]> git.proxmox.com Git - mirror_zfs-debian.git/blame - module/zfs/zvol.c
Support the fallocate() file operation.
[mirror_zfs-debian.git] / module / zfs / zvol.c
CommitLineData
60101509
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25 * LLNL-CODE-403049.
26 *
27 * ZFS volume emulation driver.
28 *
29 * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
30 * Volumes are accessed through the symbolic links named:
31 *
32 * /dev/<pool_name>/<dataset_name>
33 *
34 * Volumes are persistent through reboot and module load. No user command
35 * needs to be run before opening and using a device.
36 */
37
38#include <sys/dmu_traverse.h>
39#include <sys/dsl_dataset.h>
40#include <sys/dsl_prop.h>
41#include <sys/zap.h>
42#include <sys/zil_impl.h>
43#include <sys/zio.h>
44#include <sys/zfs_rlock.h>
45#include <sys/zfs_znode.h>
46#include <sys/zvol.h>
61e90960 47#include <linux/blkdev_compat.h>
60101509
BB
48
49unsigned int zvol_major = ZVOL_MAJOR;
dde9380a 50unsigned int zvol_threads = 32;
60101509
BB
51
52static taskq_t *zvol_taskq;
53static kmutex_t zvol_state_lock;
54static list_t zvol_state_list;
55static char *zvol_tag = "zvol_tag";
56
57/*
58 * The in-core state of each volume.
59 */
60typedef struct zvol_state {
4c0d8e50 61 char zv_name[MAXNAMELEN]; /* name */
60101509
BB
62 uint64_t zv_volsize; /* advertised space */
63 uint64_t zv_volblocksize;/* volume block size */
64 objset_t *zv_objset; /* objset handle */
65 uint32_t zv_flags; /* ZVOL_* flags */
66 uint32_t zv_open_count; /* open counts */
67 uint32_t zv_changed; /* disk changed */
68 zilog_t *zv_zilog; /* ZIL handle */
69 znode_t zv_znode; /* for range locking */
70 dmu_buf_t *zv_dbuf; /* bonus handle */
71 dev_t zv_dev; /* device id */
72 struct gendisk *zv_disk; /* generic disk */
73 struct request_queue *zv_queue; /* request queue */
74 spinlock_t zv_lock; /* request queue lock */
75 list_node_t zv_next; /* next zvol_state_t linkage */
76} zvol_state_t;
77
78#define ZVOL_RDONLY 0x1
79
80/*
81 * Find the next available range of ZVOL_MINORS minor numbers. The
82 * zvol_state_list is kept in ascending minor order so we simply need
83 * to scan the list for the first gap in the sequence. This allows us
84 * to recycle minor number as devices are created and removed.
85 */
86static int
87zvol_find_minor(unsigned *minor)
88{
89 zvol_state_t *zv;
90
91 *minor = 0;
92 ASSERT(MUTEX_HELD(&zvol_state_lock));
93 for (zv = list_head(&zvol_state_list); zv != NULL;
94 zv = list_next(&zvol_state_list, zv), *minor += ZVOL_MINORS) {
95 if (MINOR(zv->zv_dev) != MINOR(*minor))
96 break;
97 }
98
99 /* All minors are in use */
100 if (*minor >= (1 << MINORBITS))
101 return ENXIO;
102
103 return 0;
104}
105
106/*
107 * Find a zvol_state_t given the full major+minor dev_t.
108 */
109static zvol_state_t *
110zvol_find_by_dev(dev_t dev)
111{
112 zvol_state_t *zv;
113
114 ASSERT(MUTEX_HELD(&zvol_state_lock));
115 for (zv = list_head(&zvol_state_list); zv != NULL;
116 zv = list_next(&zvol_state_list, zv)) {
117 if (zv->zv_dev == dev)
118 return zv;
119 }
120
121 return NULL;
122}
123
124/*
125 * Find a zvol_state_t given the name provided at zvol_alloc() time.
126 */
127static zvol_state_t *
128zvol_find_by_name(const char *name)
129{
130 zvol_state_t *zv;
131
132 ASSERT(MUTEX_HELD(&zvol_state_lock));
133 for (zv = list_head(&zvol_state_list); zv != NULL;
134 zv = list_next(&zvol_state_list, zv)) {
4c0d8e50 135 if (!strncmp(zv->zv_name, name, MAXNAMELEN))
60101509
BB
136 return zv;
137 }
138
139 return NULL;
140}
141
142/*
143 * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
144 */
145void
146zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
147{
148 zfs_creat_t *zct = arg;
149 nvlist_t *nvprops = zct->zct_props;
150 int error;
151 uint64_t volblocksize, volsize;
152
153 VERIFY(nvlist_lookup_uint64(nvprops,
154 zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
155 if (nvlist_lookup_uint64(nvprops,
156 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
157 volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
158
159 /*
160 * These properties must be removed from the list so the generic
161 * property setting step won't apply to them.
162 */
163 VERIFY(nvlist_remove_all(nvprops,
164 zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
165 (void) nvlist_remove_all(nvprops,
166 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
167
168 error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
169 DMU_OT_NONE, 0, tx);
170 ASSERT(error == 0);
171
172 error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
173 DMU_OT_NONE, 0, tx);
174 ASSERT(error == 0);
175
176 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
177 ASSERT(error == 0);
178}
179
180/*
181 * ZFS_IOC_OBJSET_STATS entry point.
182 */
183int
184zvol_get_stats(objset_t *os, nvlist_t *nv)
185{
186 int error;
187 dmu_object_info_t *doi;
188 uint64_t val;
189
190 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
191 if (error)
192 return (error);
193
194 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
195 doi = kmem_alloc(sizeof(dmu_object_info_t), KM_SLEEP);
196 error = dmu_object_info(os, ZVOL_OBJ, doi);
197
198 if (error == 0) {
199 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
200 doi->doi_data_block_size);
201 }
202
203 kmem_free(doi, sizeof(dmu_object_info_t));
204
205 return (error);
206}
207
208/*
209 * Sanity check volume size.
210 */
211int
212zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
213{
214 if (volsize == 0)
215 return (EINVAL);
216
217 if (volsize % blocksize != 0)
218 return (EINVAL);
219
220#ifdef _ILP32
221 if (volsize - 1 > MAXOFFSET_T)
222 return (EOVERFLOW);
223#endif
224 return (0);
225}
226
227/*
228 * Ensure the zap is flushed then inform the VFS of the capacity change.
229 */
230static int
df554c14 231zvol_update_volsize(zvol_state_t *zv, uint64_t volsize, objset_t *os)
60101509
BB
232{
233 struct block_device *bdev;
234 dmu_tx_t *tx;
235 int error;
236
237 ASSERT(MUTEX_HELD(&zvol_state_lock));
238
df554c14 239 tx = dmu_tx_create(os);
60101509
BB
240 dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
241 error = dmu_tx_assign(tx, TXG_WAIT);
242 if (error) {
243 dmu_tx_abort(tx);
244 return (error);
245 }
246
df554c14 247 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1,
60101509
BB
248 &volsize, tx);
249 dmu_tx_commit(tx);
250
251 if (error)
252 return (error);
253
df554c14 254 error = dmu_free_long_range(os,
60101509
BB
255 ZVOL_OBJ, volsize, DMU_OBJECT_END);
256 if (error)
257 return (error);
258
60101509
BB
259 bdev = bdget_disk(zv->zv_disk, 0);
260 if (!bdev)
df554c14
BB
261 return (EIO);
262/*
263 * 2.6.28 API change
264 * Added check_disk_size_change() helper function.
265 */
266#ifdef HAVE_CHECK_DISK_SIZE_CHANGE
267 set_capacity(zv->zv_disk, volsize >> 9);
268 zv->zv_volsize = volsize;
269 check_disk_size_change(zv->zv_disk, bdev);
270#else
271 zv->zv_volsize = volsize;
272 zv->zv_changed = 1;
273 (void) check_disk_change(bdev);
274#endif /* HAVE_CHECK_DISK_SIZE_CHANGE */
60101509 275
60101509
BB
276 bdput(bdev);
277
278 return (0);
279}
280
281/*
282 * Set ZFS_PROP_VOLSIZE set entry point.
283 */
284int
285zvol_set_volsize(const char *name, uint64_t volsize)
286{
287 zvol_state_t *zv;
288 dmu_object_info_t *doi;
289 objset_t *os = NULL;
290 uint64_t readonly;
291 int error;
292
293 mutex_enter(&zvol_state_lock);
294
295 zv = zvol_find_by_name(name);
296 if (zv == NULL) {
297 error = ENXIO;
298 goto out;
299 }
300
301 doi = kmem_alloc(sizeof(dmu_object_info_t), KM_SLEEP);
302
303 error = dmu_objset_hold(name, FTAG, &os);
304 if (error)
305 goto out_doi;
306
307 if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) != 0 ||
308 (error = zvol_check_volsize(volsize,doi->doi_data_block_size)) != 0)
309 goto out_doi;
310
311 VERIFY(dsl_prop_get_integer(name, "readonly", &readonly, NULL) == 0);
312 if (readonly) {
313 error = EROFS;
314 goto out_doi;
315 }
316
317 if (get_disk_ro(zv->zv_disk) || (zv->zv_flags & ZVOL_RDONLY)) {
318 error = EROFS;
319 goto out_doi;
320 }
321
df554c14 322 error = zvol_update_volsize(zv, volsize, os);
60101509
BB
323out_doi:
324 kmem_free(doi, sizeof(dmu_object_info_t));
325out:
326 if (os)
327 dmu_objset_rele(os, FTAG);
328
329 mutex_exit(&zvol_state_lock);
330
331 return (error);
332}
333
334/*
335 * Sanity check volume block size.
336 */
337int
338zvol_check_volblocksize(uint64_t volblocksize)
339{
340 if (volblocksize < SPA_MINBLOCKSIZE ||
341 volblocksize > SPA_MAXBLOCKSIZE ||
342 !ISP2(volblocksize))
343 return (EDOM);
344
345 return (0);
346}
347
348/*
349 * Set ZFS_PROP_VOLBLOCKSIZE set entry point.
350 */
351int
352zvol_set_volblocksize(const char *name, uint64_t volblocksize)
353{
354 zvol_state_t *zv;
355 dmu_tx_t *tx;
356 int error;
357
358 mutex_enter(&zvol_state_lock);
359
360 zv = zvol_find_by_name(name);
361 if (zv == NULL) {
362 error = ENXIO;
363 goto out;
364 }
365
366 if (get_disk_ro(zv->zv_disk) || (zv->zv_flags & ZVOL_RDONLY)) {
367 error = EROFS;
368 goto out;
369 }
370
371 tx = dmu_tx_create(zv->zv_objset);
372 dmu_tx_hold_bonus(tx, ZVOL_OBJ);
373 error = dmu_tx_assign(tx, TXG_WAIT);
374 if (error) {
375 dmu_tx_abort(tx);
376 } else {
377 error = dmu_object_set_blocksize(zv->zv_objset, ZVOL_OBJ,
378 volblocksize, 0, tx);
379 if (error == ENOTSUP)
380 error = EBUSY;
381 dmu_tx_commit(tx);
382 if (error == 0)
383 zv->zv_volblocksize = volblocksize;
384 }
385out:
386 mutex_exit(&zvol_state_lock);
387
388 return (error);
389}
390
391/*
392 * Replay a TX_WRITE ZIL transaction that didn't get committed
393 * after a system failure
394 */
395static int
396zvol_replay_write(zvol_state_t *zv, lr_write_t *lr, boolean_t byteswap)
397{
398 objset_t *os = zv->zv_objset;
399 char *data = (char *)(lr + 1); /* data follows lr_write_t */
400 uint64_t off = lr->lr_offset;
401 uint64_t len = lr->lr_length;
402 dmu_tx_t *tx;
403 int error;
404
405 if (byteswap)
406 byteswap_uint64_array(lr, sizeof (*lr));
407
408 tx = dmu_tx_create(os);
409 dmu_tx_hold_write(tx, ZVOL_OBJ, off, len);
410 error = dmu_tx_assign(tx, TXG_WAIT);
411 if (error) {
412 dmu_tx_abort(tx);
413 } else {
414 dmu_write(os, ZVOL_OBJ, off, len, data, tx);
415 dmu_tx_commit(tx);
416 }
417
418 return (error);
419}
420
421static int
422zvol_replay_err(zvol_state_t *zv, lr_t *lr, boolean_t byteswap)
423{
424 return (ENOTSUP);
425}
426
427/*
428 * Callback vectors for replaying records.
429 * Only TX_WRITE is needed for zvol.
430 */
431zil_replay_func_t *zvol_replay_vector[TX_MAX_TYPE] = {
432 (zil_replay_func_t *)zvol_replay_err, /* no such transaction type */
433 (zil_replay_func_t *)zvol_replay_err, /* TX_CREATE */
434 (zil_replay_func_t *)zvol_replay_err, /* TX_MKDIR */
435 (zil_replay_func_t *)zvol_replay_err, /* TX_MKXATTR */
436 (zil_replay_func_t *)zvol_replay_err, /* TX_SYMLINK */
437 (zil_replay_func_t *)zvol_replay_err, /* TX_REMOVE */
438 (zil_replay_func_t *)zvol_replay_err, /* TX_RMDIR */
439 (zil_replay_func_t *)zvol_replay_err, /* TX_LINK */
440 (zil_replay_func_t *)zvol_replay_err, /* TX_RENAME */
441 (zil_replay_func_t *)zvol_replay_write, /* TX_WRITE */
442 (zil_replay_func_t *)zvol_replay_err, /* TX_TRUNCATE */
443 (zil_replay_func_t *)zvol_replay_err, /* TX_SETATTR */
444 (zil_replay_func_t *)zvol_replay_err, /* TX_ACL */
445};
446
447/*
448 * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
449 *
450 * We store data in the log buffers if it's small enough.
451 * Otherwise we will later flush the data out via dmu_sync().
452 */
453ssize_t zvol_immediate_write_sz = 32768;
454
455static void
456zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx,
457 uint64_t offset, uint64_t size, int sync)
458{
459 uint32_t blocksize = zv->zv_volblocksize;
460 zilog_t *zilog = zv->zv_zilog;
461 boolean_t slogging;
462
463 if (zil_replaying(zilog, tx))
464 return;
465
466 slogging = spa_has_slogs(zilog->zl_spa);
467
468 while (size) {
469 itx_t *itx;
470 lr_write_t *lr;
471 ssize_t len;
472 itx_wr_state_t write_state;
473
474 /*
475 * Unlike zfs_log_write() we can be called with
476 * up to DMU_MAX_ACCESS/2 (5MB) writes.
477 */
478 if (blocksize > zvol_immediate_write_sz && !slogging &&
479 size >= blocksize && offset % blocksize == 0) {
480 write_state = WR_INDIRECT; /* uses dmu_sync */
481 len = blocksize;
482 } else if (sync) {
483 write_state = WR_COPIED;
484 len = MIN(ZIL_MAX_LOG_DATA, size);
485 } else {
486 write_state = WR_NEED_COPY;
487 len = MIN(ZIL_MAX_LOG_DATA, size);
488 }
489
490 itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
491 (write_state == WR_COPIED ? len : 0));
492 lr = (lr_write_t *)&itx->itx_lr;
493 if (write_state == WR_COPIED && dmu_read(zv->zv_objset,
494 ZVOL_OBJ, offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) {
495 zil_itx_destroy(itx);
496 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
497 lr = (lr_write_t *)&itx->itx_lr;
498 write_state = WR_NEED_COPY;
499 }
500
501 itx->itx_wr_state = write_state;
502 if (write_state == WR_NEED_COPY)
503 itx->itx_sod += len;
504 lr->lr_foid = ZVOL_OBJ;
505 lr->lr_offset = offset;
506 lr->lr_length = len;
507 lr->lr_blkoff = 0;
508 BP_ZERO(&lr->lr_blkptr);
509
510 itx->itx_private = zv;
511 itx->itx_sync = sync;
512
513 (void) zil_itx_assign(zilog, itx, tx);
514
515 offset += len;
516 size -= len;
517 }
518}
519
520/*
521 * Common write path running under the zvol taskq context. This function
522 * is responsible for copying the request structure data in to the DMU and
523 * signaling the request queue with the result of the copy.
524 */
525static void
526zvol_write(void *arg)
527{
528 struct request *req = (struct request *)arg;
529 struct request_queue *q = req->q;
530 zvol_state_t *zv = q->queuedata;
531 uint64_t offset = blk_rq_pos(req) << 9;
532 uint64_t size = blk_rq_bytes(req);
533 int error = 0;
534 dmu_tx_t *tx;
535 rl_t *rl;
536
b18019d2
ED
537 if (req->cmd_flags & VDEV_REQ_FLUSH)
538 zil_commit(zv->zv_zilog, ZVOL_OBJ);
539
540 /*
541 * Some requests are just for flush and nothing else.
542 */
543 if (size == 0) {
544 blk_end_request(req, 0, size);
545 return;
546 }
547
60101509
BB
548 rl = zfs_range_lock(&zv->zv_znode, offset, size, RL_WRITER);
549
550 tx = dmu_tx_create(zv->zv_objset);
551 dmu_tx_hold_write(tx, ZVOL_OBJ, offset, size);
552
553 /* This will only fail for ENOSPC */
554 error = dmu_tx_assign(tx, TXG_WAIT);
555 if (error) {
556 dmu_tx_abort(tx);
557 zfs_range_unlock(rl);
558 blk_end_request(req, -error, size);
559 return;
560 }
561
562 error = dmu_write_req(zv->zv_objset, ZVOL_OBJ, req, tx);
563 if (error == 0)
b18019d2
ED
564 zvol_log_write(zv, tx, offset, size,
565 req->cmd_flags & VDEV_REQ_FUA);
60101509
BB
566
567 dmu_tx_commit(tx);
568 zfs_range_unlock(rl);
569
b18019d2
ED
570 if ((req->cmd_flags & VDEV_REQ_FUA) ||
571 zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS)
60101509
BB
572 zil_commit(zv->zv_zilog, ZVOL_OBJ);
573
574 blk_end_request(req, -error, size);
575}
576
577/*
578 * Common read path running under the zvol taskq context. This function
579 * is responsible for copying the requested data out of the DMU and in to
580 * a linux request structure. It then must signal the request queue with
581 * an error code describing the result of the copy.
582 */
583static void
584zvol_read(void *arg)
585{
586 struct request *req = (struct request *)arg;
587 struct request_queue *q = req->q;
588 zvol_state_t *zv = q->queuedata;
589 uint64_t offset = blk_rq_pos(req) << 9;
590 uint64_t size = blk_rq_bytes(req);
591 int error;
592 rl_t *rl;
593
b18019d2
ED
594 if (size == 0) {
595 blk_end_request(req, 0, size);
596 return;
597 }
598
60101509
BB
599 rl = zfs_range_lock(&zv->zv_znode, offset, size, RL_READER);
600
601 error = dmu_read_req(zv->zv_objset, ZVOL_OBJ, req);
602
603 zfs_range_unlock(rl);
604
605 /* convert checksum errors into IO errors */
606 if (error == ECKSUM)
607 error = EIO;
608
609 blk_end_request(req, -error, size);
610}
611
612/*
613 * Request will be added back to the request queue and retried if
614 * it cannot be immediately dispatched to the taskq for handling
615 */
616static inline void
617zvol_dispatch(task_func_t func, struct request *req)
618{
619 if (!taskq_dispatch(zvol_taskq, func, (void *)req, TQ_NOSLEEP))
620 blk_requeue_request(req->q, req);
621}
622
623/*
624 * Common request path. Rather than registering a custom make_request()
625 * function we use the generic Linux version. This is done because it allows
626 * us to easily merge read requests which would otherwise we performed
627 * synchronously by the DMU. This is less critical in write case where the
628 * DMU will perform the correct merging within a transaction group. Using
629 * the generic make_request() also let's use leverage the fact that the
630 * elevator with ensure correct ordering in regards to barrior IOs. On
631 * the downside it means that in the write case we end up doing request
632 * merging twice once in the elevator and once in the DMU.
633 *
634 * The request handler is called under a spin lock so all the real work
635 * is handed off to be done in the context of the zvol taskq. This function
636 * simply performs basic request sanity checking and hands off the request.
637 */
638static void
639zvol_request(struct request_queue *q)
640{
641 zvol_state_t *zv = q->queuedata;
642 struct request *req;
643 unsigned int size;
644
645 while ((req = blk_fetch_request(q)) != NULL) {
646 size = blk_rq_bytes(req);
647
b18019d2 648 if (size != 0 && blk_rq_pos(req) + blk_rq_sectors(req) >
60101509
BB
649 get_capacity(zv->zv_disk)) {
650 printk(KERN_INFO
651 "%s: bad access: block=%llu, count=%lu\n",
652 req->rq_disk->disk_name,
653 (long long unsigned)blk_rq_pos(req),
654 (long unsigned)blk_rq_sectors(req));
655 __blk_end_request(req, -EIO, size);
656 continue;
657 }
658
659 if (!blk_fs_request(req)) {
660 printk(KERN_INFO "%s: non-fs cmd\n",
661 req->rq_disk->disk_name);
662 __blk_end_request(req, -EIO, size);
663 continue;
664 }
665
666 switch (rq_data_dir(req)) {
667 case READ:
668 zvol_dispatch(zvol_read, req);
669 break;
670 case WRITE:
671 if (unlikely(get_disk_ro(zv->zv_disk)) ||
672 unlikely(zv->zv_flags & ZVOL_RDONLY)) {
673 __blk_end_request(req, -EROFS, size);
674 break;
675 }
676
677 zvol_dispatch(zvol_write, req);
678 break;
679 default:
680 printk(KERN_INFO "%s: unknown cmd: %d\n",
681 req->rq_disk->disk_name, (int)rq_data_dir(req));
682 __blk_end_request(req, -EIO, size);
683 break;
684 }
685 }
686}
687
688static void
689zvol_get_done(zgd_t *zgd, int error)
690{
691 if (zgd->zgd_db)
692 dmu_buf_rele(zgd->zgd_db, zgd);
693
694 zfs_range_unlock(zgd->zgd_rl);
695
696 if (error == 0 && zgd->zgd_bp)
697 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
698
699 kmem_free(zgd, sizeof (zgd_t));
700}
701
702/*
703 * Get data to generate a TX_WRITE intent log record.
704 */
705static int
706zvol_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
707{
708 zvol_state_t *zv = arg;
709 objset_t *os = zv->zv_objset;
710 uint64_t offset = lr->lr_offset;
711 uint64_t size = lr->lr_length;
712 dmu_buf_t *db;
713 zgd_t *zgd;
714 int error;
715
716 ASSERT(zio != NULL);
717 ASSERT(size != 0);
718
719 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
720 zgd->zgd_zilog = zv->zv_zilog;
721 zgd->zgd_rl = zfs_range_lock(&zv->zv_znode, offset, size, RL_READER);
722
723 /*
724 * Write records come in two flavors: immediate and indirect.
725 * For small writes it's cheaper to store the data with the
726 * log record (immediate); for large writes it's cheaper to
727 * sync the data and get a pointer to it (indirect) so that
728 * we don't have to write the data twice.
729 */
730 if (buf != NULL) { /* immediate write */
731 error = dmu_read(os, ZVOL_OBJ, offset, size, buf,
732 DMU_READ_NO_PREFETCH);
733 } else {
734 size = zv->zv_volblocksize;
735 offset = P2ALIGN_TYPED(offset, size, uint64_t);
736 error = dmu_buf_hold(os, ZVOL_OBJ, offset, zgd, &db,
737 DMU_READ_NO_PREFETCH);
738 if (error == 0) {
739 zgd->zgd_db = db;
740 zgd->zgd_bp = &lr->lr_blkptr;
741
742 ASSERT(db != NULL);
743 ASSERT(db->db_offset == offset);
744 ASSERT(db->db_size == size);
745
746 error = dmu_sync(zio, lr->lr_common.lrc_txg,
747 zvol_get_done, zgd);
748
749 if (error == 0)
750 return (0);
751 }
752 }
753
754 zvol_get_done(zgd, error);
755
756 return (error);
757}
758
759/*
760 * The zvol_state_t's are inserted in increasing MINOR(dev_t) order.
761 */
762static void
763zvol_insert(zvol_state_t *zv_insert)
764{
765 zvol_state_t *zv = NULL;
766
767 ASSERT(MUTEX_HELD(&zvol_state_lock));
768 ASSERT3U(MINOR(zv_insert->zv_dev) & ZVOL_MINOR_MASK, ==, 0);
769 for (zv = list_head(&zvol_state_list); zv != NULL;
770 zv = list_next(&zvol_state_list, zv)) {
771 if (MINOR(zv->zv_dev) > MINOR(zv_insert->zv_dev))
772 break;
773 }
774
775 list_insert_before(&zvol_state_list, zv, zv_insert);
776}
777
778/*
779 * Simply remove the zvol from to list of zvols.
780 */
781static void
782zvol_remove(zvol_state_t *zv_remove)
783{
784 ASSERT(MUTEX_HELD(&zvol_state_lock));
785 list_remove(&zvol_state_list, zv_remove);
786}
787
788static int
789zvol_first_open(zvol_state_t *zv)
790{
791 objset_t *os;
792 uint64_t volsize;
793 int error;
794 uint64_t ro;
795
796 /* lie and say we're read-only */
797 error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, 1, zvol_tag, &os);
798 if (error)
799 return (-error);
800
801 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
802 if (error) {
803 dmu_objset_disown(os, zvol_tag);
804 return (-error);
805 }
806
807 zv->zv_objset = os;
808 error = dmu_bonus_hold(os, ZVOL_OBJ, zvol_tag, &zv->zv_dbuf);
809 if (error) {
810 dmu_objset_disown(os, zvol_tag);
811 return (-error);
812 }
813
814 set_capacity(zv->zv_disk, volsize >> 9);
815 zv->zv_volsize = volsize;
816 zv->zv_zilog = zil_open(os, zvol_get_data);
817
818 VERIFY(dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL) == 0);
819 if (ro || dmu_objset_is_snapshot(os)) {
820 set_disk_ro(zv->zv_disk, 1);
821 zv->zv_flags |= ZVOL_RDONLY;
822 } else {
823 set_disk_ro(zv->zv_disk, 0);
824 zv->zv_flags &= ~ZVOL_RDONLY;
825 }
826
827 return (-error);
828}
829
830static void
831zvol_last_close(zvol_state_t *zv)
832{
833 zil_close(zv->zv_zilog);
834 zv->zv_zilog = NULL;
835 dmu_buf_rele(zv->zv_dbuf, zvol_tag);
836 zv->zv_dbuf = NULL;
837 dmu_objset_disown(zv->zv_objset, zvol_tag);
838 zv->zv_objset = NULL;
839}
840
841static int
842zvol_open(struct block_device *bdev, fmode_t flag)
843{
844 zvol_state_t *zv = bdev->bd_disk->private_data;
845 int error = 0, drop_mutex = 0;
846
847 /*
848 * If the caller is already holding the mutex do not take it
849 * again, this will happen as part of zvol_create_minor().
850 * Once add_disk() is called the device is live and the kernel
851 * will attempt to open it to read the partition information.
852 */
853 if (!mutex_owned(&zvol_state_lock)) {
854 mutex_enter(&zvol_state_lock);
855 drop_mutex = 1;
856 }
857
858 ASSERT3P(zv, !=, NULL);
859
860 if (zv->zv_open_count == 0) {
861 error = zvol_first_open(zv);
862 if (error)
863 goto out_mutex;
864 }
865
866 if ((flag & FMODE_WRITE) &&
867 (get_disk_ro(zv->zv_disk) || (zv->zv_flags & ZVOL_RDONLY))) {
868 error = -EROFS;
869 goto out_open_count;
870 }
871
872 zv->zv_open_count++;
873
874out_open_count:
875 if (zv->zv_open_count == 0)
876 zvol_last_close(zv);
877
878out_mutex:
879 if (drop_mutex)
880 mutex_exit(&zvol_state_lock);
881
882 check_disk_change(bdev);
883
884 return (error);
885}
886
887static int
888zvol_release(struct gendisk *disk, fmode_t mode)
889{
890 zvol_state_t *zv = disk->private_data;
891 int drop_mutex = 0;
892
893 if (!mutex_owned(&zvol_state_lock)) {
894 mutex_enter(&zvol_state_lock);
895 drop_mutex = 1;
896 }
897
898 ASSERT3P(zv, !=, NULL);
899 ASSERT3U(zv->zv_open_count, >, 0);
900 zv->zv_open_count--;
901 if (zv->zv_open_count == 0)
902 zvol_last_close(zv);
903
904 if (drop_mutex)
905 mutex_exit(&zvol_state_lock);
906
907 return (0);
908}
909
910static int
911zvol_ioctl(struct block_device *bdev, fmode_t mode,
912 unsigned int cmd, unsigned long arg)
913{
914 zvol_state_t *zv = bdev->bd_disk->private_data;
915 int error = 0;
916
917 if (zv == NULL)
918 return (-ENXIO);
919
920 switch (cmd) {
921 case BLKFLSBUF:
922 zil_commit(zv->zv_zilog, ZVOL_OBJ);
923 break;
4c0d8e50
FN
924 case BLKZNAME:
925 error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN);
926 break;
60101509
BB
927
928 default:
929 error = -ENOTTY;
930 break;
931
932 }
933
934 return (error);
935}
936
937#ifdef CONFIG_COMPAT
938static int
939zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
940 unsigned cmd, unsigned long arg)
941{
942 return zvol_ioctl(bdev, mode, cmd, arg);
943}
944#else
945#define zvol_compat_ioctl NULL
946#endif
947
948static int zvol_media_changed(struct gendisk *disk)
949{
950 zvol_state_t *zv = disk->private_data;
951
952 return zv->zv_changed;
953}
954
955static int zvol_revalidate_disk(struct gendisk *disk)
956{
957 zvol_state_t *zv = disk->private_data;
958
959 zv->zv_changed = 0;
960 set_capacity(zv->zv_disk, zv->zv_volsize >> 9);
961
962 return 0;
963}
964
965/*
966 * Provide a simple virtual geometry for legacy compatibility. For devices
967 * smaller than 1 MiB a small head and sector count is used to allow very
968 * tiny devices. For devices over 1 Mib a standard head and sector count
969 * is used to keep the cylinders count reasonable.
970 */
971static int
972zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
973{
974 zvol_state_t *zv = bdev->bd_disk->private_data;
975 sector_t sectors = get_capacity(zv->zv_disk);
976
977 if (sectors > 2048) {
978 geo->heads = 16;
979 geo->sectors = 63;
980 } else {
981 geo->heads = 2;
982 geo->sectors = 4;
983 }
984
985 geo->start = 0;
986 geo->cylinders = sectors / (geo->heads * geo->sectors);
987
988 return 0;
989}
990
991static struct kobject *
992zvol_probe(dev_t dev, int *part, void *arg)
993{
994 zvol_state_t *zv;
995 struct kobject *kobj;
996
997 mutex_enter(&zvol_state_lock);
998 zv = zvol_find_by_dev(dev);
999 kobj = zv ? get_disk(zv->zv_disk) : ERR_PTR(-ENOENT);
1000 mutex_exit(&zvol_state_lock);
1001
1002 return kobj;
1003}
1004
1005#ifdef HAVE_BDEV_BLOCK_DEVICE_OPERATIONS
1006static struct block_device_operations zvol_ops = {
1007 .open = zvol_open,
1008 .release = zvol_release,
1009 .ioctl = zvol_ioctl,
1010 .compat_ioctl = zvol_compat_ioctl,
1011 .media_changed = zvol_media_changed,
1012 .revalidate_disk = zvol_revalidate_disk,
1013 .getgeo = zvol_getgeo,
1014 .owner = THIS_MODULE,
1015};
1016
1017#else /* HAVE_BDEV_BLOCK_DEVICE_OPERATIONS */
1018
1019static int
1020zvol_open_by_inode(struct inode *inode, struct file *file)
1021{
1022 return zvol_open(inode->i_bdev, file->f_mode);
1023}
1024
1025static int
1026zvol_release_by_inode(struct inode *inode, struct file *file)
1027{
1028 return zvol_release(inode->i_bdev->bd_disk, file->f_mode);
1029}
1030
1031static int
1032zvol_ioctl_by_inode(struct inode *inode, struct file *file,
1033 unsigned int cmd, unsigned long arg)
1034{
b1c58213
NB
1035 if (file == NULL || inode == NULL)
1036 return -EINVAL;
60101509
BB
1037 return zvol_ioctl(inode->i_bdev, file->f_mode, cmd, arg);
1038}
1039
1040# ifdef CONFIG_COMPAT
1041static long
1042zvol_compat_ioctl_by_inode(struct file *file,
1043 unsigned int cmd, unsigned long arg)
1044{
b1c58213
NB
1045 if (file == NULL)
1046 return -EINVAL;
60101509
BB
1047 return zvol_compat_ioctl(file->f_dentry->d_inode->i_bdev,
1048 file->f_mode, cmd, arg);
1049}
1050# else
1051# define zvol_compat_ioctl_by_inode NULL
1052# endif
1053
1054static struct block_device_operations zvol_ops = {
1055 .open = zvol_open_by_inode,
1056 .release = zvol_release_by_inode,
1057 .ioctl = zvol_ioctl_by_inode,
1058 .compat_ioctl = zvol_compat_ioctl_by_inode,
1059 .media_changed = zvol_media_changed,
1060 .revalidate_disk = zvol_revalidate_disk,
1061 .getgeo = zvol_getgeo,
1062 .owner = THIS_MODULE,
1063};
1064#endif /* HAVE_BDEV_BLOCK_DEVICE_OPERATIONS */
1065
1066/*
1067 * Allocate memory for a new zvol_state_t and setup the required
1068 * request queue and generic disk structures for the block device.
1069 */
1070static zvol_state_t *
1071zvol_alloc(dev_t dev, const char *name)
1072{
1073 zvol_state_t *zv;
1074
1075 zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
1076 if (zv == NULL)
1077 goto out;
1078
1079 zv->zv_queue = blk_init_queue(zvol_request, &zv->zv_lock);
1080 if (zv->zv_queue == NULL)
1081 goto out_kmem;
1082
b18019d2
ED
1083#ifdef HAVE_BLK_QUEUE_FLUSH
1084 blk_queue_flush(zv->zv_queue, VDEV_REQ_FLUSH | VDEV_REQ_FUA);
1085#else
1086 blk_queue_ordered(zv->zv_queue, QUEUE_ORDERED_DRAIN, NULL);
1087#endif /* HAVE_BLK_QUEUE_FLUSH */
1088
60101509
BB
1089 zv->zv_disk = alloc_disk(ZVOL_MINORS);
1090 if (zv->zv_disk == NULL)
1091 goto out_queue;
1092
1093 zv->zv_queue->queuedata = zv;
1094 zv->zv_dev = dev;
1095 zv->zv_open_count = 0;
4c0d8e50 1096 strlcpy(zv->zv_name, name, MAXNAMELEN);
60101509
BB
1097
1098 mutex_init(&zv->zv_znode.z_range_lock, NULL, MUTEX_DEFAULT, NULL);
1099 avl_create(&zv->zv_znode.z_range_avl, zfs_range_compare,
1100 sizeof (rl_t), offsetof(rl_t, r_node));
3c4988c8
BB
1101 zv->zv_znode.z_is_zvol = TRUE;
1102
60101509
BB
1103 spin_lock_init(&zv->zv_lock);
1104 list_link_init(&zv->zv_next);
1105
1106 zv->zv_disk->major = zvol_major;
1107 zv->zv_disk->first_minor = (dev & MINORMASK);
1108 zv->zv_disk->fops = &zvol_ops;
1109 zv->zv_disk->private_data = zv;
1110 zv->zv_disk->queue = zv->zv_queue;
4c0d8e50
FN
1111 snprintf(zv->zv_disk->disk_name, DISK_NAME_LEN, "%s%d",
1112 ZVOL_DEV_NAME, (dev & MINORMASK));
60101509
BB
1113
1114 return zv;
1115
1116out_queue:
1117 blk_cleanup_queue(zv->zv_queue);
1118out_kmem:
1119 kmem_free(zv, sizeof (zvol_state_t));
1120out:
1121 return NULL;
1122}
1123
1124/*
1125 * Cleanup then free a zvol_state_t which was created by zvol_alloc().
1126 */
1127static void
1128zvol_free(zvol_state_t *zv)
1129{
1130 avl_destroy(&zv->zv_znode.z_range_avl);
1131 mutex_destroy(&zv->zv_znode.z_range_lock);
1132
1133 del_gendisk(zv->zv_disk);
1134 blk_cleanup_queue(zv->zv_queue);
1135 put_disk(zv->zv_disk);
1136
1137 kmem_free(zv, sizeof (zvol_state_t));
1138}
1139
1140static int
1141__zvol_create_minor(const char *name)
1142{
1143 zvol_state_t *zv;
1144 objset_t *os;
1145 dmu_object_info_t *doi;
1146 uint64_t volsize;
1147 unsigned minor = 0;
1148 int error = 0;
1149
1150 ASSERT(MUTEX_HELD(&zvol_state_lock));
1151
1152 zv = zvol_find_by_name(name);
1153 if (zv) {
1154 error = EEXIST;
1155 goto out;
1156 }
1157
1158 doi = kmem_alloc(sizeof(dmu_object_info_t), KM_SLEEP);
1159
1160 error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, zvol_tag, &os);
1161 if (error)
1162 goto out_doi;
1163
1164 error = dmu_object_info(os, ZVOL_OBJ, doi);
1165 if (error)
1166 goto out_dmu_objset_disown;
1167
1168 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
1169 if (error)
1170 goto out_dmu_objset_disown;
1171
1172 error = zvol_find_minor(&minor);
1173 if (error)
1174 goto out_dmu_objset_disown;
1175
1176 zv = zvol_alloc(MKDEV(zvol_major, minor), name);
1177 if (zv == NULL) {
1178 error = EAGAIN;
1179 goto out_dmu_objset_disown;
1180 }
1181
1182 if (dmu_objset_is_snapshot(os))
1183 zv->zv_flags |= ZVOL_RDONLY;
1184
1185 zv->zv_volblocksize = doi->doi_data_block_size;
1186 zv->zv_volsize = volsize;
1187 zv->zv_objset = os;
1188
1189 set_capacity(zv->zv_disk, zv->zv_volsize >> 9);
1190
34037afe
ED
1191 blk_queue_max_hw_sectors(zv->zv_queue, UINT_MAX);
1192 blk_queue_max_segments(zv->zv_queue, UINT16_MAX);
1193 blk_queue_max_segment_size(zv->zv_queue, UINT_MAX);
1194 blk_queue_physical_block_size(zv->zv_queue, zv->zv_volblocksize);
1195 blk_queue_io_opt(zv->zv_queue, zv->zv_volblocksize);
1196#ifdef HAVE_BLK_QUEUE_NONROT
1197 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zv->zv_queue);
1198#endif
1199
60101509
BB
1200 if (zil_replay_disable)
1201 zil_destroy(dmu_objset_zil(os), B_FALSE);
1202 else
1203 zil_replay(os, zv, zvol_replay_vector);
1204
1205out_dmu_objset_disown:
1206 dmu_objset_disown(os, zvol_tag);
1207 zv->zv_objset = NULL;
1208out_doi:
1209 kmem_free(doi, sizeof(dmu_object_info_t));
1210out:
1211
1212 if (error == 0) {
1213 zvol_insert(zv);
1214 add_disk(zv->zv_disk);
1215 }
1216
1217 return (error);
1218}
1219
1220/*
1221 * Create a block device minor node and setup the linkage between it
1222 * and the specified volume. Once this function returns the block
1223 * device is live and ready for use.
1224 */
1225int
1226zvol_create_minor(const char *name)
1227{
1228 int error;
1229
1230 mutex_enter(&zvol_state_lock);
1231 error = __zvol_create_minor(name);
1232 mutex_exit(&zvol_state_lock);
1233
1234 return (error);
1235}
1236
1237static int
1238__zvol_remove_minor(const char *name)
1239{
1240 zvol_state_t *zv;
1241
1242 ASSERT(MUTEX_HELD(&zvol_state_lock));
1243
1244 zv = zvol_find_by_name(name);
1245 if (zv == NULL)
1246 return (ENXIO);
1247
1248 if (zv->zv_open_count > 0)
1249 return (EBUSY);
1250
1251 zvol_remove(zv);
1252 zvol_free(zv);
1253
1254 return (0);
1255}
1256
1257/*
1258 * Remove a block device minor node for the specified volume.
1259 */
1260int
1261zvol_remove_minor(const char *name)
1262{
1263 int error;
1264
1265 mutex_enter(&zvol_state_lock);
1266 error = __zvol_remove_minor(name);
1267 mutex_exit(&zvol_state_lock);
1268
1269 return (error);
1270}
1271
1272static int
1273zvol_create_minors_cb(spa_t *spa, uint64_t dsobj,
1274 const char *dsname, void *arg)
1275{
1276 if (strchr(dsname, '/') == NULL)
1277 return 0;
1278
d5674448
BB
1279 (void) __zvol_create_minor(dsname);
1280 return (0);
60101509
BB
1281}
1282
1283/*
1284 * Create minors for specified pool, if pool is NULL create minors
1285 * for all available pools.
1286 */
1287int
1288zvol_create_minors(const char *pool)
1289{
1290 spa_t *spa = NULL;
1291 int error = 0;
1292
1293 mutex_enter(&zvol_state_lock);
1294 if (pool) {
1295 error = dmu_objset_find_spa(NULL, pool, zvol_create_minors_cb,
1296 NULL, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
1297 } else {
1298 mutex_enter(&spa_namespace_lock);
1299 while ((spa = spa_next(spa)) != NULL) {
1300 error = dmu_objset_find_spa(NULL,
1301 spa_name(spa), zvol_create_minors_cb, NULL,
1302 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
1303 if (error)
1304 break;
1305 }
1306 mutex_exit(&spa_namespace_lock);
1307 }
1308 mutex_exit(&zvol_state_lock);
1309
1310 return error;
1311}
1312
1313/*
1314 * Remove minors for specified pool, if pool is NULL remove all minors.
1315 */
1316void
1317zvol_remove_minors(const char *pool)
1318{
1319 zvol_state_t *zv, *zv_next;
1320 char *str;
1321
4c0d8e50 1322 str = kmem_zalloc(MAXNAMELEN, KM_SLEEP);
60101509
BB
1323 if (pool) {
1324 (void) strncpy(str, pool, strlen(pool));
1325 (void) strcat(str, "/");
1326 }
1327
1328 mutex_enter(&zvol_state_lock);
1329 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1330 zv_next = list_next(&zvol_state_list, zv);
1331
1332 if (pool == NULL || !strncmp(str, zv->zv_name, strlen(str))) {
1333 zvol_remove(zv);
1334 zvol_free(zv);
1335 }
1336 }
1337 mutex_exit(&zvol_state_lock);
4c0d8e50 1338 kmem_free(str, MAXNAMELEN);
60101509
BB
1339}
1340
1341int
1342zvol_init(void)
1343{
1344 int error;
1345
60101509
BB
1346 zvol_taskq = taskq_create(ZVOL_DRIVER, zvol_threads, maxclsyspri,
1347 zvol_threads, INT_MAX, TASKQ_PREPOPULATE);
1348 if (zvol_taskq == NULL) {
1349 printk(KERN_INFO "ZFS: taskq_create() failed\n");
1350 return (-ENOMEM);
1351 }
1352
1353 error = register_blkdev(zvol_major, ZVOL_DRIVER);
1354 if (error) {
1355 printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
1356 taskq_destroy(zvol_taskq);
1357 return (error);
1358 }
1359
1360 blk_register_region(MKDEV(zvol_major, 0), 1UL << MINORBITS,
1361 THIS_MODULE, zvol_probe, NULL, NULL);
1362
1363 mutex_init(&zvol_state_lock, NULL, MUTEX_DEFAULT, NULL);
1364 list_create(&zvol_state_list, sizeof (zvol_state_t),
1365 offsetof(zvol_state_t, zv_next));
1366
1367 (void) zvol_create_minors(NULL);
1368
1369 return (0);
1370}
1371
1372void
1373zvol_fini(void)
1374{
1375 zvol_remove_minors(NULL);
1376 blk_unregister_region(MKDEV(zvol_major, 0), 1UL << MINORBITS);
1377 unregister_blkdev(zvol_major, ZVOL_DRIVER);
1378 taskq_destroy(zvol_taskq);
1379 mutex_destroy(&zvol_state_lock);
1380 list_destroy(&zvol_state_list);
1381}
1382
30a9524e 1383module_param(zvol_major, uint, 0444);
60101509
BB
1384MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
1385
30a9524e 1386module_param(zvol_threads, uint, 0444);
60101509 1387MODULE_PARM_DESC(zvol_threads, "Number of threads for zvol device");