]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/zvol.c
Support "sync=always" for ZVOLs.
[mirror_zfs.git] / module / zfs / zvol.c
CommitLineData
60101509
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25 * LLNL-CODE-403049.
26 *
27 * ZFS volume emulation driver.
28 *
29 * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
30 * Volumes are accessed through the symbolic links named:
31 *
32 * /dev/<pool_name>/<dataset_name>
33 *
34 * Volumes are persistent through reboot and module load. No user command
35 * needs to be run before opening and using a device.
36 */
37
38#include <sys/dmu_traverse.h>
39#include <sys/dsl_dataset.h>
40#include <sys/dsl_prop.h>
41#include <sys/zap.h>
42#include <sys/zil_impl.h>
43#include <sys/zio.h>
44#include <sys/zfs_rlock.h>
45#include <sys/zfs_znode.h>
46#include <sys/zvol.h>
61e90960 47#include <linux/blkdev_compat.h>
60101509
BB
48
49unsigned int zvol_major = ZVOL_MAJOR;
50unsigned int zvol_threads = 0;
51
52static taskq_t *zvol_taskq;
53static kmutex_t zvol_state_lock;
54static list_t zvol_state_list;
55static char *zvol_tag = "zvol_tag";
56
57/*
58 * The in-core state of each volume.
59 */
60typedef struct zvol_state {
4c0d8e50 61 char zv_name[MAXNAMELEN]; /* name */
60101509
BB
62 uint64_t zv_volsize; /* advertised space */
63 uint64_t zv_volblocksize;/* volume block size */
64 objset_t *zv_objset; /* objset handle */
65 uint32_t zv_flags; /* ZVOL_* flags */
66 uint32_t zv_open_count; /* open counts */
67 uint32_t zv_changed; /* disk changed */
68 zilog_t *zv_zilog; /* ZIL handle */
69 znode_t zv_znode; /* for range locking */
70 dmu_buf_t *zv_dbuf; /* bonus handle */
71 dev_t zv_dev; /* device id */
72 struct gendisk *zv_disk; /* generic disk */
73 struct request_queue *zv_queue; /* request queue */
74 spinlock_t zv_lock; /* request queue lock */
75 list_node_t zv_next; /* next zvol_state_t linkage */
76} zvol_state_t;
77
78#define ZVOL_RDONLY 0x1
79
80/*
81 * Find the next available range of ZVOL_MINORS minor numbers. The
82 * zvol_state_list is kept in ascending minor order so we simply need
83 * to scan the list for the first gap in the sequence. This allows us
84 * to recycle minor number as devices are created and removed.
85 */
86static int
87zvol_find_minor(unsigned *minor)
88{
89 zvol_state_t *zv;
90
91 *minor = 0;
92 ASSERT(MUTEX_HELD(&zvol_state_lock));
93 for (zv = list_head(&zvol_state_list); zv != NULL;
94 zv = list_next(&zvol_state_list, zv), *minor += ZVOL_MINORS) {
95 if (MINOR(zv->zv_dev) != MINOR(*minor))
96 break;
97 }
98
99 /* All minors are in use */
100 if (*minor >= (1 << MINORBITS))
101 return ENXIO;
102
103 return 0;
104}
105
106/*
107 * Find a zvol_state_t given the full major+minor dev_t.
108 */
109static zvol_state_t *
110zvol_find_by_dev(dev_t dev)
111{
112 zvol_state_t *zv;
113
114 ASSERT(MUTEX_HELD(&zvol_state_lock));
115 for (zv = list_head(&zvol_state_list); zv != NULL;
116 zv = list_next(&zvol_state_list, zv)) {
117 if (zv->zv_dev == dev)
118 return zv;
119 }
120
121 return NULL;
122}
123
124/*
125 * Find a zvol_state_t given the name provided at zvol_alloc() time.
126 */
127static zvol_state_t *
128zvol_find_by_name(const char *name)
129{
130 zvol_state_t *zv;
131
132 ASSERT(MUTEX_HELD(&zvol_state_lock));
133 for (zv = list_head(&zvol_state_list); zv != NULL;
134 zv = list_next(&zvol_state_list, zv)) {
4c0d8e50 135 if (!strncmp(zv->zv_name, name, MAXNAMELEN))
60101509
BB
136 return zv;
137 }
138
139 return NULL;
140}
141
142/*
143 * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
144 */
145void
146zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
147{
148 zfs_creat_t *zct = arg;
149 nvlist_t *nvprops = zct->zct_props;
150 int error;
151 uint64_t volblocksize, volsize;
152
153 VERIFY(nvlist_lookup_uint64(nvprops,
154 zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
155 if (nvlist_lookup_uint64(nvprops,
156 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
157 volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
158
159 /*
160 * These properties must be removed from the list so the generic
161 * property setting step won't apply to them.
162 */
163 VERIFY(nvlist_remove_all(nvprops,
164 zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
165 (void) nvlist_remove_all(nvprops,
166 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
167
168 error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
169 DMU_OT_NONE, 0, tx);
170 ASSERT(error == 0);
171
172 error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
173 DMU_OT_NONE, 0, tx);
174 ASSERT(error == 0);
175
176 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
177 ASSERT(error == 0);
178}
179
180/*
181 * ZFS_IOC_OBJSET_STATS entry point.
182 */
183int
184zvol_get_stats(objset_t *os, nvlist_t *nv)
185{
186 int error;
187 dmu_object_info_t *doi;
188 uint64_t val;
189
190 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
191 if (error)
192 return (error);
193
194 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
195 doi = kmem_alloc(sizeof(dmu_object_info_t), KM_SLEEP);
196 error = dmu_object_info(os, ZVOL_OBJ, doi);
197
198 if (error == 0) {
199 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
200 doi->doi_data_block_size);
201 }
202
203 kmem_free(doi, sizeof(dmu_object_info_t));
204
205 return (error);
206}
207
208/*
209 * Sanity check volume size.
210 */
211int
212zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
213{
214 if (volsize == 0)
215 return (EINVAL);
216
217 if (volsize % blocksize != 0)
218 return (EINVAL);
219
220#ifdef _ILP32
221 if (volsize - 1 > MAXOFFSET_T)
222 return (EOVERFLOW);
223#endif
224 return (0);
225}
226
227/*
228 * Ensure the zap is flushed then inform the VFS of the capacity change.
229 */
230static int
df554c14 231zvol_update_volsize(zvol_state_t *zv, uint64_t volsize, objset_t *os)
60101509
BB
232{
233 struct block_device *bdev;
234 dmu_tx_t *tx;
235 int error;
236
237 ASSERT(MUTEX_HELD(&zvol_state_lock));
238
df554c14 239 tx = dmu_tx_create(os);
60101509
BB
240 dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
241 error = dmu_tx_assign(tx, TXG_WAIT);
242 if (error) {
243 dmu_tx_abort(tx);
244 return (error);
245 }
246
df554c14 247 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1,
60101509
BB
248 &volsize, tx);
249 dmu_tx_commit(tx);
250
251 if (error)
252 return (error);
253
df554c14 254 error = dmu_free_long_range(os,
60101509
BB
255 ZVOL_OBJ, volsize, DMU_OBJECT_END);
256 if (error)
257 return (error);
258
60101509
BB
259 bdev = bdget_disk(zv->zv_disk, 0);
260 if (!bdev)
df554c14
BB
261 return (EIO);
262/*
263 * 2.6.28 API change
264 * Added check_disk_size_change() helper function.
265 */
266#ifdef HAVE_CHECK_DISK_SIZE_CHANGE
267 set_capacity(zv->zv_disk, volsize >> 9);
268 zv->zv_volsize = volsize;
269 check_disk_size_change(zv->zv_disk, bdev);
270#else
271 zv->zv_volsize = volsize;
272 zv->zv_changed = 1;
273 (void) check_disk_change(bdev);
274#endif /* HAVE_CHECK_DISK_SIZE_CHANGE */
60101509 275
60101509
BB
276 bdput(bdev);
277
278 return (0);
279}
280
281/*
282 * Set ZFS_PROP_VOLSIZE set entry point.
283 */
284int
285zvol_set_volsize(const char *name, uint64_t volsize)
286{
287 zvol_state_t *zv;
288 dmu_object_info_t *doi;
289 objset_t *os = NULL;
290 uint64_t readonly;
291 int error;
292
293 mutex_enter(&zvol_state_lock);
294
295 zv = zvol_find_by_name(name);
296 if (zv == NULL) {
297 error = ENXIO;
298 goto out;
299 }
300
301 doi = kmem_alloc(sizeof(dmu_object_info_t), KM_SLEEP);
302
303 error = dmu_objset_hold(name, FTAG, &os);
304 if (error)
305 goto out_doi;
306
307 if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) != 0 ||
308 (error = zvol_check_volsize(volsize,doi->doi_data_block_size)) != 0)
309 goto out_doi;
310
311 VERIFY(dsl_prop_get_integer(name, "readonly", &readonly, NULL) == 0);
312 if (readonly) {
313 error = EROFS;
314 goto out_doi;
315 }
316
317 if (get_disk_ro(zv->zv_disk) || (zv->zv_flags & ZVOL_RDONLY)) {
318 error = EROFS;
319 goto out_doi;
320 }
321
df554c14 322 error = zvol_update_volsize(zv, volsize, os);
60101509
BB
323out_doi:
324 kmem_free(doi, sizeof(dmu_object_info_t));
325out:
326 if (os)
327 dmu_objset_rele(os, FTAG);
328
329 mutex_exit(&zvol_state_lock);
330
331 return (error);
332}
333
334/*
335 * Sanity check volume block size.
336 */
337int
338zvol_check_volblocksize(uint64_t volblocksize)
339{
340 if (volblocksize < SPA_MINBLOCKSIZE ||
341 volblocksize > SPA_MAXBLOCKSIZE ||
342 !ISP2(volblocksize))
343 return (EDOM);
344
345 return (0);
346}
347
348/*
349 * Set ZFS_PROP_VOLBLOCKSIZE set entry point.
350 */
351int
352zvol_set_volblocksize(const char *name, uint64_t volblocksize)
353{
354 zvol_state_t *zv;
355 dmu_tx_t *tx;
356 int error;
357
358 mutex_enter(&zvol_state_lock);
359
360 zv = zvol_find_by_name(name);
361 if (zv == NULL) {
362 error = ENXIO;
363 goto out;
364 }
365
366 if (get_disk_ro(zv->zv_disk) || (zv->zv_flags & ZVOL_RDONLY)) {
367 error = EROFS;
368 goto out;
369 }
370
371 tx = dmu_tx_create(zv->zv_objset);
372 dmu_tx_hold_bonus(tx, ZVOL_OBJ);
373 error = dmu_tx_assign(tx, TXG_WAIT);
374 if (error) {
375 dmu_tx_abort(tx);
376 } else {
377 error = dmu_object_set_blocksize(zv->zv_objset, ZVOL_OBJ,
378 volblocksize, 0, tx);
379 if (error == ENOTSUP)
380 error = EBUSY;
381 dmu_tx_commit(tx);
382 if (error == 0)
383 zv->zv_volblocksize = volblocksize;
384 }
385out:
386 mutex_exit(&zvol_state_lock);
387
388 return (error);
389}
390
391/*
392 * Replay a TX_WRITE ZIL transaction that didn't get committed
393 * after a system failure
394 */
395static int
396zvol_replay_write(zvol_state_t *zv, lr_write_t *lr, boolean_t byteswap)
397{
398 objset_t *os = zv->zv_objset;
399 char *data = (char *)(lr + 1); /* data follows lr_write_t */
400 uint64_t off = lr->lr_offset;
401 uint64_t len = lr->lr_length;
402 dmu_tx_t *tx;
403 int error;
404
405 if (byteswap)
406 byteswap_uint64_array(lr, sizeof (*lr));
407
408 tx = dmu_tx_create(os);
409 dmu_tx_hold_write(tx, ZVOL_OBJ, off, len);
410 error = dmu_tx_assign(tx, TXG_WAIT);
411 if (error) {
412 dmu_tx_abort(tx);
413 } else {
414 dmu_write(os, ZVOL_OBJ, off, len, data, tx);
415 dmu_tx_commit(tx);
416 }
417
418 return (error);
419}
420
421static int
422zvol_replay_err(zvol_state_t *zv, lr_t *lr, boolean_t byteswap)
423{
424 return (ENOTSUP);
425}
426
427/*
428 * Callback vectors for replaying records.
429 * Only TX_WRITE is needed for zvol.
430 */
431zil_replay_func_t *zvol_replay_vector[TX_MAX_TYPE] = {
432 (zil_replay_func_t *)zvol_replay_err, /* no such transaction type */
433 (zil_replay_func_t *)zvol_replay_err, /* TX_CREATE */
434 (zil_replay_func_t *)zvol_replay_err, /* TX_MKDIR */
435 (zil_replay_func_t *)zvol_replay_err, /* TX_MKXATTR */
436 (zil_replay_func_t *)zvol_replay_err, /* TX_SYMLINK */
437 (zil_replay_func_t *)zvol_replay_err, /* TX_REMOVE */
438 (zil_replay_func_t *)zvol_replay_err, /* TX_RMDIR */
439 (zil_replay_func_t *)zvol_replay_err, /* TX_LINK */
440 (zil_replay_func_t *)zvol_replay_err, /* TX_RENAME */
441 (zil_replay_func_t *)zvol_replay_write, /* TX_WRITE */
442 (zil_replay_func_t *)zvol_replay_err, /* TX_TRUNCATE */
443 (zil_replay_func_t *)zvol_replay_err, /* TX_SETATTR */
444 (zil_replay_func_t *)zvol_replay_err, /* TX_ACL */
445};
446
447/*
448 * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
449 *
450 * We store data in the log buffers if it's small enough.
451 * Otherwise we will later flush the data out via dmu_sync().
452 */
453ssize_t zvol_immediate_write_sz = 32768;
454
455static void
456zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx,
457 uint64_t offset, uint64_t size, int sync)
458{
459 uint32_t blocksize = zv->zv_volblocksize;
460 zilog_t *zilog = zv->zv_zilog;
461 boolean_t slogging;
462
463 if (zil_replaying(zilog, tx))
464 return;
465
466 slogging = spa_has_slogs(zilog->zl_spa);
467
468 while (size) {
469 itx_t *itx;
470 lr_write_t *lr;
471 ssize_t len;
472 itx_wr_state_t write_state;
473
474 /*
475 * Unlike zfs_log_write() we can be called with
476 * up to DMU_MAX_ACCESS/2 (5MB) writes.
477 */
478 if (blocksize > zvol_immediate_write_sz && !slogging &&
479 size >= blocksize && offset % blocksize == 0) {
480 write_state = WR_INDIRECT; /* uses dmu_sync */
481 len = blocksize;
482 } else if (sync) {
483 write_state = WR_COPIED;
484 len = MIN(ZIL_MAX_LOG_DATA, size);
485 } else {
486 write_state = WR_NEED_COPY;
487 len = MIN(ZIL_MAX_LOG_DATA, size);
488 }
489
490 itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
491 (write_state == WR_COPIED ? len : 0));
492 lr = (lr_write_t *)&itx->itx_lr;
493 if (write_state == WR_COPIED && dmu_read(zv->zv_objset,
494 ZVOL_OBJ, offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) {
495 zil_itx_destroy(itx);
496 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
497 lr = (lr_write_t *)&itx->itx_lr;
498 write_state = WR_NEED_COPY;
499 }
500
501 itx->itx_wr_state = write_state;
502 if (write_state == WR_NEED_COPY)
503 itx->itx_sod += len;
504 lr->lr_foid = ZVOL_OBJ;
505 lr->lr_offset = offset;
506 lr->lr_length = len;
507 lr->lr_blkoff = 0;
508 BP_ZERO(&lr->lr_blkptr);
509
510 itx->itx_private = zv;
511 itx->itx_sync = sync;
512
513 (void) zil_itx_assign(zilog, itx, tx);
514
515 offset += len;
516 size -= len;
517 }
518}
519
520/*
521 * Common write path running under the zvol taskq context. This function
522 * is responsible for copying the request structure data in to the DMU and
523 * signaling the request queue with the result of the copy.
524 */
525static void
526zvol_write(void *arg)
527{
528 struct request *req = (struct request *)arg;
529 struct request_queue *q = req->q;
530 zvol_state_t *zv = q->queuedata;
531 uint64_t offset = blk_rq_pos(req) << 9;
532 uint64_t size = blk_rq_bytes(req);
533 int error = 0;
534 dmu_tx_t *tx;
535 rl_t *rl;
536
537 rl = zfs_range_lock(&zv->zv_znode, offset, size, RL_WRITER);
538
539 tx = dmu_tx_create(zv->zv_objset);
540 dmu_tx_hold_write(tx, ZVOL_OBJ, offset, size);
541
542 /* This will only fail for ENOSPC */
543 error = dmu_tx_assign(tx, TXG_WAIT);
544 if (error) {
545 dmu_tx_abort(tx);
546 zfs_range_unlock(rl);
547 blk_end_request(req, -error, size);
548 return;
549 }
550
551 error = dmu_write_req(zv->zv_objset, ZVOL_OBJ, req, tx);
552 if (error == 0)
553 zvol_log_write(zv, tx, offset, size, rq_is_sync(req));
554
555 dmu_tx_commit(tx);
556 zfs_range_unlock(rl);
557
56c34bac 558 if (rq_is_sync(req) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS)
60101509
BB
559 zil_commit(zv->zv_zilog, ZVOL_OBJ);
560
561 blk_end_request(req, -error, size);
562}
563
564/*
565 * Common read path running under the zvol taskq context. This function
566 * is responsible for copying the requested data out of the DMU and in to
567 * a linux request structure. It then must signal the request queue with
568 * an error code describing the result of the copy.
569 */
570static void
571zvol_read(void *arg)
572{
573 struct request *req = (struct request *)arg;
574 struct request_queue *q = req->q;
575 zvol_state_t *zv = q->queuedata;
576 uint64_t offset = blk_rq_pos(req) << 9;
577 uint64_t size = blk_rq_bytes(req);
578 int error;
579 rl_t *rl;
580
581 rl = zfs_range_lock(&zv->zv_znode, offset, size, RL_READER);
582
583 error = dmu_read_req(zv->zv_objset, ZVOL_OBJ, req);
584
585 zfs_range_unlock(rl);
586
587 /* convert checksum errors into IO errors */
588 if (error == ECKSUM)
589 error = EIO;
590
591 blk_end_request(req, -error, size);
592}
593
594/*
595 * Request will be added back to the request queue and retried if
596 * it cannot be immediately dispatched to the taskq for handling
597 */
598static inline void
599zvol_dispatch(task_func_t func, struct request *req)
600{
601 if (!taskq_dispatch(zvol_taskq, func, (void *)req, TQ_NOSLEEP))
602 blk_requeue_request(req->q, req);
603}
604
605/*
606 * Common request path. Rather than registering a custom make_request()
607 * function we use the generic Linux version. This is done because it allows
608 * us to easily merge read requests which would otherwise we performed
609 * synchronously by the DMU. This is less critical in write case where the
610 * DMU will perform the correct merging within a transaction group. Using
611 * the generic make_request() also let's use leverage the fact that the
612 * elevator with ensure correct ordering in regards to barrior IOs. On
613 * the downside it means that in the write case we end up doing request
614 * merging twice once in the elevator and once in the DMU.
615 *
616 * The request handler is called under a spin lock so all the real work
617 * is handed off to be done in the context of the zvol taskq. This function
618 * simply performs basic request sanity checking and hands off the request.
619 */
620static void
621zvol_request(struct request_queue *q)
622{
623 zvol_state_t *zv = q->queuedata;
624 struct request *req;
625 unsigned int size;
626
627 while ((req = blk_fetch_request(q)) != NULL) {
628 size = blk_rq_bytes(req);
629
630 if (blk_rq_pos(req) + blk_rq_sectors(req) >
631 get_capacity(zv->zv_disk)) {
632 printk(KERN_INFO
633 "%s: bad access: block=%llu, count=%lu\n",
634 req->rq_disk->disk_name,
635 (long long unsigned)blk_rq_pos(req),
636 (long unsigned)blk_rq_sectors(req));
637 __blk_end_request(req, -EIO, size);
638 continue;
639 }
640
641 if (!blk_fs_request(req)) {
642 printk(KERN_INFO "%s: non-fs cmd\n",
643 req->rq_disk->disk_name);
644 __blk_end_request(req, -EIO, size);
645 continue;
646 }
647
648 switch (rq_data_dir(req)) {
649 case READ:
650 zvol_dispatch(zvol_read, req);
651 break;
652 case WRITE:
653 if (unlikely(get_disk_ro(zv->zv_disk)) ||
654 unlikely(zv->zv_flags & ZVOL_RDONLY)) {
655 __blk_end_request(req, -EROFS, size);
656 break;
657 }
658
659 zvol_dispatch(zvol_write, req);
660 break;
661 default:
662 printk(KERN_INFO "%s: unknown cmd: %d\n",
663 req->rq_disk->disk_name, (int)rq_data_dir(req));
664 __blk_end_request(req, -EIO, size);
665 break;
666 }
667 }
668}
669
670static void
671zvol_get_done(zgd_t *zgd, int error)
672{
673 if (zgd->zgd_db)
674 dmu_buf_rele(zgd->zgd_db, zgd);
675
676 zfs_range_unlock(zgd->zgd_rl);
677
678 if (error == 0 && zgd->zgd_bp)
679 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
680
681 kmem_free(zgd, sizeof (zgd_t));
682}
683
684/*
685 * Get data to generate a TX_WRITE intent log record.
686 */
687static int
688zvol_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
689{
690 zvol_state_t *zv = arg;
691 objset_t *os = zv->zv_objset;
692 uint64_t offset = lr->lr_offset;
693 uint64_t size = lr->lr_length;
694 dmu_buf_t *db;
695 zgd_t *zgd;
696 int error;
697
698 ASSERT(zio != NULL);
699 ASSERT(size != 0);
700
701 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
702 zgd->zgd_zilog = zv->zv_zilog;
703 zgd->zgd_rl = zfs_range_lock(&zv->zv_znode, offset, size, RL_READER);
704
705 /*
706 * Write records come in two flavors: immediate and indirect.
707 * For small writes it's cheaper to store the data with the
708 * log record (immediate); for large writes it's cheaper to
709 * sync the data and get a pointer to it (indirect) so that
710 * we don't have to write the data twice.
711 */
712 if (buf != NULL) { /* immediate write */
713 error = dmu_read(os, ZVOL_OBJ, offset, size, buf,
714 DMU_READ_NO_PREFETCH);
715 } else {
716 size = zv->zv_volblocksize;
717 offset = P2ALIGN_TYPED(offset, size, uint64_t);
718 error = dmu_buf_hold(os, ZVOL_OBJ, offset, zgd, &db,
719 DMU_READ_NO_PREFETCH);
720 if (error == 0) {
721 zgd->zgd_db = db;
722 zgd->zgd_bp = &lr->lr_blkptr;
723
724 ASSERT(db != NULL);
725 ASSERT(db->db_offset == offset);
726 ASSERT(db->db_size == size);
727
728 error = dmu_sync(zio, lr->lr_common.lrc_txg,
729 zvol_get_done, zgd);
730
731 if (error == 0)
732 return (0);
733 }
734 }
735
736 zvol_get_done(zgd, error);
737
738 return (error);
739}
740
741/*
742 * The zvol_state_t's are inserted in increasing MINOR(dev_t) order.
743 */
744static void
745zvol_insert(zvol_state_t *zv_insert)
746{
747 zvol_state_t *zv = NULL;
748
749 ASSERT(MUTEX_HELD(&zvol_state_lock));
750 ASSERT3U(MINOR(zv_insert->zv_dev) & ZVOL_MINOR_MASK, ==, 0);
751 for (zv = list_head(&zvol_state_list); zv != NULL;
752 zv = list_next(&zvol_state_list, zv)) {
753 if (MINOR(zv->zv_dev) > MINOR(zv_insert->zv_dev))
754 break;
755 }
756
757 list_insert_before(&zvol_state_list, zv, zv_insert);
758}
759
760/*
761 * Simply remove the zvol from to list of zvols.
762 */
763static void
764zvol_remove(zvol_state_t *zv_remove)
765{
766 ASSERT(MUTEX_HELD(&zvol_state_lock));
767 list_remove(&zvol_state_list, zv_remove);
768}
769
770static int
771zvol_first_open(zvol_state_t *zv)
772{
773 objset_t *os;
774 uint64_t volsize;
775 int error;
776 uint64_t ro;
777
778 /* lie and say we're read-only */
779 error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, 1, zvol_tag, &os);
780 if (error)
781 return (-error);
782
783 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
784 if (error) {
785 dmu_objset_disown(os, zvol_tag);
786 return (-error);
787 }
788
789 zv->zv_objset = os;
790 error = dmu_bonus_hold(os, ZVOL_OBJ, zvol_tag, &zv->zv_dbuf);
791 if (error) {
792 dmu_objset_disown(os, zvol_tag);
793 return (-error);
794 }
795
796 set_capacity(zv->zv_disk, volsize >> 9);
797 zv->zv_volsize = volsize;
798 zv->zv_zilog = zil_open(os, zvol_get_data);
799
800 VERIFY(dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL) == 0);
801 if (ro || dmu_objset_is_snapshot(os)) {
802 set_disk_ro(zv->zv_disk, 1);
803 zv->zv_flags |= ZVOL_RDONLY;
804 } else {
805 set_disk_ro(zv->zv_disk, 0);
806 zv->zv_flags &= ~ZVOL_RDONLY;
807 }
808
809 return (-error);
810}
811
812static void
813zvol_last_close(zvol_state_t *zv)
814{
815 zil_close(zv->zv_zilog);
816 zv->zv_zilog = NULL;
817 dmu_buf_rele(zv->zv_dbuf, zvol_tag);
818 zv->zv_dbuf = NULL;
819 dmu_objset_disown(zv->zv_objset, zvol_tag);
820 zv->zv_objset = NULL;
821}
822
823static int
824zvol_open(struct block_device *bdev, fmode_t flag)
825{
826 zvol_state_t *zv = bdev->bd_disk->private_data;
827 int error = 0, drop_mutex = 0;
828
829 /*
830 * If the caller is already holding the mutex do not take it
831 * again, this will happen as part of zvol_create_minor().
832 * Once add_disk() is called the device is live and the kernel
833 * will attempt to open it to read the partition information.
834 */
835 if (!mutex_owned(&zvol_state_lock)) {
836 mutex_enter(&zvol_state_lock);
837 drop_mutex = 1;
838 }
839
840 ASSERT3P(zv, !=, NULL);
841
842 if (zv->zv_open_count == 0) {
843 error = zvol_first_open(zv);
844 if (error)
845 goto out_mutex;
846 }
847
848 if ((flag & FMODE_WRITE) &&
849 (get_disk_ro(zv->zv_disk) || (zv->zv_flags & ZVOL_RDONLY))) {
850 error = -EROFS;
851 goto out_open_count;
852 }
853
854 zv->zv_open_count++;
855
856out_open_count:
857 if (zv->zv_open_count == 0)
858 zvol_last_close(zv);
859
860out_mutex:
861 if (drop_mutex)
862 mutex_exit(&zvol_state_lock);
863
864 check_disk_change(bdev);
865
866 return (error);
867}
868
869static int
870zvol_release(struct gendisk *disk, fmode_t mode)
871{
872 zvol_state_t *zv = disk->private_data;
873 int drop_mutex = 0;
874
875 if (!mutex_owned(&zvol_state_lock)) {
876 mutex_enter(&zvol_state_lock);
877 drop_mutex = 1;
878 }
879
880 ASSERT3P(zv, !=, NULL);
881 ASSERT3U(zv->zv_open_count, >, 0);
882 zv->zv_open_count--;
883 if (zv->zv_open_count == 0)
884 zvol_last_close(zv);
885
886 if (drop_mutex)
887 mutex_exit(&zvol_state_lock);
888
889 return (0);
890}
891
892static int
893zvol_ioctl(struct block_device *bdev, fmode_t mode,
894 unsigned int cmd, unsigned long arg)
895{
896 zvol_state_t *zv = bdev->bd_disk->private_data;
897 int error = 0;
898
899 if (zv == NULL)
900 return (-ENXIO);
901
902 switch (cmd) {
903 case BLKFLSBUF:
904 zil_commit(zv->zv_zilog, ZVOL_OBJ);
905 break;
4c0d8e50
FN
906 case BLKZNAME:
907 error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN);
908 break;
60101509
BB
909
910 default:
911 error = -ENOTTY;
912 break;
913
914 }
915
916 return (error);
917}
918
919#ifdef CONFIG_COMPAT
920static int
921zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
922 unsigned cmd, unsigned long arg)
923{
924 return zvol_ioctl(bdev, mode, cmd, arg);
925}
926#else
927#define zvol_compat_ioctl NULL
928#endif
929
930static int zvol_media_changed(struct gendisk *disk)
931{
932 zvol_state_t *zv = disk->private_data;
933
934 return zv->zv_changed;
935}
936
937static int zvol_revalidate_disk(struct gendisk *disk)
938{
939 zvol_state_t *zv = disk->private_data;
940
941 zv->zv_changed = 0;
942 set_capacity(zv->zv_disk, zv->zv_volsize >> 9);
943
944 return 0;
945}
946
947/*
948 * Provide a simple virtual geometry for legacy compatibility. For devices
949 * smaller than 1 MiB a small head and sector count is used to allow very
950 * tiny devices. For devices over 1 Mib a standard head and sector count
951 * is used to keep the cylinders count reasonable.
952 */
953static int
954zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
955{
956 zvol_state_t *zv = bdev->bd_disk->private_data;
957 sector_t sectors = get_capacity(zv->zv_disk);
958
959 if (sectors > 2048) {
960 geo->heads = 16;
961 geo->sectors = 63;
962 } else {
963 geo->heads = 2;
964 geo->sectors = 4;
965 }
966
967 geo->start = 0;
968 geo->cylinders = sectors / (geo->heads * geo->sectors);
969
970 return 0;
971}
972
973static struct kobject *
974zvol_probe(dev_t dev, int *part, void *arg)
975{
976 zvol_state_t *zv;
977 struct kobject *kobj;
978
979 mutex_enter(&zvol_state_lock);
980 zv = zvol_find_by_dev(dev);
981 kobj = zv ? get_disk(zv->zv_disk) : ERR_PTR(-ENOENT);
982 mutex_exit(&zvol_state_lock);
983
984 return kobj;
985}
986
987#ifdef HAVE_BDEV_BLOCK_DEVICE_OPERATIONS
988static struct block_device_operations zvol_ops = {
989 .open = zvol_open,
990 .release = zvol_release,
991 .ioctl = zvol_ioctl,
992 .compat_ioctl = zvol_compat_ioctl,
993 .media_changed = zvol_media_changed,
994 .revalidate_disk = zvol_revalidate_disk,
995 .getgeo = zvol_getgeo,
996 .owner = THIS_MODULE,
997};
998
999#else /* HAVE_BDEV_BLOCK_DEVICE_OPERATIONS */
1000
1001static int
1002zvol_open_by_inode(struct inode *inode, struct file *file)
1003{
1004 return zvol_open(inode->i_bdev, file->f_mode);
1005}
1006
1007static int
1008zvol_release_by_inode(struct inode *inode, struct file *file)
1009{
1010 return zvol_release(inode->i_bdev->bd_disk, file->f_mode);
1011}
1012
1013static int
1014zvol_ioctl_by_inode(struct inode *inode, struct file *file,
1015 unsigned int cmd, unsigned long arg)
1016{
b1c58213
NB
1017 if (file == NULL || inode == NULL)
1018 return -EINVAL;
60101509
BB
1019 return zvol_ioctl(inode->i_bdev, file->f_mode, cmd, arg);
1020}
1021
1022# ifdef CONFIG_COMPAT
1023static long
1024zvol_compat_ioctl_by_inode(struct file *file,
1025 unsigned int cmd, unsigned long arg)
1026{
b1c58213
NB
1027 if (file == NULL)
1028 return -EINVAL;
60101509
BB
1029 return zvol_compat_ioctl(file->f_dentry->d_inode->i_bdev,
1030 file->f_mode, cmd, arg);
1031}
1032# else
1033# define zvol_compat_ioctl_by_inode NULL
1034# endif
1035
1036static struct block_device_operations zvol_ops = {
1037 .open = zvol_open_by_inode,
1038 .release = zvol_release_by_inode,
1039 .ioctl = zvol_ioctl_by_inode,
1040 .compat_ioctl = zvol_compat_ioctl_by_inode,
1041 .media_changed = zvol_media_changed,
1042 .revalidate_disk = zvol_revalidate_disk,
1043 .getgeo = zvol_getgeo,
1044 .owner = THIS_MODULE,
1045};
1046#endif /* HAVE_BDEV_BLOCK_DEVICE_OPERATIONS */
1047
1048/*
1049 * Allocate memory for a new zvol_state_t and setup the required
1050 * request queue and generic disk structures for the block device.
1051 */
1052static zvol_state_t *
1053zvol_alloc(dev_t dev, const char *name)
1054{
1055 zvol_state_t *zv;
1056
1057 zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
1058 if (zv == NULL)
1059 goto out;
1060
1061 zv->zv_queue = blk_init_queue(zvol_request, &zv->zv_lock);
1062 if (zv->zv_queue == NULL)
1063 goto out_kmem;
1064
1065 zv->zv_disk = alloc_disk(ZVOL_MINORS);
1066 if (zv->zv_disk == NULL)
1067 goto out_queue;
1068
1069 zv->zv_queue->queuedata = zv;
1070 zv->zv_dev = dev;
1071 zv->zv_open_count = 0;
4c0d8e50 1072 strlcpy(zv->zv_name, name, MAXNAMELEN);
60101509
BB
1073
1074 mutex_init(&zv->zv_znode.z_range_lock, NULL, MUTEX_DEFAULT, NULL);
1075 avl_create(&zv->zv_znode.z_range_avl, zfs_range_compare,
1076 sizeof (rl_t), offsetof(rl_t, r_node));
3c4988c8
BB
1077 zv->zv_znode.z_is_zvol = TRUE;
1078
60101509
BB
1079 spin_lock_init(&zv->zv_lock);
1080 list_link_init(&zv->zv_next);
1081
1082 zv->zv_disk->major = zvol_major;
1083 zv->zv_disk->first_minor = (dev & MINORMASK);
1084 zv->zv_disk->fops = &zvol_ops;
1085 zv->zv_disk->private_data = zv;
1086 zv->zv_disk->queue = zv->zv_queue;
4c0d8e50
FN
1087 snprintf(zv->zv_disk->disk_name, DISK_NAME_LEN, "%s%d",
1088 ZVOL_DEV_NAME, (dev & MINORMASK));
60101509
BB
1089
1090 return zv;
1091
1092out_queue:
1093 blk_cleanup_queue(zv->zv_queue);
1094out_kmem:
1095 kmem_free(zv, sizeof (zvol_state_t));
1096out:
1097 return NULL;
1098}
1099
1100/*
1101 * Cleanup then free a zvol_state_t which was created by zvol_alloc().
1102 */
1103static void
1104zvol_free(zvol_state_t *zv)
1105{
1106 avl_destroy(&zv->zv_znode.z_range_avl);
1107 mutex_destroy(&zv->zv_znode.z_range_lock);
1108
1109 del_gendisk(zv->zv_disk);
1110 blk_cleanup_queue(zv->zv_queue);
1111 put_disk(zv->zv_disk);
1112
1113 kmem_free(zv, sizeof (zvol_state_t));
1114}
1115
1116static int
1117__zvol_create_minor(const char *name)
1118{
1119 zvol_state_t *zv;
1120 objset_t *os;
1121 dmu_object_info_t *doi;
1122 uint64_t volsize;
1123 unsigned minor = 0;
1124 int error = 0;
1125
1126 ASSERT(MUTEX_HELD(&zvol_state_lock));
1127
1128 zv = zvol_find_by_name(name);
1129 if (zv) {
1130 error = EEXIST;
1131 goto out;
1132 }
1133
1134 doi = kmem_alloc(sizeof(dmu_object_info_t), KM_SLEEP);
1135
1136 error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, zvol_tag, &os);
1137 if (error)
1138 goto out_doi;
1139
1140 error = dmu_object_info(os, ZVOL_OBJ, doi);
1141 if (error)
1142 goto out_dmu_objset_disown;
1143
1144 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
1145 if (error)
1146 goto out_dmu_objset_disown;
1147
1148 error = zvol_find_minor(&minor);
1149 if (error)
1150 goto out_dmu_objset_disown;
1151
1152 zv = zvol_alloc(MKDEV(zvol_major, minor), name);
1153 if (zv == NULL) {
1154 error = EAGAIN;
1155 goto out_dmu_objset_disown;
1156 }
1157
1158 if (dmu_objset_is_snapshot(os))
1159 zv->zv_flags |= ZVOL_RDONLY;
1160
1161 zv->zv_volblocksize = doi->doi_data_block_size;
1162 zv->zv_volsize = volsize;
1163 zv->zv_objset = os;
1164
1165 set_capacity(zv->zv_disk, zv->zv_volsize >> 9);
1166
1167 if (zil_replay_disable)
1168 zil_destroy(dmu_objset_zil(os), B_FALSE);
1169 else
1170 zil_replay(os, zv, zvol_replay_vector);
1171
1172out_dmu_objset_disown:
1173 dmu_objset_disown(os, zvol_tag);
1174 zv->zv_objset = NULL;
1175out_doi:
1176 kmem_free(doi, sizeof(dmu_object_info_t));
1177out:
1178
1179 if (error == 0) {
1180 zvol_insert(zv);
1181 add_disk(zv->zv_disk);
1182 }
1183
1184 return (error);
1185}
1186
1187/*
1188 * Create a block device minor node and setup the linkage between it
1189 * and the specified volume. Once this function returns the block
1190 * device is live and ready for use.
1191 */
1192int
1193zvol_create_minor(const char *name)
1194{
1195 int error;
1196
1197 mutex_enter(&zvol_state_lock);
1198 error = __zvol_create_minor(name);
1199 mutex_exit(&zvol_state_lock);
1200
1201 return (error);
1202}
1203
1204static int
1205__zvol_remove_minor(const char *name)
1206{
1207 zvol_state_t *zv;
1208
1209 ASSERT(MUTEX_HELD(&zvol_state_lock));
1210
1211 zv = zvol_find_by_name(name);
1212 if (zv == NULL)
1213 return (ENXIO);
1214
1215 if (zv->zv_open_count > 0)
1216 return (EBUSY);
1217
1218 zvol_remove(zv);
1219 zvol_free(zv);
1220
1221 return (0);
1222}
1223
1224/*
1225 * Remove a block device minor node for the specified volume.
1226 */
1227int
1228zvol_remove_minor(const char *name)
1229{
1230 int error;
1231
1232 mutex_enter(&zvol_state_lock);
1233 error = __zvol_remove_minor(name);
1234 mutex_exit(&zvol_state_lock);
1235
1236 return (error);
1237}
1238
1239static int
1240zvol_create_minors_cb(spa_t *spa, uint64_t dsobj,
1241 const char *dsname, void *arg)
1242{
1243 if (strchr(dsname, '/') == NULL)
1244 return 0;
1245
d5674448
BB
1246 (void) __zvol_create_minor(dsname);
1247 return (0);
60101509
BB
1248}
1249
1250/*
1251 * Create minors for specified pool, if pool is NULL create minors
1252 * for all available pools.
1253 */
1254int
1255zvol_create_minors(const char *pool)
1256{
1257 spa_t *spa = NULL;
1258 int error = 0;
1259
1260 mutex_enter(&zvol_state_lock);
1261 if (pool) {
1262 error = dmu_objset_find_spa(NULL, pool, zvol_create_minors_cb,
1263 NULL, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
1264 } else {
1265 mutex_enter(&spa_namespace_lock);
1266 while ((spa = spa_next(spa)) != NULL) {
1267 error = dmu_objset_find_spa(NULL,
1268 spa_name(spa), zvol_create_minors_cb, NULL,
1269 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
1270 if (error)
1271 break;
1272 }
1273 mutex_exit(&spa_namespace_lock);
1274 }
1275 mutex_exit(&zvol_state_lock);
1276
1277 return error;
1278}
1279
1280/*
1281 * Remove minors for specified pool, if pool is NULL remove all minors.
1282 */
1283void
1284zvol_remove_minors(const char *pool)
1285{
1286 zvol_state_t *zv, *zv_next;
1287 char *str;
1288
4c0d8e50 1289 str = kmem_zalloc(MAXNAMELEN, KM_SLEEP);
60101509
BB
1290 if (pool) {
1291 (void) strncpy(str, pool, strlen(pool));
1292 (void) strcat(str, "/");
1293 }
1294
1295 mutex_enter(&zvol_state_lock);
1296 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1297 zv_next = list_next(&zvol_state_list, zv);
1298
1299 if (pool == NULL || !strncmp(str, zv->zv_name, strlen(str))) {
1300 zvol_remove(zv);
1301 zvol_free(zv);
1302 }
1303 }
1304 mutex_exit(&zvol_state_lock);
4c0d8e50 1305 kmem_free(str, MAXNAMELEN);
60101509
BB
1306}
1307
1308int
1309zvol_init(void)
1310{
1311 int error;
1312
1313 if (!zvol_threads)
1314 zvol_threads = num_online_cpus();
1315
1316 zvol_taskq = taskq_create(ZVOL_DRIVER, zvol_threads, maxclsyspri,
1317 zvol_threads, INT_MAX, TASKQ_PREPOPULATE);
1318 if (zvol_taskq == NULL) {
1319 printk(KERN_INFO "ZFS: taskq_create() failed\n");
1320 return (-ENOMEM);
1321 }
1322
1323 error = register_blkdev(zvol_major, ZVOL_DRIVER);
1324 if (error) {
1325 printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
1326 taskq_destroy(zvol_taskq);
1327 return (error);
1328 }
1329
1330 blk_register_region(MKDEV(zvol_major, 0), 1UL << MINORBITS,
1331 THIS_MODULE, zvol_probe, NULL, NULL);
1332
1333 mutex_init(&zvol_state_lock, NULL, MUTEX_DEFAULT, NULL);
1334 list_create(&zvol_state_list, sizeof (zvol_state_t),
1335 offsetof(zvol_state_t, zv_next));
1336
1337 (void) zvol_create_minors(NULL);
1338
1339 return (0);
1340}
1341
1342void
1343zvol_fini(void)
1344{
1345 zvol_remove_minors(NULL);
1346 blk_unregister_region(MKDEV(zvol_major, 0), 1UL << MINORBITS);
1347 unregister_blkdev(zvol_major, ZVOL_DRIVER);
1348 taskq_destroy(zvol_taskq);
1349 mutex_destroy(&zvol_state_lock);
1350 list_destroy(&zvol_state_list);
1351}
1352
30a9524e 1353module_param(zvol_major, uint, 0444);
60101509
BB
1354MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
1355
30a9524e 1356module_param(zvol_threads, uint, 0444);
60101509 1357MODULE_PARM_DESC(zvol_threads, "Number of threads for zvol device");