]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - net/ipv4/tcp_input.c
[TCP] FRTO: Response should reset also snd_cwnd_cnt
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23/*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 45 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
e905a9ed 53 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 54 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 55 * work without delayed acks.
1da177e4
LT
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
64 */
65
1da177e4
LT
66#include <linux/mm.h>
67#include <linux/module.h>
68#include <linux/sysctl.h>
69#include <net/tcp.h>
70#include <net/inet_common.h>
71#include <linux/ipsec.h>
72#include <asm/unaligned.h>
1a2449a8 73#include <net/netdma.h>
1da177e4 74
ab32ea5d
BH
75int sysctl_tcp_timestamps __read_mostly = 1;
76int sysctl_tcp_window_scaling __read_mostly = 1;
77int sysctl_tcp_sack __read_mostly = 1;
78int sysctl_tcp_fack __read_mostly = 1;
79int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80int sysctl_tcp_ecn __read_mostly;
81int sysctl_tcp_dsack __read_mostly = 1;
82int sysctl_tcp_app_win __read_mostly = 31;
83int sysctl_tcp_adv_win_scale __read_mostly = 2;
1da177e4 84
ab32ea5d
BH
85int sysctl_tcp_stdurg __read_mostly;
86int sysctl_tcp_rfc1337 __read_mostly;
87int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88int sysctl_tcp_frto __read_mostly;
89int sysctl_tcp_nometrics_save __read_mostly;
1da177e4 90
ab32ea5d
BH
91int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92int sysctl_tcp_abc __read_mostly;
1da177e4 93
1da177e4
LT
94#define FLAG_DATA 0x01 /* Incoming frame contained data. */
95#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
96#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
97#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
98#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
99#define FLAG_DATA_SACKED 0x20 /* New SACK. */
100#define FLAG_ECE 0x40 /* ECE in this ACK */
101#define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
102#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
103
104#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
107#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
108
109#define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
110#define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
111#define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
112
113#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
114
e905a9ed 115/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 116 * real world.
e905a9ed 117 */
40efc6fa
SH
118static void tcp_measure_rcv_mss(struct sock *sk,
119 const struct sk_buff *skb)
1da177e4 120{
463c84b9 121 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 122 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 123 unsigned int len;
1da177e4 124
e905a9ed 125 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
126
127 /* skb->len may jitter because of SACKs, even if peer
128 * sends good full-sized frames.
129 */
ff9b5e0f 130 len = skb_shinfo(skb)->gso_size ?: skb->len;
463c84b9
ACM
131 if (len >= icsk->icsk_ack.rcv_mss) {
132 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
133 } else {
134 /* Otherwise, we make more careful check taking into account,
135 * that SACKs block is variable.
136 *
137 * "len" is invariant segment length, including TCP header.
138 */
139 len += skb->data - skb->h.raw;
140 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
141 /* If PSH is not set, packet should be
142 * full sized, provided peer TCP is not badly broken.
143 * This observation (if it is correct 8)) allows
144 * to handle super-low mtu links fairly.
145 */
146 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
147 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
148 /* Subtract also invariant (if peer is RFC compliant),
149 * tcp header plus fixed timestamp option length.
150 * Resulting "len" is MSS free of SACK jitter.
151 */
463c84b9
ACM
152 len -= tcp_sk(sk)->tcp_header_len;
153 icsk->icsk_ack.last_seg_size = len;
1da177e4 154 if (len == lss) {
463c84b9 155 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
156 return;
157 }
158 }
1ef9696c
AK
159 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
160 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 161 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
162 }
163}
164
463c84b9 165static void tcp_incr_quickack(struct sock *sk)
1da177e4 166{
463c84b9
ACM
167 struct inet_connection_sock *icsk = inet_csk(sk);
168 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4
LT
169
170 if (quickacks==0)
171 quickacks=2;
463c84b9
ACM
172 if (quickacks > icsk->icsk_ack.quick)
173 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
174}
175
463c84b9 176void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 177{
463c84b9
ACM
178 struct inet_connection_sock *icsk = inet_csk(sk);
179 tcp_incr_quickack(sk);
180 icsk->icsk_ack.pingpong = 0;
181 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
182}
183
184/* Send ACKs quickly, if "quick" count is not exhausted
185 * and the session is not interactive.
186 */
187
463c84b9 188static inline int tcp_in_quickack_mode(const struct sock *sk)
1da177e4 189{
463c84b9
ACM
190 const struct inet_connection_sock *icsk = inet_csk(sk);
191 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
192}
193
194/* Buffer size and advertised window tuning.
195 *
196 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
197 */
198
199static void tcp_fixup_sndbuf(struct sock *sk)
200{
201 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
202 sizeof(struct sk_buff);
203
204 if (sk->sk_sndbuf < 3 * sndmem)
205 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
206}
207
208/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
209 *
210 * All tcp_full_space() is split to two parts: "network" buffer, allocated
211 * forward and advertised in receiver window (tp->rcv_wnd) and
212 * "application buffer", required to isolate scheduling/application
213 * latencies from network.
214 * window_clamp is maximal advertised window. It can be less than
215 * tcp_full_space(), in this case tcp_full_space() - window_clamp
216 * is reserved for "application" buffer. The less window_clamp is
217 * the smoother our behaviour from viewpoint of network, but the lower
218 * throughput and the higher sensitivity of the connection to losses. 8)
219 *
220 * rcv_ssthresh is more strict window_clamp used at "slow start"
221 * phase to predict further behaviour of this connection.
222 * It is used for two goals:
223 * - to enforce header prediction at sender, even when application
224 * requires some significant "application buffer". It is check #1.
225 * - to prevent pruning of receive queue because of misprediction
226 * of receiver window. Check #2.
227 *
228 * The scheme does not work when sender sends good segments opening
caa20d9a 229 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
230 * in common situations. Otherwise, we have to rely on queue collapsing.
231 */
232
233/* Slow part of check#2. */
463c84b9
ACM
234static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
235 const struct sk_buff *skb)
1da177e4
LT
236{
237 /* Optimize this! */
238 int truesize = tcp_win_from_space(skb->truesize)/2;
326f36e9 239 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
1da177e4
LT
240
241 while (tp->rcv_ssthresh <= window) {
242 if (truesize <= skb->len)
463c84b9 243 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
244
245 truesize >>= 1;
246 window >>= 1;
247 }
248 return 0;
249}
250
40efc6fa
SH
251static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
252 struct sk_buff *skb)
1da177e4
LT
253{
254 /* Check #1 */
255 if (tp->rcv_ssthresh < tp->window_clamp &&
256 (int)tp->rcv_ssthresh < tcp_space(sk) &&
257 !tcp_memory_pressure) {
258 int incr;
259
260 /* Check #2. Increase window, if skb with such overhead
261 * will fit to rcvbuf in future.
262 */
263 if (tcp_win_from_space(skb->truesize) <= skb->len)
264 incr = 2*tp->advmss;
265 else
266 incr = __tcp_grow_window(sk, tp, skb);
267
268 if (incr) {
269 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
463c84b9 270 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
271 }
272 }
273}
274
275/* 3. Tuning rcvbuf, when connection enters established state. */
276
277static void tcp_fixup_rcvbuf(struct sock *sk)
278{
279 struct tcp_sock *tp = tcp_sk(sk);
280 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
281
282 /* Try to select rcvbuf so that 4 mss-sized segments
caa20d9a 283 * will fit to window and corresponding skbs will fit to our rcvbuf.
1da177e4
LT
284 * (was 3; 4 is minimum to allow fast retransmit to work.)
285 */
286 while (tcp_win_from_space(rcvmem) < tp->advmss)
287 rcvmem += 128;
288 if (sk->sk_rcvbuf < 4 * rcvmem)
289 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
290}
291
caa20d9a 292/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
293 * established state.
294 */
295static void tcp_init_buffer_space(struct sock *sk)
296{
297 struct tcp_sock *tp = tcp_sk(sk);
298 int maxwin;
299
300 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
301 tcp_fixup_rcvbuf(sk);
302 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
303 tcp_fixup_sndbuf(sk);
304
305 tp->rcvq_space.space = tp->rcv_wnd;
306
307 maxwin = tcp_full_space(sk);
308
309 if (tp->window_clamp >= maxwin) {
310 tp->window_clamp = maxwin;
311
312 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
313 tp->window_clamp = max(maxwin -
314 (maxwin >> sysctl_tcp_app_win),
315 4 * tp->advmss);
316 }
317
318 /* Force reservation of one segment. */
319 if (sysctl_tcp_app_win &&
320 tp->window_clamp > 2 * tp->advmss &&
321 tp->window_clamp + tp->advmss > maxwin)
322 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
323
324 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
325 tp->snd_cwnd_stamp = tcp_time_stamp;
326}
327
1da177e4
LT
328/* 5. Recalculate window clamp after socket hit its memory bounds. */
329static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
330{
6687e988 331 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 332
6687e988 333 icsk->icsk_ack.quick = 0;
1da177e4 334
326f36e9
JH
335 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
336 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
337 !tcp_memory_pressure &&
338 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
339 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
340 sysctl_tcp_rmem[2]);
1da177e4 341 }
326f36e9 342 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
1da177e4 343 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
1da177e4
LT
344}
345
40efc6fa
SH
346
347/* Initialize RCV_MSS value.
348 * RCV_MSS is an our guess about MSS used by the peer.
349 * We haven't any direct information about the MSS.
350 * It's better to underestimate the RCV_MSS rather than overestimate.
351 * Overestimations make us ACKing less frequently than needed.
352 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
353 */
354void tcp_initialize_rcv_mss(struct sock *sk)
355{
356 struct tcp_sock *tp = tcp_sk(sk);
357 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
358
359 hint = min(hint, tp->rcv_wnd/2);
360 hint = min(hint, TCP_MIN_RCVMSS);
361 hint = max(hint, TCP_MIN_MSS);
362
363 inet_csk(sk)->icsk_ack.rcv_mss = hint;
364}
365
1da177e4
LT
366/* Receiver "autotuning" code.
367 *
368 * The algorithm for RTT estimation w/o timestamps is based on
369 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
370 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
371 *
372 * More detail on this code can be found at
373 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
374 * though this reference is out of date. A new paper
375 * is pending.
376 */
377static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
378{
379 u32 new_sample = tp->rcv_rtt_est.rtt;
380 long m = sample;
381
382 if (m == 0)
383 m = 1;
384
385 if (new_sample != 0) {
386 /* If we sample in larger samples in the non-timestamp
387 * case, we could grossly overestimate the RTT especially
388 * with chatty applications or bulk transfer apps which
389 * are stalled on filesystem I/O.
390 *
391 * Also, since we are only going for a minimum in the
31f34269 392 * non-timestamp case, we do not smooth things out
caa20d9a 393 * else with timestamps disabled convergence takes too
1da177e4
LT
394 * long.
395 */
396 if (!win_dep) {
397 m -= (new_sample >> 3);
398 new_sample += m;
399 } else if (m < new_sample)
400 new_sample = m << 3;
401 } else {
caa20d9a 402 /* No previous measure. */
1da177e4
LT
403 new_sample = m << 3;
404 }
405
406 if (tp->rcv_rtt_est.rtt != new_sample)
407 tp->rcv_rtt_est.rtt = new_sample;
408}
409
410static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
411{
412 if (tp->rcv_rtt_est.time == 0)
413 goto new_measure;
414 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
415 return;
416 tcp_rcv_rtt_update(tp,
417 jiffies - tp->rcv_rtt_est.time,
418 1);
419
420new_measure:
421 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
422 tp->rcv_rtt_est.time = tcp_time_stamp;
423}
424
463c84b9 425static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
1da177e4 426{
463c84b9 427 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
428 if (tp->rx_opt.rcv_tsecr &&
429 (TCP_SKB_CB(skb)->end_seq -
463c84b9 430 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
431 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
432}
433
434/*
435 * This function should be called every time data is copied to user space.
436 * It calculates the appropriate TCP receive buffer space.
437 */
438void tcp_rcv_space_adjust(struct sock *sk)
439{
440 struct tcp_sock *tp = tcp_sk(sk);
441 int time;
442 int space;
e905a9ed 443
1da177e4
LT
444 if (tp->rcvq_space.time == 0)
445 goto new_measure;
e905a9ed 446
1da177e4
LT
447 time = tcp_time_stamp - tp->rcvq_space.time;
448 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
449 tp->rcv_rtt_est.rtt == 0)
450 return;
e905a9ed 451
1da177e4
LT
452 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
453
454 space = max(tp->rcvq_space.space, space);
455
456 if (tp->rcvq_space.space != space) {
457 int rcvmem;
458
459 tp->rcvq_space.space = space;
460
6fcf9412
JH
461 if (sysctl_tcp_moderate_rcvbuf &&
462 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1da177e4
LT
463 int new_clamp = space;
464
465 /* Receive space grows, normalize in order to
466 * take into account packet headers and sk_buff
467 * structure overhead.
468 */
469 space /= tp->advmss;
470 if (!space)
471 space = 1;
472 rcvmem = (tp->advmss + MAX_TCP_HEADER +
473 16 + sizeof(struct sk_buff));
474 while (tcp_win_from_space(rcvmem) < tp->advmss)
475 rcvmem += 128;
476 space *= rcvmem;
477 space = min(space, sysctl_tcp_rmem[2]);
478 if (space > sk->sk_rcvbuf) {
479 sk->sk_rcvbuf = space;
480
481 /* Make the window clamp follow along. */
482 tp->window_clamp = new_clamp;
483 }
484 }
485 }
e905a9ed 486
1da177e4
LT
487new_measure:
488 tp->rcvq_space.seq = tp->copied_seq;
489 tp->rcvq_space.time = tcp_time_stamp;
490}
491
492/* There is something which you must keep in mind when you analyze the
493 * behavior of the tp->ato delayed ack timeout interval. When a
494 * connection starts up, we want to ack as quickly as possible. The
495 * problem is that "good" TCP's do slow start at the beginning of data
496 * transmission. The means that until we send the first few ACK's the
497 * sender will sit on his end and only queue most of his data, because
498 * he can only send snd_cwnd unacked packets at any given time. For
499 * each ACK we send, he increments snd_cwnd and transmits more of his
500 * queue. -DaveM
501 */
502static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
503{
463c84b9 504 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
505 u32 now;
506
463c84b9 507 inet_csk_schedule_ack(sk);
1da177e4 508
463c84b9 509 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
510
511 tcp_rcv_rtt_measure(tp);
e905a9ed 512
1da177e4
LT
513 now = tcp_time_stamp;
514
463c84b9 515 if (!icsk->icsk_ack.ato) {
1da177e4
LT
516 /* The _first_ data packet received, initialize
517 * delayed ACK engine.
518 */
463c84b9
ACM
519 tcp_incr_quickack(sk);
520 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 521 } else {
463c84b9 522 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4
LT
523
524 if (m <= TCP_ATO_MIN/2) {
525 /* The fastest case is the first. */
463c84b9
ACM
526 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
527 } else if (m < icsk->icsk_ack.ato) {
528 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
529 if (icsk->icsk_ack.ato > icsk->icsk_rto)
530 icsk->icsk_ack.ato = icsk->icsk_rto;
531 } else if (m > icsk->icsk_rto) {
caa20d9a 532 /* Too long gap. Apparently sender failed to
1da177e4
LT
533 * restart window, so that we send ACKs quickly.
534 */
463c84b9 535 tcp_incr_quickack(sk);
1da177e4
LT
536 sk_stream_mem_reclaim(sk);
537 }
538 }
463c84b9 539 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
540
541 TCP_ECN_check_ce(tp, skb);
542
543 if (skb->len >= 128)
544 tcp_grow_window(sk, tp, skb);
545}
546
1da177e4
LT
547/* Called to compute a smoothed rtt estimate. The data fed to this
548 * routine either comes from timestamps, or from segments that were
549 * known _not_ to have been retransmitted [see Karn/Partridge
550 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
551 * piece by Van Jacobson.
552 * NOTE: the next three routines used to be one big routine.
553 * To save cycles in the RFC 1323 implementation it was better to break
554 * it up into three procedures. -- erics
555 */
2d2abbab 556static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
1da177e4 557{
6687e988 558 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
559 long m = mrtt; /* RTT */
560
1da177e4
LT
561 /* The following amusing code comes from Jacobson's
562 * article in SIGCOMM '88. Note that rtt and mdev
563 * are scaled versions of rtt and mean deviation.
e905a9ed 564 * This is designed to be as fast as possible
1da177e4
LT
565 * m stands for "measurement".
566 *
567 * On a 1990 paper the rto value is changed to:
568 * RTO = rtt + 4 * mdev
569 *
570 * Funny. This algorithm seems to be very broken.
571 * These formulae increase RTO, when it should be decreased, increase
31f34269 572 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
573 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
574 * does not matter how to _calculate_ it. Seems, it was trap
575 * that VJ failed to avoid. 8)
576 */
577 if(m == 0)
578 m = 1;
579 if (tp->srtt != 0) {
580 m -= (tp->srtt >> 3); /* m is now error in rtt est */
581 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
582 if (m < 0) {
583 m = -m; /* m is now abs(error) */
584 m -= (tp->mdev >> 2); /* similar update on mdev */
585 /* This is similar to one of Eifel findings.
586 * Eifel blocks mdev updates when rtt decreases.
587 * This solution is a bit different: we use finer gain
588 * for mdev in this case (alpha*beta).
589 * Like Eifel it also prevents growth of rto,
590 * but also it limits too fast rto decreases,
591 * happening in pure Eifel.
592 */
593 if (m > 0)
594 m >>= 3;
595 } else {
596 m -= (tp->mdev >> 2); /* similar update on mdev */
597 }
598 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
599 if (tp->mdev > tp->mdev_max) {
600 tp->mdev_max = tp->mdev;
601 if (tp->mdev_max > tp->rttvar)
602 tp->rttvar = tp->mdev_max;
603 }
604 if (after(tp->snd_una, tp->rtt_seq)) {
605 if (tp->mdev_max < tp->rttvar)
606 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
607 tp->rtt_seq = tp->snd_nxt;
608 tp->mdev_max = TCP_RTO_MIN;
609 }
610 } else {
611 /* no previous measure. */
612 tp->srtt = m<<3; /* take the measured time to be rtt */
613 tp->mdev = m<<1; /* make sure rto = 3*rtt */
614 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
615 tp->rtt_seq = tp->snd_nxt;
616 }
1da177e4
LT
617}
618
619/* Calculate rto without backoff. This is the second half of Van Jacobson's
620 * routine referred to above.
621 */
463c84b9 622static inline void tcp_set_rto(struct sock *sk)
1da177e4 623{
463c84b9 624 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
625 /* Old crap is replaced with new one. 8)
626 *
627 * More seriously:
628 * 1. If rtt variance happened to be less 50msec, it is hallucination.
629 * It cannot be less due to utterly erratic ACK generation made
630 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
631 * to do with delayed acks, because at cwnd>2 true delack timeout
632 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 633 * ACKs in some circumstances.
1da177e4 634 */
463c84b9 635 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
1da177e4
LT
636
637 /* 2. Fixups made earlier cannot be right.
638 * If we do not estimate RTO correctly without them,
639 * all the algo is pure shit and should be replaced
caa20d9a 640 * with correct one. It is exactly, which we pretend to do.
1da177e4
LT
641 */
642}
643
644/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
645 * guarantees that rto is higher.
646 */
463c84b9 647static inline void tcp_bound_rto(struct sock *sk)
1da177e4 648{
463c84b9
ACM
649 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
650 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
1da177e4
LT
651}
652
653/* Save metrics learned by this TCP session.
654 This function is called only, when TCP finishes successfully
655 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
656 */
657void tcp_update_metrics(struct sock *sk)
658{
659 struct tcp_sock *tp = tcp_sk(sk);
660 struct dst_entry *dst = __sk_dst_get(sk);
661
662 if (sysctl_tcp_nometrics_save)
663 return;
664
665 dst_confirm(dst);
666
667 if (dst && (dst->flags&DST_HOST)) {
6687e988 668 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
669 int m;
670
6687e988 671 if (icsk->icsk_backoff || !tp->srtt) {
1da177e4
LT
672 /* This session failed to estimate rtt. Why?
673 * Probably, no packets returned in time.
674 * Reset our results.
675 */
676 if (!(dst_metric_locked(dst, RTAX_RTT)))
677 dst->metrics[RTAX_RTT-1] = 0;
678 return;
679 }
680
681 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
682
683 /* If newly calculated rtt larger than stored one,
684 * store new one. Otherwise, use EWMA. Remember,
685 * rtt overestimation is always better than underestimation.
686 */
687 if (!(dst_metric_locked(dst, RTAX_RTT))) {
688 if (m <= 0)
689 dst->metrics[RTAX_RTT-1] = tp->srtt;
690 else
691 dst->metrics[RTAX_RTT-1] -= (m>>3);
692 }
693
694 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
695 if (m < 0)
696 m = -m;
697
698 /* Scale deviation to rttvar fixed point */
699 m >>= 1;
700 if (m < tp->mdev)
701 m = tp->mdev;
702
703 if (m >= dst_metric(dst, RTAX_RTTVAR))
704 dst->metrics[RTAX_RTTVAR-1] = m;
705 else
706 dst->metrics[RTAX_RTTVAR-1] -=
707 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
708 }
709
710 if (tp->snd_ssthresh >= 0xFFFF) {
711 /* Slow start still did not finish. */
712 if (dst_metric(dst, RTAX_SSTHRESH) &&
713 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
714 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
715 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
716 if (!dst_metric_locked(dst, RTAX_CWND) &&
717 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
718 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
719 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
6687e988 720 icsk->icsk_ca_state == TCP_CA_Open) {
1da177e4
LT
721 /* Cong. avoidance phase, cwnd is reliable. */
722 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
723 dst->metrics[RTAX_SSTHRESH-1] =
724 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
725 if (!dst_metric_locked(dst, RTAX_CWND))
726 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
727 } else {
728 /* Else slow start did not finish, cwnd is non-sense,
729 ssthresh may be also invalid.
730 */
731 if (!dst_metric_locked(dst, RTAX_CWND))
732 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
733 if (dst->metrics[RTAX_SSTHRESH-1] &&
734 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
735 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
736 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
737 }
738
739 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
740 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
741 tp->reordering != sysctl_tcp_reordering)
742 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
743 }
744 }
745}
746
747/* Numbers are taken from RFC2414. */
748__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
749{
750 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
751
752 if (!cwnd) {
c1b4a7e6 753 if (tp->mss_cache > 1460)
1da177e4
LT
754 cwnd = 2;
755 else
c1b4a7e6 756 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
1da177e4
LT
757 }
758 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
759}
760
40efc6fa
SH
761/* Set slow start threshold and cwnd not falling to slow start */
762void tcp_enter_cwr(struct sock *sk)
763{
764 struct tcp_sock *tp = tcp_sk(sk);
765
766 tp->prior_ssthresh = 0;
767 tp->bytes_acked = 0;
768 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
769 tp->undo_marker = 0;
770 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
771 tp->snd_cwnd = min(tp->snd_cwnd,
772 tcp_packets_in_flight(tp) + 1U);
773 tp->snd_cwnd_cnt = 0;
774 tp->high_seq = tp->snd_nxt;
775 tp->snd_cwnd_stamp = tcp_time_stamp;
776 TCP_ECN_queue_cwr(tp);
777
778 tcp_set_ca_state(sk, TCP_CA_CWR);
779 }
780}
781
1da177e4
LT
782/* Initialize metrics on socket. */
783
784static void tcp_init_metrics(struct sock *sk)
785{
786 struct tcp_sock *tp = tcp_sk(sk);
787 struct dst_entry *dst = __sk_dst_get(sk);
788
789 if (dst == NULL)
790 goto reset;
791
792 dst_confirm(dst);
793
794 if (dst_metric_locked(dst, RTAX_CWND))
795 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
796 if (dst_metric(dst, RTAX_SSTHRESH)) {
797 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
798 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
799 tp->snd_ssthresh = tp->snd_cwnd_clamp;
800 }
801 if (dst_metric(dst, RTAX_REORDERING) &&
802 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
803 tp->rx_opt.sack_ok &= ~2;
804 tp->reordering = dst_metric(dst, RTAX_REORDERING);
805 }
806
807 if (dst_metric(dst, RTAX_RTT) == 0)
808 goto reset;
809
810 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
811 goto reset;
812
813 /* Initial rtt is determined from SYN,SYN-ACK.
814 * The segment is small and rtt may appear much
815 * less than real one. Use per-dst memory
816 * to make it more realistic.
817 *
818 * A bit of theory. RTT is time passed after "normal" sized packet
caa20d9a 819 * is sent until it is ACKed. In normal circumstances sending small
1da177e4
LT
820 * packets force peer to delay ACKs and calculation is correct too.
821 * The algorithm is adaptive and, provided we follow specs, it
822 * NEVER underestimate RTT. BUT! If peer tries to make some clever
823 * tricks sort of "quick acks" for time long enough to decrease RTT
824 * to low value, and then abruptly stops to do it and starts to delay
825 * ACKs, wait for troubles.
826 */
827 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
828 tp->srtt = dst_metric(dst, RTAX_RTT);
829 tp->rtt_seq = tp->snd_nxt;
830 }
831 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
832 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
833 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
834 }
463c84b9
ACM
835 tcp_set_rto(sk);
836 tcp_bound_rto(sk);
837 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
1da177e4
LT
838 goto reset;
839 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
840 tp->snd_cwnd_stamp = tcp_time_stamp;
841 return;
842
843reset:
844 /* Play conservative. If timestamps are not
845 * supported, TCP will fail to recalculate correct
846 * rtt, if initial rto is too small. FORGET ALL AND RESET!
847 */
848 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
849 tp->srtt = 0;
850 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
463c84b9 851 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
1da177e4
LT
852 }
853}
854
6687e988
ACM
855static void tcp_update_reordering(struct sock *sk, const int metric,
856 const int ts)
1da177e4 857{
6687e988 858 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
859 if (metric > tp->reordering) {
860 tp->reordering = min(TCP_MAX_REORDERING, metric);
861
862 /* This exciting event is worth to be remembered. 8) */
863 if (ts)
864 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
865 else if (IsReno(tp))
866 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
867 else if (IsFack(tp))
868 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
869 else
870 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
871#if FASTRETRANS_DEBUG > 1
872 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
6687e988 873 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1da177e4
LT
874 tp->reordering,
875 tp->fackets_out,
876 tp->sacked_out,
877 tp->undo_marker ? tp->undo_retrans : 0);
878#endif
879 /* Disable FACK yet. */
880 tp->rx_opt.sack_ok &= ~2;
881 }
882}
883
884/* This procedure tags the retransmission queue when SACKs arrive.
885 *
886 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
887 * Packets in queue with these bits set are counted in variables
888 * sacked_out, retrans_out and lost_out, correspondingly.
889 *
890 * Valid combinations are:
891 * Tag InFlight Description
892 * 0 1 - orig segment is in flight.
893 * S 0 - nothing flies, orig reached receiver.
894 * L 0 - nothing flies, orig lost by net.
895 * R 2 - both orig and retransmit are in flight.
896 * L|R 1 - orig is lost, retransmit is in flight.
897 * S|R 1 - orig reached receiver, retrans is still in flight.
898 * (L|S|R is logically valid, it could occur when L|R is sacked,
899 * but it is equivalent to plain S and code short-curcuits it to S.
900 * L|S is logically invalid, it would mean -1 packet in flight 8))
901 *
902 * These 6 states form finite state machine, controlled by the following events:
903 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
904 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
905 * 3. Loss detection event of one of three flavors:
906 * A. Scoreboard estimator decided the packet is lost.
907 * A'. Reno "three dupacks" marks head of queue lost.
908 * A''. Its FACK modfication, head until snd.fack is lost.
909 * B. SACK arrives sacking data transmitted after never retransmitted
910 * hole was sent out.
911 * C. SACK arrives sacking SND.NXT at the moment, when the
912 * segment was retransmitted.
913 * 4. D-SACK added new rule: D-SACK changes any tag to S.
914 *
915 * It is pleasant to note, that state diagram turns out to be commutative,
916 * so that we are allowed not to be bothered by order of our actions,
917 * when multiple events arrive simultaneously. (see the function below).
918 *
919 * Reordering detection.
920 * --------------------
921 * Reordering metric is maximal distance, which a packet can be displaced
922 * in packet stream. With SACKs we can estimate it:
923 *
924 * 1. SACK fills old hole and the corresponding segment was not
925 * ever retransmitted -> reordering. Alas, we cannot use it
926 * when segment was retransmitted.
927 * 2. The last flaw is solved with D-SACK. D-SACK arrives
928 * for retransmitted and already SACKed segment -> reordering..
929 * Both of these heuristics are not used in Loss state, when we cannot
930 * account for retransmits accurately.
931 */
932static int
933tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
934{
6687e988 935 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
936 struct tcp_sock *tp = tcp_sk(sk);
937 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
269bd27e 938 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
fda03fbb 939 struct sk_buff *cached_skb;
1da177e4
LT
940 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
941 int reord = tp->packets_out;
942 int prior_fackets;
943 u32 lost_retrans = 0;
944 int flag = 0;
6a438bbe 945 int dup_sack = 0;
fda03fbb 946 int cached_fack_count;
1da177e4 947 int i;
fda03fbb 948 int first_sack_index;
1da177e4 949
1da177e4
LT
950 if (!tp->sacked_out)
951 tp->fackets_out = 0;
952 prior_fackets = tp->fackets_out;
953
6f74651a
BE
954 /* Check for D-SACK. */
955 if (before(ntohl(sp[0].start_seq), TCP_SKB_CB(ack_skb)->ack_seq)) {
956 dup_sack = 1;
957 tp->rx_opt.sack_ok |= 4;
958 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
959 } else if (num_sacks > 1 &&
960 !after(ntohl(sp[0].end_seq), ntohl(sp[1].end_seq)) &&
961 !before(ntohl(sp[0].start_seq), ntohl(sp[1].start_seq))) {
962 dup_sack = 1;
963 tp->rx_opt.sack_ok |= 4;
964 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
965 }
966
967 /* D-SACK for already forgotten data...
968 * Do dumb counting. */
969 if (dup_sack &&
970 !after(ntohl(sp[0].end_seq), prior_snd_una) &&
971 after(ntohl(sp[0].end_seq), tp->undo_marker))
972 tp->undo_retrans--;
973
974 /* Eliminate too old ACKs, but take into
975 * account more or less fresh ones, they can
976 * contain valid SACK info.
977 */
978 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
979 return 0;
980
6a438bbe
SH
981 /* SACK fastpath:
982 * if the only SACK change is the increase of the end_seq of
983 * the first block then only apply that SACK block
984 * and use retrans queue hinting otherwise slowpath */
985 flag = 1;
6f74651a
BE
986 for (i = 0; i < num_sacks; i++) {
987 __be32 start_seq = sp[i].start_seq;
988 __be32 end_seq = sp[i].end_seq;
6a438bbe 989
6f74651a 990 if (i == 0) {
6a438bbe
SH
991 if (tp->recv_sack_cache[i].start_seq != start_seq)
992 flag = 0;
993 } else {
994 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
995 (tp->recv_sack_cache[i].end_seq != end_seq))
996 flag = 0;
997 }
998 tp->recv_sack_cache[i].start_seq = start_seq;
999 tp->recv_sack_cache[i].end_seq = end_seq;
6a438bbe 1000 }
8a3c3a97
BE
1001 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1002 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1003 tp->recv_sack_cache[i].start_seq = 0;
1004 tp->recv_sack_cache[i].end_seq = 0;
1005 }
6a438bbe 1006
fda03fbb 1007 first_sack_index = 0;
6a438bbe
SH
1008 if (flag)
1009 num_sacks = 1;
1010 else {
1011 int j;
1012 tp->fastpath_skb_hint = NULL;
1013
1014 /* order SACK blocks to allow in order walk of the retrans queue */
1015 for (i = num_sacks-1; i > 0; i--) {
1016 for (j = 0; j < i; j++){
1017 if (after(ntohl(sp[j].start_seq),
1018 ntohl(sp[j+1].start_seq))){
db3ccdac
BE
1019 struct tcp_sack_block_wire tmp;
1020
1021 tmp = sp[j];
1022 sp[j] = sp[j+1];
1023 sp[j+1] = tmp;
fda03fbb
BE
1024
1025 /* Track where the first SACK block goes to */
1026 if (j == first_sack_index)
1027 first_sack_index = j+1;
6a438bbe
SH
1028 }
1029
1030 }
1031 }
1032 }
1033
1034 /* clear flag as used for different purpose in following code */
1035 flag = 0;
1036
fda03fbb
BE
1037 /* Use SACK fastpath hint if valid */
1038 cached_skb = tp->fastpath_skb_hint;
1039 cached_fack_count = tp->fastpath_cnt_hint;
1040 if (!cached_skb) {
1041 cached_skb = sk->sk_write_queue.next;
1042 cached_fack_count = 0;
1043 }
1044
6a438bbe
SH
1045 for (i=0; i<num_sacks; i++, sp++) {
1046 struct sk_buff *skb;
1047 __u32 start_seq = ntohl(sp->start_seq);
1048 __u32 end_seq = ntohl(sp->end_seq);
1049 int fack_count;
1050
fda03fbb
BE
1051 skb = cached_skb;
1052 fack_count = cached_fack_count;
1da177e4
LT
1053
1054 /* Event "B" in the comment above. */
1055 if (after(end_seq, tp->high_seq))
1056 flag |= FLAG_DATA_LOST;
1057
6a438bbe 1058 sk_stream_for_retrans_queue_from(skb, sk) {
6475be16
DM
1059 int in_sack, pcount;
1060 u8 sacked;
1da177e4 1061
fda03fbb
BE
1062 cached_skb = skb;
1063 cached_fack_count = fack_count;
1064 if (i == first_sack_index) {
1065 tp->fastpath_skb_hint = skb;
1066 tp->fastpath_cnt_hint = fack_count;
1067 }
6a438bbe 1068
1da177e4
LT
1069 /* The retransmission queue is always in order, so
1070 * we can short-circuit the walk early.
1071 */
6475be16 1072 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1da177e4
LT
1073 break;
1074
3c05d92e
HX
1075 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1076 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1077
6475be16
DM
1078 pcount = tcp_skb_pcount(skb);
1079
3c05d92e
HX
1080 if (pcount > 1 && !in_sack &&
1081 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
6475be16
DM
1082 unsigned int pkt_len;
1083
3c05d92e
HX
1084 in_sack = !after(start_seq,
1085 TCP_SKB_CB(skb)->seq);
1086
1087 if (!in_sack)
6475be16
DM
1088 pkt_len = (start_seq -
1089 TCP_SKB_CB(skb)->seq);
1090 else
1091 pkt_len = (end_seq -
1092 TCP_SKB_CB(skb)->seq);
7967168c 1093 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
6475be16
DM
1094 break;
1095 pcount = tcp_skb_pcount(skb);
1096 }
1097
1098 fack_count += pcount;
1da177e4 1099
6475be16
DM
1100 sacked = TCP_SKB_CB(skb)->sacked;
1101
1da177e4
LT
1102 /* Account D-SACK for retransmitted packet. */
1103 if ((dup_sack && in_sack) &&
1104 (sacked & TCPCB_RETRANS) &&
1105 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1106 tp->undo_retrans--;
1107
1108 /* The frame is ACKed. */
1109 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1110 if (sacked&TCPCB_RETRANS) {
1111 if ((dup_sack && in_sack) &&
1112 (sacked&TCPCB_SACKED_ACKED))
1113 reord = min(fack_count, reord);
1114 } else {
1115 /* If it was in a hole, we detected reordering. */
1116 if (fack_count < prior_fackets &&
1117 !(sacked&TCPCB_SACKED_ACKED))
1118 reord = min(fack_count, reord);
1119 }
1120
1121 /* Nothing to do; acked frame is about to be dropped. */
1122 continue;
1123 }
1124
1125 if ((sacked&TCPCB_SACKED_RETRANS) &&
1126 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1127 (!lost_retrans || after(end_seq, lost_retrans)))
1128 lost_retrans = end_seq;
1129
1130 if (!in_sack)
1131 continue;
1132
1133 if (!(sacked&TCPCB_SACKED_ACKED)) {
1134 if (sacked & TCPCB_SACKED_RETRANS) {
1135 /* If the segment is not tagged as lost,
1136 * we do not clear RETRANS, believing
1137 * that retransmission is still in flight.
1138 */
1139 if (sacked & TCPCB_LOST) {
1140 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1141 tp->lost_out -= tcp_skb_pcount(skb);
1142 tp->retrans_out -= tcp_skb_pcount(skb);
6a438bbe
SH
1143
1144 /* clear lost hint */
1145 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1146 }
1147 } else {
1148 /* New sack for not retransmitted frame,
1149 * which was in hole. It is reordering.
1150 */
1151 if (!(sacked & TCPCB_RETRANS) &&
1152 fack_count < prior_fackets)
1153 reord = min(fack_count, reord);
1154
1155 if (sacked & TCPCB_LOST) {
1156 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1157 tp->lost_out -= tcp_skb_pcount(skb);
6a438bbe
SH
1158
1159 /* clear lost hint */
1160 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1161 }
1162 }
1163
1164 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1165 flag |= FLAG_DATA_SACKED;
1166 tp->sacked_out += tcp_skb_pcount(skb);
1167
1168 if (fack_count > tp->fackets_out)
1169 tp->fackets_out = fack_count;
1170 } else {
1171 if (dup_sack && (sacked&TCPCB_RETRANS))
1172 reord = min(fack_count, reord);
1173 }
1174
1175 /* D-SACK. We can detect redundant retransmission
1176 * in S|R and plain R frames and clear it.
1177 * undo_retrans is decreased above, L|R frames
1178 * are accounted above as well.
1179 */
1180 if (dup_sack &&
1181 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1182 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1183 tp->retrans_out -= tcp_skb_pcount(skb);
6a438bbe 1184 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1185 }
1186 }
1187 }
1188
1189 /* Check for lost retransmit. This superb idea is
1190 * borrowed from "ratehalving". Event "C".
1191 * Later note: FACK people cheated me again 8),
1192 * we have to account for reordering! Ugly,
1193 * but should help.
1194 */
6687e988 1195 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1da177e4
LT
1196 struct sk_buff *skb;
1197
1198 sk_stream_for_retrans_queue(skb, sk) {
1199 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1200 break;
1201 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1202 continue;
1203 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1204 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1205 (IsFack(tp) ||
1206 !before(lost_retrans,
1207 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
c1b4a7e6 1208 tp->mss_cache))) {
1da177e4
LT
1209 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1210 tp->retrans_out -= tcp_skb_pcount(skb);
1211
6a438bbe
SH
1212 /* clear lost hint */
1213 tp->retransmit_skb_hint = NULL;
1214
1da177e4
LT
1215 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1216 tp->lost_out += tcp_skb_pcount(skb);
1217 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1218 flag |= FLAG_DATA_SACKED;
1219 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1220 }
1221 }
1222 }
1223 }
1224
1225 tp->left_out = tp->sacked_out + tp->lost_out;
1226
6687e988
ACM
1227 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss)
1228 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1da177e4
LT
1229
1230#if FASTRETRANS_DEBUG > 0
1231 BUG_TRAP((int)tp->sacked_out >= 0);
1232 BUG_TRAP((int)tp->lost_out >= 0);
1233 BUG_TRAP((int)tp->retrans_out >= 0);
1234 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1235#endif
1236 return flag;
1237}
1238
30935cf4
IJ
1239/* F-RTO can only be used if these conditions are satisfied:
1240 * - there must be some unsent new data
1241 * - the advertised window should allow sending it
1242 */
bdaae17d
IJ
1243int tcp_use_frto(const struct sock *sk)
1244{
1245 const struct tcp_sock *tp = tcp_sk(sk);
1246
bdaae17d
IJ
1247 return (sysctl_tcp_frto && sk->sk_send_head &&
1248 !after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
1249 tp->snd_una + tp->snd_wnd));
1250}
1251
30935cf4
IJ
1252/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1253 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1254 * the RTO was spurious.
7487c48c
IJ
1255 *
1256 * Do like tcp_enter_loss() would; when RTO expires the second time it
1257 * does:
1258 * "Reduce ssthresh if it has not yet been made inside this window."
1da177e4
LT
1259 */
1260void tcp_enter_frto(struct sock *sk)
1261{
6687e988 1262 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1263 struct tcp_sock *tp = tcp_sk(sk);
1264 struct sk_buff *skb;
1265
7487c48c 1266 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
e905a9ed 1267 tp->snd_una == tp->high_seq ||
7487c48c
IJ
1268 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1269 !icsk->icsk_retransmits)) {
6687e988
ACM
1270 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1271 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1272 tcp_ca_event(sk, CA_EVENT_FRTO);
1da177e4
LT
1273 }
1274
1275 /* Have to clear retransmission markers here to keep the bookkeeping
1276 * in shape, even though we are not yet in Loss state.
1277 * If something was really lost, it is eventually caught up
1278 * in tcp_enter_frto_loss.
1279 */
1280 tp->retrans_out = 0;
1281 tp->undo_marker = tp->snd_una;
1282 tp->undo_retrans = 0;
1283
1284 sk_stream_for_retrans_queue(skb, sk) {
522e7548 1285 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1da177e4
LT
1286 }
1287 tcp_sync_left_out(tp);
1288
7b0eb22b
IJ
1289 tcp_set_ca_state(sk, TCP_CA_Disorder);
1290 tp->high_seq = tp->snd_nxt;
1da177e4 1291 tp->frto_highmark = tp->snd_nxt;
7487c48c 1292 tp->frto_counter = 1;
1da177e4
LT
1293}
1294
1295/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1296 * which indicates that we should follow the traditional RTO recovery,
1297 * i.e. mark everything lost and do go-back-N retransmission.
1298 */
95c4922b 1299static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments)
1da177e4
LT
1300{
1301 struct tcp_sock *tp = tcp_sk(sk);
1302 struct sk_buff *skb;
1303 int cnt = 0;
1304
1305 tp->sacked_out = 0;
1306 tp->lost_out = 0;
1307 tp->fackets_out = 0;
1308
1309 sk_stream_for_retrans_queue(skb, sk) {
1310 cnt += tcp_skb_pcount(skb);
1311 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1312 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1313
1314 /* Do not mark those segments lost that were
1315 * forward transmitted after RTO
1316 */
1317 if (!after(TCP_SKB_CB(skb)->end_seq,
1318 tp->frto_highmark)) {
1319 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1320 tp->lost_out += tcp_skb_pcount(skb);
1321 }
1322 } else {
1323 tp->sacked_out += tcp_skb_pcount(skb);
1324 tp->fackets_out = cnt;
1325 }
1326 }
1327 tcp_sync_left_out(tp);
1328
95c4922b 1329 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1da177e4
LT
1330 tp->snd_cwnd_cnt = 0;
1331 tp->snd_cwnd_stamp = tcp_time_stamp;
1332 tp->undo_marker = 0;
1333 tp->frto_counter = 0;
1334
1335 tp->reordering = min_t(unsigned int, tp->reordering,
1336 sysctl_tcp_reordering);
6687e988 1337 tcp_set_ca_state(sk, TCP_CA_Loss);
1da177e4
LT
1338 tp->high_seq = tp->frto_highmark;
1339 TCP_ECN_queue_cwr(tp);
6a438bbe
SH
1340
1341 clear_all_retrans_hints(tp);
1da177e4
LT
1342}
1343
1344void tcp_clear_retrans(struct tcp_sock *tp)
1345{
1346 tp->left_out = 0;
1347 tp->retrans_out = 0;
1348
1349 tp->fackets_out = 0;
1350 tp->sacked_out = 0;
1351 tp->lost_out = 0;
1352
1353 tp->undo_marker = 0;
1354 tp->undo_retrans = 0;
1355}
1356
1357/* Enter Loss state. If "how" is not zero, forget all SACK information
1358 * and reset tags completely, otherwise preserve SACKs. If receiver
1359 * dropped its ofo queue, we will know this due to reneging detection.
1360 */
1361void tcp_enter_loss(struct sock *sk, int how)
1362{
6687e988 1363 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1364 struct tcp_sock *tp = tcp_sk(sk);
1365 struct sk_buff *skb;
1366 int cnt = 0;
1367
1368 /* Reduce ssthresh if it has not yet been made inside this window. */
6687e988
ACM
1369 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1370 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1371 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1372 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1373 tcp_ca_event(sk, CA_EVENT_LOSS);
1da177e4
LT
1374 }
1375 tp->snd_cwnd = 1;
1376 tp->snd_cwnd_cnt = 0;
1377 tp->snd_cwnd_stamp = tcp_time_stamp;
1378
9772efb9 1379 tp->bytes_acked = 0;
1da177e4
LT
1380 tcp_clear_retrans(tp);
1381
1382 /* Push undo marker, if it was plain RTO and nothing
1383 * was retransmitted. */
1384 if (!how)
1385 tp->undo_marker = tp->snd_una;
1386
1387 sk_stream_for_retrans_queue(skb, sk) {
1388 cnt += tcp_skb_pcount(skb);
1389 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1390 tp->undo_marker = 0;
1391 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1392 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1393 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1394 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1395 tp->lost_out += tcp_skb_pcount(skb);
1396 } else {
1397 tp->sacked_out += tcp_skb_pcount(skb);
1398 tp->fackets_out = cnt;
1399 }
1400 }
1401 tcp_sync_left_out(tp);
1402
1403 tp->reordering = min_t(unsigned int, tp->reordering,
1404 sysctl_tcp_reordering);
6687e988 1405 tcp_set_ca_state(sk, TCP_CA_Loss);
1da177e4
LT
1406 tp->high_seq = tp->snd_nxt;
1407 TCP_ECN_queue_cwr(tp);
6a438bbe
SH
1408
1409 clear_all_retrans_hints(tp);
1da177e4
LT
1410}
1411
463c84b9 1412static int tcp_check_sack_reneging(struct sock *sk)
1da177e4
LT
1413{
1414 struct sk_buff *skb;
1415
1416 /* If ACK arrived pointing to a remembered SACK,
1417 * it means that our remembered SACKs do not reflect
1418 * real state of receiver i.e.
1419 * receiver _host_ is heavily congested (or buggy).
1420 * Do processing similar to RTO timeout.
1421 */
1422 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1423 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
6687e988 1424 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1425 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1426
1427 tcp_enter_loss(sk, 1);
6687e988 1428 icsk->icsk_retransmits++;
1da177e4 1429 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
463c84b9 1430 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
6687e988 1431 icsk->icsk_rto, TCP_RTO_MAX);
1da177e4
LT
1432 return 1;
1433 }
1434 return 0;
1435}
1436
1437static inline int tcp_fackets_out(struct tcp_sock *tp)
1438{
1439 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1440}
1441
463c84b9 1442static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1da177e4 1443{
463c84b9 1444 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1da177e4
LT
1445}
1446
1447static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1448{
1449 return tp->packets_out &&
463c84b9 1450 tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1da177e4
LT
1451}
1452
1453/* Linux NewReno/SACK/FACK/ECN state machine.
1454 * --------------------------------------
1455 *
1456 * "Open" Normal state, no dubious events, fast path.
1457 * "Disorder" In all the respects it is "Open",
1458 * but requires a bit more attention. It is entered when
1459 * we see some SACKs or dupacks. It is split of "Open"
1460 * mainly to move some processing from fast path to slow one.
1461 * "CWR" CWND was reduced due to some Congestion Notification event.
1462 * It can be ECN, ICMP source quench, local device congestion.
1463 * "Recovery" CWND was reduced, we are fast-retransmitting.
1464 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1465 *
1466 * tcp_fastretrans_alert() is entered:
1467 * - each incoming ACK, if state is not "Open"
1468 * - when arrived ACK is unusual, namely:
1469 * * SACK
1470 * * Duplicate ACK.
1471 * * ECN ECE.
1472 *
1473 * Counting packets in flight is pretty simple.
1474 *
1475 * in_flight = packets_out - left_out + retrans_out
1476 *
1477 * packets_out is SND.NXT-SND.UNA counted in packets.
1478 *
1479 * retrans_out is number of retransmitted segments.
1480 *
1481 * left_out is number of segments left network, but not ACKed yet.
1482 *
1483 * left_out = sacked_out + lost_out
1484 *
1485 * sacked_out: Packets, which arrived to receiver out of order
1486 * and hence not ACKed. With SACKs this number is simply
1487 * amount of SACKed data. Even without SACKs
1488 * it is easy to give pretty reliable estimate of this number,
1489 * counting duplicate ACKs.
1490 *
1491 * lost_out: Packets lost by network. TCP has no explicit
1492 * "loss notification" feedback from network (for now).
1493 * It means that this number can be only _guessed_.
1494 * Actually, it is the heuristics to predict lossage that
1495 * distinguishes different algorithms.
1496 *
1497 * F.e. after RTO, when all the queue is considered as lost,
1498 * lost_out = packets_out and in_flight = retrans_out.
1499 *
1500 * Essentially, we have now two algorithms counting
1501 * lost packets.
1502 *
1503 * FACK: It is the simplest heuristics. As soon as we decided
1504 * that something is lost, we decide that _all_ not SACKed
1505 * packets until the most forward SACK are lost. I.e.
1506 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1507 * It is absolutely correct estimate, if network does not reorder
1508 * packets. And it loses any connection to reality when reordering
1509 * takes place. We use FACK by default until reordering
1510 * is suspected on the path to this destination.
1511 *
1512 * NewReno: when Recovery is entered, we assume that one segment
1513 * is lost (classic Reno). While we are in Recovery and
1514 * a partial ACK arrives, we assume that one more packet
1515 * is lost (NewReno). This heuristics are the same in NewReno
1516 * and SACK.
1517 *
1518 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1519 * deflation etc. CWND is real congestion window, never inflated, changes
1520 * only according to classic VJ rules.
1521 *
1522 * Really tricky (and requiring careful tuning) part of algorithm
1523 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1524 * The first determines the moment _when_ we should reduce CWND and,
1525 * hence, slow down forward transmission. In fact, it determines the moment
1526 * when we decide that hole is caused by loss, rather than by a reorder.
1527 *
1528 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1529 * holes, caused by lost packets.
1530 *
1531 * And the most logically complicated part of algorithm is undo
1532 * heuristics. We detect false retransmits due to both too early
1533 * fast retransmit (reordering) and underestimated RTO, analyzing
1534 * timestamps and D-SACKs. When we detect that some segments were
1535 * retransmitted by mistake and CWND reduction was wrong, we undo
1536 * window reduction and abort recovery phase. This logic is hidden
1537 * inside several functions named tcp_try_undo_<something>.
1538 */
1539
1540/* This function decides, when we should leave Disordered state
1541 * and enter Recovery phase, reducing congestion window.
1542 *
1543 * Main question: may we further continue forward transmission
1544 * with the same cwnd?
1545 */
1546static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1547{
1548 __u32 packets_out;
1549
1550 /* Trick#1: The loss is proven. */
1551 if (tp->lost_out)
1552 return 1;
1553
1554 /* Not-A-Trick#2 : Classic rule... */
1555 if (tcp_fackets_out(tp) > tp->reordering)
1556 return 1;
1557
1558 /* Trick#3 : when we use RFC2988 timer restart, fast
1559 * retransmit can be triggered by timeout of queue head.
1560 */
1561 if (tcp_head_timedout(sk, tp))
1562 return 1;
1563
1564 /* Trick#4: It is still not OK... But will it be useful to delay
1565 * recovery more?
1566 */
1567 packets_out = tp->packets_out;
1568 if (packets_out <= tp->reordering &&
1569 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1570 !tcp_may_send_now(sk, tp)) {
1571 /* We have nothing to send. This connection is limited
1572 * either by receiver window or by application.
1573 */
1574 return 1;
1575 }
1576
1577 return 0;
1578}
1579
1580/* If we receive more dupacks than we expected counting segments
1581 * in assumption of absent reordering, interpret this as reordering.
1582 * The only another reason could be bug in receiver TCP.
1583 */
6687e988 1584static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1da177e4 1585{
6687e988 1586 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
1587 u32 holes;
1588
1589 holes = max(tp->lost_out, 1U);
1590 holes = min(holes, tp->packets_out);
1591
1592 if ((tp->sacked_out + holes) > tp->packets_out) {
1593 tp->sacked_out = tp->packets_out - holes;
6687e988 1594 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1da177e4
LT
1595 }
1596}
1597
1598/* Emulate SACKs for SACKless connection: account for a new dupack. */
1599
6687e988 1600static void tcp_add_reno_sack(struct sock *sk)
1da177e4 1601{
6687e988 1602 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 1603 tp->sacked_out++;
6687e988 1604 tcp_check_reno_reordering(sk, 0);
1da177e4
LT
1605 tcp_sync_left_out(tp);
1606}
1607
1608/* Account for ACK, ACKing some data in Reno Recovery phase. */
1609
1610static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1611{
1612 if (acked > 0) {
1613 /* One ACK acked hole. The rest eat duplicate ACKs. */
1614 if (acked-1 >= tp->sacked_out)
1615 tp->sacked_out = 0;
1616 else
1617 tp->sacked_out -= acked-1;
1618 }
6687e988 1619 tcp_check_reno_reordering(sk, acked);
1da177e4
LT
1620 tcp_sync_left_out(tp);
1621}
1622
1623static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1624{
1625 tp->sacked_out = 0;
1626 tp->left_out = tp->lost_out;
1627}
1628
1629/* Mark head of queue up as lost. */
1630static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1631 int packets, u32 high_seq)
1632{
1633 struct sk_buff *skb;
6a438bbe 1634 int cnt;
1da177e4 1635
6a438bbe
SH
1636 BUG_TRAP(packets <= tp->packets_out);
1637 if (tp->lost_skb_hint) {
1638 skb = tp->lost_skb_hint;
1639 cnt = tp->lost_cnt_hint;
1640 } else {
1641 skb = sk->sk_write_queue.next;
1642 cnt = 0;
1643 }
1da177e4 1644
6a438bbe
SH
1645 sk_stream_for_retrans_queue_from(skb, sk) {
1646 /* TODO: do this better */
1647 /* this is not the most efficient way to do this... */
1648 tp->lost_skb_hint = skb;
1649 tp->lost_cnt_hint = cnt;
1650 cnt += tcp_skb_pcount(skb);
1651 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1da177e4
LT
1652 break;
1653 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1654 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1655 tp->lost_out += tcp_skb_pcount(skb);
6a438bbe
SH
1656
1657 /* clear xmit_retransmit_queue hints
1658 * if this is beyond hint */
1659 if(tp->retransmit_skb_hint != NULL &&
1660 before(TCP_SKB_CB(skb)->seq,
1661 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) {
1662
1663 tp->retransmit_skb_hint = NULL;
1664 }
1da177e4
LT
1665 }
1666 }
1667 tcp_sync_left_out(tp);
1668}
1669
1670/* Account newly detected lost packet(s) */
1671
1672static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1673{
1674 if (IsFack(tp)) {
1675 int lost = tp->fackets_out - tp->reordering;
1676 if (lost <= 0)
1677 lost = 1;
1678 tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1679 } else {
1680 tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1681 }
1682
1683 /* New heuristics: it is possible only after we switched
1684 * to restart timer each time when something is ACKed.
1685 * Hence, we can detect timed out packets during fast
1686 * retransmit without falling to slow start.
1687 */
79320d7e 1688 if (!IsReno(tp) && tcp_head_timedout(sk, tp)) {
1da177e4
LT
1689 struct sk_buff *skb;
1690
6a438bbe
SH
1691 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1692 : sk->sk_write_queue.next;
1693
1694 sk_stream_for_retrans_queue_from(skb, sk) {
1695 if (!tcp_skb_timedout(sk, skb))
1696 break;
1697
1698 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1da177e4
LT
1699 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1700 tp->lost_out += tcp_skb_pcount(skb);
6a438bbe
SH
1701
1702 /* clear xmit_retrans hint */
1703 if (tp->retransmit_skb_hint &&
1704 before(TCP_SKB_CB(skb)->seq,
1705 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1706
1707 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1708 }
1709 }
6a438bbe
SH
1710
1711 tp->scoreboard_skb_hint = skb;
1712
1da177e4
LT
1713 tcp_sync_left_out(tp);
1714 }
1715}
1716
1717/* CWND moderation, preventing bursts due to too big ACKs
1718 * in dubious situations.
1719 */
1720static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1721{
1722 tp->snd_cwnd = min(tp->snd_cwnd,
1723 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1724 tp->snd_cwnd_stamp = tcp_time_stamp;
1725}
1726
72dc5b92
SH
1727/* Lower bound on congestion window is slow start threshold
1728 * unless congestion avoidance choice decides to overide it.
1729 */
1730static inline u32 tcp_cwnd_min(const struct sock *sk)
1731{
1732 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1733
1734 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1735}
1736
1da177e4 1737/* Decrease cwnd each second ack. */
6687e988 1738static void tcp_cwnd_down(struct sock *sk)
1da177e4 1739{
6687e988 1740 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 1741 int decr = tp->snd_cwnd_cnt + 1;
1da177e4
LT
1742
1743 tp->snd_cwnd_cnt = decr&1;
1744 decr >>= 1;
1745
72dc5b92 1746 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1da177e4
LT
1747 tp->snd_cwnd -= decr;
1748
1749 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1750 tp->snd_cwnd_stamp = tcp_time_stamp;
1751}
1752
1753/* Nothing was retransmitted or returned timestamp is less
1754 * than timestamp of the first retransmission.
1755 */
1756static inline int tcp_packet_delayed(struct tcp_sock *tp)
1757{
1758 return !tp->retrans_stamp ||
1759 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1760 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1761}
1762
1763/* Undo procedures. */
1764
1765#if FASTRETRANS_DEBUG > 1
1766static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1767{
1768 struct inet_sock *inet = inet_sk(sk);
1769 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1770 msg,
1771 NIPQUAD(inet->daddr), ntohs(inet->dport),
1772 tp->snd_cwnd, tp->left_out,
1773 tp->snd_ssthresh, tp->prior_ssthresh,
1774 tp->packets_out);
1775}
1776#else
1777#define DBGUNDO(x...) do { } while (0)
1778#endif
1779
6687e988 1780static void tcp_undo_cwr(struct sock *sk, const int undo)
1da177e4 1781{
6687e988
ACM
1782 struct tcp_sock *tp = tcp_sk(sk);
1783
1da177e4 1784 if (tp->prior_ssthresh) {
6687e988
ACM
1785 const struct inet_connection_sock *icsk = inet_csk(sk);
1786
1787 if (icsk->icsk_ca_ops->undo_cwnd)
1788 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1da177e4
LT
1789 else
1790 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1791
1792 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1793 tp->snd_ssthresh = tp->prior_ssthresh;
1794 TCP_ECN_withdraw_cwr(tp);
1795 }
1796 } else {
1797 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1798 }
1799 tcp_moderate_cwnd(tp);
1800 tp->snd_cwnd_stamp = tcp_time_stamp;
6a438bbe
SH
1801
1802 /* There is something screwy going on with the retrans hints after
1803 an undo */
1804 clear_all_retrans_hints(tp);
1da177e4
LT
1805}
1806
1807static inline int tcp_may_undo(struct tcp_sock *tp)
1808{
1809 return tp->undo_marker &&
1810 (!tp->undo_retrans || tcp_packet_delayed(tp));
1811}
1812
1813/* People celebrate: "We love our President!" */
1814static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1815{
1816 if (tcp_may_undo(tp)) {
1817 /* Happy end! We did not retransmit anything
1818 * or our original transmission succeeded.
1819 */
6687e988
ACM
1820 DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1821 tcp_undo_cwr(sk, 1);
1822 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1da177e4
LT
1823 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1824 else
1825 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1826 tp->undo_marker = 0;
1827 }
1828 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1829 /* Hold old state until something *above* high_seq
1830 * is ACKed. For Reno it is MUST to prevent false
1831 * fast retransmits (RFC2582). SACK TCP is safe. */
1832 tcp_moderate_cwnd(tp);
1833 return 1;
1834 }
6687e988 1835 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
1836 return 0;
1837}
1838
1839/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1840static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1841{
1842 if (tp->undo_marker && !tp->undo_retrans) {
1843 DBGUNDO(sk, tp, "D-SACK");
6687e988 1844 tcp_undo_cwr(sk, 1);
1da177e4
LT
1845 tp->undo_marker = 0;
1846 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1847 }
1848}
1849
1850/* Undo during fast recovery after partial ACK. */
1851
1852static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1853 int acked)
1854{
1855 /* Partial ACK arrived. Force Hoe's retransmit. */
1856 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1857
1858 if (tcp_may_undo(tp)) {
1859 /* Plain luck! Hole if filled with delayed
1860 * packet, rather than with a retransmit.
1861 */
1862 if (tp->retrans_out == 0)
1863 tp->retrans_stamp = 0;
1864
6687e988 1865 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1da177e4
LT
1866
1867 DBGUNDO(sk, tp, "Hoe");
6687e988 1868 tcp_undo_cwr(sk, 0);
1da177e4
LT
1869 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1870
1871 /* So... Do not make Hoe's retransmit yet.
1872 * If the first packet was delayed, the rest
1873 * ones are most probably delayed as well.
1874 */
1875 failed = 0;
1876 }
1877 return failed;
1878}
1879
1880/* Undo during loss recovery after partial ACK. */
1881static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1882{
1883 if (tcp_may_undo(tp)) {
1884 struct sk_buff *skb;
1885 sk_stream_for_retrans_queue(skb, sk) {
1886 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1887 }
6a438bbe
SH
1888
1889 clear_all_retrans_hints(tp);
1890
1da177e4
LT
1891 DBGUNDO(sk, tp, "partial loss");
1892 tp->lost_out = 0;
1893 tp->left_out = tp->sacked_out;
6687e988 1894 tcp_undo_cwr(sk, 1);
1da177e4 1895 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
463c84b9 1896 inet_csk(sk)->icsk_retransmits = 0;
1da177e4
LT
1897 tp->undo_marker = 0;
1898 if (!IsReno(tp))
6687e988 1899 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
1900 return 1;
1901 }
1902 return 0;
1903}
1904
6687e988 1905static inline void tcp_complete_cwr(struct sock *sk)
1da177e4 1906{
6687e988 1907 struct tcp_sock *tp = tcp_sk(sk);
317a76f9 1908 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1da177e4 1909 tp->snd_cwnd_stamp = tcp_time_stamp;
6687e988 1910 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1da177e4
LT
1911}
1912
1913static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1914{
1915 tp->left_out = tp->sacked_out;
1916
1917 if (tp->retrans_out == 0)
1918 tp->retrans_stamp = 0;
1919
1920 if (flag&FLAG_ECE)
6687e988 1921 tcp_enter_cwr(sk);
1da177e4 1922
6687e988 1923 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1da177e4
LT
1924 int state = TCP_CA_Open;
1925
1926 if (tp->left_out || tp->retrans_out || tp->undo_marker)
1927 state = TCP_CA_Disorder;
1928
6687e988
ACM
1929 if (inet_csk(sk)->icsk_ca_state != state) {
1930 tcp_set_ca_state(sk, state);
1da177e4
LT
1931 tp->high_seq = tp->snd_nxt;
1932 }
1933 tcp_moderate_cwnd(tp);
1934 } else {
6687e988 1935 tcp_cwnd_down(sk);
1da177e4
LT
1936 }
1937}
1938
5d424d5a
JH
1939static void tcp_mtup_probe_failed(struct sock *sk)
1940{
1941 struct inet_connection_sock *icsk = inet_csk(sk);
1942
1943 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
1944 icsk->icsk_mtup.probe_size = 0;
1945}
1946
1947static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
1948{
1949 struct tcp_sock *tp = tcp_sk(sk);
1950 struct inet_connection_sock *icsk = inet_csk(sk);
1951
1952 /* FIXME: breaks with very large cwnd */
1953 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1954 tp->snd_cwnd = tp->snd_cwnd *
1955 tcp_mss_to_mtu(sk, tp->mss_cache) /
1956 icsk->icsk_mtup.probe_size;
1957 tp->snd_cwnd_cnt = 0;
1958 tp->snd_cwnd_stamp = tcp_time_stamp;
1959 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
1960
1961 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
1962 icsk->icsk_mtup.probe_size = 0;
1963 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1964}
1965
1966
1da177e4
LT
1967/* Process an event, which can update packets-in-flight not trivially.
1968 * Main goal of this function is to calculate new estimate for left_out,
1969 * taking into account both packets sitting in receiver's buffer and
1970 * packets lost by network.
1971 *
1972 * Besides that it does CWND reduction, when packet loss is detected
1973 * and changes state of machine.
1974 *
1975 * It does _not_ decide what to send, it is made in function
1976 * tcp_xmit_retransmit_queue().
1977 */
1978static void
1979tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1980 int prior_packets, int flag)
1981{
6687e988 1982 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1983 struct tcp_sock *tp = tcp_sk(sk);
1984 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1985
1986 /* Some technical things:
1987 * 1. Reno does not count dupacks (sacked_out) automatically. */
1988 if (!tp->packets_out)
1989 tp->sacked_out = 0;
e905a9ed 1990 /* 2. SACK counts snd_fack in packets inaccurately. */
1da177e4
LT
1991 if (tp->sacked_out == 0)
1992 tp->fackets_out = 0;
1993
e905a9ed 1994 /* Now state machine starts.
1da177e4
LT
1995 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1996 if (flag&FLAG_ECE)
1997 tp->prior_ssthresh = 0;
1998
1999 /* B. In all the states check for reneging SACKs. */
463c84b9 2000 if (tp->sacked_out && tcp_check_sack_reneging(sk))
1da177e4
LT
2001 return;
2002
2003 /* C. Process data loss notification, provided it is valid. */
2004 if ((flag&FLAG_DATA_LOST) &&
2005 before(tp->snd_una, tp->high_seq) &&
6687e988 2006 icsk->icsk_ca_state != TCP_CA_Open &&
1da177e4
LT
2007 tp->fackets_out > tp->reordering) {
2008 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
2009 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2010 }
2011
2012 /* D. Synchronize left_out to current state. */
2013 tcp_sync_left_out(tp);
2014
2015 /* E. Check state exit conditions. State can be terminated
2016 * when high_seq is ACKed. */
6687e988 2017 if (icsk->icsk_ca_state == TCP_CA_Open) {
7b0eb22b 2018 BUG_TRAP(tp->retrans_out == 0);
1da177e4
LT
2019 tp->retrans_stamp = 0;
2020 } else if (!before(tp->snd_una, tp->high_seq)) {
6687e988 2021 switch (icsk->icsk_ca_state) {
1da177e4 2022 case TCP_CA_Loss:
6687e988 2023 icsk->icsk_retransmits = 0;
1da177e4
LT
2024 if (tcp_try_undo_recovery(sk, tp))
2025 return;
2026 break;
2027
2028 case TCP_CA_CWR:
2029 /* CWR is to be held something *above* high_seq
2030 * is ACKed for CWR bit to reach receiver. */
2031 if (tp->snd_una != tp->high_seq) {
6687e988
ACM
2032 tcp_complete_cwr(sk);
2033 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2034 }
2035 break;
2036
2037 case TCP_CA_Disorder:
2038 tcp_try_undo_dsack(sk, tp);
2039 if (!tp->undo_marker ||
2040 /* For SACK case do not Open to allow to undo
2041 * catching for all duplicate ACKs. */
2042 IsReno(tp) || tp->snd_una != tp->high_seq) {
2043 tp->undo_marker = 0;
6687e988 2044 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2045 }
2046 break;
2047
2048 case TCP_CA_Recovery:
2049 if (IsReno(tp))
2050 tcp_reset_reno_sack(tp);
2051 if (tcp_try_undo_recovery(sk, tp))
2052 return;
6687e988 2053 tcp_complete_cwr(sk);
1da177e4
LT
2054 break;
2055 }
2056 }
2057
2058 /* F. Process state. */
6687e988 2059 switch (icsk->icsk_ca_state) {
1da177e4
LT
2060 case TCP_CA_Recovery:
2061 if (prior_snd_una == tp->snd_una) {
2062 if (IsReno(tp) && is_dupack)
6687e988 2063 tcp_add_reno_sack(sk);
1da177e4
LT
2064 } else {
2065 int acked = prior_packets - tp->packets_out;
2066 if (IsReno(tp))
2067 tcp_remove_reno_sacks(sk, tp, acked);
2068 is_dupack = tcp_try_undo_partial(sk, tp, acked);
2069 }
2070 break;
2071 case TCP_CA_Loss:
2072 if (flag&FLAG_DATA_ACKED)
6687e988 2073 icsk->icsk_retransmits = 0;
1da177e4
LT
2074 if (!tcp_try_undo_loss(sk, tp)) {
2075 tcp_moderate_cwnd(tp);
2076 tcp_xmit_retransmit_queue(sk);
2077 return;
2078 }
6687e988 2079 if (icsk->icsk_ca_state != TCP_CA_Open)
1da177e4
LT
2080 return;
2081 /* Loss is undone; fall through to processing in Open state. */
2082 default:
2083 if (IsReno(tp)) {
2084 if (tp->snd_una != prior_snd_una)
2085 tcp_reset_reno_sack(tp);
2086 if (is_dupack)
6687e988 2087 tcp_add_reno_sack(sk);
1da177e4
LT
2088 }
2089
6687e988 2090 if (icsk->icsk_ca_state == TCP_CA_Disorder)
1da177e4
LT
2091 tcp_try_undo_dsack(sk, tp);
2092
2093 if (!tcp_time_to_recover(sk, tp)) {
2094 tcp_try_to_open(sk, tp, flag);
2095 return;
2096 }
2097
5d424d5a
JH
2098 /* MTU probe failure: don't reduce cwnd */
2099 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2100 icsk->icsk_mtup.probe_size &&
0e7b1368 2101 tp->snd_una == tp->mtu_probe.probe_seq_start) {
5d424d5a
JH
2102 tcp_mtup_probe_failed(sk);
2103 /* Restores the reduction we did in tcp_mtup_probe() */
2104 tp->snd_cwnd++;
2105 tcp_simple_retransmit(sk);
2106 return;
2107 }
2108
1da177e4
LT
2109 /* Otherwise enter Recovery state */
2110
2111 if (IsReno(tp))
2112 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2113 else
2114 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2115
2116 tp->high_seq = tp->snd_nxt;
2117 tp->prior_ssthresh = 0;
2118 tp->undo_marker = tp->snd_una;
2119 tp->undo_retrans = tp->retrans_out;
2120
6687e988 2121 if (icsk->icsk_ca_state < TCP_CA_CWR) {
1da177e4 2122 if (!(flag&FLAG_ECE))
6687e988
ACM
2123 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2124 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1da177e4
LT
2125 TCP_ECN_queue_cwr(tp);
2126 }
2127
9772efb9 2128 tp->bytes_acked = 0;
1da177e4 2129 tp->snd_cwnd_cnt = 0;
6687e988 2130 tcp_set_ca_state(sk, TCP_CA_Recovery);
1da177e4
LT
2131 }
2132
2133 if (is_dupack || tcp_head_timedout(sk, tp))
2134 tcp_update_scoreboard(sk, tp);
6687e988 2135 tcp_cwnd_down(sk);
1da177e4
LT
2136 tcp_xmit_retransmit_queue(sk);
2137}
2138
2139/* Read draft-ietf-tcplw-high-performance before mucking
caa20d9a 2140 * with this code. (Supersedes RFC1323)
1da177e4 2141 */
2d2abbab 2142static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
1da177e4 2143{
1da177e4
LT
2144 /* RTTM Rule: A TSecr value received in a segment is used to
2145 * update the averaged RTT measurement only if the segment
2146 * acknowledges some new data, i.e., only if it advances the
2147 * left edge of the send window.
2148 *
2149 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2150 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2151 *
2152 * Changed: reset backoff as soon as we see the first valid sample.
caa20d9a 2153 * If we do not, we get strongly overestimated rto. With timestamps
1da177e4
LT
2154 * samples are accepted even from very old segments: f.e., when rtt=1
2155 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2156 * answer arrives rto becomes 120 seconds! If at least one of segments
2157 * in window is lost... Voila. --ANK (010210)
2158 */
463c84b9
ACM
2159 struct tcp_sock *tp = tcp_sk(sk);
2160 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2d2abbab 2161 tcp_rtt_estimator(sk, seq_rtt);
463c84b9
ACM
2162 tcp_set_rto(sk);
2163 inet_csk(sk)->icsk_backoff = 0;
2164 tcp_bound_rto(sk);
1da177e4
LT
2165}
2166
2d2abbab 2167static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
1da177e4
LT
2168{
2169 /* We don't have a timestamp. Can only use
2170 * packets that are not retransmitted to determine
2171 * rtt estimates. Also, we must not reset the
2172 * backoff for rto until we get a non-retransmitted
2173 * packet. This allows us to deal with a situation
2174 * where the network delay has increased suddenly.
2175 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2176 */
2177
2178 if (flag & FLAG_RETRANS_DATA_ACKED)
2179 return;
2180
2d2abbab 2181 tcp_rtt_estimator(sk, seq_rtt);
463c84b9
ACM
2182 tcp_set_rto(sk);
2183 inet_csk(sk)->icsk_backoff = 0;
2184 tcp_bound_rto(sk);
1da177e4
LT
2185}
2186
463c84b9 2187static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2d2abbab 2188 const s32 seq_rtt)
1da177e4 2189{
463c84b9 2190 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
2191 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2192 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2d2abbab 2193 tcp_ack_saw_tstamp(sk, flag);
1da177e4 2194 else if (seq_rtt >= 0)
2d2abbab 2195 tcp_ack_no_tstamp(sk, seq_rtt, flag);
1da177e4
LT
2196}
2197
40efc6fa
SH
2198static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2199 u32 in_flight, int good)
1da177e4 2200{
6687e988
ACM
2201 const struct inet_connection_sock *icsk = inet_csk(sk);
2202 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2203 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
1da177e4
LT
2204}
2205
1da177e4
LT
2206/* Restart timer after forward progress on connection.
2207 * RFC2988 recommends to restart timer to now+rto.
2208 */
2209
40efc6fa 2210static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
1da177e4
LT
2211{
2212 if (!tp->packets_out) {
463c84b9 2213 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
1da177e4 2214 } else {
3f421baa 2215 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
1da177e4
LT
2216 }
2217}
2218
1da177e4
LT
2219static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2220 __u32 now, __s32 *seq_rtt)
2221{
2222 struct tcp_sock *tp = tcp_sk(sk);
e905a9ed 2223 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
1da177e4
LT
2224 __u32 seq = tp->snd_una;
2225 __u32 packets_acked;
2226 int acked = 0;
2227
2228 /* If we get here, the whole TSO packet has not been
2229 * acked.
2230 */
2231 BUG_ON(!after(scb->end_seq, seq));
2232
2233 packets_acked = tcp_skb_pcount(skb);
2234 if (tcp_trim_head(sk, skb, seq - scb->seq))
2235 return 0;
2236 packets_acked -= tcp_skb_pcount(skb);
2237
2238 if (packets_acked) {
2239 __u8 sacked = scb->sacked;
2240
2241 acked |= FLAG_DATA_ACKED;
2242 if (sacked) {
2243 if (sacked & TCPCB_RETRANS) {
2244 if (sacked & TCPCB_SACKED_RETRANS)
2245 tp->retrans_out -= packets_acked;
2246 acked |= FLAG_RETRANS_DATA_ACKED;
2247 *seq_rtt = -1;
2248 } else if (*seq_rtt < 0)
2249 *seq_rtt = now - scb->when;
2250 if (sacked & TCPCB_SACKED_ACKED)
2251 tp->sacked_out -= packets_acked;
2252 if (sacked & TCPCB_LOST)
2253 tp->lost_out -= packets_acked;
2254 if (sacked & TCPCB_URG) {
2255 if (tp->urg_mode &&
2256 !before(seq, tp->snd_up))
2257 tp->urg_mode = 0;
2258 }
2259 } else if (*seq_rtt < 0)
2260 *seq_rtt = now - scb->when;
2261
2262 if (tp->fackets_out) {
2263 __u32 dval = min(tp->fackets_out, packets_acked);
2264 tp->fackets_out -= dval;
2265 }
2266 tp->packets_out -= packets_acked;
2267
2268 BUG_ON(tcp_skb_pcount(skb) == 0);
2269 BUG_ON(!before(scb->seq, scb->end_seq));
2270 }
2271
2272 return acked;
2273}
2274
8ea333eb 2275static u32 tcp_usrtt(struct timeval *tv)
2d2abbab 2276{
8ea333eb 2277 struct timeval now;
2d2abbab
SH
2278
2279 do_gettimeofday(&now);
8ea333eb 2280 return (now.tv_sec - tv->tv_sec) * 1000000 + (now.tv_usec - tv->tv_usec);
2d2abbab 2281}
1da177e4
LT
2282
2283/* Remove acknowledged frames from the retransmission queue. */
2d2abbab 2284static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
1da177e4
LT
2285{
2286 struct tcp_sock *tp = tcp_sk(sk);
2d2abbab 2287 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2288 struct sk_buff *skb;
2289 __u32 now = tcp_time_stamp;
2290 int acked = 0;
2291 __s32 seq_rtt = -1;
317a76f9 2292 u32 pkts_acked = 0;
2d2abbab
SH
2293 void (*rtt_sample)(struct sock *sk, u32 usrtt)
2294 = icsk->icsk_ca_ops->rtt_sample;
80246ab3 2295 struct timeval tv = { .tv_sec = 0, .tv_usec = 0 };
1da177e4
LT
2296
2297 while ((skb = skb_peek(&sk->sk_write_queue)) &&
2298 skb != sk->sk_send_head) {
e905a9ed 2299 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
1da177e4
LT
2300 __u8 sacked = scb->sacked;
2301
2302 /* If our packet is before the ack sequence we can
2303 * discard it as it's confirmed to have arrived at
2304 * the other end.
2305 */
2306 if (after(scb->end_seq, tp->snd_una)) {
cb83199a
DM
2307 if (tcp_skb_pcount(skb) > 1 &&
2308 after(tp->snd_una, scb->seq))
1da177e4
LT
2309 acked |= tcp_tso_acked(sk, skb,
2310 now, &seq_rtt);
2311 break;
2312 }
2313
2314 /* Initial outgoing SYN's get put onto the write_queue
2315 * just like anything else we transmit. It is not
2316 * true data, and if we misinform our callers that
2317 * this ACK acks real data, we will erroneously exit
2318 * connection startup slow start one packet too
2319 * quickly. This is severely frowned upon behavior.
2320 */
2321 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2322 acked |= FLAG_DATA_ACKED;
317a76f9 2323 ++pkts_acked;
1da177e4
LT
2324 } else {
2325 acked |= FLAG_SYN_ACKED;
2326 tp->retrans_stamp = 0;
2327 }
2328
5d424d5a
JH
2329 /* MTU probing checks */
2330 if (icsk->icsk_mtup.probe_size) {
0e7b1368 2331 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
5d424d5a
JH
2332 tcp_mtup_probe_success(sk, skb);
2333 }
2334 }
2335
1da177e4
LT
2336 if (sacked) {
2337 if (sacked & TCPCB_RETRANS) {
2338 if(sacked & TCPCB_SACKED_RETRANS)
2339 tp->retrans_out -= tcp_skb_pcount(skb);
2340 acked |= FLAG_RETRANS_DATA_ACKED;
2341 seq_rtt = -1;
2d2abbab 2342 } else if (seq_rtt < 0) {
1da177e4 2343 seq_rtt = now - scb->when;
8ea333eb 2344 skb_get_timestamp(skb, &tv);
a61bbcf2 2345 }
1da177e4
LT
2346 if (sacked & TCPCB_SACKED_ACKED)
2347 tp->sacked_out -= tcp_skb_pcount(skb);
2348 if (sacked & TCPCB_LOST)
2349 tp->lost_out -= tcp_skb_pcount(skb);
2350 if (sacked & TCPCB_URG) {
2351 if (tp->urg_mode &&
2352 !before(scb->end_seq, tp->snd_up))
2353 tp->urg_mode = 0;
2354 }
2d2abbab 2355 } else if (seq_rtt < 0) {
1da177e4 2356 seq_rtt = now - scb->when;
8ea333eb 2357 skb_get_timestamp(skb, &tv);
2d2abbab 2358 }
1da177e4
LT
2359 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2360 tcp_packets_out_dec(tp, skb);
8728b834 2361 __skb_unlink(skb, &sk->sk_write_queue);
1da177e4 2362 sk_stream_free_skb(sk, skb);
6a438bbe 2363 clear_all_retrans_hints(tp);
1da177e4
LT
2364 }
2365
2366 if (acked&FLAG_ACKED) {
2d2abbab 2367 tcp_ack_update_rtt(sk, acked, seq_rtt);
1da177e4 2368 tcp_ack_packets_out(sk, tp);
8ea333eb
JH
2369 if (rtt_sample && !(acked & FLAG_RETRANS_DATA_ACKED))
2370 (*rtt_sample)(sk, tcp_usrtt(&tv));
317a76f9 2371
6687e988
ACM
2372 if (icsk->icsk_ca_ops->pkts_acked)
2373 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
1da177e4
LT
2374 }
2375
2376#if FASTRETRANS_DEBUG > 0
2377 BUG_TRAP((int)tp->sacked_out >= 0);
2378 BUG_TRAP((int)tp->lost_out >= 0);
2379 BUG_TRAP((int)tp->retrans_out >= 0);
2380 if (!tp->packets_out && tp->rx_opt.sack_ok) {
6687e988 2381 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2382 if (tp->lost_out) {
2383 printk(KERN_DEBUG "Leak l=%u %d\n",
6687e988 2384 tp->lost_out, icsk->icsk_ca_state);
1da177e4
LT
2385 tp->lost_out = 0;
2386 }
2387 if (tp->sacked_out) {
2388 printk(KERN_DEBUG "Leak s=%u %d\n",
6687e988 2389 tp->sacked_out, icsk->icsk_ca_state);
1da177e4
LT
2390 tp->sacked_out = 0;
2391 }
2392 if (tp->retrans_out) {
2393 printk(KERN_DEBUG "Leak r=%u %d\n",
6687e988 2394 tp->retrans_out, icsk->icsk_ca_state);
1da177e4
LT
2395 tp->retrans_out = 0;
2396 }
2397 }
2398#endif
2399 *seq_rtt_p = seq_rtt;
2400 return acked;
2401}
2402
2403static void tcp_ack_probe(struct sock *sk)
2404{
463c84b9
ACM
2405 const struct tcp_sock *tp = tcp_sk(sk);
2406 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2407
2408 /* Was it a usable window open? */
2409
2410 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2411 tp->snd_una + tp->snd_wnd)) {
463c84b9
ACM
2412 icsk->icsk_backoff = 0;
2413 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
1da177e4
LT
2414 /* Socket must be waked up by subsequent tcp_data_snd_check().
2415 * This function is not for random using!
2416 */
2417 } else {
463c84b9 2418 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3f421baa
ACM
2419 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2420 TCP_RTO_MAX);
1da177e4
LT
2421 }
2422}
2423
6687e988 2424static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
1da177e4
LT
2425{
2426 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
6687e988 2427 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
1da177e4
LT
2428}
2429
6687e988 2430static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
1da177e4 2431{
6687e988 2432 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2433 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
6687e988 2434 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
1da177e4
LT
2435}
2436
2437/* Check that window update is acceptable.
2438 * The function assumes that snd_una<=ack<=snd_next.
2439 */
463c84b9
ACM
2440static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2441 const u32 ack_seq, const u32 nwin)
1da177e4
LT
2442{
2443 return (after(ack, tp->snd_una) ||
2444 after(ack_seq, tp->snd_wl1) ||
2445 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2446}
2447
2448/* Update our send window.
2449 *
2450 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2451 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2452 */
2453static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2454 struct sk_buff *skb, u32 ack, u32 ack_seq)
2455{
2456 int flag = 0;
2457 u32 nwin = ntohs(skb->h.th->window);
2458
2459 if (likely(!skb->h.th->syn))
2460 nwin <<= tp->rx_opt.snd_wscale;
2461
2462 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2463 flag |= FLAG_WIN_UPDATE;
2464 tcp_update_wl(tp, ack, ack_seq);
2465
2466 if (tp->snd_wnd != nwin) {
2467 tp->snd_wnd = nwin;
2468
2469 /* Note, it is the only place, where
2470 * fast path is recovered for sending TCP.
2471 */
2ad41065 2472 tp->pred_flags = 0;
1da177e4
LT
2473 tcp_fast_path_check(sk, tp);
2474
2475 if (nwin > tp->max_window) {
2476 tp->max_window = nwin;
d83d8461 2477 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
1da177e4
LT
2478 }
2479 }
2480 }
2481
2482 tp->snd_una = ack;
2483
2484 return flag;
2485}
2486
9ead9a1d
IJ
2487/* A very conservative spurious RTO response algorithm: reduce cwnd and
2488 * continue in congestion avoidance.
2489 */
2490static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2491{
2492 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
aa8b6a7a 2493 tp->snd_cwnd_cnt = 0;
9ead9a1d
IJ
2494 tcp_moderate_cwnd(tp);
2495}
2496
30935cf4
IJ
2497/* F-RTO spurious RTO detection algorithm (RFC4138)
2498 *
6408d206
IJ
2499 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2500 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2501 * window (but not to or beyond highest sequence sent before RTO):
30935cf4
IJ
2502 * On First ACK, send two new segments out.
2503 * On Second ACK, RTO was likely spurious. Do spurious response (response
2504 * algorithm is not part of the F-RTO detection algorithm
2505 * given in RFC4138 but can be selected separately).
2506 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2507 * and TCP falls back to conventional RTO recovery.
2508 *
2509 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2510 * original window even after we transmit two new data segments.
2511 *
2512 * F-RTO is implemented (mainly) in four functions:
2513 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2514 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2515 * called when tcp_use_frto() showed green light
2516 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2517 * - tcp_enter_frto_loss() is called if there is not enough evidence
2518 * to prove that the RTO is indeed spurious. It transfers the control
2519 * from F-RTO to the conventional RTO recovery
2520 */
7487c48c 2521static void tcp_process_frto(struct sock *sk, u32 prior_snd_una, int flag)
1da177e4
LT
2522{
2523 struct tcp_sock *tp = tcp_sk(sk);
e905a9ed 2524
1da177e4 2525 tcp_sync_left_out(tp);
e905a9ed 2526
7487c48c
IJ
2527 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2528 if (flag&FLAG_DATA_ACKED)
2529 inet_csk(sk)->icsk_retransmits = 0;
2530
95c4922b
IJ
2531 if (!before(tp->snd_una, tp->frto_highmark)) {
2532 tcp_enter_frto_loss(sk, tp->frto_counter + 1);
2533 return;
2534 }
2535
6408d206
IJ
2536 /* RFC4138 shortcoming in step 2; should also have case c): ACK isn't
2537 * duplicate nor advances window, e.g., opposite dir data, winupdate
2538 */
2539 if ((tp->snd_una == prior_snd_una) && (flag&FLAG_NOT_DUP) &&
2540 !(flag&FLAG_FORWARD_PROGRESS))
2541 return;
2542
95c4922b
IJ
2543 if (!(flag&FLAG_DATA_ACKED)) {
2544 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3));
1da177e4
LT
2545 return;
2546 }
2547
2548 if (tp->frto_counter == 1) {
1da177e4 2549 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
30935cf4 2550 } else /* frto_counter == 2 */ {
9ead9a1d 2551 tcp_conservative_spur_to_response(tp);
1da177e4
LT
2552 }
2553
1da177e4
LT
2554 tp->frto_counter = (tp->frto_counter + 1) % 3;
2555}
2556
1da177e4
LT
2557/* This routine deals with incoming acks, but not outgoing ones. */
2558static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2559{
6687e988 2560 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2561 struct tcp_sock *tp = tcp_sk(sk);
2562 u32 prior_snd_una = tp->snd_una;
2563 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2564 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2565 u32 prior_in_flight;
2566 s32 seq_rtt;
2567 int prior_packets;
2568
2569 /* If the ack is newer than sent or older than previous acks
2570 * then we can probably ignore it.
2571 */
2572 if (after(ack, tp->snd_nxt))
2573 goto uninteresting_ack;
2574
2575 if (before(ack, prior_snd_una))
2576 goto old_ack;
2577
3fdf3f0c
DO
2578 if (sysctl_tcp_abc) {
2579 if (icsk->icsk_ca_state < TCP_CA_CWR)
2580 tp->bytes_acked += ack - prior_snd_una;
2581 else if (icsk->icsk_ca_state == TCP_CA_Loss)
2582 /* we assume just one segment left network */
2583 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2584 }
9772efb9 2585
1da177e4
LT
2586 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2587 /* Window is constant, pure forward advance.
2588 * No more checks are required.
2589 * Note, we use the fact that SND.UNA>=SND.WL2.
2590 */
2591 tcp_update_wl(tp, ack, ack_seq);
2592 tp->snd_una = ack;
1da177e4
LT
2593 flag |= FLAG_WIN_UPDATE;
2594
6687e988 2595 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
317a76f9 2596
1da177e4
LT
2597 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2598 } else {
2599 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2600 flag |= FLAG_DATA;
2601 else
2602 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2603
2604 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2605
2606 if (TCP_SKB_CB(skb)->sacked)
2607 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2608
2609 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2610 flag |= FLAG_ECE;
2611
6687e988 2612 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
1da177e4
LT
2613 }
2614
2615 /* We passed data and got it acked, remove any soft error
2616 * log. Something worked...
2617 */
2618 sk->sk_err_soft = 0;
2619 tp->rcv_tstamp = tcp_time_stamp;
2620 prior_packets = tp->packets_out;
2621 if (!prior_packets)
2622 goto no_queue;
2623
2624 prior_in_flight = tcp_packets_in_flight(tp);
2625
2626 /* See if we can take anything off of the retransmit queue. */
2d2abbab 2627 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
1da177e4
LT
2628
2629 if (tp->frto_counter)
7487c48c 2630 tcp_process_frto(sk, prior_snd_una, flag);
1da177e4 2631
6687e988 2632 if (tcp_ack_is_dubious(sk, flag)) {
caa20d9a 2633 /* Advance CWND, if state allows this. */
6687e988
ACM
2634 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
2635 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0);
1da177e4
LT
2636 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2637 } else {
317a76f9 2638 if ((flag & FLAG_DATA_ACKED))
6687e988 2639 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
1da177e4
LT
2640 }
2641
2642 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2643 dst_confirm(sk->sk_dst_cache);
2644
2645 return 1;
2646
2647no_queue:
6687e988 2648 icsk->icsk_probes_out = 0;
1da177e4
LT
2649
2650 /* If this ack opens up a zero window, clear backoff. It was
2651 * being used to time the probes, and is probably far higher than
2652 * it needs to be for normal retransmission.
2653 */
2654 if (sk->sk_send_head)
2655 tcp_ack_probe(sk);
2656 return 1;
2657
2658old_ack:
2659 if (TCP_SKB_CB(skb)->sacked)
2660 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2661
2662uninteresting_ack:
2663 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2664 return 0;
2665}
2666
2667
2668/* Look for tcp options. Normally only called on SYN and SYNACK packets.
2669 * But, this can also be called on packets in the established flow when
2670 * the fast version below fails.
2671 */
2672void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2673{
2674 unsigned char *ptr;
2675 struct tcphdr *th = skb->h.th;
2676 int length=(th->doff*4)-sizeof(struct tcphdr);
2677
2678 ptr = (unsigned char *)(th + 1);
2679 opt_rx->saw_tstamp = 0;
2680
2681 while(length>0) {
e905a9ed 2682 int opcode=*ptr++;
1da177e4
LT
2683 int opsize;
2684
2685 switch (opcode) {
2686 case TCPOPT_EOL:
2687 return;
2688 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2689 length--;
2690 continue;
2691 default:
2692 opsize=*ptr++;
2693 if (opsize < 2) /* "silly options" */
2694 return;
2695 if (opsize > length)
2696 return; /* don't parse partial options */
e905a9ed 2697 switch(opcode) {
1da177e4
LT
2698 case TCPOPT_MSS:
2699 if(opsize==TCPOLEN_MSS && th->syn && !estab) {
4f3608b7 2700 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
1da177e4
LT
2701 if (in_mss) {
2702 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2703 in_mss = opt_rx->user_mss;
2704 opt_rx->mss_clamp = in_mss;
2705 }
2706 }
2707 break;
2708 case TCPOPT_WINDOW:
2709 if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2710 if (sysctl_tcp_window_scaling) {
2711 __u8 snd_wscale = *(__u8 *) ptr;
2712 opt_rx->wscale_ok = 1;
2713 if (snd_wscale > 14) {
2714 if(net_ratelimit())
2715 printk(KERN_INFO "tcp_parse_options: Illegal window "
2716 "scaling value %d >14 received.\n",
2717 snd_wscale);
2718 snd_wscale = 14;
2719 }
2720 opt_rx->snd_wscale = snd_wscale;
2721 }
2722 break;
2723 case TCPOPT_TIMESTAMP:
2724 if(opsize==TCPOLEN_TIMESTAMP) {
2725 if ((estab && opt_rx->tstamp_ok) ||
2726 (!estab && sysctl_tcp_timestamps)) {
2727 opt_rx->saw_tstamp = 1;
4f3608b7
AV
2728 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2729 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
1da177e4
LT
2730 }
2731 }
2732 break;
2733 case TCPOPT_SACK_PERM:
2734 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2735 if (sysctl_tcp_sack) {
2736 opt_rx->sack_ok = 1;
2737 tcp_sack_reset(opt_rx);
2738 }
2739 }
2740 break;
2741
2742 case TCPOPT_SACK:
2743 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2744 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2745 opt_rx->sack_ok) {
2746 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2747 }
cfb6eeb4
YH
2748#ifdef CONFIG_TCP_MD5SIG
2749 case TCPOPT_MD5SIG:
2750 /*
2751 * The MD5 Hash has already been
2752 * checked (see tcp_v{4,6}_do_rcv()).
2753 */
2754 break;
2755#endif
e905a9ed
YH
2756 };
2757 ptr+=opsize-2;
2758 length-=opsize;
2759 };
1da177e4
LT
2760 }
2761}
2762
2763/* Fast parse options. This hopes to only see timestamps.
2764 * If it is wrong it falls back on tcp_parse_options().
2765 */
40efc6fa
SH
2766static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2767 struct tcp_sock *tp)
1da177e4
LT
2768{
2769 if (th->doff == sizeof(struct tcphdr)>>2) {
2770 tp->rx_opt.saw_tstamp = 0;
2771 return 0;
2772 } else if (tp->rx_opt.tstamp_ok &&
2773 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
4f3608b7
AV
2774 __be32 *ptr = (__be32 *)(th + 1);
2775 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
1da177e4
LT
2776 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2777 tp->rx_opt.saw_tstamp = 1;
2778 ++ptr;
2779 tp->rx_opt.rcv_tsval = ntohl(*ptr);
2780 ++ptr;
2781 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2782 return 1;
2783 }
2784 }
2785 tcp_parse_options(skb, &tp->rx_opt, 1);
2786 return 1;
2787}
2788
2789static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2790{
2791 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2792 tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2793}
2794
2795static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2796{
2797 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2798 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2799 * extra check below makes sure this can only happen
2800 * for pure ACK frames. -DaveM
2801 *
2802 * Not only, also it occurs for expired timestamps.
2803 */
2804
2805 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2806 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2807 tcp_store_ts_recent(tp);
2808 }
2809}
2810
2811/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2812 *
2813 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2814 * it can pass through stack. So, the following predicate verifies that
2815 * this segment is not used for anything but congestion avoidance or
2816 * fast retransmit. Moreover, we even are able to eliminate most of such
2817 * second order effects, if we apply some small "replay" window (~RTO)
2818 * to timestamp space.
2819 *
2820 * All these measures still do not guarantee that we reject wrapped ACKs
2821 * on networks with high bandwidth, when sequence space is recycled fastly,
2822 * but it guarantees that such events will be very rare and do not affect
2823 * connection seriously. This doesn't look nice, but alas, PAWS is really
2824 * buggy extension.
2825 *
2826 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2827 * states that events when retransmit arrives after original data are rare.
2828 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2829 * the biggest problem on large power networks even with minor reordering.
2830 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2831 * up to bandwidth of 18Gigabit/sec. 8) ]
2832 */
2833
463c84b9 2834static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
1da177e4 2835{
463c84b9 2836 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
2837 struct tcphdr *th = skb->h.th;
2838 u32 seq = TCP_SKB_CB(skb)->seq;
2839 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2840
2841 return (/* 1. Pure ACK with correct sequence number. */
2842 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2843
2844 /* 2. ... and duplicate ACK. */
2845 ack == tp->snd_una &&
2846
2847 /* 3. ... and does not update window. */
2848 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2849
2850 /* 4. ... and sits in replay window. */
463c84b9 2851 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
1da177e4
LT
2852}
2853
463c84b9 2854static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
1da177e4 2855{
463c84b9 2856 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
2857 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2858 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
463c84b9 2859 !tcp_disordered_ack(sk, skb));
1da177e4
LT
2860}
2861
2862/* Check segment sequence number for validity.
2863 *
2864 * Segment controls are considered valid, if the segment
2865 * fits to the window after truncation to the window. Acceptability
2866 * of data (and SYN, FIN, of course) is checked separately.
2867 * See tcp_data_queue(), for example.
2868 *
2869 * Also, controls (RST is main one) are accepted using RCV.WUP instead
2870 * of RCV.NXT. Peer still did not advance his SND.UNA when we
2871 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2872 * (borrowed from freebsd)
2873 */
2874
2875static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2876{
2877 return !before(end_seq, tp->rcv_wup) &&
2878 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2879}
2880
2881/* When we get a reset we do this. */
2882static void tcp_reset(struct sock *sk)
2883{
2884 /* We want the right error as BSD sees it (and indeed as we do). */
2885 switch (sk->sk_state) {
2886 case TCP_SYN_SENT:
2887 sk->sk_err = ECONNREFUSED;
2888 break;
2889 case TCP_CLOSE_WAIT:
2890 sk->sk_err = EPIPE;
2891 break;
2892 case TCP_CLOSE:
2893 return;
2894 default:
2895 sk->sk_err = ECONNRESET;
2896 }
2897
2898 if (!sock_flag(sk, SOCK_DEAD))
2899 sk->sk_error_report(sk);
2900
2901 tcp_done(sk);
2902}
2903
2904/*
2905 * Process the FIN bit. This now behaves as it is supposed to work
2906 * and the FIN takes effect when it is validly part of sequence
2907 * space. Not before when we get holes.
2908 *
2909 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2910 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
2911 * TIME-WAIT)
2912 *
2913 * If we are in FINWAIT-1, a received FIN indicates simultaneous
2914 * close and we go into CLOSING (and later onto TIME-WAIT)
2915 *
2916 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2917 */
2918static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2919{
2920 struct tcp_sock *tp = tcp_sk(sk);
2921
463c84b9 2922 inet_csk_schedule_ack(sk);
1da177e4
LT
2923
2924 sk->sk_shutdown |= RCV_SHUTDOWN;
2925 sock_set_flag(sk, SOCK_DONE);
2926
2927 switch (sk->sk_state) {
2928 case TCP_SYN_RECV:
2929 case TCP_ESTABLISHED:
2930 /* Move to CLOSE_WAIT */
2931 tcp_set_state(sk, TCP_CLOSE_WAIT);
463c84b9 2932 inet_csk(sk)->icsk_ack.pingpong = 1;
1da177e4
LT
2933 break;
2934
2935 case TCP_CLOSE_WAIT:
2936 case TCP_CLOSING:
2937 /* Received a retransmission of the FIN, do
2938 * nothing.
2939 */
2940 break;
2941 case TCP_LAST_ACK:
2942 /* RFC793: Remain in the LAST-ACK state. */
2943 break;
2944
2945 case TCP_FIN_WAIT1:
2946 /* This case occurs when a simultaneous close
2947 * happens, we must ack the received FIN and
2948 * enter the CLOSING state.
2949 */
2950 tcp_send_ack(sk);
2951 tcp_set_state(sk, TCP_CLOSING);
2952 break;
2953 case TCP_FIN_WAIT2:
2954 /* Received a FIN -- send ACK and enter TIME_WAIT. */
2955 tcp_send_ack(sk);
2956 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2957 break;
2958 default:
2959 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
2960 * cases we should never reach this piece of code.
2961 */
2962 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2963 __FUNCTION__, sk->sk_state);
2964 break;
2965 };
2966
2967 /* It _is_ possible, that we have something out-of-order _after_ FIN.
2968 * Probably, we should reset in this case. For now drop them.
2969 */
2970 __skb_queue_purge(&tp->out_of_order_queue);
2971 if (tp->rx_opt.sack_ok)
2972 tcp_sack_reset(&tp->rx_opt);
2973 sk_stream_mem_reclaim(sk);
2974
2975 if (!sock_flag(sk, SOCK_DEAD)) {
2976 sk->sk_state_change(sk);
2977
2978 /* Do not send POLL_HUP for half duplex close. */
2979 if (sk->sk_shutdown == SHUTDOWN_MASK ||
2980 sk->sk_state == TCP_CLOSE)
2981 sk_wake_async(sk, 1, POLL_HUP);
2982 else
2983 sk_wake_async(sk, 1, POLL_IN);
2984 }
2985}
2986
40efc6fa 2987static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
1da177e4
LT
2988{
2989 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2990 if (before(seq, sp->start_seq))
2991 sp->start_seq = seq;
2992 if (after(end_seq, sp->end_seq))
2993 sp->end_seq = end_seq;
2994 return 1;
2995 }
2996 return 0;
2997}
2998
40efc6fa 2999static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
1da177e4
LT
3000{
3001 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3002 if (before(seq, tp->rcv_nxt))
3003 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3004 else
3005 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3006
3007 tp->rx_opt.dsack = 1;
3008 tp->duplicate_sack[0].start_seq = seq;
3009 tp->duplicate_sack[0].end_seq = end_seq;
3010 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3011 }
3012}
3013
40efc6fa 3014static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
1da177e4
LT
3015{
3016 if (!tp->rx_opt.dsack)
3017 tcp_dsack_set(tp, seq, end_seq);
3018 else
3019 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3020}
3021
3022static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3023{
3024 struct tcp_sock *tp = tcp_sk(sk);
3025
3026 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3027 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3028 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
463c84b9 3029 tcp_enter_quickack_mode(sk);
1da177e4
LT
3030
3031 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3032 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3033
3034 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3035 end_seq = tp->rcv_nxt;
3036 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3037 }
3038 }
3039
3040 tcp_send_ack(sk);
3041}
3042
3043/* These routines update the SACK block as out-of-order packets arrive or
3044 * in-order packets close up the sequence space.
3045 */
3046static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3047{
3048 int this_sack;
3049 struct tcp_sack_block *sp = &tp->selective_acks[0];
3050 struct tcp_sack_block *swalk = sp+1;
3051
3052 /* See if the recent change to the first SACK eats into
3053 * or hits the sequence space of other SACK blocks, if so coalesce.
3054 */
3055 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3056 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3057 int i;
3058
3059 /* Zap SWALK, by moving every further SACK up by one slot.
3060 * Decrease num_sacks.
3061 */
3062 tp->rx_opt.num_sacks--;
3063 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3064 for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
3065 sp[i] = sp[i+1];
3066 continue;
3067 }
3068 this_sack++, swalk++;
3069 }
3070}
3071
40efc6fa 3072static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
1da177e4
LT
3073{
3074 __u32 tmp;
3075
3076 tmp = sack1->start_seq;
3077 sack1->start_seq = sack2->start_seq;
3078 sack2->start_seq = tmp;
3079
3080 tmp = sack1->end_seq;
3081 sack1->end_seq = sack2->end_seq;
3082 sack2->end_seq = tmp;
3083}
3084
3085static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3086{
3087 struct tcp_sock *tp = tcp_sk(sk);
3088 struct tcp_sack_block *sp = &tp->selective_acks[0];
3089 int cur_sacks = tp->rx_opt.num_sacks;
3090 int this_sack;
3091
3092 if (!cur_sacks)
3093 goto new_sack;
3094
3095 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3096 if (tcp_sack_extend(sp, seq, end_seq)) {
3097 /* Rotate this_sack to the first one. */
3098 for (; this_sack>0; this_sack--, sp--)
3099 tcp_sack_swap(sp, sp-1);
3100 if (cur_sacks > 1)
3101 tcp_sack_maybe_coalesce(tp);
3102 return;
3103 }
3104 }
3105
3106 /* Could not find an adjacent existing SACK, build a new one,
3107 * put it at the front, and shift everyone else down. We
3108 * always know there is at least one SACK present already here.
3109 *
3110 * If the sack array is full, forget about the last one.
3111 */
3112 if (this_sack >= 4) {
3113 this_sack--;
3114 tp->rx_opt.num_sacks--;
3115 sp--;
3116 }
3117 for(; this_sack > 0; this_sack--, sp--)
3118 *sp = *(sp-1);
3119
3120new_sack:
3121 /* Build the new head SACK, and we're done. */
3122 sp->start_seq = seq;
3123 sp->end_seq = end_seq;
3124 tp->rx_opt.num_sacks++;
3125 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3126}
3127
3128/* RCV.NXT advances, some SACKs should be eaten. */
3129
3130static void tcp_sack_remove(struct tcp_sock *tp)
3131{
3132 struct tcp_sack_block *sp = &tp->selective_acks[0];
3133 int num_sacks = tp->rx_opt.num_sacks;
3134 int this_sack;
3135
3136 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
b03efcfb 3137 if (skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
3138 tp->rx_opt.num_sacks = 0;
3139 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3140 return;
3141 }
3142
3143 for(this_sack = 0; this_sack < num_sacks; ) {
3144 /* Check if the start of the sack is covered by RCV.NXT. */
3145 if (!before(tp->rcv_nxt, sp->start_seq)) {
3146 int i;
3147
3148 /* RCV.NXT must cover all the block! */
3149 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3150
3151 /* Zap this SACK, by moving forward any other SACKS. */
3152 for (i=this_sack+1; i < num_sacks; i++)
3153 tp->selective_acks[i-1] = tp->selective_acks[i];
3154 num_sacks--;
3155 continue;
3156 }
3157 this_sack++;
3158 sp++;
3159 }
3160 if (num_sacks != tp->rx_opt.num_sacks) {
3161 tp->rx_opt.num_sacks = num_sacks;
3162 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3163 }
3164}
3165
3166/* This one checks to see if we can put data from the
3167 * out_of_order queue into the receive_queue.
3168 */
3169static void tcp_ofo_queue(struct sock *sk)
3170{
3171 struct tcp_sock *tp = tcp_sk(sk);
3172 __u32 dsack_high = tp->rcv_nxt;
3173 struct sk_buff *skb;
3174
3175 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3176 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3177 break;
3178
3179 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3180 __u32 dsack = dsack_high;
3181 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3182 dsack_high = TCP_SKB_CB(skb)->end_seq;
3183 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3184 }
3185
3186 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3187 SOCK_DEBUG(sk, "ofo packet was already received \n");
8728b834 3188 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
3189 __kfree_skb(skb);
3190 continue;
3191 }
3192 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3193 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3194 TCP_SKB_CB(skb)->end_seq);
3195
8728b834 3196 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
3197 __skb_queue_tail(&sk->sk_receive_queue, skb);
3198 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3199 if(skb->h.th->fin)
3200 tcp_fin(skb, sk, skb->h.th);
3201 }
3202}
3203
3204static int tcp_prune_queue(struct sock *sk);
3205
3206static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3207{
3208 struct tcphdr *th = skb->h.th;
3209 struct tcp_sock *tp = tcp_sk(sk);
3210 int eaten = -1;
3211
3212 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3213 goto drop;
3214
1da177e4
LT
3215 __skb_pull(skb, th->doff*4);
3216
3217 TCP_ECN_accept_cwr(tp, skb);
3218
3219 if (tp->rx_opt.dsack) {
3220 tp->rx_opt.dsack = 0;
3221 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3222 4 - tp->rx_opt.tstamp_ok);
3223 }
3224
3225 /* Queue data for delivery to the user.
3226 * Packets in sequence go to the receive queue.
3227 * Out of sequence packets to the out_of_order_queue.
3228 */
3229 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3230 if (tcp_receive_window(tp) == 0)
3231 goto out_of_window;
3232
3233 /* Ok. In sequence. In window. */
3234 if (tp->ucopy.task == current &&
3235 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3236 sock_owned_by_user(sk) && !tp->urg_data) {
3237 int chunk = min_t(unsigned int, skb->len,
3238 tp->ucopy.len);
3239
3240 __set_current_state(TASK_RUNNING);
3241
3242 local_bh_enable();
3243 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3244 tp->ucopy.len -= chunk;
3245 tp->copied_seq += chunk;
3246 eaten = (chunk == skb->len && !th->fin);
3247 tcp_rcv_space_adjust(sk);
3248 }
3249 local_bh_disable();
3250 }
3251
3252 if (eaten <= 0) {
3253queue_and_out:
3254 if (eaten < 0 &&
3255 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3256 !sk_stream_rmem_schedule(sk, skb))) {
3257 if (tcp_prune_queue(sk) < 0 ||
3258 !sk_stream_rmem_schedule(sk, skb))
3259 goto drop;
3260 }
3261 sk_stream_set_owner_r(skb, sk);
3262 __skb_queue_tail(&sk->sk_receive_queue, skb);
3263 }
3264 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3265 if(skb->len)
3266 tcp_event_data_recv(sk, tp, skb);
3267 if(th->fin)
3268 tcp_fin(skb, sk, th);
3269
b03efcfb 3270 if (!skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
3271 tcp_ofo_queue(sk);
3272
3273 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3274 * gap in queue is filled.
3275 */
b03efcfb 3276 if (skb_queue_empty(&tp->out_of_order_queue))
463c84b9 3277 inet_csk(sk)->icsk_ack.pingpong = 0;
1da177e4
LT
3278 }
3279
3280 if (tp->rx_opt.num_sacks)
3281 tcp_sack_remove(tp);
3282
3283 tcp_fast_path_check(sk, tp);
3284
3285 if (eaten > 0)
3286 __kfree_skb(skb);
3287 else if (!sock_flag(sk, SOCK_DEAD))
3288 sk->sk_data_ready(sk, 0);
3289 return;
3290 }
3291
3292 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3293 /* A retransmit, 2nd most common case. Force an immediate ack. */
3294 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3295 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3296
3297out_of_window:
463c84b9
ACM
3298 tcp_enter_quickack_mode(sk);
3299 inet_csk_schedule_ack(sk);
1da177e4
LT
3300drop:
3301 __kfree_skb(skb);
3302 return;
3303 }
3304
3305 /* Out of window. F.e. zero window probe. */
3306 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3307 goto out_of_window;
3308
463c84b9 3309 tcp_enter_quickack_mode(sk);
1da177e4
LT
3310
3311 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3312 /* Partial packet, seq < rcv_next < end_seq */
3313 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3314 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3315 TCP_SKB_CB(skb)->end_seq);
3316
3317 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
e905a9ed 3318
1da177e4
LT
3319 /* If window is closed, drop tail of packet. But after
3320 * remembering D-SACK for its head made in previous line.
3321 */
3322 if (!tcp_receive_window(tp))
3323 goto out_of_window;
3324 goto queue_and_out;
3325 }
3326
3327 TCP_ECN_check_ce(tp, skb);
3328
3329 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3330 !sk_stream_rmem_schedule(sk, skb)) {
3331 if (tcp_prune_queue(sk) < 0 ||
3332 !sk_stream_rmem_schedule(sk, skb))
3333 goto drop;
3334 }
3335
3336 /* Disable header prediction. */
3337 tp->pred_flags = 0;
463c84b9 3338 inet_csk_schedule_ack(sk);
1da177e4
LT
3339
3340 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3341 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3342
3343 sk_stream_set_owner_r(skb, sk);
3344
3345 if (!skb_peek(&tp->out_of_order_queue)) {
3346 /* Initial out of order segment, build 1 SACK. */
3347 if (tp->rx_opt.sack_ok) {
3348 tp->rx_opt.num_sacks = 1;
3349 tp->rx_opt.dsack = 0;
3350 tp->rx_opt.eff_sacks = 1;
3351 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3352 tp->selective_acks[0].end_seq =
3353 TCP_SKB_CB(skb)->end_seq;
3354 }
3355 __skb_queue_head(&tp->out_of_order_queue,skb);
3356 } else {
3357 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3358 u32 seq = TCP_SKB_CB(skb)->seq;
3359 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3360
3361 if (seq == TCP_SKB_CB(skb1)->end_seq) {
8728b834 3362 __skb_append(skb1, skb, &tp->out_of_order_queue);
1da177e4
LT
3363
3364 if (!tp->rx_opt.num_sacks ||
3365 tp->selective_acks[0].end_seq != seq)
3366 goto add_sack;
3367
3368 /* Common case: data arrive in order after hole. */
3369 tp->selective_acks[0].end_seq = end_seq;
3370 return;
3371 }
3372
3373 /* Find place to insert this segment. */
3374 do {
3375 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3376 break;
3377 } while ((skb1 = skb1->prev) !=
3378 (struct sk_buff*)&tp->out_of_order_queue);
3379
3380 /* Do skb overlap to previous one? */
3381 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3382 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3383 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3384 /* All the bits are present. Drop. */
3385 __kfree_skb(skb);
3386 tcp_dsack_set(tp, seq, end_seq);
3387 goto add_sack;
3388 }
3389 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3390 /* Partial overlap. */
3391 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3392 } else {
3393 skb1 = skb1->prev;
3394 }
3395 }
3396 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
e905a9ed 3397
1da177e4
LT
3398 /* And clean segments covered by new one as whole. */
3399 while ((skb1 = skb->next) !=
3400 (struct sk_buff*)&tp->out_of_order_queue &&
3401 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3402 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3403 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3404 break;
3405 }
8728b834 3406 __skb_unlink(skb1, &tp->out_of_order_queue);
1da177e4
LT
3407 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3408 __kfree_skb(skb1);
3409 }
3410
3411add_sack:
3412 if (tp->rx_opt.sack_ok)
3413 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3414 }
3415}
3416
3417/* Collapse contiguous sequence of skbs head..tail with
3418 * sequence numbers start..end.
3419 * Segments with FIN/SYN are not collapsed (only because this
3420 * simplifies code)
3421 */
3422static void
8728b834
DM
3423tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3424 struct sk_buff *head, struct sk_buff *tail,
3425 u32 start, u32 end)
1da177e4
LT
3426{
3427 struct sk_buff *skb;
3428
caa20d9a 3429 /* First, check that queue is collapsible and find
1da177e4
LT
3430 * the point where collapsing can be useful. */
3431 for (skb = head; skb != tail; ) {
3432 /* No new bits? It is possible on ofo queue. */
3433 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3434 struct sk_buff *next = skb->next;
8728b834 3435 __skb_unlink(skb, list);
1da177e4
LT
3436 __kfree_skb(skb);
3437 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3438 skb = next;
3439 continue;
3440 }
3441
3442 /* The first skb to collapse is:
3443 * - not SYN/FIN and
3444 * - bloated or contains data before "start" or
3445 * overlaps to the next one.
3446 */
3447 if (!skb->h.th->syn && !skb->h.th->fin &&
3448 (tcp_win_from_space(skb->truesize) > skb->len ||
3449 before(TCP_SKB_CB(skb)->seq, start) ||
3450 (skb->next != tail &&
3451 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3452 break;
3453
3454 /* Decided to skip this, advance start seq. */
3455 start = TCP_SKB_CB(skb)->end_seq;
3456 skb = skb->next;
3457 }
3458 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3459 return;
3460
3461 while (before(start, end)) {
3462 struct sk_buff *nskb;
3463 int header = skb_headroom(skb);
3464 int copy = SKB_MAX_ORDER(header, 0);
3465
3466 /* Too big header? This can happen with IPv6. */
3467 if (copy < 0)
3468 return;
3469 if (end-start < copy)
3470 copy = end-start;
3471 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3472 if (!nskb)
3473 return;
3474 skb_reserve(nskb, header);
3475 memcpy(nskb->head, skb->head, header);
3476 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3477 nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3478 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3479 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3480 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
8728b834 3481 __skb_insert(nskb, skb->prev, skb, list);
1da177e4
LT
3482 sk_stream_set_owner_r(nskb, sk);
3483
3484 /* Copy data, releasing collapsed skbs. */
3485 while (copy > 0) {
3486 int offset = start - TCP_SKB_CB(skb)->seq;
3487 int size = TCP_SKB_CB(skb)->end_seq - start;
3488
09a62660 3489 BUG_ON(offset < 0);
1da177e4
LT
3490 if (size > 0) {
3491 size = min(copy, size);
3492 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3493 BUG();
3494 TCP_SKB_CB(nskb)->end_seq += size;
3495 copy -= size;
3496 start += size;
3497 }
3498 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3499 struct sk_buff *next = skb->next;
8728b834 3500 __skb_unlink(skb, list);
1da177e4
LT
3501 __kfree_skb(skb);
3502 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3503 skb = next;
3504 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3505 return;
3506 }
3507 }
3508 }
3509}
3510
3511/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3512 * and tcp_collapse() them until all the queue is collapsed.
3513 */
3514static void tcp_collapse_ofo_queue(struct sock *sk)
3515{
3516 struct tcp_sock *tp = tcp_sk(sk);
3517 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3518 struct sk_buff *head;
3519 u32 start, end;
3520
3521 if (skb == NULL)
3522 return;
3523
3524 start = TCP_SKB_CB(skb)->seq;
3525 end = TCP_SKB_CB(skb)->end_seq;
3526 head = skb;
3527
3528 for (;;) {
3529 skb = skb->next;
3530
3531 /* Segment is terminated when we see gap or when
3532 * we are at the end of all the queue. */
3533 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3534 after(TCP_SKB_CB(skb)->seq, end) ||
3535 before(TCP_SKB_CB(skb)->end_seq, start)) {
8728b834
DM
3536 tcp_collapse(sk, &tp->out_of_order_queue,
3537 head, skb, start, end);
1da177e4
LT
3538 head = skb;
3539 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3540 break;
3541 /* Start new segment */
3542 start = TCP_SKB_CB(skb)->seq;
3543 end = TCP_SKB_CB(skb)->end_seq;
3544 } else {
3545 if (before(TCP_SKB_CB(skb)->seq, start))
3546 start = TCP_SKB_CB(skb)->seq;
3547 if (after(TCP_SKB_CB(skb)->end_seq, end))
3548 end = TCP_SKB_CB(skb)->end_seq;
3549 }
3550 }
3551}
3552
3553/* Reduce allocated memory if we can, trying to get
3554 * the socket within its memory limits again.
3555 *
3556 * Return less than zero if we should start dropping frames
3557 * until the socket owning process reads some of the data
3558 * to stabilize the situation.
3559 */
3560static int tcp_prune_queue(struct sock *sk)
3561{
e905a9ed 3562 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
3563
3564 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3565
3566 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3567
3568 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3569 tcp_clamp_window(sk, tp);
3570 else if (tcp_memory_pressure)
3571 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3572
3573 tcp_collapse_ofo_queue(sk);
8728b834
DM
3574 tcp_collapse(sk, &sk->sk_receive_queue,
3575 sk->sk_receive_queue.next,
1da177e4
LT
3576 (struct sk_buff*)&sk->sk_receive_queue,
3577 tp->copied_seq, tp->rcv_nxt);
3578 sk_stream_mem_reclaim(sk);
3579
3580 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3581 return 0;
3582
3583 /* Collapsing did not help, destructive actions follow.
3584 * This must not ever occur. */
3585
3586 /* First, purge the out_of_order queue. */
b03efcfb
DM
3587 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3588 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
1da177e4
LT
3589 __skb_queue_purge(&tp->out_of_order_queue);
3590
3591 /* Reset SACK state. A conforming SACK implementation will
3592 * do the same at a timeout based retransmit. When a connection
3593 * is in a sad state like this, we care only about integrity
3594 * of the connection not performance.
3595 */
3596 if (tp->rx_opt.sack_ok)
3597 tcp_sack_reset(&tp->rx_opt);
3598 sk_stream_mem_reclaim(sk);
3599 }
3600
3601 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3602 return 0;
3603
3604 /* If we are really being abused, tell the caller to silently
3605 * drop receive data on the floor. It will get retransmitted
3606 * and hopefully then we'll have sufficient space.
3607 */
3608 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3609
3610 /* Massive buffer overcommit. */
3611 tp->pred_flags = 0;
3612 return -1;
3613}
3614
3615
3616/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3617 * As additional protections, we do not touch cwnd in retransmission phases,
3618 * and if application hit its sndbuf limit recently.
3619 */
3620void tcp_cwnd_application_limited(struct sock *sk)
3621{
3622 struct tcp_sock *tp = tcp_sk(sk);
3623
6687e988 3624 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1da177e4
LT
3625 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3626 /* Limited by application or receiver window. */
d254bcdb
IJ
3627 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3628 u32 win_used = max(tp->snd_cwnd_used, init_win);
1da177e4 3629 if (win_used < tp->snd_cwnd) {
6687e988 3630 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1da177e4
LT
3631 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3632 }
3633 tp->snd_cwnd_used = 0;
3634 }
3635 tp->snd_cwnd_stamp = tcp_time_stamp;
3636}
3637
40efc6fa 3638static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
0d9901df
DM
3639{
3640 /* If the user specified a specific send buffer setting, do
3641 * not modify it.
3642 */
3643 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3644 return 0;
3645
3646 /* If we are under global TCP memory pressure, do not expand. */
3647 if (tcp_memory_pressure)
3648 return 0;
3649
3650 /* If we are under soft global TCP memory pressure, do not expand. */
3651 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3652 return 0;
3653
3654 /* If we filled the congestion window, do not expand. */
3655 if (tp->packets_out >= tp->snd_cwnd)
3656 return 0;
3657
3658 return 1;
3659}
1da177e4
LT
3660
3661/* When incoming ACK allowed to free some skb from write_queue,
3662 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3663 * on the exit from tcp input handler.
3664 *
3665 * PROBLEM: sndbuf expansion does not work well with largesend.
3666 */
3667static void tcp_new_space(struct sock *sk)
3668{
3669 struct tcp_sock *tp = tcp_sk(sk);
3670
0d9901df 3671 if (tcp_should_expand_sndbuf(sk, tp)) {
e905a9ed 3672 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
1da177e4
LT
3673 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3674 demanded = max_t(unsigned int, tp->snd_cwnd,
3675 tp->reordering + 1);
3676 sndmem *= 2*demanded;
3677 if (sndmem > sk->sk_sndbuf)
3678 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3679 tp->snd_cwnd_stamp = tcp_time_stamp;
3680 }
3681
3682 sk->sk_write_space(sk);
3683}
3684
40efc6fa 3685static void tcp_check_space(struct sock *sk)
1da177e4
LT
3686{
3687 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3688 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3689 if (sk->sk_socket &&
3690 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3691 tcp_new_space(sk);
3692 }
3693}
3694
40efc6fa 3695static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
1da177e4 3696{
55c97f3e 3697 tcp_push_pending_frames(sk, tp);
1da177e4
LT
3698 tcp_check_space(sk);
3699}
3700
3701/*
3702 * Check if sending an ack is needed.
3703 */
3704static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3705{
3706 struct tcp_sock *tp = tcp_sk(sk);
3707
3708 /* More than one full frame received... */
463c84b9 3709 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
1da177e4
LT
3710 /* ... and right edge of window advances far enough.
3711 * (tcp_recvmsg() will send ACK otherwise). Or...
3712 */
3713 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3714 /* We ACK each frame or... */
463c84b9 3715 tcp_in_quickack_mode(sk) ||
1da177e4
LT
3716 /* We have out of order data. */
3717 (ofo_possible &&
3718 skb_peek(&tp->out_of_order_queue))) {
3719 /* Then ack it now */
3720 tcp_send_ack(sk);
3721 } else {
3722 /* Else, send delayed ack. */
3723 tcp_send_delayed_ack(sk);
3724 }
3725}
3726
40efc6fa 3727static inline void tcp_ack_snd_check(struct sock *sk)
1da177e4 3728{
463c84b9 3729 if (!inet_csk_ack_scheduled(sk)) {
1da177e4
LT
3730 /* We sent a data segment already. */
3731 return;
3732 }
3733 __tcp_ack_snd_check(sk, 1);
3734}
3735
3736/*
3737 * This routine is only called when we have urgent data
caa20d9a 3738 * signaled. Its the 'slow' part of tcp_urg. It could be
1da177e4
LT
3739 * moved inline now as tcp_urg is only called from one
3740 * place. We handle URGent data wrong. We have to - as
3741 * BSD still doesn't use the correction from RFC961.
3742 * For 1003.1g we should support a new option TCP_STDURG to permit
3743 * either form (or just set the sysctl tcp_stdurg).
3744 */
e905a9ed 3745
1da177e4
LT
3746static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3747{
3748 struct tcp_sock *tp = tcp_sk(sk);
3749 u32 ptr = ntohs(th->urg_ptr);
3750
3751 if (ptr && !sysctl_tcp_stdurg)
3752 ptr--;
3753 ptr += ntohl(th->seq);
3754
3755 /* Ignore urgent data that we've already seen and read. */
3756 if (after(tp->copied_seq, ptr))
3757 return;
3758
3759 /* Do not replay urg ptr.
3760 *
3761 * NOTE: interesting situation not covered by specs.
3762 * Misbehaving sender may send urg ptr, pointing to segment,
3763 * which we already have in ofo queue. We are not able to fetch
3764 * such data and will stay in TCP_URG_NOTYET until will be eaten
3765 * by recvmsg(). Seems, we are not obliged to handle such wicked
3766 * situations. But it is worth to think about possibility of some
3767 * DoSes using some hypothetical application level deadlock.
3768 */
3769 if (before(ptr, tp->rcv_nxt))
3770 return;
3771
3772 /* Do we already have a newer (or duplicate) urgent pointer? */
3773 if (tp->urg_data && !after(ptr, tp->urg_seq))
3774 return;
3775
3776 /* Tell the world about our new urgent pointer. */
3777 sk_send_sigurg(sk);
3778
3779 /* We may be adding urgent data when the last byte read was
3780 * urgent. To do this requires some care. We cannot just ignore
3781 * tp->copied_seq since we would read the last urgent byte again
3782 * as data, nor can we alter copied_seq until this data arrives
caa20d9a 3783 * or we break the semantics of SIOCATMARK (and thus sockatmark())
1da177e4
LT
3784 *
3785 * NOTE. Double Dutch. Rendering to plain English: author of comment
3786 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
3787 * and expect that both A and B disappear from stream. This is _wrong_.
3788 * Though this happens in BSD with high probability, this is occasional.
3789 * Any application relying on this is buggy. Note also, that fix "works"
3790 * only in this artificial test. Insert some normal data between A and B and we will
3791 * decline of BSD again. Verdict: it is better to remove to trap
3792 * buggy users.
3793 */
3794 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3795 !sock_flag(sk, SOCK_URGINLINE) &&
3796 tp->copied_seq != tp->rcv_nxt) {
3797 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3798 tp->copied_seq++;
3799 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
8728b834 3800 __skb_unlink(skb, &sk->sk_receive_queue);
1da177e4
LT
3801 __kfree_skb(skb);
3802 }
3803 }
3804
3805 tp->urg_data = TCP_URG_NOTYET;
3806 tp->urg_seq = ptr;
3807
3808 /* Disable header prediction. */
3809 tp->pred_flags = 0;
3810}
3811
3812/* This is the 'fast' part of urgent handling. */
3813static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3814{
3815 struct tcp_sock *tp = tcp_sk(sk);
3816
3817 /* Check if we get a new urgent pointer - normally not. */
3818 if (th->urg)
3819 tcp_check_urg(sk,th);
3820
3821 /* Do we wait for any urgent data? - normally not... */
3822 if (tp->urg_data == TCP_URG_NOTYET) {
3823 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3824 th->syn;
3825
e905a9ed 3826 /* Is the urgent pointer pointing into this packet? */
1da177e4
LT
3827 if (ptr < skb->len) {
3828 u8 tmp;
3829 if (skb_copy_bits(skb, ptr, &tmp, 1))
3830 BUG();
3831 tp->urg_data = TCP_URG_VALID | tmp;
3832 if (!sock_flag(sk, SOCK_DEAD))
3833 sk->sk_data_ready(sk, 0);
3834 }
3835 }
3836}
3837
3838static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3839{
3840 struct tcp_sock *tp = tcp_sk(sk);
3841 int chunk = skb->len - hlen;
3842 int err;
3843
3844 local_bh_enable();
3845 if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3846 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3847 else
3848 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3849 tp->ucopy.iov);
3850
3851 if (!err) {
3852 tp->ucopy.len -= chunk;
3853 tp->copied_seq += chunk;
3854 tcp_rcv_space_adjust(sk);
3855 }
3856
3857 local_bh_disable();
3858 return err;
3859}
3860
b51655b9 3861static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
1da177e4 3862{
b51655b9 3863 __sum16 result;
1da177e4
LT
3864
3865 if (sock_owned_by_user(sk)) {
3866 local_bh_enable();
3867 result = __tcp_checksum_complete(skb);
3868 local_bh_disable();
3869 } else {
3870 result = __tcp_checksum_complete(skb);
3871 }
3872 return result;
3873}
3874
40efc6fa 3875static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
1da177e4
LT
3876{
3877 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3878 __tcp_checksum_complete_user(sk, skb);
3879}
3880
1a2449a8
CL
3881#ifdef CONFIG_NET_DMA
3882static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
3883{
3884 struct tcp_sock *tp = tcp_sk(sk);
3885 int chunk = skb->len - hlen;
3886 int dma_cookie;
3887 int copied_early = 0;
3888
3889 if (tp->ucopy.wakeup)
e905a9ed 3890 return 0;
1a2449a8
CL
3891
3892 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
3893 tp->ucopy.dma_chan = get_softnet_dma();
3894
3895 if (tp->ucopy.dma_chan && skb->ip_summed == CHECKSUM_UNNECESSARY) {
3896
3897 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
3898 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
3899
3900 if (dma_cookie < 0)
3901 goto out;
3902
3903 tp->ucopy.dma_cookie = dma_cookie;
3904 copied_early = 1;
3905
3906 tp->ucopy.len -= chunk;
3907 tp->copied_seq += chunk;
3908 tcp_rcv_space_adjust(sk);
3909
3910 if ((tp->ucopy.len == 0) ||
3911 (tcp_flag_word(skb->h.th) & TCP_FLAG_PSH) ||
3912 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
3913 tp->ucopy.wakeup = 1;
3914 sk->sk_data_ready(sk, 0);
3915 }
3916 } else if (chunk > 0) {
3917 tp->ucopy.wakeup = 1;
3918 sk->sk_data_ready(sk, 0);
3919 }
3920out:
3921 return copied_early;
3922}
3923#endif /* CONFIG_NET_DMA */
3924
1da177e4 3925/*
e905a9ed 3926 * TCP receive function for the ESTABLISHED state.
1da177e4 3927 *
e905a9ed 3928 * It is split into a fast path and a slow path. The fast path is
1da177e4
LT
3929 * disabled when:
3930 * - A zero window was announced from us - zero window probing
e905a9ed 3931 * is only handled properly in the slow path.
1da177e4
LT
3932 * - Out of order segments arrived.
3933 * - Urgent data is expected.
3934 * - There is no buffer space left
3935 * - Unexpected TCP flags/window values/header lengths are received
e905a9ed 3936 * (detected by checking the TCP header against pred_flags)
1da177e4
LT
3937 * - Data is sent in both directions. Fast path only supports pure senders
3938 * or pure receivers (this means either the sequence number or the ack
3939 * value must stay constant)
3940 * - Unexpected TCP option.
3941 *
e905a9ed 3942 * When these conditions are not satisfied it drops into a standard
1da177e4
LT
3943 * receive procedure patterned after RFC793 to handle all cases.
3944 * The first three cases are guaranteed by proper pred_flags setting,
e905a9ed 3945 * the rest is checked inline. Fast processing is turned on in
1da177e4
LT
3946 * tcp_data_queue when everything is OK.
3947 */
3948int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3949 struct tcphdr *th, unsigned len)
3950{
3951 struct tcp_sock *tp = tcp_sk(sk);
3952
3953 /*
3954 * Header prediction.
e905a9ed 3955 * The code loosely follows the one in the famous
1da177e4 3956 * "30 instruction TCP receive" Van Jacobson mail.
e905a9ed
YH
3957 *
3958 * Van's trick is to deposit buffers into socket queue
1da177e4
LT
3959 * on a device interrupt, to call tcp_recv function
3960 * on the receive process context and checksum and copy
3961 * the buffer to user space. smart...
3962 *
e905a9ed 3963 * Our current scheme is not silly either but we take the
1da177e4
LT
3964 * extra cost of the net_bh soft interrupt processing...
3965 * We do checksum and copy also but from device to kernel.
3966 */
3967
3968 tp->rx_opt.saw_tstamp = 0;
3969
3970 /* pred_flags is 0xS?10 << 16 + snd_wnd
caa20d9a 3971 * if header_prediction is to be made
1da177e4
LT
3972 * 'S' will always be tp->tcp_header_len >> 2
3973 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
e905a9ed 3974 * turn it off (when there are holes in the receive
1da177e4
LT
3975 * space for instance)
3976 * PSH flag is ignored.
3977 */
3978
3979 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3980 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3981 int tcp_header_len = tp->tcp_header_len;
3982
3983 /* Timestamp header prediction: tcp_header_len
3984 * is automatically equal to th->doff*4 due to pred_flags
3985 * match.
3986 */
3987
3988 /* Check timestamp */
3989 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4f3608b7 3990 __be32 *ptr = (__be32 *)(th + 1);
1da177e4
LT
3991
3992 /* No? Slow path! */
4f3608b7 3993 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
1da177e4
LT
3994 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3995 goto slow_path;
3996
3997 tp->rx_opt.saw_tstamp = 1;
e905a9ed 3998 ++ptr;
1da177e4
LT
3999 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4000 ++ptr;
4001 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4002
4003 /* If PAWS failed, check it more carefully in slow path */
4004 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4005 goto slow_path;
4006
4007 /* DO NOT update ts_recent here, if checksum fails
4008 * and timestamp was corrupted part, it will result
4009 * in a hung connection since we will drop all
4010 * future packets due to the PAWS test.
4011 */
4012 }
4013
4014 if (len <= tcp_header_len) {
4015 /* Bulk data transfer: sender */
4016 if (len == tcp_header_len) {
4017 /* Predicted packet is in window by definition.
4018 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4019 * Hence, check seq<=rcv_wup reduces to:
4020 */
4021 if (tcp_header_len ==
4022 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4023 tp->rcv_nxt == tp->rcv_wup)
4024 tcp_store_ts_recent(tp);
4025
1da177e4
LT
4026 /* We know that such packets are checksummed
4027 * on entry.
4028 */
4029 tcp_ack(sk, skb, 0);
e905a9ed 4030 __kfree_skb(skb);
55c97f3e 4031 tcp_data_snd_check(sk, tp);
1da177e4
LT
4032 return 0;
4033 } else { /* Header too small */
4034 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4035 goto discard;
4036 }
4037 } else {
4038 int eaten = 0;
1a2449a8 4039 int copied_early = 0;
1da177e4 4040
1a2449a8
CL
4041 if (tp->copied_seq == tp->rcv_nxt &&
4042 len - tcp_header_len <= tp->ucopy.len) {
4043#ifdef CONFIG_NET_DMA
4044 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4045 copied_early = 1;
4046 eaten = 1;
4047 }
4048#endif
4049 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4050 __set_current_state(TASK_RUNNING);
1da177e4 4051
1a2449a8
CL
4052 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4053 eaten = 1;
4054 }
4055 if (eaten) {
1da177e4
LT
4056 /* Predicted packet is in window by definition.
4057 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4058 * Hence, check seq<=rcv_wup reduces to:
4059 */
4060 if (tcp_header_len ==
4061 (sizeof(struct tcphdr) +
4062 TCPOLEN_TSTAMP_ALIGNED) &&
4063 tp->rcv_nxt == tp->rcv_wup)
4064 tcp_store_ts_recent(tp);
4065
463c84b9 4066 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4067
4068 __skb_pull(skb, tcp_header_len);
4069 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4070 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
1da177e4 4071 }
1a2449a8
CL
4072 if (copied_early)
4073 tcp_cleanup_rbuf(sk, skb->len);
1da177e4
LT
4074 }
4075 if (!eaten) {
4076 if (tcp_checksum_complete_user(sk, skb))
4077 goto csum_error;
4078
4079 /* Predicted packet is in window by definition.
4080 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4081 * Hence, check seq<=rcv_wup reduces to:
4082 */
4083 if (tcp_header_len ==
4084 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4085 tp->rcv_nxt == tp->rcv_wup)
4086 tcp_store_ts_recent(tp);
4087
463c84b9 4088 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4089
4090 if ((int)skb->truesize > sk->sk_forward_alloc)
4091 goto step5;
4092
4093 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4094
4095 /* Bulk data transfer: receiver */
4096 __skb_pull(skb,tcp_header_len);
4097 __skb_queue_tail(&sk->sk_receive_queue, skb);
4098 sk_stream_set_owner_r(skb, sk);
4099 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4100 }
4101
4102 tcp_event_data_recv(sk, tp, skb);
4103
4104 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4105 /* Well, only one small jumplet in fast path... */
4106 tcp_ack(sk, skb, FLAG_DATA);
55c97f3e 4107 tcp_data_snd_check(sk, tp);
463c84b9 4108 if (!inet_csk_ack_scheduled(sk))
1da177e4
LT
4109 goto no_ack;
4110 }
4111
31432412 4112 __tcp_ack_snd_check(sk, 0);
1da177e4 4113no_ack:
1a2449a8
CL
4114#ifdef CONFIG_NET_DMA
4115 if (copied_early)
4116 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4117 else
4118#endif
1da177e4
LT
4119 if (eaten)
4120 __kfree_skb(skb);
4121 else
4122 sk->sk_data_ready(sk, 0);
4123 return 0;
4124 }
4125 }
4126
4127slow_path:
4128 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4129 goto csum_error;
4130
4131 /*
4132 * RFC1323: H1. Apply PAWS check first.
4133 */
4134 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 4135 tcp_paws_discard(sk, skb)) {
1da177e4
LT
4136 if (!th->rst) {
4137 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4138 tcp_send_dupack(sk, skb);
4139 goto discard;
4140 }
4141 /* Resets are accepted even if PAWS failed.
4142
4143 ts_recent update must be made after we are sure
4144 that the packet is in window.
4145 */
4146 }
4147
4148 /*
4149 * Standard slow path.
4150 */
4151
4152 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4153 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4154 * (RST) segments are validated by checking their SEQ-fields."
4155 * And page 69: "If an incoming segment is not acceptable,
4156 * an acknowledgment should be sent in reply (unless the RST bit
4157 * is set, if so drop the segment and return)".
4158 */
4159 if (!th->rst)
4160 tcp_send_dupack(sk, skb);
4161 goto discard;
4162 }
4163
4164 if(th->rst) {
4165 tcp_reset(sk);
4166 goto discard;
4167 }
4168
4169 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4170
4171 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4172 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4173 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4174 tcp_reset(sk);
4175 return 1;
4176 }
4177
4178step5:
4179 if(th->ack)
4180 tcp_ack(sk, skb, FLAG_SLOWPATH);
4181
463c84b9 4182 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4183
4184 /* Process urgent data. */
4185 tcp_urg(sk, skb, th);
4186
4187 /* step 7: process the segment text */
4188 tcp_data_queue(sk, skb);
4189
55c97f3e 4190 tcp_data_snd_check(sk, tp);
1da177e4
LT
4191 tcp_ack_snd_check(sk);
4192 return 0;
4193
4194csum_error:
4195 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4196
4197discard:
4198 __kfree_skb(skb);
4199 return 0;
4200}
4201
4202static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4203 struct tcphdr *th, unsigned len)
4204{
4205 struct tcp_sock *tp = tcp_sk(sk);
d83d8461 4206 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
4207 int saved_clamp = tp->rx_opt.mss_clamp;
4208
4209 tcp_parse_options(skb, &tp->rx_opt, 0);
4210
4211 if (th->ack) {
4212 /* rfc793:
4213 * "If the state is SYN-SENT then
4214 * first check the ACK bit
4215 * If the ACK bit is set
4216 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4217 * a reset (unless the RST bit is set, if so drop
4218 * the segment and return)"
4219 *
4220 * We do not send data with SYN, so that RFC-correct
4221 * test reduces to:
4222 */
4223 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4224 goto reset_and_undo;
4225
4226 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4227 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4228 tcp_time_stamp)) {
4229 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4230 goto reset_and_undo;
4231 }
4232
4233 /* Now ACK is acceptable.
4234 *
4235 * "If the RST bit is set
4236 * If the ACK was acceptable then signal the user "error:
4237 * connection reset", drop the segment, enter CLOSED state,
4238 * delete TCB, and return."
4239 */
4240
4241 if (th->rst) {
4242 tcp_reset(sk);
4243 goto discard;
4244 }
4245
4246 /* rfc793:
4247 * "fifth, if neither of the SYN or RST bits is set then
4248 * drop the segment and return."
4249 *
4250 * See note below!
4251 * --ANK(990513)
4252 */
4253 if (!th->syn)
4254 goto discard_and_undo;
4255
4256 /* rfc793:
4257 * "If the SYN bit is on ...
4258 * are acceptable then ...
4259 * (our SYN has been ACKed), change the connection
4260 * state to ESTABLISHED..."
4261 */
4262
4263 TCP_ECN_rcv_synack(tp, th);
1da177e4
LT
4264
4265 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4266 tcp_ack(sk, skb, FLAG_SLOWPATH);
4267
4268 /* Ok.. it's good. Set up sequence numbers and
4269 * move to established.
4270 */
4271 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4272 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4273
4274 /* RFC1323: The window in SYN & SYN/ACK segments is
4275 * never scaled.
4276 */
4277 tp->snd_wnd = ntohs(th->window);
4278 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4279
4280 if (!tp->rx_opt.wscale_ok) {
4281 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4282 tp->window_clamp = min(tp->window_clamp, 65535U);
4283 }
4284
4285 if (tp->rx_opt.saw_tstamp) {
4286 tp->rx_opt.tstamp_ok = 1;
4287 tp->tcp_header_len =
4288 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4289 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4290 tcp_store_ts_recent(tp);
4291 } else {
4292 tp->tcp_header_len = sizeof(struct tcphdr);
4293 }
4294
4295 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4296 tp->rx_opt.sack_ok |= 2;
4297
5d424d5a 4298 tcp_mtup_init(sk);
d83d8461 4299 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1da177e4
LT
4300 tcp_initialize_rcv_mss(sk);
4301
4302 /* Remember, tcp_poll() does not lock socket!
4303 * Change state from SYN-SENT only after copied_seq
4304 * is initialized. */
4305 tp->copied_seq = tp->rcv_nxt;
e16aa207 4306 smp_mb();
1da177e4
LT
4307 tcp_set_state(sk, TCP_ESTABLISHED);
4308
6b877699
VY
4309 security_inet_conn_established(sk, skb);
4310
1da177e4 4311 /* Make sure socket is routed, for correct metrics. */
8292a17a 4312 icsk->icsk_af_ops->rebuild_header(sk);
1da177e4
LT
4313
4314 tcp_init_metrics(sk);
4315
6687e988 4316 tcp_init_congestion_control(sk);
317a76f9 4317
1da177e4
LT
4318 /* Prevent spurious tcp_cwnd_restart() on first data
4319 * packet.
4320 */
4321 tp->lsndtime = tcp_time_stamp;
4322
4323 tcp_init_buffer_space(sk);
4324
4325 if (sock_flag(sk, SOCK_KEEPOPEN))
463c84b9 4326 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
1da177e4
LT
4327
4328 if (!tp->rx_opt.snd_wscale)
4329 __tcp_fast_path_on(tp, tp->snd_wnd);
4330 else
4331 tp->pred_flags = 0;
4332
4333 if (!sock_flag(sk, SOCK_DEAD)) {
4334 sk->sk_state_change(sk);
4335 sk_wake_async(sk, 0, POLL_OUT);
4336 }
4337
295f7324
ACM
4338 if (sk->sk_write_pending ||
4339 icsk->icsk_accept_queue.rskq_defer_accept ||
4340 icsk->icsk_ack.pingpong) {
1da177e4
LT
4341 /* Save one ACK. Data will be ready after
4342 * several ticks, if write_pending is set.
4343 *
4344 * It may be deleted, but with this feature tcpdumps
4345 * look so _wonderfully_ clever, that I was not able
4346 * to stand against the temptation 8) --ANK
4347 */
463c84b9 4348 inet_csk_schedule_ack(sk);
295f7324
ACM
4349 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4350 icsk->icsk_ack.ato = TCP_ATO_MIN;
463c84b9
ACM
4351 tcp_incr_quickack(sk);
4352 tcp_enter_quickack_mode(sk);
3f421baa
ACM
4353 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4354 TCP_DELACK_MAX, TCP_RTO_MAX);
1da177e4
LT
4355
4356discard:
4357 __kfree_skb(skb);
4358 return 0;
4359 } else {
4360 tcp_send_ack(sk);
4361 }
4362 return -1;
4363 }
4364
4365 /* No ACK in the segment */
4366
4367 if (th->rst) {
4368 /* rfc793:
4369 * "If the RST bit is set
4370 *
4371 * Otherwise (no ACK) drop the segment and return."
4372 */
4373
4374 goto discard_and_undo;
4375 }
4376
4377 /* PAWS check. */
4378 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4379 goto discard_and_undo;
4380
4381 if (th->syn) {
4382 /* We see SYN without ACK. It is attempt of
4383 * simultaneous connect with crossed SYNs.
4384 * Particularly, it can be connect to self.
4385 */
4386 tcp_set_state(sk, TCP_SYN_RECV);
4387
4388 if (tp->rx_opt.saw_tstamp) {
4389 tp->rx_opt.tstamp_ok = 1;
4390 tcp_store_ts_recent(tp);
4391 tp->tcp_header_len =
4392 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4393 } else {
4394 tp->tcp_header_len = sizeof(struct tcphdr);
4395 }
4396
4397 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4398 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4399
4400 /* RFC1323: The window in SYN & SYN/ACK segments is
4401 * never scaled.
4402 */
4403 tp->snd_wnd = ntohs(th->window);
4404 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4405 tp->max_window = tp->snd_wnd;
4406
4407 TCP_ECN_rcv_syn(tp, th);
1da177e4 4408
5d424d5a 4409 tcp_mtup_init(sk);
d83d8461 4410 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1da177e4
LT
4411 tcp_initialize_rcv_mss(sk);
4412
4413
4414 tcp_send_synack(sk);
4415#if 0
4416 /* Note, we could accept data and URG from this segment.
4417 * There are no obstacles to make this.
4418 *
4419 * However, if we ignore data in ACKless segments sometimes,
4420 * we have no reasons to accept it sometimes.
4421 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4422 * is not flawless. So, discard packet for sanity.
4423 * Uncomment this return to process the data.
4424 */
4425 return -1;
4426#else
4427 goto discard;
4428#endif
4429 }
4430 /* "fifth, if neither of the SYN or RST bits is set then
4431 * drop the segment and return."
4432 */
4433
4434discard_and_undo:
4435 tcp_clear_options(&tp->rx_opt);
4436 tp->rx_opt.mss_clamp = saved_clamp;
4437 goto discard;
4438
4439reset_and_undo:
4440 tcp_clear_options(&tp->rx_opt);
4441 tp->rx_opt.mss_clamp = saved_clamp;
4442 return 1;
4443}
4444
4445
4446/*
4447 * This function implements the receiving procedure of RFC 793 for
e905a9ed 4448 * all states except ESTABLISHED and TIME_WAIT.
1da177e4
LT
4449 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4450 * address independent.
4451 */
e905a9ed 4452
1da177e4
LT
4453int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4454 struct tcphdr *th, unsigned len)
4455{
4456 struct tcp_sock *tp = tcp_sk(sk);
8292a17a 4457 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
4458 int queued = 0;
4459
4460 tp->rx_opt.saw_tstamp = 0;
4461
4462 switch (sk->sk_state) {
4463 case TCP_CLOSE:
4464 goto discard;
4465
4466 case TCP_LISTEN:
4467 if(th->ack)
4468 return 1;
4469
4470 if(th->rst)
4471 goto discard;
4472
4473 if(th->syn) {
8292a17a 4474 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
1da177e4
LT
4475 return 1;
4476
e905a9ed
YH
4477 /* Now we have several options: In theory there is
4478 * nothing else in the frame. KA9Q has an option to
1da177e4 4479 * send data with the syn, BSD accepts data with the
e905a9ed
YH
4480 * syn up to the [to be] advertised window and
4481 * Solaris 2.1 gives you a protocol error. For now
4482 * we just ignore it, that fits the spec precisely
1da177e4
LT
4483 * and avoids incompatibilities. It would be nice in
4484 * future to drop through and process the data.
4485 *
e905a9ed 4486 * Now that TTCP is starting to be used we ought to
1da177e4
LT
4487 * queue this data.
4488 * But, this leaves one open to an easy denial of
e905a9ed 4489 * service attack, and SYN cookies can't defend
1da177e4 4490 * against this problem. So, we drop the data
fb7e2399
MN
4491 * in the interest of security over speed unless
4492 * it's still in use.
1da177e4 4493 */
fb7e2399
MN
4494 kfree_skb(skb);
4495 return 0;
1da177e4
LT
4496 }
4497 goto discard;
4498
4499 case TCP_SYN_SENT:
1da177e4
LT
4500 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4501 if (queued >= 0)
4502 return queued;
4503
4504 /* Do step6 onward by hand. */
4505 tcp_urg(sk, skb, th);
4506 __kfree_skb(skb);
55c97f3e 4507 tcp_data_snd_check(sk, tp);
1da177e4
LT
4508 return 0;
4509 }
4510
4511 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 4512 tcp_paws_discard(sk, skb)) {
1da177e4
LT
4513 if (!th->rst) {
4514 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4515 tcp_send_dupack(sk, skb);
4516 goto discard;
4517 }
4518 /* Reset is accepted even if it did not pass PAWS. */
4519 }
4520
4521 /* step 1: check sequence number */
4522 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4523 if (!th->rst)
4524 tcp_send_dupack(sk, skb);
4525 goto discard;
4526 }
4527
4528 /* step 2: check RST bit */
4529 if(th->rst) {
4530 tcp_reset(sk);
4531 goto discard;
4532 }
4533
4534 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4535
4536 /* step 3: check security and precedence [ignored] */
4537
4538 /* step 4:
4539 *
4540 * Check for a SYN in window.
4541 */
4542 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4543 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4544 tcp_reset(sk);
4545 return 1;
4546 }
4547
4548 /* step 5: check the ACK field */
4549 if (th->ack) {
4550 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4551
4552 switch(sk->sk_state) {
4553 case TCP_SYN_RECV:
4554 if (acceptable) {
4555 tp->copied_seq = tp->rcv_nxt;
e16aa207 4556 smp_mb();
1da177e4
LT
4557 tcp_set_state(sk, TCP_ESTABLISHED);
4558 sk->sk_state_change(sk);
4559
4560 /* Note, that this wakeup is only for marginal
4561 * crossed SYN case. Passively open sockets
4562 * are not waked up, because sk->sk_sleep ==
4563 * NULL and sk->sk_socket == NULL.
4564 */
4565 if (sk->sk_socket) {
4566 sk_wake_async(sk,0,POLL_OUT);
4567 }
4568
4569 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4570 tp->snd_wnd = ntohs(th->window) <<
4571 tp->rx_opt.snd_wscale;
4572 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4573 TCP_SKB_CB(skb)->seq);
4574
4575 /* tcp_ack considers this ACK as duplicate
4576 * and does not calculate rtt.
4577 * Fix it at least with timestamps.
4578 */
4579 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4580 !tp->srtt)
2d2abbab 4581 tcp_ack_saw_tstamp(sk, 0);
1da177e4
LT
4582
4583 if (tp->rx_opt.tstamp_ok)
4584 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4585
4586 /* Make sure socket is routed, for
4587 * correct metrics.
4588 */
8292a17a 4589 icsk->icsk_af_ops->rebuild_header(sk);
1da177e4
LT
4590
4591 tcp_init_metrics(sk);
4592
6687e988 4593 tcp_init_congestion_control(sk);
317a76f9 4594
1da177e4
LT
4595 /* Prevent spurious tcp_cwnd_restart() on
4596 * first data packet.
4597 */
4598 tp->lsndtime = tcp_time_stamp;
4599
5d424d5a 4600 tcp_mtup_init(sk);
1da177e4
LT
4601 tcp_initialize_rcv_mss(sk);
4602 tcp_init_buffer_space(sk);
4603 tcp_fast_path_on(tp);
4604 } else {
4605 return 1;
4606 }
4607 break;
4608
4609 case TCP_FIN_WAIT1:
4610 if (tp->snd_una == tp->write_seq) {
4611 tcp_set_state(sk, TCP_FIN_WAIT2);
4612 sk->sk_shutdown |= SEND_SHUTDOWN;
4613 dst_confirm(sk->sk_dst_cache);
4614
4615 if (!sock_flag(sk, SOCK_DEAD))
4616 /* Wake up lingering close() */
4617 sk->sk_state_change(sk);
4618 else {
4619 int tmo;
4620
4621 if (tp->linger2 < 0 ||
4622 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4623 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4624 tcp_done(sk);
4625 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4626 return 1;
4627 }
4628
463c84b9 4629 tmo = tcp_fin_time(sk);
1da177e4 4630 if (tmo > TCP_TIMEWAIT_LEN) {
463c84b9 4631 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
1da177e4
LT
4632 } else if (th->fin || sock_owned_by_user(sk)) {
4633 /* Bad case. We could lose such FIN otherwise.
4634 * It is not a big problem, but it looks confusing
4635 * and not so rare event. We still can lose it now,
4636 * if it spins in bh_lock_sock(), but it is really
4637 * marginal case.
4638 */
463c84b9 4639 inet_csk_reset_keepalive_timer(sk, tmo);
1da177e4
LT
4640 } else {
4641 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4642 goto discard;
4643 }
4644 }
4645 }
4646 break;
4647
4648 case TCP_CLOSING:
4649 if (tp->snd_una == tp->write_seq) {
4650 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4651 goto discard;
4652 }
4653 break;
4654
4655 case TCP_LAST_ACK:
4656 if (tp->snd_una == tp->write_seq) {
4657 tcp_update_metrics(sk);
4658 tcp_done(sk);
4659 goto discard;
4660 }
4661 break;
4662 }
4663 } else
4664 goto discard;
4665
4666 /* step 6: check the URG bit */
4667 tcp_urg(sk, skb, th);
4668
4669 /* step 7: process the segment text */
4670 switch (sk->sk_state) {
4671 case TCP_CLOSE_WAIT:
4672 case TCP_CLOSING:
4673 case TCP_LAST_ACK:
4674 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4675 break;
4676 case TCP_FIN_WAIT1:
4677 case TCP_FIN_WAIT2:
4678 /* RFC 793 says to queue data in these states,
e905a9ed 4679 * RFC 1122 says we MUST send a reset.
1da177e4
LT
4680 * BSD 4.4 also does reset.
4681 */
4682 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4683 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4684 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4685 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4686 tcp_reset(sk);
4687 return 1;
4688 }
4689 }
4690 /* Fall through */
e905a9ed 4691 case TCP_ESTABLISHED:
1da177e4
LT
4692 tcp_data_queue(sk, skb);
4693 queued = 1;
4694 break;
4695 }
4696
4697 /* tcp_data could move socket to TIME-WAIT */
4698 if (sk->sk_state != TCP_CLOSE) {
55c97f3e 4699 tcp_data_snd_check(sk, tp);
1da177e4
LT
4700 tcp_ack_snd_check(sk);
4701 }
4702
e905a9ed 4703 if (!queued) {
1da177e4
LT
4704discard:
4705 __kfree_skb(skb);
4706 }
4707 return 0;
4708}
4709
4710EXPORT_SYMBOL(sysctl_tcp_ecn);
4711EXPORT_SYMBOL(sysctl_tcp_reordering);
4712EXPORT_SYMBOL(tcp_parse_options);
4713EXPORT_SYMBOL(tcp_rcv_established);
4714EXPORT_SYMBOL(tcp_rcv_state_process);
40efc6fa 4715EXPORT_SYMBOL(tcp_initialize_rcv_mss);