);
266 ASSERT3U(error, !=, 0);
267 bdput(bdev);
268
269 return (0);
270}
271
272/*
273 * Set ZFS_PROP_VOLSIZE set entry point.
274 */
275int
276zvol_set_volsize(const char *name, uint64_t volsize)
277{
278 zvol_state_t *zv;
279 dmu_object_info_t *doi;
280 objset_t *os = NULL;
281 uint64_t readonly;
282 int error;
283
284 mutex_enter(&zvol_state_lock);
285
286 zv = zvol_find_by_name(name);
287 if (zv == NULL) {
288 error = ENXIO;
289 goto out;
290 }
291
292 doi = kmem_alloc(sizeof(dmu_object_info_t), KM_SLEEP);
293
294 error = dmu_objset_hold(name, FTAG, &os);
295 if (error)
296 goto out_doi;
297
298 if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) != 0 ||
299 (error = zvol_check_volsize(volsize,doi->doi_data_block_size)) != 0)
300 goto out_doi;
301
302 VERIFY(dsl_prop_get_integer(name, "readonly", &readonly, NULL) == 0);
303 if (readonly) {
304 error = EROFS;
305 goto out_doi;
306 }
307
308 if (get_disk_ro(zv->zv_disk) || (zv->zv_flags & ZVOL_RDONLY)) {
309 error = EROFS;
310 goto out_doi;
311 }
312
313 error = zvol_update_volsize(zv, volsize);
314out_doi:
315 kmem_free(doi, sizeof(dmu_object_info_t));
316out:
317 if (os)
318 dmu_objset_rele(os, FTAG);
319
320 mutex_exit(&zvol_state_lock);
321
322 return (error);
323}
324
325/*
326 * Sanity check volume block size.
327 */
328int
329zvol_check_volblocksize(uint64_t volblocksize)
330{
331 if (volblocksize < SPA_MINBLOCKSIZE ||
332 volblocksize > SPA_MAXBLOCKSIZE ||
333 !ISP2(volblocksize))
334 return (EDOM);
335
336 return (0);
337}
338
339/*
340 * Set ZFS_PROP_VOLBLOCKSIZE set entry point.
341 */
342int
343zvol_set_volblocksize(const char *name, uint64_t volblocksize)
344{
345 zvol_state_t *zv;
346 dmu_tx_t *tx;
347 int error;
348
349 mutex_enter(&zvol_state_lock);
350
351 zv = zvol_find_by_name(name);
352 if (zv == NULL) {
353 error = ENXIO;
354 goto out;
355 }
356
357 if (get_disk_ro(zv->zv_disk) || (zv->zv_flags & ZVOL_RDONLY)) {
358 error = EROFS;
359 goto out;
360 }
361
362 tx = dmu_tx_create(zv->zv_objset);
363 dmu_tx_hold_bonus(tx, ZVOL_OBJ);
364 error = dmu_tx_assign(tx, TXG_WAIT);
365 if (error) {
366 dmu_tx_abort(tx);
367 } else {
368 error = dmu_object_set_blocksize(zv->zv_objset, ZVOL_OBJ,
369 volblocksize, 0, tx);
370 if (error == ENOTSUP)
371 error = EBUSY;
372 dmu_tx_commit(tx);
373 if (error == 0)
374 zv->zv_volblocksize = volblocksize;
375 }
376out:
377 mutex_exit(&zvol_state_lock);
378
379 return (error);
380}
381
382/*
383 * Replay a TX_WRITE ZIL transaction that didn't get committed
384 * after a system failure
385 */
386static int
387zvol_replay_write(zvol_state_t *zv, lr_write_t *lr, boolean_t byteswap)
388{
389 objset_t *os = zv->zv_objset;
390 char *data = (char *)(lr + 1); /* data follows lr_write_t */
391 uint64_t off = lr->lr_offset;
392 uint64_t len = lr->lr_length;
393 dmu_tx_t *tx;
394 int error;
395
396 if (byteswap)
397 byteswap_uint64_array(lr, sizeof (*lr));
398
399 tx = dmu_tx_create(os);
400 dmu_tx_hold_write(tx, ZVOL_OBJ, off, len);
401 error = dmu_tx_assign(tx, TXG_WAIT);
402 if (error) {
403 dmu_tx_abort(tx);
404 } else {
405 dmu_write(os, ZVOL_OBJ, off, len, data, tx);
406 dmu_tx_commit(tx);
407 }
408
409 return (error);
410}
411
412static int
413zvol_replay_err(zvol_state_t *zv, lr_t *lr, boolean_t byteswap)
414{
415 return (ENOTSUP);
416}
417
418/*
419 * Callback vectors for replaying records.
420 * Only TX_WRITE is needed for zvol.
421 */
422zil_replay_func_t *zvol_replay_vector[TX_MAX_TYPE] = {
423 (zil_replay_func_t *)zvol_replay_err, /* no such transaction type */
424 (zil_replay_func_t *)zvol_replay_err, /* TX_CREATE */
425 (zil_replay_func_t *)zvol_replay_err, /* TX_MKDIR */
426 (zil_replay_func_t *)zvol_replay_err, /* TX_MKXATTR */
427 (zil_replay_func_t *)zvol_replay_err, /* TX_SYMLINK */
428 (zil_replay_func_t *)zvol_replay_err, /* TX_REMOVE */
429 (zil_replay_func_t *)zvol_replay_err, /* TX_RMDIR */
430 (zil_replay_func_t *)zvol_replay_err, /* TX_LINK */
431 (zil_replay_func_t *)zvol_replay_err, /* TX_RENAME */
432 (zil_replay_func_t *)zvol_replay_write, /* TX_WRITE */
433 (zil_replay_func_t *)zvol_replay_err, /* TX_TRUNCATE */
434 (zil_replay_func_t *)zvol_replay_err, /* TX_SETATTR */
435 (zil_replay_func_t *)zvol_replay_err, /* TX_ACL */
436};
437
438/*
439 * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
440 *
441 * We store data in the log buffers if it's small enough.
442 * Otherwise we will later flush the data out via dmu_sync().
443 */
444ssize_t zvol_immediate_write_sz = 32768;
445
446static void
447zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx,
448 uint64_t offset, uint64_t size, int sync)
449{
450 uint32_t blocksize = zv->zv_volblocksize;
451 zilog_t *zilog = zv->zv_zilog;
452 boolean_t slogging;
453
454 if (zil_replaying(zilog, tx))
455 return;
456
457 slogging = spa_has_slogs(zilog->zl_spa);
458
459 while (size) {
460 itx_t *itx;
461 lr_write_t *lr;
462 ssize_t len;
463 itx_wr_state_t write_state;
464
465 /*
466 * Unlike zfs_log_write() we can be called with
467 * up to DMU_MAX_ACCESS/2 (5MB) writes.
468 */
469 if (blocksize > zvol_immediate_write_sz && !slogging &&
470 size >= blocksize && offset % blocksize == 0) {
471 write_state = WR_INDIRECT; /* uses dmu_sync */
472 len = blocksize;
473 } else if (sync) {
474 write_state = WR_COPIED;
475 len = MIN(ZIL_MAX_LOG_DATA, size);
476 } else {
477 write_state = WR_NEED_COPY;
478 len = MIN(ZIL_MAX_LOG_DATA, size);
479 }
480
481 itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
482 (write_state == WR_COPIED ? len : 0));
483 lr = (lr_write_t *)&itx->itx_lr;
484 if (write_state == WR_COPIED && dmu_read(zv->zv_objset,
485 ZVOL_OBJ, offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) {
486 zil_itx_destroy(itx);
487 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
488 lr = (lr_write_t *)&itx->itx_lr;
489 write_state = WR_NEED_COPY;
490 }
491
492 itx->itx_wr_state = write_state;
493 if (write_state == WR_NEED_COPY)
494 itx->itx_sod += len;
495 lr->lr_foid = ZVOL_OBJ;
496 lr->lr_offset = offset;
497 lr->lr_length = len;
498 lr->lr_blkoff = 0;
499 BP_ZERO(&lr->lr_blkptr);
500
501 itx->itx_private = zv;
502 itx->itx_sync = sync;
503
504 (void) zil_itx_assign(zilog, itx, tx);
505
506 offset += len;
507 size -= len;
508 }
509}
510
511/*
512 * Common write path running under the zvol taskq context. This function
513 * is responsible for copying the request structure data in to the DMU and
514 * signaling the request queue with the result of the copy.
515 */
516static void
517zvol_write(void *arg)
518{
519 struct request *req = (struct request *)arg;
520 struct request_queue *q = req->q;
521 zvol_state_t *zv = q->queuedata;
522 uint64_t offset = blk_rq_pos(req) << 9;
523 uint64_t size = blk_rq_bytes(req);
524 int error = 0;
525 dmu_tx_t *tx;
526 rl_t *rl;
527
528 rl = zfs_range_lock(&zv->zv_znode, offset, size, RL_WRITER);
529
530 tx = dmu_tx_create(zv->zv_objset);
531 dmu_tx_hold_write(tx, ZVOL_OBJ, offset, size);
532
533 /* This will only fail for ENOSPC */
534 error = dmu_tx_assign(tx, TXG_WAIT);
535 if (error) {
536 dmu_tx_abort(tx);
537 zfs_range_unlock(rl);
538 blk_end_request(req, -error, size);
539 return;
540 }
541
542 error = dmu_write_req(zv->zv_objset, ZVOL_OBJ, req, tx);
543 if (error == 0)
544 zvol_log_write(zv, tx, offset, size, rq_is_sync(req));
545
546 dmu_tx_commit(tx);
547 zfs_range_unlock(rl);
548
549 if (rq_is_sync(req))
550 zil_commit(zv->zv_zilog, ZVOL_OBJ);
551
552 blk_end_request(req, -error, size);
553}
554
555/*
556 * Common read path running under the zvol taskq context. This function
557 * is responsible for copying the requested data out of the DMU and in to
558 * a linux request structure. It then must signal the request queue with
559 * an error code describing the result of the copy.
560 */
561static void
562zvol_read(void *arg)
563{
564 struct request *req = (struct request *)arg;
565 struct request_queue *q = req->q;
566 zvol_state_t *zv = q->queuedata;
567 uint64_t offset = blk_rq_pos(req) << 9;
568 uint64_t size = blk_rq_bytes(req);
569 int error;
570 rl_t *rl;
571
572 rl = zfs_range_lock(&zv->zv_znode, offset, size, RL_READER);
573
574 error = dmu_read_req(zv->zv_objset, ZVOL_OBJ, req);
575
576 zfs_range_unlock(rl);
577
578 /* convert checksum errors into IO errors */
579 if (error == ECKSUM)
580 error = EIO;
581
582 blk_end_request(req, -error, size);
583}
584
585/*
586 * Request will be added back to the request queue and retried if
587 * it cannot be immediately dispatched to the taskq for handling
588 */
589static inline void
590zvol_dispatch(task_func_t func, struct request *req)
591{
592 if (!taskq_dispatch(zvol_taskq, func, (void *)req, TQ_NOSLEEP))
593 blk_requeue_request(req->q, req);
594}
595
596/*
597 * Common request path. Rather than registering a custom make_request()
598 * function we use the generic Linux version. This is done because it allows
599 * us to easily merge read requests which would otherwise we performed
600 * synchronously by the DMU. This is less critical in write case where the
601 * DMU will perform the correct merging within a transaction group. Using
602 * the generic make_request() also let's use leverage the fact that the
603 * elevator with ensure correct ordering in regards to barrior IOs. On
604 * the downside it means that in the write case we end up doing request
605 * merging twice once in the elevator and once in the DMU.
606 *
607 * The request handler is called under a spin lock so all the real work
608 * is handed off to be done in the context of the zvol taskq. This function
609 * simply performs basic request sanity checking and hands off the request.
610 */
611static void
612zvol_request(struct request_queue *q)
613{
614 zvol_state_t *zv = q->queuedata;
615 struct request *req;
616 unsigned int size;
617
618 while ((req = blk_fetch_request(q)) != NULL) {
619 size = blk_rq_bytes(req);
620
621 if (blk_rq_pos(req) + blk_rq_sectors(req) >
622 get_capacity(zv->zv_disk)) {
623 printk(KERN_INFO
624 "%s: bad access: block=%llu, count=%lu\n",
625 req->rq_disk->disk_name,
626 (long long unsigned)blk_rq_pos(req),
627 (long unsigned)blk_rq_sectors(req));
628 __blk_end_request(req, -EIO, size);
629 continue;
630 }
631
632 if (!blk_fs_request(req)) {
633 printk(KERN_INFO "%s: non-fs cmd\n",
634 req->rq_disk->disk_name);
635 __blk_end_request(req, -EIO, size);
636 continue;
637 }
638
639 switch (rq_data_dir(req)) {
640 case READ:
641 zvol_dispatch(zvol_read, req);
642 break;
643 case WRITE:
644 if (unlikely(get_disk_ro(zv->zv_disk)) ||
645 unlikely(zv->zv_flags & ZVOL_RDONLY)) {
646 __blk_end_request(req, -EROFS, size);
647 break;
648 }
649
650 zvol_dispatch(zvol_write, req);
651 break;
652 default:
653 printk(KERN_INFO "%s: unknown cmd: %d\n",
654 req->rq_disk->disk_name, (int)rq_data_dir(req));
655 __blk_end_request(req, -EIO, size);
656 break;
657 }
658 }
659}
660
661static void
662zvol_get_done(zgd_t *zgd, int error)
663{
664 if (zgd->zgd_db)
665 dmu_buf_rele(zgd->zgd_db, zgd);
666
667 zfs_range_unlock(zgd->zgd_rl);
668
669 if (error == 0 && zgd->zgd_bp)
670 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
671
672 kmem_free(zgd, sizeof (zgd_t));
673}
674
675/*
676 * Get data to generate a TX_WRITE intent log record.
677 */
678static int
679zvol_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
680{
681 zvol_state_t *zv = arg;
682 objset_t *os = zv->zv_objset;
683 uint64_t offset = lr->lr_offset;
684 uint64_t size = lr->lr_length;
685 dmu_buf_t *db;
686 zgd_t *zgd;
687 int error;
688
689 ASSERT(zio != NULL);
690 ASSERT(size != 0);
691
692 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
693 zgd->zgd_zilog = zv->zv_zilog;
694 zgd->zgd_rl = zfs_range_lock(&zv->zv_znode, offset, size, RL_READER);
695
696 /*
697 * Write records come in two flavors: immediate and indirect.
698 * For small writes it's cheaper to store the data with the
699 * log record (immediate); for large writes it's cheaper to
700 * sync the data and get a pointer to it (indirect) so that
701 * we don't have to write the data twice.
702 */
703 if (buf != NULL) { /* immediate write */
704 error = dmu_read(os, ZVOL_OBJ, offset, size, buf,
705 DMU_READ_NO_PREFETCH);
706 } else {
707 size = zv->zv_volblocksize;
708 offset = P2ALIGN_TYPED(offset, size, uint64_t);
709 error = dmu_buf_hold(os, ZVOL_OBJ, offset, zgd, &db,
710 DMU_READ_NO_PREFETCH);
711 if (error == 0) {
712 zgd->zgd_db = db;
713 zgd->zgd_bp = &lr->lr_blkptr;
714
715 ASSERT(db != NULL);
716 ASSERT(db->db_offset == offset);
717 ASSERT(db->db_size == size);
718
719 error = dmu_sync(zio, lr->lr_common.lrc_txg,
720 zvol_get_done, zgd);
721
722 if (error == 0)
723 return (0);
724 }
725 }
726
727 zvol_get_done(zgd, error);
728
729 return (error);
730}
731
732/*
733 * The zvol_state_t's are inserted in increasing MINOR(dev_t) order.
734 */
735static void
736zvol_insert(zvol_state_t *zv_insert)
737{
738 zvol_state_t *zv = NULL;
739
740 ASSERT(MUTEX_HELD(&zvol_state_lock));
741 ASSERT3U(MINOR(zv_insert->zv_dev) & ZVOL_MINOR_MASK, ==, 0);
742 for (zv = list_head(&zvol_state_list); zv != NULL;
743 zv = list_next(&zvol_state_list, zv)) {
744 if (MINOR(zv->zv_dev) > MINOR(zv_insert->zv_dev))
745 break;
746 }
747
748 list_insert_before(&zvol_state_list, zv, zv_insert);
749}
750
751/*
752 * Simply remove the zvol from to list of zvols.
753 */
754static void
755zvol_remove(zvol_state_t *zv_remove)
756{
757 ASSERT(MUTEX_HELD(&zvol_state_lock));
758 list_remove(&zvol_state_list, zv_remove);
759}
760
761static int
762zvol_first_open(zvol_state_t *zv)
763{
764 objset_t *os;
765 uint64_t volsize;
766 int error;
767 uint64_t ro;
768
769 /* lie and say we're read-only */
770 error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, 1, zvol_tag, &os);
771 if (error)
772 return (-error);
773
774 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
775 if (error) {
776 dmu_objset_disown(os, zvol_tag);
777 return (-error);
778 }
779
780 zv->zv_objset = os;
781 error = dmu_bonus_hold(os, ZVOL_OBJ, zvol_tag, &zv->zv_dbuf);
782 if (error) {
783 dmu_objset_disown(os, zvol_tag);
784 return (-error);
785 }
786
787 set_capacity(zv->zv_disk, volsize >> 9);
788 zv->zv_volsize = volsize;
789 zv->zv_zilog = zil_open(os, zvol_get_data);
790
791 VERIFY(dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL) == 0);
792 if (ro || dmu_objset_is_snapshot(os)) {
793 set_disk_ro(zv->zv_disk, 1);
794 zv->zv_flags |= ZVOL_RDONLY;
795 } else {
796 set_disk_ro(zv->zv_disk, 0);
797 zv->zv_flags &= ~ZVOL_RDONLY;
798 }
799
800 return (-error);
801}
802
803static void
804zvol_last_close(zvol_state_t *zv)
805{
806 zil_close(zv->zv_zilog);
807 zv->zv_zilog = NULL;
808 dmu_buf_rele(zv->zv_dbuf, zvol_tag);
809 zv->zv_dbuf = NULL;
810 dmu_objset_disown(zv->zv_objset, zvol_tag);
811 zv->zv_objset = NULL;
812}
813
814static int
815zvol_open(struct block_device *bdev, fmode_t flag)
816{
817 zvol_state_t *zv = bdev->bd_disk->private_data;
818 int error = 0, drop_mutex = 0;
819
820 /*
821 * If the caller is already holding the mutex do not take it
822 * again, this will happen as part of zvol_create_minor().
823 * Once add_disk() is called the device is live and the kernel
824 * will attempt to open it to read the partition information.
825 */
826 if (!mutex_owned(&zvol_state_lock)) {
827 mutex_enter(&zvol_state_lock);
828 drop_mutex = 1;
829 }
830
831 ASSERT3P(zv, !=, NULL);
832
833 if (zv->zv_open_count == 0) {
834 error = zvol_first_open(zv);
835 if (error)
836 goto out_mutex;
837 }
838
839 if ((flag & FMODE_WRITE) &&
840 (get_disk_ro(zv->zv_disk) || (zv->zv_flags & ZVOL_RDONLY))) {
841 error = -EROFS;
842 goto out_open_count;
843 }
844
845 zv->zv_open_count++;
846
847out_open_count:
848 if (zv->zv_open_count == 0)
849 zvol_last_close(zv);
850
851out_mutex:
852 if (drop_mutex)
853 mutex_exit(&zvol_state_lock);
854
855 check_disk_change(bdev);
856
857 return (error);
858}
859
860static int
861zvol_release(struct gendisk *disk, fmode_t mode)
862{
863 zvol_state_t *zv = disk->private_data;
864 int drop_mutex = 0;
865
866 if (!mutex_owned(&zvol_state_lock)) {
867 mutex_enter(&zvol_state_lock);
868 drop_mutex = 1;
869 }
870
871 ASSERT3P(zv, !=, NULL);
872 ASSERT3U(zv->zv_open_count, >, 0);
873 zv->zv_open_count--;
874 if (zv->zv_open_count == 0)
875 zvol_last_close(zv);
876
877 if (drop_mutex)
878 mutex_exit(&zvol_state_lock);
879
880 return (0);
881}
882
883static int
884zvol_ioctl(struct block_device *bdev, fmode_t mode,
885 unsigned int cmd, unsigned long arg)
886{
887 zvol_state_t *zv = bdev->bd_disk->private_data;
888 int error = 0;
889
890 if (zv == NULL)
891 return (-ENXIO);
892
893 switch (cmd) {
894 case BLKFLSBUF:
895 zil_commit(zv->zv_zilog, ZVOL_OBJ);
896 break;
897
898 default:
899 error = -ENOTTY;
900 break;
901
902 }
903
904 return (error);
905}
906
907#ifdef CONFIG_COMPAT
908static int
909zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
910 unsigned cmd, unsigned long arg)
911{
912 return zvol_ioctl(bdev, mode, cmd, arg);
913}
914#else
915#define zvol_compat_ioctl NULL
916#endif
917
918static int zvol_media_changed(struct gendisk *disk)
919{
920 zvol_state_t *zv = disk->private_data;
921
922 return zv->zv_changed;
923}
924
925static int zvol_revalidate_disk(struct gendisk *disk)
926{
927 zvol_state_t *zv = disk->private_data;
928
929 zv->zv_changed = 0;
930 set_capacity(zv->zv_disk, zv->zv_volsize >> 9);
931
932 return 0;
933}
934
935/*
936 * Provide a simple virtual geometry for legacy compatibility. For devices
937 * smaller than 1 MiB a small head and sector count is used to allow very
938 * tiny devices. For devices over 1 Mib a standard head and sector count
939 * is used to keep the cylinders count reasonable.
940 */
941static int
942zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
943{
944 zvol_state_t *zv = bdev->bd_disk->private_data;
945 sector_t sectors = get_capacity(zv->zv_disk);
946
947 if (sectors > 2048) {
948 geo->heads = 16;
949 geo->sectors = 63;
950 } else {
951 geo->heads = 2;
952 geo->sectors = 4;
953 }
954
955 geo->start = 0;
956 geo->cylinders = sectors / (geo->heads * geo->sectors);
957
958 return 0;
959}
960
961static struct kobject *
962zvol_probe(dev_t dev, int *part, void *arg)
963{
964 zvol_state_t *zv;
965 struct kobject *kobj;
966
967 mutex_enter(&zvol_state_lock);
968 zv = zvol_find_by_dev(dev);
969 kobj = zv ? get_disk(zv->zv_disk) : ERR_PTR(-ENOENT);
970 mutex_exit(&zvol_state_lock);
971
972 return kobj;
973}
974
975#ifdef HAVE_BDEV_BLOCK_DEVICE_OPERATIONS
976static struct block_device_operations zvol_ops = {
977 .open = zvol_open,
978 .release = zvol_release,
979 .ioctl = zvol_ioctl,
980 .compat_ioctl = zvol_compat_ioctl,
981 .media_changed = zvol_media_changed,
982 .revalidate_disk = zvol_revalidate_disk,
983 .getgeo = zvol_getgeo,
984 .owner = THIS_MODULE,
985};
986
987#else /* HAVE_BDEV_BLOCK_DEVICE_OPERATIONS */
988
989static int
990zvol_open_by_inode(struct inode *inode, struct file *file)
991{
992 return zvol_open(inode->i_bdev, file->f_mode);
993}
994
995static int
996zvol_release_by_inode(struct inode *inode, struct file *file)
997{
998 return zvol_release(inode->i_bdev->bd_disk, file->f_mode);
999}
1000
1001static int
1002zvol_ioctl_by_inode(struct inode *inode, struct file *file,
1003 unsigned int cmd, unsigned long arg)
1004{
b1c58213
NB
1005 if (file == NULL || inode == NULL)
1006 return -EINVAL;
60101509
BB
1007 return zvol_ioctl(inode->i_bdev, file->f_mode, cmd, arg);
1008}
1009
1010# ifdef CONFIG_COMPAT
1011static long
1012zvol_compat_ioctl_by_inode(struct file *file,
1013 unsigned int cmd, unsigned long arg)
1014{
b1c58213
NB
1015 if (file == NULL)
1016 return -EINVAL;
60101509
BB
1017 return zvol_compat_ioctl(file->f_dentry->d_inode->i_bdev,
1018 file->f_mode, cmd, arg);
1019}
1020# else
1021# define zvol_compat_ioctl_by_inode NULL
1022# endif
1023
1024static struct block_device_operations zvol_ops = {
1025 .open = zvol_open_by_inode,
1026 .release = zvol_release_by_inode,
1027 .ioctl = zvol_ioctl_by_inode,
1028 .compat_ioctl = zvol_compat_ioctl_by_inode,
1029 .media_changed = zvol_media_changed,
1030 .revalidate_disk = zvol_revalidate_disk,
1031 .getgeo = zvol_getgeo,
1032 .owner = THIS_MODULE,
1033};
1034#endif /* HAVE_BDEV_BLOCK_DEVICE_OPERATIONS */
1035
1036/*
1037 * Allocate memory for a new zvol_state_t and setup the required
1038 * request queue and generic disk structures for the block device.
1039 */
1040static zvol_state_t *
1041zvol_alloc(dev_t dev, const char *name)
1042{
1043 zvol_state_t *zv;
1044
1045 zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
1046 if (zv == NULL)
1047 goto out;
1048
1049 zv->zv_queue = blk_init_queue(zvol_request, &zv->zv_lock);
1050 if (zv->zv_queue == NULL)
1051 goto out_kmem;
1052
1053 zv->zv_disk = alloc_disk(ZVOL_MINORS);
1054 if (zv->zv_disk == NULL)
1055 goto out_queue;
1056
1057 zv->zv_queue->queuedata = zv;
1058 zv->zv_dev = dev;
1059 zv->zv_open_count = 0;
1060 strlcpy(zv->zv_name, name, DISK_NAME_LEN);
1061
1062 mutex_init(&zv->zv_znode.z_range_lock, NULL, MUTEX_DEFAULT, NULL);
1063 avl_create(&zv->zv_znode.z_range_avl, zfs_range_compare,
1064 sizeof (rl_t), offsetof(rl_t, r_node));
3c4988c8
BB
1065 zv->zv_znode.z_is_zvol = TRUE;
1066
60101509
BB
1067 spin_lock_init(&zv->zv_lock);
1068 list_link_init(&zv->zv_next);
1069
1070 zv->zv_disk->major = zvol_major;
1071 zv->zv_disk->first_minor = (dev & MINORMASK);
1072 zv->zv_disk->fops = &zvol_ops;
1073 zv->zv_disk->private_data = zv;
1074 zv->zv_disk->queue = zv->zv_queue;
1075 snprintf(zv->zv_disk->disk_name, DISK_NAME_LEN, "%s", name);
1076
1077 return zv;
1078
1079out_queue:
1080 blk_cleanup_queue(zv->zv_queue);
1081out_kmem:
1082 kmem_free(zv, sizeof (zvol_state_t));
1083out:
1084 return NULL;
1085}
1086
1087/*
1088 * Cleanup then free a zvol_state_t which was created by zvol_alloc().
1089 */
1090static void
1091zvol_free(zvol_state_t *zv)
1092{
1093 avl_destroy(&zv->zv_znode.z_range_avl);
1094 mutex_destroy(&zv->zv_znode.z_range_lock);
1095
1096 del_gendisk(zv->zv_disk);
1097 blk_cleanup_queue(zv->zv_queue);
1098 put_disk(zv->zv_disk);
1099
1100 kmem_free(zv, sizeof (zvol_state_t));
1101}
1102
1103static int
1104__zvol_create_minor(const char *name)
1105{
1106 zvol_state_t *zv;
1107 objset_t *os;
1108 dmu_object_info_t *doi;
1109 uint64_t volsize;
1110 unsigned minor = 0;
1111 int error = 0;
1112
1113 ASSERT(MUTEX_HELD(&zvol_state_lock));
1114
1115 zv = zvol_find_by_name(name);
1116 if (zv) {
1117 error = EEXIST;
1118 goto out;
1119 }
1120
1121 doi = kmem_alloc(sizeof(dmu_object_info_t), KM_SLEEP);
1122
1123 error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, zvol_tag, &os);
1124 if (error)
1125 goto out_doi;
1126
1127 error = dmu_object_info(os, ZVOL_OBJ, doi);
1128 if (error)
1129 goto out_dmu_objset_disown;
1130
1131 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
1132 if (error)
1133 goto out_dmu_objset_disown;
1134
1135 error = zvol_find_minor(&minor);
1136 if (error)
1137 goto out_dmu_objset_disown;
1138
1139 zv = zvol_alloc(MKDEV(zvol_major, minor), name);
1140 if (zv == NULL) {
1141 error = EAGAIN;
1142 goto out_dmu_objset_disown;
1143 }
1144
1145 if (dmu_objset_is_snapshot(os))
1146 zv->zv_flags |= ZVOL_RDONLY;
1147
1148 zv->zv_volblocksize = doi->doi_data_block_size;
1149 zv->zv_volsize = volsize;
1150 zv->zv_objset = os;
1151
1152 set_capacity(zv->zv_disk, zv->zv_volsize >> 9);
1153
1154 if (zil_replay_disable)
1155 zil_destroy(dmu_objset_zil(os), B_FALSE);
1156 else
1157 zil_replay(os, zv, zvol_replay_vector);
1158
1159out_dmu_objset_disown:
1160 dmu_objset_disown(os, zvol_tag);
1161 zv->zv_objset = NULL;
1162out_doi:
1163 kmem_free(doi, sizeof(dmu_object_info_t));
1164out:
1165
1166 if (error == 0) {
1167 zvol_insert(zv);
1168 add_disk(zv->zv_disk);
1169 }
1170
1171 return (error);
1172}
1173
1174/*
1175 * Create a block device minor node and setup the linkage between it
1176 * and the specified volume. Once this function returns the block
1177 * device is live and ready for use.
1178 */
1179int
1180zvol_create_minor(const char *name)
1181{
1182 int error;
1183
1184 mutex_enter(&zvol_state_lock);
1185 error = __zvol_create_minor(name);
1186 mutex_exit(&zvol_state_lock);
1187
1188 return (error);
1189}
1190
1191static int
1192__zvol_remove_minor(const char *name)
1193{
1194 zvol_state_t *zv;
1195
1196 ASSERT(MUTEX_HELD(&zvol_state_lock));
1197
1198 zv = zvol_find_by_name(name);
1199 if (zv == NULL)
1200 return (ENXIO);
1201
1202 if (zv->zv_open_count > 0)
1203 return (EBUSY);
1204
1205 zvol_remove(zv);
1206 zvol_free(zv);
1207
1208 return (0);
1209}
1210
1211/*
1212 * Remove a block device minor node for the specified volume.
1213 */
1214int
1215zvol_remove_minor(const char *name)
1216{
1217 int error;
1218
1219 mutex_enter(&zvol_state_lock);
1220 error = __zvol_remove_minor(name);
1221 mutex_exit(&zvol_state_lock);
1222
1223 return (error);
1224}
1225
1226static int
1227zvol_create_minors_cb(spa_t *spa, uint64_t dsobj,
1228 const char *dsname, void *arg)
1229{
1230 if (strchr(dsname, '/') == NULL)
1231 return 0;
1232
1233 return __zvol_create_minor(dsname);
1234}
1235
1236/*
1237 * Create minors for specified pool, if pool is NULL create minors
1238 * for all available pools.
1239 */
1240int
1241zvol_create_minors(const char *pool)
1242{
1243 spa_t *spa = NULL;
1244 int error = 0;
1245
1246 mutex_enter(&zvol_state_lock);
1247 if (pool) {
1248 error = dmu_objset_find_spa(NULL, pool, zvol_create_minors_cb,
1249 NULL, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
1250 } else {
1251 mutex_enter(&spa_namespace_lock);
1252 while ((spa = spa_next(spa)) != NULL) {
1253 error = dmu_objset_find_spa(NULL,
1254 spa_name(spa), zvol_create_minors_cb, NULL,
1255 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
1256 if (error)
1257 break;
1258 }
1259 mutex_exit(&spa_namespace_lock);
1260 }
1261 mutex_exit(&zvol_state_lock);
1262
1263 return error;
1264}
1265
1266/*
1267 * Remove minors for specified pool, if pool is NULL remove all minors.
1268 */
1269void
1270zvol_remove_minors(const char *pool)
1271{
1272 zvol_state_t *zv, *zv_next;
1273 char *str;
1274
1275 str = kmem_zalloc(DISK_NAME_LEN, KM_SLEEP);
1276 if (pool) {
1277 (void) strncpy(str, pool, strlen(pool));
1278 (void) strcat(str, "/");
1279 }
1280
1281 mutex_enter(&zvol_state_lock);
1282 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1283 zv_next = list_next(&zvol_state_list, zv);
1284
1285 if (pool == NULL || !strncmp(str, zv->zv_name, strlen(str))) {
1286 zvol_remove(zv);
1287 zvol_free(zv);
1288 }
1289 }
1290 mutex_exit(&zvol_state_lock);
1291 kmem_free(str, DISK_NAME_LEN);
1292}
1293
1294int
1295zvol_init(void)
1296{
1297 int error;
1298
1299 if (!zvol_threads)
1300 zvol_threads = num_online_cpus();
1301
1302 zvol_taskq = taskq_create(ZVOL_DRIVER, zvol_threads, maxclsyspri,
1303 zvol_threads, INT_MAX, TASKQ_PREPOPULATE);
1304 if (zvol_taskq == NULL) {
1305 printk(KERN_INFO "ZFS: taskq_create() failed\n");
1306 return (-ENOMEM);
1307 }
1308
1309 error = register_blkdev(zvol_major, ZVOL_DRIVER);
1310 if (error) {
1311 printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
1312 taskq_destroy(zvol_taskq);
1313 return (error);
1314 }
1315
1316 blk_register_region(MKDEV(zvol_major, 0), 1UL << MINORBITS,
1317 THIS_MODULE, zvol_probe, NULL, NULL);
1318
1319 mutex_init(&zvol_state_lock, NULL, MUTEX_DEFAULT, NULL);
1320 list_create(&zvol_state_list, sizeof (zvol_state_t),
1321 offsetof(zvol_state_t, zv_next));
1322
1323 (void) zvol_create_minors(NULL);
1324
1325 return (0);
1326}
1327
1328void
1329zvol_fini(void)
1330{
1331 zvol_remove_minors(NULL);
1332 blk_unregister_region(MKDEV(zvol_major, 0), 1UL << MINORBITS);
1333 unregister_blkdev(zvol_major, ZVOL_DRIVER);
1334 taskq_destroy(zvol_taskq);
1335 mutex_destroy(&zvol_state_lock);
1336 list_destroy(&zvol_state_list);
1337}
1338
1339module_param(zvol_major, uint, 0);
1340MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
1341
1342module_param(zvol_threads, uint, 0);
1343MODULE_PARM_DESC(zvol_threads, "Number of threads for zvol device");