]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
curl: Don't deref NULL pointer in call to aio_poll.
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
e080e785
SW
4
5@documentlanguage en
6@documentencoding UTF-8
7
8f40c388 8@settitle QEMU Emulator User Documentation
debc7065
FB
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
386405f7 12
a1a32b05
SW
13@ifinfo
14@direntry
15* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
0806e3f6 19@iftex
386405f7
FB
20@titlepage
21@sp 7
8f40c388 22@center @titlefont{QEMU Emulator}
debc7065
FB
23@sp 1
24@center @titlefont{User Documentation}
386405f7
FB
25@sp 3
26@end titlepage
0806e3f6 27@end iftex
386405f7 28
debc7065
FB
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
35* Installation::
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
83195237 38* QEMU User space emulator::
debc7065 39* compilation:: Compilation from the sources
7544a042 40* License::
debc7065
FB
41* Index::
42@end menu
43@end ifnottex
44
45@contents
46
47@node Introduction
386405f7
FB
48@chapter Introduction
49
debc7065
FB
50@menu
51* intro_features:: Features
52@end menu
53
54@node intro_features
322d0c66 55@section Features
386405f7 56
1f673135
FB
57QEMU is a FAST! processor emulator using dynamic translation to
58achieve good emulation speed.
1eb20527
FB
59
60QEMU has two operating modes:
0806e3f6 61
d7e5edca 62@itemize
7544a042 63@cindex operating modes
0806e3f6 64
5fafdf24 65@item
7544a042 66@cindex system emulation
1f673135 67Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
1eb20527 71
5fafdf24 72@item
7544a042 73@cindex user mode emulation
83195237
FB
74User mode emulation. In this mode, QEMU can launch
75processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77to ease cross-compilation and cross-debugging.
1eb20527
FB
78
79@end itemize
80
e1b4382c 81QEMU can run without a host kernel driver and yet gives acceptable
5fafdf24 82performance.
322d0c66 83
52c00a5f
FB
84For system emulation, the following hardware targets are supported:
85@itemize
7544a042
SW
86@cindex emulated target systems
87@cindex supported target systems
9d0a8e6f 88@item PC (x86 or x86_64 processor)
3f9f3aa1 89@item ISA PC (old style PC without PCI bus)
52c00a5f 90@item PREP (PowerPC processor)
d45952a0 91@item G3 Beige PowerMac (PowerPC processor)
9d0a8e6f 92@item Mac99 PowerMac (PowerPC processor, in progress)
ee76f82e 93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
c7ba218d 94@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
d9aedc32 95@item Malta board (32-bit and 64-bit MIPS processors)
88cb0a02 96@item MIPS Magnum (64-bit MIPS processor)
9ee6e8bb
PB
97@item ARM Integrator/CP (ARM)
98@item ARM Versatile baseboard (ARM)
0ef849d7 99@item ARM RealView Emulation/Platform baseboard (ARM)
ef4c3856 100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
9ee6e8bb
PB
101@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 103@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 104@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 105@item Palm Tungsten|E PDA (OMAP310 processor)
c30bb264 106@item N800 and N810 tablets (OMAP2420 processor)
57cd6e97 107@item MusicPal (MV88W8618 ARM processor)
ef4c3856
AZ
108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109@item Siemens SX1 smartphone (OMAP310 processor)
48c50a62
EI
110@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
3aeaea65 112@item Avnet LX60/LX110/LX200 boards (Xtensa)
52c00a5f 113@end itemize
386405f7 114
7544a042
SW
115@cindex supported user mode targets
116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
0806e3f6 119
debc7065 120@node Installation
5b9f457a
FB
121@chapter Installation
122
15a34c63
FB
123If you want to compile QEMU yourself, see @ref{compilation}.
124
debc7065
FB
125@menu
126* install_linux:: Linux
127* install_windows:: Windows
128* install_mac:: Macintosh
129@end menu
130
131@node install_linux
1f673135 132@section Linux
7544a042 133@cindex installation (Linux)
1f673135 134
7c3fc84d
FB
135If a precompiled package is available for your distribution - you just
136have to install it. Otherwise, see @ref{compilation}.
5b9f457a 137
debc7065 138@node install_windows
1f673135 139@section Windows
7544a042 140@cindex installation (Windows)
8cd0ac2f 141
15a34c63 142Download the experimental binary installer at
debc7065 143@url{http://www.free.oszoo.org/@/download.html}.
7544a042 144TODO (no longer available)
d691f669 145
debc7065 146@node install_mac
1f673135 147@section Mac OS X
d691f669 148
15a34c63 149Download the experimental binary installer at
debc7065 150@url{http://www.free.oszoo.org/@/download.html}.
7544a042 151TODO (no longer available)
df0f11a0 152
debc7065 153@node QEMU PC System emulator
3f9f3aa1 154@chapter QEMU PC System emulator
7544a042 155@cindex system emulation (PC)
1eb20527 156
debc7065
FB
157@menu
158* pcsys_introduction:: Introduction
159* pcsys_quickstart:: Quick Start
160* sec_invocation:: Invocation
161* pcsys_keys:: Keys
162* pcsys_monitor:: QEMU Monitor
163* disk_images:: Disk Images
164* pcsys_network:: Network emulation
576fd0a1 165* pcsys_other_devs:: Other Devices
debc7065
FB
166* direct_linux_boot:: Direct Linux Boot
167* pcsys_usb:: USB emulation
f858dcae 168* vnc_security:: VNC security
debc7065
FB
169* gdb_usage:: GDB usage
170* pcsys_os_specific:: Target OS specific information
171@end menu
172
173@node pcsys_introduction
0806e3f6
FB
174@section Introduction
175
176@c man begin DESCRIPTION
177
3f9f3aa1
FB
178The QEMU PC System emulator simulates the
179following peripherals:
0806e3f6
FB
180
181@itemize @minus
5fafdf24 182@item
15a34c63 183i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 184@item
15a34c63
FB
185Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186extensions (hardware level, including all non standard modes).
0806e3f6
FB
187@item
188PS/2 mouse and keyboard
5fafdf24 189@item
15a34c63 1902 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
191@item
192Floppy disk
5fafdf24 193@item
3a2eeac0 194PCI and ISA network adapters
0806e3f6 195@item
05d5818c
FB
196Serial ports
197@item
c0fe3827
FB
198Creative SoundBlaster 16 sound card
199@item
200ENSONIQ AudioPCI ES1370 sound card
201@item
e5c9a13e
AZ
202Intel 82801AA AC97 Audio compatible sound card
203@item
7d72e762
GH
204Intel HD Audio Controller and HDA codec
205@item
2d983446 206Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 207@item
26463dbc
AZ
208Gravis Ultrasound GF1 sound card
209@item
cc53d26d 210CS4231A compatible sound card
211@item
b389dbfb 212PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
213@end itemize
214
3f9f3aa1
FB
215SMP is supported with up to 255 CPUs.
216
a8ad4159 217QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
218VGA BIOS.
219
c0fe3827
FB
220QEMU uses YM3812 emulation by Tatsuyuki Satoh.
221
2d983446 222QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 223by Tibor "TS" Schütz.
423d65f4 224
1a1a0e20 225Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 226QEMU must be told to not have parallel ports to have working GUS.
720036a5 227
228@example
3804da9d 229qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 230@end example
231
232Alternatively:
233@example
3804da9d 234qemu-system-i386 dos.img -device gus,irq=5
720036a5 235@end example
236
237Or some other unclaimed IRQ.
238
cc53d26d 239CS4231A is the chip used in Windows Sound System and GUSMAX products
240
0806e3f6
FB
241@c man end
242
debc7065 243@node pcsys_quickstart
1eb20527 244@section Quick Start
7544a042 245@cindex quick start
1eb20527 246
285dc330 247Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
248
249@example
3804da9d 250qemu-system-i386 linux.img
0806e3f6
FB
251@end example
252
253Linux should boot and give you a prompt.
254
6cc721cf 255@node sec_invocation
ec410fc9
FB
256@section Invocation
257
258@example
0806e3f6 259@c man begin SYNOPSIS
3804da9d 260usage: qemu-system-i386 [options] [@var{disk_image}]
0806e3f6 261@c man end
ec410fc9
FB
262@end example
263
0806e3f6 264@c man begin OPTIONS
d2c639d6
BS
265@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
266targets do not need a disk image.
ec410fc9 267
5824d651 268@include qemu-options.texi
ec410fc9 269
3e11db9a
FB
270@c man end
271
debc7065 272@node pcsys_keys
3e11db9a
FB
273@section Keys
274
275@c man begin OPTIONS
276
de1db2a1
BH
277During the graphical emulation, you can use special key combinations to change
278modes. The default key mappings are shown below, but if you use @code{-alt-grab}
279then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
280@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
281
a1b74fe8 282@table @key
f9859310 283@item Ctrl-Alt-f
7544a042 284@kindex Ctrl-Alt-f
a1b74fe8 285Toggle full screen
a0a821a4 286
d6a65ba3
JK
287@item Ctrl-Alt-+
288@kindex Ctrl-Alt-+
289Enlarge the screen
290
291@item Ctrl-Alt--
292@kindex Ctrl-Alt--
293Shrink the screen
294
c4a735f9 295@item Ctrl-Alt-u
7544a042 296@kindex Ctrl-Alt-u
c4a735f9 297Restore the screen's un-scaled dimensions
298
f9859310 299@item Ctrl-Alt-n
7544a042 300@kindex Ctrl-Alt-n
a0a821a4
FB
301Switch to virtual console 'n'. Standard console mappings are:
302@table @emph
303@item 1
304Target system display
305@item 2
306Monitor
307@item 3
308Serial port
a1b74fe8
FB
309@end table
310
f9859310 311@item Ctrl-Alt
7544a042 312@kindex Ctrl-Alt
a0a821a4
FB
313Toggle mouse and keyboard grab.
314@end table
315
7544a042
SW
316@kindex Ctrl-Up
317@kindex Ctrl-Down
318@kindex Ctrl-PageUp
319@kindex Ctrl-PageDown
3e11db9a
FB
320In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
321@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
322
7544a042 323@kindex Ctrl-a h
a0a821a4
FB
324During emulation, if you are using the @option{-nographic} option, use
325@key{Ctrl-a h} to get terminal commands:
ec410fc9
FB
326
327@table @key
a1b74fe8 328@item Ctrl-a h
7544a042 329@kindex Ctrl-a h
d2c639d6 330@item Ctrl-a ?
7544a042 331@kindex Ctrl-a ?
ec410fc9 332Print this help
3b46e624 333@item Ctrl-a x
7544a042 334@kindex Ctrl-a x
366dfc52 335Exit emulator
3b46e624 336@item Ctrl-a s
7544a042 337@kindex Ctrl-a s
1f47a922 338Save disk data back to file (if -snapshot)
20d8a3ed 339@item Ctrl-a t
7544a042 340@kindex Ctrl-a t
d2c639d6 341Toggle console timestamps
a1b74fe8 342@item Ctrl-a b
7544a042 343@kindex Ctrl-a b
1f673135 344Send break (magic sysrq in Linux)
a1b74fe8 345@item Ctrl-a c
7544a042 346@kindex Ctrl-a c
1f673135 347Switch between console and monitor
a1b74fe8 348@item Ctrl-a Ctrl-a
7544a042 349@kindex Ctrl-a a
a1b74fe8 350Send Ctrl-a
ec410fc9 351@end table
0806e3f6
FB
352@c man end
353
354@ignore
355
1f673135
FB
356@c man begin SEEALSO
357The HTML documentation of QEMU for more precise information and Linux
358user mode emulator invocation.
359@c man end
360
361@c man begin AUTHOR
362Fabrice Bellard
363@c man end
364
365@end ignore
366
debc7065 367@node pcsys_monitor
1f673135 368@section QEMU Monitor
7544a042 369@cindex QEMU monitor
1f673135
FB
370
371The QEMU monitor is used to give complex commands to the QEMU
372emulator. You can use it to:
373
374@itemize @minus
375
376@item
e598752a 377Remove or insert removable media images
89dfe898 378(such as CD-ROM or floppies).
1f673135 379
5fafdf24 380@item
1f673135
FB
381Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
382from a disk file.
383
384@item Inspect the VM state without an external debugger.
385
386@end itemize
387
388@subsection Commands
389
390The following commands are available:
391
2313086a 392@include qemu-monitor.texi
0806e3f6 393
1f673135
FB
394@subsection Integer expressions
395
396The monitor understands integers expressions for every integer
397argument. You can use register names to get the value of specifics
398CPU registers by prefixing them with @emph{$}.
ec410fc9 399
1f47a922
FB
400@node disk_images
401@section Disk Images
402
acd935ef
FB
403Since version 0.6.1, QEMU supports many disk image formats, including
404growable disk images (their size increase as non empty sectors are
13a2e80f
FB
405written), compressed and encrypted disk images. Version 0.8.3 added
406the new qcow2 disk image format which is essential to support VM
407snapshots.
1f47a922 408
debc7065
FB
409@menu
410* disk_images_quickstart:: Quick start for disk image creation
411* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 412* vm_snapshots:: VM snapshots
debc7065 413* qemu_img_invocation:: qemu-img Invocation
975b092b 414* qemu_nbd_invocation:: qemu-nbd Invocation
d3067b02 415* disk_images_formats:: Disk image file formats
19cb3738 416* host_drives:: Using host drives
debc7065 417* disk_images_fat_images:: Virtual FAT disk images
75818250 418* disk_images_nbd:: NBD access
42af9c30 419* disk_images_sheepdog:: Sheepdog disk images
00984e39 420* disk_images_iscsi:: iSCSI LUNs
8809e289 421* disk_images_gluster:: GlusterFS disk images
0a12ec87 422* disk_images_ssh:: Secure Shell (ssh) disk images
debc7065
FB
423@end menu
424
425@node disk_images_quickstart
acd935ef
FB
426@subsection Quick start for disk image creation
427
428You can create a disk image with the command:
1f47a922 429@example
acd935ef 430qemu-img create myimage.img mysize
1f47a922 431@end example
acd935ef
FB
432where @var{myimage.img} is the disk image filename and @var{mysize} is its
433size in kilobytes. You can add an @code{M} suffix to give the size in
434megabytes and a @code{G} suffix for gigabytes.
435
debc7065 436See @ref{qemu_img_invocation} for more information.
1f47a922 437
debc7065 438@node disk_images_snapshot_mode
1f47a922
FB
439@subsection Snapshot mode
440
441If you use the option @option{-snapshot}, all disk images are
442considered as read only. When sectors in written, they are written in
443a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
444write back to the raw disk images by using the @code{commit} monitor
445command (or @key{C-a s} in the serial console).
1f47a922 446
13a2e80f
FB
447@node vm_snapshots
448@subsection VM snapshots
449
450VM snapshots are snapshots of the complete virtual machine including
451CPU state, RAM, device state and the content of all the writable
452disks. In order to use VM snapshots, you must have at least one non
453removable and writable block device using the @code{qcow2} disk image
454format. Normally this device is the first virtual hard drive.
455
456Use the monitor command @code{savevm} to create a new VM snapshot or
457replace an existing one. A human readable name can be assigned to each
19d36792 458snapshot in addition to its numerical ID.
13a2e80f
FB
459
460Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
461a VM snapshot. @code{info snapshots} lists the available snapshots
462with their associated information:
463
464@example
465(qemu) info snapshots
466Snapshot devices: hda
467Snapshot list (from hda):
468ID TAG VM SIZE DATE VM CLOCK
4691 start 41M 2006-08-06 12:38:02 00:00:14.954
4702 40M 2006-08-06 12:43:29 00:00:18.633
4713 msys 40M 2006-08-06 12:44:04 00:00:23.514
472@end example
473
474A VM snapshot is made of a VM state info (its size is shown in
475@code{info snapshots}) and a snapshot of every writable disk image.
476The VM state info is stored in the first @code{qcow2} non removable
477and writable block device. The disk image snapshots are stored in
478every disk image. The size of a snapshot in a disk image is difficult
479to evaluate and is not shown by @code{info snapshots} because the
480associated disk sectors are shared among all the snapshots to save
19d36792
FB
481disk space (otherwise each snapshot would need a full copy of all the
482disk images).
13a2e80f
FB
483
484When using the (unrelated) @code{-snapshot} option
485(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
486but they are deleted as soon as you exit QEMU.
487
488VM snapshots currently have the following known limitations:
489@itemize
5fafdf24 490@item
13a2e80f
FB
491They cannot cope with removable devices if they are removed or
492inserted after a snapshot is done.
5fafdf24 493@item
13a2e80f
FB
494A few device drivers still have incomplete snapshot support so their
495state is not saved or restored properly (in particular USB).
496@end itemize
497
acd935ef
FB
498@node qemu_img_invocation
499@subsection @code{qemu-img} Invocation
1f47a922 500
acd935ef 501@include qemu-img.texi
05efe46e 502
975b092b
TS
503@node qemu_nbd_invocation
504@subsection @code{qemu-nbd} Invocation
505
506@include qemu-nbd.texi
507
d3067b02
KW
508@node disk_images_formats
509@subsection Disk image file formats
510
511QEMU supports many image file formats that can be used with VMs as well as with
512any of the tools (like @code{qemu-img}). This includes the preferred formats
513raw and qcow2 as well as formats that are supported for compatibility with
514older QEMU versions or other hypervisors.
515
516Depending on the image format, different options can be passed to
517@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
518This section describes each format and the options that are supported for it.
519
520@table @option
521@item raw
522
523Raw disk image format. This format has the advantage of
524being simple and easily exportable to all other emulators. If your
525file system supports @emph{holes} (for example in ext2 or ext3 on
526Linux or NTFS on Windows), then only the written sectors will reserve
527space. Use @code{qemu-img info} to know the real size used by the
528image or @code{ls -ls} on Unix/Linux.
529
530@item qcow2
531QEMU image format, the most versatile format. Use it to have smaller
532images (useful if your filesystem does not supports holes, for example
533on Windows), optional AES encryption, zlib based compression and
534support of multiple VM snapshots.
535
536Supported options:
537@table @code
538@item compat
7fa9e1f9
SH
539Determines the qcow2 version to use. @code{compat=0.10} uses the
540traditional image format that can be read by any QEMU since 0.10.
d3067b02 541@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
7fa9e1f9
SH
542newer understand (this is the default). Amongst others, this includes
543zero clusters, which allow efficient copy-on-read for sparse images.
d3067b02
KW
544
545@item backing_file
546File name of a base image (see @option{create} subcommand)
547@item backing_fmt
548Image format of the base image
549@item encryption
136cd19d 550If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC.
d3067b02 551
136cd19d
DB
552The use of encryption in qcow and qcow2 images is considered to be flawed by
553modern cryptography standards, suffering from a number of design problems:
554
555@itemize @minus
556@item The AES-CBC cipher is used with predictable initialization vectors based
557on the sector number. This makes it vulnerable to chosen plaintext attacks
558which can reveal the existence of encrypted data.
559@item The user passphrase is directly used as the encryption key. A poorly
560chosen or short passphrase will compromise the security of the encryption.
561@item In the event of the passphrase being compromised there is no way to
562change the passphrase to protect data in any qcow images. The files must
563be cloned, using a different encryption passphrase in the new file. The
564original file must then be securely erased using a program like shred,
565though even this is ineffective with many modern storage technologies.
566@end itemize
567
568Use of qcow / qcow2 encryption is thus strongly discouraged. Users are
569recommended to use an alternative encryption technology such as the
570Linux dm-crypt / LUKS system.
d3067b02
KW
571
572@item cluster_size
573Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
574sizes can improve the image file size whereas larger cluster sizes generally
575provide better performance.
576
577@item preallocation
578Preallocation mode (allowed values: off, metadata). An image with preallocated
579metadata is initially larger but can improve performance when the image needs
580to grow.
581
582@item lazy_refcounts
583If this option is set to @code{on}, reference count updates are postponed with
584the goal of avoiding metadata I/O and improving performance. This is
585particularly interesting with @option{cache=writethrough} which doesn't batch
586metadata updates. The tradeoff is that after a host crash, the reference count
587tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
588check -r all} is required, which may take some time.
589
590This option can only be enabled if @code{compat=1.1} is specified.
591
4ab15590 592@item nocow
bc3a7f90 593If this option is set to @code{on}, it will turn off COW of the file. It's only
4ab15590
CL
594valid on btrfs, no effect on other file systems.
595
596Btrfs has low performance when hosting a VM image file, even more when the guest
597on the VM also using btrfs as file system. Turning off COW is a way to mitigate
598this bad performance. Generally there are two ways to turn off COW on btrfs:
599a) Disable it by mounting with nodatacow, then all newly created files will be
600NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
601does.
602
603Note: this option is only valid to new or empty files. If there is an existing
604file which is COW and has data blocks already, it couldn't be changed to NOCOW
605by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
bc3a7f90 606the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
4ab15590 607
d3067b02
KW
608@end table
609
610@item qed
611Old QEMU image format with support for backing files and compact image files
612(when your filesystem or transport medium does not support holes).
613
614When converting QED images to qcow2, you might want to consider using the
615@code{lazy_refcounts=on} option to get a more QED-like behaviour.
616
617Supported options:
618@table @code
619@item backing_file
620File name of a base image (see @option{create} subcommand).
621@item backing_fmt
622Image file format of backing file (optional). Useful if the format cannot be
623autodetected because it has no header, like some vhd/vpc files.
624@item cluster_size
625Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
626cluster sizes can improve the image file size whereas larger cluster sizes
627generally provide better performance.
628@item table_size
629Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
630and 16). There is normally no need to change this value but this option can be
631used for performance benchmarking.
632@end table
633
634@item qcow
635Old QEMU image format with support for backing files, compact image files,
636encryption and compression.
637
638Supported options:
639@table @code
640@item backing_file
641File name of a base image (see @option{create} subcommand)
642@item encryption
643If this option is set to @code{on}, the image is encrypted.
644@end table
645
646@item cow
647User Mode Linux Copy On Write image format. It is supported only for
648compatibility with previous versions.
649Supported options:
650@table @code
651@item backing_file
652File name of a base image (see @option{create} subcommand)
653@end table
654
655@item vdi
656VirtualBox 1.1 compatible image format.
657Supported options:
658@table @code
659@item static
660If this option is set to @code{on}, the image is created with metadata
661preallocation.
662@end table
663
664@item vmdk
665VMware 3 and 4 compatible image format.
666
667Supported options:
668@table @code
669@item backing_file
670File name of a base image (see @option{create} subcommand).
671@item compat6
672Create a VMDK version 6 image (instead of version 4)
673@item subformat
674Specifies which VMDK subformat to use. Valid options are
675@code{monolithicSparse} (default),
676@code{monolithicFlat},
677@code{twoGbMaxExtentSparse},
678@code{twoGbMaxExtentFlat} and
679@code{streamOptimized}.
680@end table
681
682@item vpc
683VirtualPC compatible image format (VHD).
684Supported options:
685@table @code
686@item subformat
687Specifies which VHD subformat to use. Valid options are
688@code{dynamic} (default) and @code{fixed}.
689@end table
8282db1b
JC
690
691@item VHDX
692Hyper-V compatible image format (VHDX).
693Supported options:
694@table @code
695@item subformat
696Specifies which VHDX subformat to use. Valid options are
697@code{dynamic} (default) and @code{fixed}.
698@item block_state_zero
699Force use of payload blocks of type 'ZERO'.
700@item block_size
701Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size.
702@item log_size
703Log size; min 1 MB.
704@end table
d3067b02
KW
705@end table
706
707@subsubsection Read-only formats
708More disk image file formats are supported in a read-only mode.
709@table @option
710@item bochs
711Bochs images of @code{growing} type.
712@item cloop
713Linux Compressed Loop image, useful only to reuse directly compressed
714CD-ROM images present for example in the Knoppix CD-ROMs.
715@item dmg
716Apple disk image.
717@item parallels
718Parallels disk image format.
719@end table
720
721
19cb3738
FB
722@node host_drives
723@subsection Using host drives
724
725In addition to disk image files, QEMU can directly access host
726devices. We describe here the usage for QEMU version >= 0.8.3.
727
728@subsubsection Linux
729
730On Linux, you can directly use the host device filename instead of a
4be456f1 731disk image filename provided you have enough privileges to access
19cb3738
FB
732it. For example, use @file{/dev/cdrom} to access to the CDROM or
733@file{/dev/fd0} for the floppy.
734
f542086d 735@table @code
19cb3738
FB
736@item CD
737You can specify a CDROM device even if no CDROM is loaded. QEMU has
738specific code to detect CDROM insertion or removal. CDROM ejection by
739the guest OS is supported. Currently only data CDs are supported.
740@item Floppy
741You can specify a floppy device even if no floppy is loaded. Floppy
742removal is currently not detected accurately (if you change floppy
743without doing floppy access while the floppy is not loaded, the guest
744OS will think that the same floppy is loaded).
745@item Hard disks
746Hard disks can be used. Normally you must specify the whole disk
747(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
748see it as a partitioned disk. WARNING: unless you know what you do, it
749is better to only make READ-ONLY accesses to the hard disk otherwise
750you may corrupt your host data (use the @option{-snapshot} command
751line option or modify the device permissions accordingly).
752@end table
753
754@subsubsection Windows
755
01781963
FB
756@table @code
757@item CD
4be456f1 758The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
759alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
760supported as an alias to the first CDROM drive.
19cb3738 761
e598752a 762Currently there is no specific code to handle removable media, so it
19cb3738
FB
763is better to use the @code{change} or @code{eject} monitor commands to
764change or eject media.
01781963 765@item Hard disks
89dfe898 766Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
767where @var{N} is the drive number (0 is the first hard disk).
768
769WARNING: unless you know what you do, it is better to only make
770READ-ONLY accesses to the hard disk otherwise you may corrupt your
771host data (use the @option{-snapshot} command line so that the
772modifications are written in a temporary file).
773@end table
774
19cb3738
FB
775
776@subsubsection Mac OS X
777
5fafdf24 778@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 779
e598752a 780Currently there is no specific code to handle removable media, so it
19cb3738
FB
781is better to use the @code{change} or @code{eject} monitor commands to
782change or eject media.
783
debc7065 784@node disk_images_fat_images
2c6cadd4
FB
785@subsection Virtual FAT disk images
786
787QEMU can automatically create a virtual FAT disk image from a
788directory tree. In order to use it, just type:
789
5fafdf24 790@example
3804da9d 791qemu-system-i386 linux.img -hdb fat:/my_directory
2c6cadd4
FB
792@end example
793
794Then you access access to all the files in the @file{/my_directory}
795directory without having to copy them in a disk image or to export
796them via SAMBA or NFS. The default access is @emph{read-only}.
797
798Floppies can be emulated with the @code{:floppy:} option:
799
5fafdf24 800@example
3804da9d 801qemu-system-i386 linux.img -fda fat:floppy:/my_directory
2c6cadd4
FB
802@end example
803
804A read/write support is available for testing (beta stage) with the
805@code{:rw:} option:
806
5fafdf24 807@example
3804da9d 808qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
2c6cadd4
FB
809@end example
810
811What you should @emph{never} do:
812@itemize
813@item use non-ASCII filenames ;
814@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
815@item expect it to work when loadvm'ing ;
816@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
817@end itemize
818
75818250
TS
819@node disk_images_nbd
820@subsection NBD access
821
822QEMU can access directly to block device exported using the Network Block Device
823protocol.
824
825@example
1d7d2a9d 826qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
75818250
TS
827@end example
828
829If the NBD server is located on the same host, you can use an unix socket instead
830of an inet socket:
831
832@example
1d7d2a9d 833qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
834@end example
835
836In this case, the block device must be exported using qemu-nbd:
837
838@example
839qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
840@end example
841
9d85d557 842The use of qemu-nbd allows sharing of a disk between several guests:
75818250
TS
843@example
844qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
845@end example
846
1d7d2a9d 847@noindent
75818250
TS
848and then you can use it with two guests:
849@example
1d7d2a9d
PB
850qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
851qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
852@end example
853
1d7d2a9d
PB
854If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
855own embedded NBD server), you must specify an export name in the URI:
1d45f8b5 856@example
1d7d2a9d
PB
857qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
858qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
859@end example
860
861The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
862also available. Here are some example of the older syntax:
863@example
864qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
865qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
866qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
1d45f8b5
LV
867@end example
868
42af9c30
MK
869@node disk_images_sheepdog
870@subsection Sheepdog disk images
871
872Sheepdog is a distributed storage system for QEMU. It provides highly
873available block level storage volumes that can be attached to
874QEMU-based virtual machines.
875
876You can create a Sheepdog disk image with the command:
877@example
5d6768e3 878qemu-img create sheepdog:///@var{image} @var{size}
42af9c30
MK
879@end example
880where @var{image} is the Sheepdog image name and @var{size} is its
881size.
882
883To import the existing @var{filename} to Sheepdog, you can use a
884convert command.
885@example
5d6768e3 886qemu-img convert @var{filename} sheepdog:///@var{image}
42af9c30
MK
887@end example
888
889You can boot from the Sheepdog disk image with the command:
890@example
5d6768e3 891qemu-system-i386 sheepdog:///@var{image}
42af9c30
MK
892@end example
893
894You can also create a snapshot of the Sheepdog image like qcow2.
895@example
5d6768e3 896qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
42af9c30
MK
897@end example
898where @var{tag} is a tag name of the newly created snapshot.
899
900To boot from the Sheepdog snapshot, specify the tag name of the
901snapshot.
902@example
5d6768e3 903qemu-system-i386 sheepdog:///@var{image}#@var{tag}
42af9c30
MK
904@end example
905
906You can create a cloned image from the existing snapshot.
907@example
5d6768e3 908qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
42af9c30
MK
909@end example
910where @var{base} is a image name of the source snapshot and @var{tag}
911is its tag name.
912
1b8bbb46
MK
913You can use an unix socket instead of an inet socket:
914
915@example
916qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
917@end example
918
42af9c30
MK
919If the Sheepdog daemon doesn't run on the local host, you need to
920specify one of the Sheepdog servers to connect to.
921@example
5d6768e3
MK
922qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
923qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
42af9c30
MK
924@end example
925
00984e39
RS
926@node disk_images_iscsi
927@subsection iSCSI LUNs
928
929iSCSI is a popular protocol used to access SCSI devices across a computer
930network.
931
932There are two different ways iSCSI devices can be used by QEMU.
933
934The first method is to mount the iSCSI LUN on the host, and make it appear as
935any other ordinary SCSI device on the host and then to access this device as a
936/dev/sd device from QEMU. How to do this differs between host OSes.
937
938The second method involves using the iSCSI initiator that is built into
939QEMU. This provides a mechanism that works the same way regardless of which
940host OS you are running QEMU on. This section will describe this second method
941of using iSCSI together with QEMU.
942
943In QEMU, iSCSI devices are described using special iSCSI URLs
944
945@example
946URL syntax:
947iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
948@end example
949
950Username and password are optional and only used if your target is set up
951using CHAP authentication for access control.
952Alternatively the username and password can also be set via environment
953variables to have these not show up in the process list
954
955@example
956export LIBISCSI_CHAP_USERNAME=<username>
957export LIBISCSI_CHAP_PASSWORD=<password>
958iscsi://<host>/<target-iqn-name>/<lun>
959@end example
960
f9dadc98
RS
961Various session related parameters can be set via special options, either
962in a configuration file provided via '-readconfig' or directly on the
963command line.
964
31459f46
RS
965If the initiator-name is not specified qemu will use a default name
966of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
967virtual machine.
968
969
f9dadc98
RS
970@example
971Setting a specific initiator name to use when logging in to the target
972-iscsi initiator-name=iqn.qemu.test:my-initiator
973@end example
974
975@example
976Controlling which type of header digest to negotiate with the target
977-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
978@end example
979
980These can also be set via a configuration file
981@example
982[iscsi]
983 user = "CHAP username"
984 password = "CHAP password"
985 initiator-name = "iqn.qemu.test:my-initiator"
986 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
987 header-digest = "CRC32C"
988@end example
989
990
991Setting the target name allows different options for different targets
992@example
993[iscsi "iqn.target.name"]
994 user = "CHAP username"
995 password = "CHAP password"
996 initiator-name = "iqn.qemu.test:my-initiator"
997 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
998 header-digest = "CRC32C"
999@end example
1000
1001
1002Howto use a configuration file to set iSCSI configuration options:
1003@example
1004cat >iscsi.conf <<EOF
1005[iscsi]
1006 user = "me"
1007 password = "my password"
1008 initiator-name = "iqn.qemu.test:my-initiator"
1009 header-digest = "CRC32C"
1010EOF
1011
1012qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1013 -readconfig iscsi.conf
1014@end example
1015
1016
00984e39
RS
1017Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
1018@example
1019This example shows how to set up an iSCSI target with one CDROM and one DISK
1020using the Linux STGT software target. This target is available on Red Hat based
1021systems as the package 'scsi-target-utils'.
1022
1023tgtd --iscsi portal=127.0.0.1:3260
1024tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
1025tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
1026 -b /IMAGES/disk.img --device-type=disk
1027tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
1028 -b /IMAGES/cd.iso --device-type=cd
1029tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
1030
f9dadc98
RS
1031qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
1032 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
00984e39
RS
1033 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
1034@end example
1035
8809e289
BR
1036@node disk_images_gluster
1037@subsection GlusterFS disk images
00984e39 1038
8809e289
BR
1039GlusterFS is an user space distributed file system.
1040
1041You can boot from the GlusterFS disk image with the command:
1042@example
1043qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
1044@end example
1045
1046@var{gluster} is the protocol.
1047
1048@var{transport} specifies the transport type used to connect to gluster
1049management daemon (glusterd). Valid transport types are
1050tcp, unix and rdma. If a transport type isn't specified, then tcp
1051type is assumed.
1052
1053@var{server} specifies the server where the volume file specification for
1054the given volume resides. This can be either hostname, ipv4 address
1055or ipv6 address. ipv6 address needs to be within square brackets [ ].
1056If transport type is unix, then @var{server} field should not be specifed.
1057Instead @var{socket} field needs to be populated with the path to unix domain
1058socket.
1059
1060@var{port} is the port number on which glusterd is listening. This is optional
1061and if not specified, QEMU will send 0 which will make gluster to use the
1062default port. If the transport type is unix, then @var{port} should not be
1063specified.
1064
1065@var{volname} is the name of the gluster volume which contains the disk image.
1066
1067@var{image} is the path to the actual disk image that resides on gluster volume.
1068
1069You can create a GlusterFS disk image with the command:
1070@example
1071qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
1072@end example
1073
1074Examples
1075@example
1076qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1077qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1078qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1079qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1080qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1081qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1082qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1083qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
1084@end example
00984e39 1085
0a12ec87
RJ
1086@node disk_images_ssh
1087@subsection Secure Shell (ssh) disk images
1088
1089You can access disk images located on a remote ssh server
1090by using the ssh protocol:
1091
1092@example
1093qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1094@end example
1095
1096Alternative syntax using properties:
1097
1098@example
1099qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1100@end example
1101
1102@var{ssh} is the protocol.
1103
1104@var{user} is the remote user. If not specified, then the local
1105username is tried.
1106
1107@var{server} specifies the remote ssh server. Any ssh server can be
1108used, but it must implement the sftp-server protocol. Most Unix/Linux
1109systems should work without requiring any extra configuration.
1110
1111@var{port} is the port number on which sshd is listening. By default
1112the standard ssh port (22) is used.
1113
1114@var{path} is the path to the disk image.
1115
1116The optional @var{host_key_check} parameter controls how the remote
1117host's key is checked. The default is @code{yes} which means to use
1118the local @file{.ssh/known_hosts} file. Setting this to @code{no}
1119turns off known-hosts checking. Or you can check that the host key
1120matches a specific fingerprint:
1121@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1122(@code{sha1:} can also be used as a prefix, but note that OpenSSH
1123tools only use MD5 to print fingerprints).
1124
1125Currently authentication must be done using ssh-agent. Other
1126authentication methods may be supported in future.
1127
9a2d462e
RJ
1128Note: Many ssh servers do not support an @code{fsync}-style operation.
1129The ssh driver cannot guarantee that disk flush requests are
1130obeyed, and this causes a risk of disk corruption if the remote
1131server or network goes down during writes. The driver will
1132print a warning when @code{fsync} is not supported:
1133
1134warning: ssh server @code{ssh.example.com:22} does not support fsync
1135
1136With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1137supported.
0a12ec87 1138
debc7065 1139@node pcsys_network
9d4fb82e
FB
1140@section Network emulation
1141
4be456f1 1142QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
1143target) and can connect them to an arbitrary number of Virtual Local
1144Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1145VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 1146simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
1147network stack can replace the TAP device to have a basic network
1148connection.
1149
1150@subsection VLANs
9d4fb82e 1151
41d03949
FB
1152QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1153connection between several network devices. These devices can be for
1154example QEMU virtual Ethernet cards or virtual Host ethernet devices
1155(TAP devices).
9d4fb82e 1156
41d03949
FB
1157@subsection Using TAP network interfaces
1158
1159This is the standard way to connect QEMU to a real network. QEMU adds
1160a virtual network device on your host (called @code{tapN}), and you
1161can then configure it as if it was a real ethernet card.
9d4fb82e 1162
8f40c388
FB
1163@subsubsection Linux host
1164
9d4fb82e
FB
1165As an example, you can download the @file{linux-test-xxx.tar.gz}
1166archive and copy the script @file{qemu-ifup} in @file{/etc} and
1167configure properly @code{sudo} so that the command @code{ifconfig}
1168contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 1169that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
1170device @file{/dev/net/tun} must be present.
1171
ee0f4751
FB
1172See @ref{sec_invocation} to have examples of command lines using the
1173TAP network interfaces.
9d4fb82e 1174
8f40c388
FB
1175@subsubsection Windows host
1176
1177There is a virtual ethernet driver for Windows 2000/XP systems, called
1178TAP-Win32. But it is not included in standard QEMU for Windows,
1179so you will need to get it separately. It is part of OpenVPN package,
1180so download OpenVPN from : @url{http://openvpn.net/}.
1181
9d4fb82e
FB
1182@subsection Using the user mode network stack
1183
41d03949
FB
1184By using the option @option{-net user} (default configuration if no
1185@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 1186network stack (you don't need root privilege to use the virtual
41d03949 1187network). The virtual network configuration is the following:
9d4fb82e
FB
1188
1189@example
1190
41d03949
FB
1191 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1192 | (10.0.2.2)
9d4fb82e 1193 |
2518bd0d 1194 ----> DNS server (10.0.2.3)
3b46e624 1195 |
2518bd0d 1196 ----> SMB server (10.0.2.4)
9d4fb82e
FB
1197@end example
1198
1199The QEMU VM behaves as if it was behind a firewall which blocks all
1200incoming connections. You can use a DHCP client to automatically
41d03949
FB
1201configure the network in the QEMU VM. The DHCP server assign addresses
1202to the hosts starting from 10.0.2.15.
9d4fb82e
FB
1203
1204In order to check that the user mode network is working, you can ping
1205the address 10.0.2.2 and verify that you got an address in the range
120610.0.2.x from the QEMU virtual DHCP server.
1207
37cbfcce
GH
1208Note that ICMP traffic in general does not work with user mode networking.
1209@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
1210however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
1211ping sockets to allow @code{ping} to the Internet. The host admin has to set
1212the ping_group_range in order to grant access to those sockets. To allow ping
1213for GID 100 (usually users group):
1214
1215@example
1216echo 100 100 > /proc/sys/net/ipv4/ping_group_range
1217@end example
b415a407 1218
9bf05444
FB
1219When using the built-in TFTP server, the router is also the TFTP
1220server.
1221
1222When using the @option{-redir} option, TCP or UDP connections can be
1223redirected from the host to the guest. It allows for example to
1224redirect X11, telnet or SSH connections.
443f1376 1225
41d03949
FB
1226@subsection Connecting VLANs between QEMU instances
1227
1228Using the @option{-net socket} option, it is possible to make VLANs
1229that span several QEMU instances. See @ref{sec_invocation} to have a
1230basic example.
1231
576fd0a1 1232@node pcsys_other_devs
6cbf4c8c
CM
1233@section Other Devices
1234
1235@subsection Inter-VM Shared Memory device
1236
1237With KVM enabled on a Linux host, a shared memory device is available. Guests
1238map a POSIX shared memory region into the guest as a PCI device that enables
1239zero-copy communication to the application level of the guests. The basic
1240syntax is:
1241
1242@example
3804da9d 1243qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
6cbf4c8c
CM
1244@end example
1245
1246If desired, interrupts can be sent between guest VMs accessing the same shared
1247memory region. Interrupt support requires using a shared memory server and
1248using a chardev socket to connect to it. The code for the shared memory server
1249is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
1250memory server is:
1251
1252@example
3804da9d
SW
1253qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
1254 [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
1255qemu-system-i386 -chardev socket,path=<path>,id=<id>
6cbf4c8c
CM
1256@end example
1257
1258When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1259using the same server to communicate via interrupts. Guests can read their
1260VM ID from a device register (see example code). Since receiving the shared
1261memory region from the server is asynchronous, there is a (small) chance the
1262guest may boot before the shared memory is attached. To allow an application
1263to ensure shared memory is attached, the VM ID register will return -1 (an
1264invalid VM ID) until the memory is attached. Once the shared memory is
1265attached, the VM ID will return the guest's valid VM ID. With these semantics,
1266the guest application can check to ensure the shared memory is attached to the
1267guest before proceeding.
1268
1269The @option{role} argument can be set to either master or peer and will affect
1270how the shared memory is migrated. With @option{role=master}, the guest will
1271copy the shared memory on migration to the destination host. With
1272@option{role=peer}, the guest will not be able to migrate with the device attached.
1273With the @option{peer} case, the device should be detached and then reattached
1274after migration using the PCI hotplug support.
1275
9d4fb82e
FB
1276@node direct_linux_boot
1277@section Direct Linux Boot
1f673135
FB
1278
1279This section explains how to launch a Linux kernel inside QEMU without
1280having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1281kernel testing.
1f673135 1282
ee0f4751 1283The syntax is:
1f673135 1284@example
3804da9d 1285qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1286@end example
1287
ee0f4751
FB
1288Use @option{-kernel} to provide the Linux kernel image and
1289@option{-append} to give the kernel command line arguments. The
1290@option{-initrd} option can be used to provide an INITRD image.
1f673135 1291
ee0f4751
FB
1292When using the direct Linux boot, a disk image for the first hard disk
1293@file{hda} is required because its boot sector is used to launch the
1294Linux kernel.
1f673135 1295
ee0f4751
FB
1296If you do not need graphical output, you can disable it and redirect
1297the virtual serial port and the QEMU monitor to the console with the
1298@option{-nographic} option. The typical command line is:
1f673135 1299@example
3804da9d
SW
1300qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1301 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1302@end example
1303
ee0f4751
FB
1304Use @key{Ctrl-a c} to switch between the serial console and the
1305monitor (@pxref{pcsys_keys}).
1f673135 1306
debc7065 1307@node pcsys_usb
b389dbfb
FB
1308@section USB emulation
1309
0aff66b5
PB
1310QEMU emulates a PCI UHCI USB controller. You can virtually plug
1311virtual USB devices or real host USB devices (experimental, works only
071c9394 1312on Linux hosts). QEMU will automatically create and connect virtual USB hubs
f542086d 1313as necessary to connect multiple USB devices.
b389dbfb 1314
0aff66b5
PB
1315@menu
1316* usb_devices::
1317* host_usb_devices::
1318@end menu
1319@node usb_devices
1320@subsection Connecting USB devices
b389dbfb 1321
0aff66b5
PB
1322USB devices can be connected with the @option{-usbdevice} commandline option
1323or the @code{usb_add} monitor command. Available devices are:
b389dbfb 1324
db380c06
AZ
1325@table @code
1326@item mouse
0aff66b5 1327Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 1328@item tablet
c6d46c20 1329Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 1330This means QEMU is able to report the mouse position without having
0aff66b5 1331to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 1332@item disk:@var{file}
0aff66b5 1333Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 1334@item host:@var{bus.addr}
0aff66b5
PB
1335Pass through the host device identified by @var{bus.addr}
1336(Linux only)
db380c06 1337@item host:@var{vendor_id:product_id}
0aff66b5
PB
1338Pass through the host device identified by @var{vendor_id:product_id}
1339(Linux only)
db380c06 1340@item wacom-tablet
f6d2a316
AZ
1341Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1342above but it can be used with the tslib library because in addition to touch
1343coordinates it reports touch pressure.
db380c06 1344@item keyboard
47b2d338 1345Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
1346@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1347Serial converter. This emulates an FTDI FT232BM chip connected to host character
1348device @var{dev}. The available character devices are the same as for the
1349@code{-serial} option. The @code{vendorid} and @code{productid} options can be
0d6753e5 1350used to override the default 0403:6001. For instance,
db380c06
AZ
1351@example
1352usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1353@end example
1354will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1355serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
1356@item braille
1357Braille device. This will use BrlAPI to display the braille output on a real
1358or fake device.
9ad97e65
AZ
1359@item net:@var{options}
1360Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1361specifies NIC options as with @code{-net nic,}@var{options} (see description).
1362For instance, user-mode networking can be used with
6c9f886c 1363@example
3804da9d 1364qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
1365@end example
1366Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
1367@item bt[:@var{hci-type}]
1368Bluetooth dongle whose type is specified in the same format as with
1369the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1370no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1371This USB device implements the USB Transport Layer of HCI. Example
1372usage:
1373@example
3804da9d 1374qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
2d564691 1375@end example
0aff66b5 1376@end table
b389dbfb 1377
0aff66b5 1378@node host_usb_devices
b389dbfb
FB
1379@subsection Using host USB devices on a Linux host
1380
1381WARNING: this is an experimental feature. QEMU will slow down when
1382using it. USB devices requiring real time streaming (i.e. USB Video
1383Cameras) are not supported yet.
1384
1385@enumerate
5fafdf24 1386@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1387is actually using the USB device. A simple way to do that is simply to
1388disable the corresponding kernel module by renaming it from @file{mydriver.o}
1389to @file{mydriver.o.disabled}.
1390
1391@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1392@example
1393ls /proc/bus/usb
1394001 devices drivers
1395@end example
1396
1397@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1398@example
1399chown -R myuid /proc/bus/usb
1400@end example
1401
1402@item Launch QEMU and do in the monitor:
5fafdf24 1403@example
b389dbfb
FB
1404info usbhost
1405 Device 1.2, speed 480 Mb/s
1406 Class 00: USB device 1234:5678, USB DISK
1407@end example
1408You should see the list of the devices you can use (Never try to use
1409hubs, it won't work).
1410
1411@item Add the device in QEMU by using:
5fafdf24 1412@example
b389dbfb
FB
1413usb_add host:1234:5678
1414@end example
1415
1416Normally the guest OS should report that a new USB device is
1417plugged. You can use the option @option{-usbdevice} to do the same.
1418
1419@item Now you can try to use the host USB device in QEMU.
1420
1421@end enumerate
1422
1423When relaunching QEMU, you may have to unplug and plug again the USB
1424device to make it work again (this is a bug).
1425
f858dcae
TS
1426@node vnc_security
1427@section VNC security
1428
1429The VNC server capability provides access to the graphical console
1430of the guest VM across the network. This has a number of security
1431considerations depending on the deployment scenarios.
1432
1433@menu
1434* vnc_sec_none::
1435* vnc_sec_password::
1436* vnc_sec_certificate::
1437* vnc_sec_certificate_verify::
1438* vnc_sec_certificate_pw::
2f9606b3
AL
1439* vnc_sec_sasl::
1440* vnc_sec_certificate_sasl::
f858dcae 1441* vnc_generate_cert::
2f9606b3 1442* vnc_setup_sasl::
f858dcae
TS
1443@end menu
1444@node vnc_sec_none
1445@subsection Without passwords
1446
1447The simplest VNC server setup does not include any form of authentication.
1448For this setup it is recommended to restrict it to listen on a UNIX domain
1449socket only. For example
1450
1451@example
3804da9d 1452qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1453@end example
1454
1455This ensures that only users on local box with read/write access to that
1456path can access the VNC server. To securely access the VNC server from a
1457remote machine, a combination of netcat+ssh can be used to provide a secure
1458tunnel.
1459
1460@node vnc_sec_password
1461@subsection With passwords
1462
1463The VNC protocol has limited support for password based authentication. Since
1464the protocol limits passwords to 8 characters it should not be considered
1465to provide high security. The password can be fairly easily brute-forced by
1466a client making repeat connections. For this reason, a VNC server using password
1467authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1468or UNIX domain sockets. Password authentication is not supported when operating
1469in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1470authentication is requested with the @code{password} option, and then once QEMU
1471is running the password is set with the monitor. Until the monitor is used to
1472set the password all clients will be rejected.
f858dcae
TS
1473
1474@example
3804da9d 1475qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1476(qemu) change vnc password
1477Password: ********
1478(qemu)
1479@end example
1480
1481@node vnc_sec_certificate
1482@subsection With x509 certificates
1483
1484The QEMU VNC server also implements the VeNCrypt extension allowing use of
1485TLS for encryption of the session, and x509 certificates for authentication.
1486The use of x509 certificates is strongly recommended, because TLS on its
1487own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1488support provides a secure session, but no authentication. This allows any
1489client to connect, and provides an encrypted session.
1490
1491@example
3804da9d 1492qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
1493@end example
1494
1495In the above example @code{/etc/pki/qemu} should contain at least three files,
1496@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1497users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1498NB the @code{server-key.pem} file should be protected with file mode 0600 to
1499only be readable by the user owning it.
1500
1501@node vnc_sec_certificate_verify
1502@subsection With x509 certificates and client verification
1503
1504Certificates can also provide a means to authenticate the client connecting.
1505The server will request that the client provide a certificate, which it will
1506then validate against the CA certificate. This is a good choice if deploying
1507in an environment with a private internal certificate authority.
1508
1509@example
3804da9d 1510qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1511@end example
1512
1513
1514@node vnc_sec_certificate_pw
1515@subsection With x509 certificates, client verification and passwords
1516
1517Finally, the previous method can be combined with VNC password authentication
1518to provide two layers of authentication for clients.
1519
1520@example
3804da9d 1521qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1522(qemu) change vnc password
1523Password: ********
1524(qemu)
1525@end example
1526
2f9606b3
AL
1527
1528@node vnc_sec_sasl
1529@subsection With SASL authentication
1530
1531The SASL authentication method is a VNC extension, that provides an
1532easily extendable, pluggable authentication method. This allows for
1533integration with a wide range of authentication mechanisms, such as
1534PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1535The strength of the authentication depends on the exact mechanism
1536configured. If the chosen mechanism also provides a SSF layer, then
1537it will encrypt the datastream as well.
1538
1539Refer to the later docs on how to choose the exact SASL mechanism
1540used for authentication, but assuming use of one supporting SSF,
1541then QEMU can be launched with:
1542
1543@example
3804da9d 1544qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1545@end example
1546
1547@node vnc_sec_certificate_sasl
1548@subsection With x509 certificates and SASL authentication
1549
1550If the desired SASL authentication mechanism does not supported
1551SSF layers, then it is strongly advised to run it in combination
1552with TLS and x509 certificates. This provides securely encrypted
1553data stream, avoiding risk of compromising of the security
1554credentials. This can be enabled, by combining the 'sasl' option
1555with the aforementioned TLS + x509 options:
1556
1557@example
3804da9d 1558qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
1559@end example
1560
1561
f858dcae
TS
1562@node vnc_generate_cert
1563@subsection Generating certificates for VNC
1564
1565The GNU TLS packages provides a command called @code{certtool} which can
1566be used to generate certificates and keys in PEM format. At a minimum it
40c5c6cd 1567is necessary to setup a certificate authority, and issue certificates to
f858dcae
TS
1568each server. If using certificates for authentication, then each client
1569will also need to be issued a certificate. The recommendation is for the
1570server to keep its certificates in either @code{/etc/pki/qemu} or for
1571unprivileged users in @code{$HOME/.pki/qemu}.
1572
1573@menu
1574* vnc_generate_ca::
1575* vnc_generate_server::
1576* vnc_generate_client::
1577@end menu
1578@node vnc_generate_ca
1579@subsubsection Setup the Certificate Authority
1580
1581This step only needs to be performed once per organization / organizational
1582unit. First the CA needs a private key. This key must be kept VERY secret
1583and secure. If this key is compromised the entire trust chain of the certificates
1584issued with it is lost.
1585
1586@example
1587# certtool --generate-privkey > ca-key.pem
1588@end example
1589
1590A CA needs to have a public certificate. For simplicity it can be a self-signed
1591certificate, or one issue by a commercial certificate issuing authority. To
1592generate a self-signed certificate requires one core piece of information, the
1593name of the organization.
1594
1595@example
1596# cat > ca.info <<EOF
1597cn = Name of your organization
1598ca
1599cert_signing_key
1600EOF
1601# certtool --generate-self-signed \
1602 --load-privkey ca-key.pem
1603 --template ca.info \
1604 --outfile ca-cert.pem
1605@end example
1606
1607The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1608TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1609
1610@node vnc_generate_server
1611@subsubsection Issuing server certificates
1612
1613Each server (or host) needs to be issued with a key and certificate. When connecting
1614the certificate is sent to the client which validates it against the CA certificate.
1615The core piece of information for a server certificate is the hostname. This should
1616be the fully qualified hostname that the client will connect with, since the client
1617will typically also verify the hostname in the certificate. On the host holding the
1618secure CA private key:
1619
1620@example
1621# cat > server.info <<EOF
1622organization = Name of your organization
1623cn = server.foo.example.com
1624tls_www_server
1625encryption_key
1626signing_key
1627EOF
1628# certtool --generate-privkey > server-key.pem
1629# certtool --generate-certificate \
1630 --load-ca-certificate ca-cert.pem \
1631 --load-ca-privkey ca-key.pem \
1632 --load-privkey server server-key.pem \
1633 --template server.info \
1634 --outfile server-cert.pem
1635@end example
1636
1637The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1638to the server for which they were generated. The @code{server-key.pem} is security
1639sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1640
1641@node vnc_generate_client
1642@subsubsection Issuing client certificates
1643
1644If the QEMU VNC server is to use the @code{x509verify} option to validate client
1645certificates as its authentication mechanism, each client also needs to be issued
1646a certificate. The client certificate contains enough metadata to uniquely identify
1647the client, typically organization, state, city, building, etc. On the host holding
1648the secure CA private key:
1649
1650@example
1651# cat > client.info <<EOF
1652country = GB
1653state = London
1654locality = London
1655organiazation = Name of your organization
1656cn = client.foo.example.com
1657tls_www_client
1658encryption_key
1659signing_key
1660EOF
1661# certtool --generate-privkey > client-key.pem
1662# certtool --generate-certificate \
1663 --load-ca-certificate ca-cert.pem \
1664 --load-ca-privkey ca-key.pem \
1665 --load-privkey client-key.pem \
1666 --template client.info \
1667 --outfile client-cert.pem
1668@end example
1669
1670The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1671copied to the client for which they were generated.
1672
2f9606b3
AL
1673
1674@node vnc_setup_sasl
1675
1676@subsection Configuring SASL mechanisms
1677
1678The following documentation assumes use of the Cyrus SASL implementation on a
1679Linux host, but the principals should apply to any other SASL impl. When SASL
1680is enabled, the mechanism configuration will be loaded from system default
1681SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1682unprivileged user, an environment variable SASL_CONF_PATH can be used
1683to make it search alternate locations for the service config.
1684
1685The default configuration might contain
1686
1687@example
1688mech_list: digest-md5
1689sasldb_path: /etc/qemu/passwd.db
1690@end example
1691
1692This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1693Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1694in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1695command. While this mechanism is easy to configure and use, it is not
1696considered secure by modern standards, so only suitable for developers /
1697ad-hoc testing.
1698
1699A more serious deployment might use Kerberos, which is done with the 'gssapi'
1700mechanism
1701
1702@example
1703mech_list: gssapi
1704keytab: /etc/qemu/krb5.tab
1705@end example
1706
1707For this to work the administrator of your KDC must generate a Kerberos
1708principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1709replacing 'somehost.example.com' with the fully qualified host name of the
40c5c6cd 1710machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
2f9606b3
AL
1711
1712Other configurations will be left as an exercise for the reader. It should
1713be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1714encryption. For all other mechanisms, VNC should always be configured to
1715use TLS and x509 certificates to protect security credentials from snooping.
1716
0806e3f6 1717@node gdb_usage
da415d54
FB
1718@section GDB usage
1719
1720QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1721'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1722
b65ee4fa 1723In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1724gdb connection:
1725@example
3804da9d
SW
1726qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1727 -append "root=/dev/hda"
da415d54
FB
1728Connected to host network interface: tun0
1729Waiting gdb connection on port 1234
1730@end example
1731
1732Then launch gdb on the 'vmlinux' executable:
1733@example
1734> gdb vmlinux
1735@end example
1736
1737In gdb, connect to QEMU:
1738@example
6c9bf893 1739(gdb) target remote localhost:1234
da415d54
FB
1740@end example
1741
1742Then you can use gdb normally. For example, type 'c' to launch the kernel:
1743@example
1744(gdb) c
1745@end example
1746
0806e3f6
FB
1747Here are some useful tips in order to use gdb on system code:
1748
1749@enumerate
1750@item
1751Use @code{info reg} to display all the CPU registers.
1752@item
1753Use @code{x/10i $eip} to display the code at the PC position.
1754@item
1755Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1756@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1757@end enumerate
1758
60897d36
EI
1759Advanced debugging options:
1760
1761The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1762@table @code
60897d36
EI
1763@item maintenance packet qqemu.sstepbits
1764
1765This will display the MASK bits used to control the single stepping IE:
1766@example
1767(gdb) maintenance packet qqemu.sstepbits
1768sending: "qqemu.sstepbits"
1769received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1770@end example
1771@item maintenance packet qqemu.sstep
1772
1773This will display the current value of the mask used when single stepping IE:
1774@example
1775(gdb) maintenance packet qqemu.sstep
1776sending: "qqemu.sstep"
1777received: "0x7"
1778@end example
1779@item maintenance packet Qqemu.sstep=HEX_VALUE
1780
1781This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1782@example
1783(gdb) maintenance packet Qqemu.sstep=0x5
1784sending: "qemu.sstep=0x5"
1785received: "OK"
1786@end example
94d45e44 1787@end table
60897d36 1788
debc7065 1789@node pcsys_os_specific
1a084f3d
FB
1790@section Target OS specific information
1791
1792@subsection Linux
1793
15a34c63
FB
1794To have access to SVGA graphic modes under X11, use the @code{vesa} or
1795the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1796color depth in the guest and the host OS.
1a084f3d 1797
e3371e62
FB
1798When using a 2.6 guest Linux kernel, you should add the option
1799@code{clock=pit} on the kernel command line because the 2.6 Linux
1800kernels make very strict real time clock checks by default that QEMU
1801cannot simulate exactly.
1802
7c3fc84d
FB
1803When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1804not activated because QEMU is slower with this patch. The QEMU
1805Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1806Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1807patch by default. Newer kernels don't have it.
1808
1a084f3d
FB
1809@subsection Windows
1810
1811If you have a slow host, using Windows 95 is better as it gives the
1812best speed. Windows 2000 is also a good choice.
1813
e3371e62
FB
1814@subsubsection SVGA graphic modes support
1815
1816QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1817card. All Windows versions starting from Windows 95 should recognize
1818and use this graphic card. For optimal performances, use 16 bit color
1819depth in the guest and the host OS.
1a084f3d 1820
3cb0853a
FB
1821If you are using Windows XP as guest OS and if you want to use high
1822resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
18231280x1024x16), then you should use the VESA VBE virtual graphic card
1824(option @option{-std-vga}).
1825
e3371e62
FB
1826@subsubsection CPU usage reduction
1827
1828Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1829instruction. The result is that it takes host CPU cycles even when
1830idle. You can install the utility from
1831@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1832problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1833
9d0a8e6f 1834@subsubsection Windows 2000 disk full problem
e3371e62 1835
9d0a8e6f
FB
1836Windows 2000 has a bug which gives a disk full problem during its
1837installation. When installing it, use the @option{-win2k-hack} QEMU
1838option to enable a specific workaround. After Windows 2000 is
1839installed, you no longer need this option (this option slows down the
1840IDE transfers).
e3371e62 1841
6cc721cf
FB
1842@subsubsection Windows 2000 shutdown
1843
1844Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1845can. It comes from the fact that Windows 2000 does not automatically
1846use the APM driver provided by the BIOS.
1847
1848In order to correct that, do the following (thanks to Struan
1849Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1850Add/Troubleshoot a device => Add a new device & Next => No, select the
1851hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1852(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1853correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1854
1855@subsubsection Share a directory between Unix and Windows
1856
1857See @ref{sec_invocation} about the help of the option @option{-smb}.
1858
2192c332 1859@subsubsection Windows XP security problem
e3371e62
FB
1860
1861Some releases of Windows XP install correctly but give a security
1862error when booting:
1863@example
1864A problem is preventing Windows from accurately checking the
1865license for this computer. Error code: 0x800703e6.
1866@end example
e3371e62 1867
2192c332
FB
1868The workaround is to install a service pack for XP after a boot in safe
1869mode. Then reboot, and the problem should go away. Since there is no
1870network while in safe mode, its recommended to download the full
1871installation of SP1 or SP2 and transfer that via an ISO or using the
1872vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1873
a0a821a4
FB
1874@subsection MS-DOS and FreeDOS
1875
1876@subsubsection CPU usage reduction
1877
1878DOS does not correctly use the CPU HLT instruction. The result is that
1879it takes host CPU cycles even when idle. You can install the utility
1880from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1881problem.
1882
debc7065 1883@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1884@chapter QEMU System emulator for non PC targets
1885
1886QEMU is a generic emulator and it emulates many non PC
1887machines. Most of the options are similar to the PC emulator. The
4be456f1 1888differences are mentioned in the following sections.
3f9f3aa1 1889
debc7065 1890@menu
7544a042 1891* PowerPC System emulator::
24d4de45
TS
1892* Sparc32 System emulator::
1893* Sparc64 System emulator::
1894* MIPS System emulator::
1895* ARM System emulator::
1896* ColdFire System emulator::
7544a042
SW
1897* Cris System emulator::
1898* Microblaze System emulator::
1899* SH4 System emulator::
3aeaea65 1900* Xtensa System emulator::
debc7065
FB
1901@end menu
1902
7544a042
SW
1903@node PowerPC System emulator
1904@section PowerPC System emulator
1905@cindex system emulation (PowerPC)
1a084f3d 1906
15a34c63
FB
1907Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1908or PowerMac PowerPC system.
1a084f3d 1909
b671f9ed 1910QEMU emulates the following PowerMac peripherals:
1a084f3d 1911
15a34c63 1912@itemize @minus
5fafdf24 1913@item
006f3a48 1914UniNorth or Grackle PCI Bridge
15a34c63
FB
1915@item
1916PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1917@item
15a34c63 19182 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1919@item
15a34c63
FB
1920NE2000 PCI adapters
1921@item
1922Non Volatile RAM
1923@item
1924VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1925@end itemize
1926
b671f9ed 1927QEMU emulates the following PREP peripherals:
52c00a5f
FB
1928
1929@itemize @minus
5fafdf24 1930@item
15a34c63
FB
1931PCI Bridge
1932@item
1933PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1934@item
52c00a5f
FB
19352 IDE interfaces with hard disk and CD-ROM support
1936@item
1937Floppy disk
5fafdf24 1938@item
15a34c63 1939NE2000 network adapters
52c00a5f
FB
1940@item
1941Serial port
1942@item
1943PREP Non Volatile RAM
15a34c63
FB
1944@item
1945PC compatible keyboard and mouse.
52c00a5f
FB
1946@end itemize
1947
15a34c63 1948QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1949@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1950
992e5acd 1951Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
1952for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1953v2) portable firmware implementation. The goal is to implement a 100%
1954IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1955
15a34c63
FB
1956@c man begin OPTIONS
1957
1958The following options are specific to the PowerPC emulation:
1959
1960@table @option
1961
4e257e5e 1962@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 1963
340fb41b 1964Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 1965
4e257e5e 1966@item -prom-env @var{string}
95efd11c
BS
1967
1968Set OpenBIOS variables in NVRAM, for example:
1969
1970@example
1971qemu-system-ppc -prom-env 'auto-boot?=false' \
1972 -prom-env 'boot-device=hd:2,\yaboot' \
1973 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1974@end example
1975
1976These variables are not used by Open Hack'Ware.
1977
15a34c63
FB
1978@end table
1979
5fafdf24 1980@c man end
15a34c63
FB
1981
1982
52c00a5f 1983More information is available at
3f9f3aa1 1984@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1985
24d4de45
TS
1986@node Sparc32 System emulator
1987@section Sparc32 System emulator
7544a042 1988@cindex system emulation (Sparc32)
e80cfcfc 1989
34a3d239
BS
1990Use the executable @file{qemu-system-sparc} to simulate the following
1991Sun4m architecture machines:
1992@itemize @minus
1993@item
1994SPARCstation 4
1995@item
1996SPARCstation 5
1997@item
1998SPARCstation 10
1999@item
2000SPARCstation 20
2001@item
2002SPARCserver 600MP
2003@item
2004SPARCstation LX
2005@item
2006SPARCstation Voyager
2007@item
2008SPARCclassic
2009@item
2010SPARCbook
2011@end itemize
2012
2013The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2014but Linux limits the number of usable CPUs to 4.
e80cfcfc 2015
6a4e1771 2016QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
2017
2018@itemize @minus
3475187d 2019@item
6a4e1771 2020IOMMU
e80cfcfc 2021@item
33632788 2022TCX or cgthree Frame buffer
5fafdf24 2023@item
e80cfcfc
FB
2024Lance (Am7990) Ethernet
2025@item
34a3d239 2026Non Volatile RAM M48T02/M48T08
e80cfcfc 2027@item
3475187d
FB
2028Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2029and power/reset logic
2030@item
2031ESP SCSI controller with hard disk and CD-ROM support
2032@item
6a3b9cc9 2033Floppy drive (not on SS-600MP)
a2502b58
BS
2034@item
2035CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
2036@end itemize
2037
6a3b9cc9
BS
2038The number of peripherals is fixed in the architecture. Maximum
2039memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 2040others 2047MB.
3475187d 2041
30a604f3 2042Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
2043@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2044firmware implementation. The goal is to implement a 100% IEEE
20451275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
2046
2047A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 2048the QEMU web site. There are still issues with NetBSD and OpenBSD, but
33632788 2049some kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
2050don't work probably due to interface issues between OpenBIOS and
2051Solaris.
3475187d
FB
2052
2053@c man begin OPTIONS
2054
a2502b58 2055The following options are specific to the Sparc32 emulation:
3475187d
FB
2056
2057@table @option
2058
4e257e5e 2059@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 2060
33632788
MCA
2061Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
2062option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
2063of 1152x900x8 for people who wish to use OBP.
3475187d 2064
4e257e5e 2065@item -prom-env @var{string}
66508601
BS
2066
2067Set OpenBIOS variables in NVRAM, for example:
2068
2069@example
2070qemu-system-sparc -prom-env 'auto-boot?=false' \
2071 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2072@end example
2073
6a4e1771 2074@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
2075
2076Set the emulated machine type. Default is SS-5.
2077
3475187d
FB
2078@end table
2079
5fafdf24 2080@c man end
3475187d 2081
24d4de45
TS
2082@node Sparc64 System emulator
2083@section Sparc64 System emulator
7544a042 2084@cindex system emulation (Sparc64)
e80cfcfc 2085
34a3d239
BS
2086Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2087(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2088Niagara (T1) machine. The emulator is not usable for anything yet, but
2089it can launch some kernels.
b756921a 2090
c7ba218d 2091QEMU emulates the following peripherals:
83469015
FB
2092
2093@itemize @minus
2094@item
5fafdf24 2095UltraSparc IIi APB PCI Bridge
83469015
FB
2096@item
2097PCI VGA compatible card with VESA Bochs Extensions
2098@item
34a3d239
BS
2099PS/2 mouse and keyboard
2100@item
83469015
FB
2101Non Volatile RAM M48T59
2102@item
2103PC-compatible serial ports
c7ba218d
BS
2104@item
21052 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
2106@item
2107Floppy disk
83469015
FB
2108@end itemize
2109
c7ba218d
BS
2110@c man begin OPTIONS
2111
2112The following options are specific to the Sparc64 emulation:
2113
2114@table @option
2115
4e257e5e 2116@item -prom-env @var{string}
34a3d239
BS
2117
2118Set OpenBIOS variables in NVRAM, for example:
2119
2120@example
2121qemu-system-sparc64 -prom-env 'auto-boot?=false'
2122@end example
2123
2124@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
2125
2126Set the emulated machine type. The default is sun4u.
2127
2128@end table
2129
2130@c man end
2131
24d4de45
TS
2132@node MIPS System emulator
2133@section MIPS System emulator
7544a042 2134@cindex system emulation (MIPS)
9d0a8e6f 2135
d9aedc32
TS
2136Four executables cover simulation of 32 and 64-bit MIPS systems in
2137both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2138@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2139Five different machine types are emulated:
24d4de45
TS
2140
2141@itemize @minus
2142@item
2143A generic ISA PC-like machine "mips"
2144@item
2145The MIPS Malta prototype board "malta"
2146@item
d9aedc32 2147An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2148@item
f0fc6f8f 2149MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2150@item
2151A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2152@end itemize
2153
2154The generic emulation is supported by Debian 'Etch' and is able to
2155install Debian into a virtual disk image. The following devices are
2156emulated:
3f9f3aa1
FB
2157
2158@itemize @minus
5fafdf24 2159@item
6bf5b4e8 2160A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2161@item
2162PC style serial port
2163@item
24d4de45
TS
2164PC style IDE disk
2165@item
3f9f3aa1
FB
2166NE2000 network card
2167@end itemize
2168
24d4de45
TS
2169The Malta emulation supports the following devices:
2170
2171@itemize @minus
2172@item
0b64d008 2173Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2174@item
2175PIIX4 PCI/USB/SMbus controller
2176@item
2177The Multi-I/O chip's serial device
2178@item
3a2eeac0 2179PCI network cards (PCnet32 and others)
24d4de45
TS
2180@item
2181Malta FPGA serial device
2182@item
1f605a76 2183Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2184@end itemize
2185
2186The ACER Pica emulation supports:
2187
2188@itemize @minus
2189@item
2190MIPS R4000 CPU
2191@item
2192PC-style IRQ and DMA controllers
2193@item
2194PC Keyboard
2195@item
2196IDE controller
2197@end itemize
3f9f3aa1 2198
b5e4946f 2199The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
2200to what the proprietary MIPS emulator uses for running Linux.
2201It supports:
6bf5b4e8
TS
2202
2203@itemize @minus
2204@item
2205A range of MIPS CPUs, default is the 24Kf
2206@item
2207PC style serial port
2208@item
2209MIPSnet network emulation
2210@end itemize
2211
88cb0a02
AJ
2212The MIPS Magnum R4000 emulation supports:
2213
2214@itemize @minus
2215@item
2216MIPS R4000 CPU
2217@item
2218PC-style IRQ controller
2219@item
2220PC Keyboard
2221@item
2222SCSI controller
2223@item
2224G364 framebuffer
2225@end itemize
2226
2227
24d4de45
TS
2228@node ARM System emulator
2229@section ARM System emulator
7544a042 2230@cindex system emulation (ARM)
3f9f3aa1
FB
2231
2232Use the executable @file{qemu-system-arm} to simulate a ARM
2233machine. The ARM Integrator/CP board is emulated with the following
2234devices:
2235
2236@itemize @minus
2237@item
9ee6e8bb 2238ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2239@item
2240Two PL011 UARTs
5fafdf24 2241@item
3f9f3aa1 2242SMC 91c111 Ethernet adapter
00a9bf19
PB
2243@item
2244PL110 LCD controller
2245@item
2246PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2247@item
2248PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2249@end itemize
2250
2251The ARM Versatile baseboard is emulated with the following devices:
2252
2253@itemize @minus
2254@item
9ee6e8bb 2255ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2256@item
2257PL190 Vectored Interrupt Controller
2258@item
2259Four PL011 UARTs
5fafdf24 2260@item
00a9bf19
PB
2261SMC 91c111 Ethernet adapter
2262@item
2263PL110 LCD controller
2264@item
2265PL050 KMI with PS/2 keyboard and mouse.
2266@item
2267PCI host bridge. Note the emulated PCI bridge only provides access to
2268PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2269This means some devices (eg. ne2k_pci NIC) are not usable, and others
2270(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2271mapped control registers.
e6de1bad
PB
2272@item
2273PCI OHCI USB controller.
2274@item
2275LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2276@item
2277PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2278@end itemize
2279
21a88941
PB
2280Several variants of the ARM RealView baseboard are emulated,
2281including the EB, PB-A8 and PBX-A9. Due to interactions with the
2282bootloader, only certain Linux kernel configurations work out
2283of the box on these boards.
2284
2285Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2286enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2287should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2288disabled and expect 1024M RAM.
2289
40c5c6cd 2290The following devices are emulated:
d7739d75
PB
2291
2292@itemize @minus
2293@item
f7c70325 2294ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2295@item
2296ARM AMBA Generic/Distributed Interrupt Controller
2297@item
2298Four PL011 UARTs
5fafdf24 2299@item
0ef849d7 2300SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2301@item
2302PL110 LCD controller
2303@item
2304PL050 KMI with PS/2 keyboard and mouse
2305@item
2306PCI host bridge
2307@item
2308PCI OHCI USB controller
2309@item
2310LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2311@item
2312PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2313@end itemize
2314
b00052e4
AZ
2315The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2316and "Terrier") emulation includes the following peripherals:
2317
2318@itemize @minus
2319@item
2320Intel PXA270 System-on-chip (ARM V5TE core)
2321@item
2322NAND Flash memory
2323@item
2324IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2325@item
2326On-chip OHCI USB controller
2327@item
2328On-chip LCD controller
2329@item
2330On-chip Real Time Clock
2331@item
2332TI ADS7846 touchscreen controller on SSP bus
2333@item
2334Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2335@item
2336GPIO-connected keyboard controller and LEDs
2337@item
549444e1 2338Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2339@item
2340Three on-chip UARTs
2341@item
2342WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2343@end itemize
2344
02645926
AZ
2345The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2346following elements:
2347
2348@itemize @minus
2349@item
2350Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2351@item
2352ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2353@item
2354On-chip LCD controller
2355@item
2356On-chip Real Time Clock
2357@item
2358TI TSC2102i touchscreen controller / analog-digital converter / Audio
2359CODEC, connected through MicroWire and I@math{^2}S busses
2360@item
2361GPIO-connected matrix keypad
2362@item
2363Secure Digital card connected to OMAP MMC/SD host
2364@item
2365Three on-chip UARTs
2366@end itemize
2367
c30bb264
AZ
2368Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2369emulation supports the following elements:
2370
2371@itemize @minus
2372@item
2373Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2374@item
2375RAM and non-volatile OneNAND Flash memories
2376@item
2377Display connected to EPSON remote framebuffer chip and OMAP on-chip
2378display controller and a LS041y3 MIPI DBI-C controller
2379@item
2380TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2381driven through SPI bus
2382@item
2383National Semiconductor LM8323-controlled qwerty keyboard driven
2384through I@math{^2}C bus
2385@item
2386Secure Digital card connected to OMAP MMC/SD host
2387@item
2388Three OMAP on-chip UARTs and on-chip STI debugging console
2389@item
40c5c6cd 2390A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2391@item
c30bb264
AZ
2392Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2393TUSB6010 chip - only USB host mode is supported
2394@item
2395TI TMP105 temperature sensor driven through I@math{^2}C bus
2396@item
2397TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2398@item
2399Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2400through CBUS
2401@end itemize
2402
9ee6e8bb
PB
2403The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2404devices:
2405
2406@itemize @minus
2407@item
2408Cortex-M3 CPU core.
2409@item
241064k Flash and 8k SRAM.
2411@item
2412Timers, UARTs, ADC and I@math{^2}C interface.
2413@item
2414OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2415@end itemize
2416
2417The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2418devices:
2419
2420@itemize @minus
2421@item
2422Cortex-M3 CPU core.
2423@item
2424256k Flash and 64k SRAM.
2425@item
2426Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2427@item
2428OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2429@end itemize
2430
57cd6e97
AZ
2431The Freecom MusicPal internet radio emulation includes the following
2432elements:
2433
2434@itemize @minus
2435@item
2436Marvell MV88W8618 ARM core.
2437@item
243832 MB RAM, 256 KB SRAM, 8 MB flash.
2439@item
2440Up to 2 16550 UARTs
2441@item
2442MV88W8xx8 Ethernet controller
2443@item
2444MV88W8618 audio controller, WM8750 CODEC and mixer
2445@item
e080e785 2446128×64 display with brightness control
57cd6e97
AZ
2447@item
24482 buttons, 2 navigation wheels with button function
2449@end itemize
2450
997641a8 2451The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2452The emulation includes the following elements:
997641a8
AZ
2453
2454@itemize @minus
2455@item
2456Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2457@item
2458ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2459V1
24601 Flash of 16MB and 1 Flash of 8MB
2461V2
24621 Flash of 32MB
2463@item
2464On-chip LCD controller
2465@item
2466On-chip Real Time Clock
2467@item
2468Secure Digital card connected to OMAP MMC/SD host
2469@item
2470Three on-chip UARTs
2471@end itemize
2472
3f9f3aa1
FB
2473A Linux 2.6 test image is available on the QEMU web site. More
2474information is available in the QEMU mailing-list archive.
9d0a8e6f 2475
d2c639d6
BS
2476@c man begin OPTIONS
2477
2478The following options are specific to the ARM emulation:
2479
2480@table @option
2481
2482@item -semihosting
2483Enable semihosting syscall emulation.
2484
2485On ARM this implements the "Angel" interface.
2486
2487Note that this allows guest direct access to the host filesystem,
2488so should only be used with trusted guest OS.
2489
2490@end table
2491
24d4de45
TS
2492@node ColdFire System emulator
2493@section ColdFire System emulator
7544a042
SW
2494@cindex system emulation (ColdFire)
2495@cindex system emulation (M68K)
209a4e69
PB
2496
2497Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2498The emulator is able to boot a uClinux kernel.
707e011b
PB
2499
2500The M5208EVB emulation includes the following devices:
2501
2502@itemize @minus
5fafdf24 2503@item
707e011b
PB
2504MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2505@item
2506Three Two on-chip UARTs.
2507@item
2508Fast Ethernet Controller (FEC)
2509@end itemize
2510
2511The AN5206 emulation includes the following devices:
209a4e69
PB
2512
2513@itemize @minus
5fafdf24 2514@item
209a4e69
PB
2515MCF5206 ColdFire V2 Microprocessor.
2516@item
2517Two on-chip UARTs.
2518@end itemize
2519
d2c639d6
BS
2520@c man begin OPTIONS
2521
7544a042 2522The following options are specific to the ColdFire emulation:
d2c639d6
BS
2523
2524@table @option
2525
2526@item -semihosting
2527Enable semihosting syscall emulation.
2528
2529On M68K this implements the "ColdFire GDB" interface used by libgloss.
2530
2531Note that this allows guest direct access to the host filesystem,
2532so should only be used with trusted guest OS.
2533
2534@end table
2535
7544a042
SW
2536@node Cris System emulator
2537@section Cris System emulator
2538@cindex system emulation (Cris)
2539
2540TODO
2541
2542@node Microblaze System emulator
2543@section Microblaze System emulator
2544@cindex system emulation (Microblaze)
2545
2546TODO
2547
2548@node SH4 System emulator
2549@section SH4 System emulator
2550@cindex system emulation (SH4)
2551
2552TODO
2553
3aeaea65
MF
2554@node Xtensa System emulator
2555@section Xtensa System emulator
2556@cindex system emulation (Xtensa)
2557
2558Two executables cover simulation of both Xtensa endian options,
2559@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2560Two different machine types are emulated:
2561
2562@itemize @minus
2563@item
2564Xtensa emulator pseudo board "sim"
2565@item
2566Avnet LX60/LX110/LX200 board
2567@end itemize
2568
b5e4946f 2569The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2570to one provided by the proprietary Tensilica ISS.
2571It supports:
2572
2573@itemize @minus
2574@item
2575A range of Xtensa CPUs, default is the DC232B
2576@item
2577Console and filesystem access via semihosting calls
2578@end itemize
2579
2580The Avnet LX60/LX110/LX200 emulation supports:
2581
2582@itemize @minus
2583@item
2584A range of Xtensa CPUs, default is the DC232B
2585@item
258616550 UART
2587@item
2588OpenCores 10/100 Mbps Ethernet MAC
2589@end itemize
2590
2591@c man begin OPTIONS
2592
2593The following options are specific to the Xtensa emulation:
2594
2595@table @option
2596
2597@item -semihosting
2598Enable semihosting syscall emulation.
2599
2600Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2601Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2602
2603Note that this allows guest direct access to the host filesystem,
2604so should only be used with trusted guest OS.
2605
2606@end table
5fafdf24
TS
2607@node QEMU User space emulator
2608@chapter QEMU User space emulator
83195237
FB
2609
2610@menu
2611* Supported Operating Systems ::
2612* Linux User space emulator::
84778508 2613* BSD User space emulator ::
83195237
FB
2614@end menu
2615
2616@node Supported Operating Systems
2617@section Supported Operating Systems
2618
2619The following OS are supported in user space emulation:
2620
2621@itemize @minus
2622@item
4be456f1 2623Linux (referred as qemu-linux-user)
83195237 2624@item
84778508 2625BSD (referred as qemu-bsd-user)
83195237
FB
2626@end itemize
2627
2628@node Linux User space emulator
2629@section Linux User space emulator
386405f7 2630
debc7065
FB
2631@menu
2632* Quick Start::
2633* Wine launch::
2634* Command line options::
79737e4a 2635* Other binaries::
debc7065
FB
2636@end menu
2637
2638@node Quick Start
83195237 2639@subsection Quick Start
df0f11a0 2640
1f673135 2641In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2642itself and all the target (x86) dynamic libraries used by it.
386405f7 2643
1f673135 2644@itemize
386405f7 2645
1f673135
FB
2646@item On x86, you can just try to launch any process by using the native
2647libraries:
386405f7 2648
5fafdf24 2649@example
1f673135
FB
2650qemu-i386 -L / /bin/ls
2651@end example
386405f7 2652
1f673135
FB
2653@code{-L /} tells that the x86 dynamic linker must be searched with a
2654@file{/} prefix.
386405f7 2655
b65ee4fa
SW
2656@item Since QEMU is also a linux process, you can launch QEMU with
2657QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2658
5fafdf24 2659@example
1f673135
FB
2660qemu-i386 -L / qemu-i386 -L / /bin/ls
2661@end example
386405f7 2662
1f673135
FB
2663@item On non x86 CPUs, you need first to download at least an x86 glibc
2664(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2665@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2666
1f673135 2667@example
5fafdf24 2668unset LD_LIBRARY_PATH
1f673135 2669@end example
1eb87257 2670
1f673135 2671Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2672
1f673135
FB
2673@example
2674qemu-i386 tests/i386/ls
2675@end example
4c3b5a48 2676You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2677QEMU is automatically launched by the Linux kernel when you try to
2678launch x86 executables. It requires the @code{binfmt_misc} module in the
2679Linux kernel.
1eb87257 2680
1f673135
FB
2681@item The x86 version of QEMU is also included. You can try weird things such as:
2682@example
debc7065
FB
2683qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2684 /usr/local/qemu-i386/bin/ls-i386
1f673135 2685@end example
1eb20527 2686
1f673135 2687@end itemize
1eb20527 2688
debc7065 2689@node Wine launch
83195237 2690@subsection Wine launch
1eb20527 2691
1f673135 2692@itemize
386405f7 2693
1f673135
FB
2694@item Ensure that you have a working QEMU with the x86 glibc
2695distribution (see previous section). In order to verify it, you must be
2696able to do:
386405f7 2697
1f673135
FB
2698@example
2699qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2700@end example
386405f7 2701
1f673135 2702@item Download the binary x86 Wine install
5fafdf24 2703(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2704
1f673135 2705@item Configure Wine on your account. Look at the provided script
debc7065 2706@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2707@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2708
1f673135 2709@item Then you can try the example @file{putty.exe}:
386405f7 2710
1f673135 2711@example
debc7065
FB
2712qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2713 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2714@end example
386405f7 2715
1f673135 2716@end itemize
fd429f2f 2717
debc7065 2718@node Command line options
83195237 2719@subsection Command line options
1eb20527 2720
1f673135 2721@example
68a1c816 2722usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
1f673135 2723@end example
1eb20527 2724
1f673135
FB
2725@table @option
2726@item -h
2727Print the help
3b46e624 2728@item -L path
1f673135
FB
2729Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2730@item -s size
2731Set the x86 stack size in bytes (default=524288)
34a3d239 2732@item -cpu model
c8057f95 2733Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2734@item -E @var{var}=@var{value}
2735Set environment @var{var} to @var{value}.
2736@item -U @var{var}
2737Remove @var{var} from the environment.
379f6698
PB
2738@item -B offset
2739Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2740the address region required by guest applications is reserved on the host.
2741This option is currently only supported on some hosts.
68a1c816
PB
2742@item -R size
2743Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2744"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2745@end table
2746
1f673135 2747Debug options:
386405f7 2748
1f673135 2749@table @option
989b697d
PM
2750@item -d item1,...
2751Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2752@item -p pagesize
2753Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2754@item -g port
2755Wait gdb connection to port
1b530a6d
AJ
2756@item -singlestep
2757Run the emulation in single step mode.
1f673135 2758@end table
386405f7 2759
b01bcae6
AZ
2760Environment variables:
2761
2762@table @env
2763@item QEMU_STRACE
2764Print system calls and arguments similar to the 'strace' program
2765(NOTE: the actual 'strace' program will not work because the user
2766space emulator hasn't implemented ptrace). At the moment this is
2767incomplete. All system calls that don't have a specific argument
2768format are printed with information for six arguments. Many
2769flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2770@end table
b01bcae6 2771
79737e4a 2772@node Other binaries
83195237 2773@subsection Other binaries
79737e4a 2774
7544a042
SW
2775@cindex user mode (Alpha)
2776@command{qemu-alpha} TODO.
2777
2778@cindex user mode (ARM)
2779@command{qemu-armeb} TODO.
2780
2781@cindex user mode (ARM)
79737e4a
PB
2782@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2783binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2784configurations), and arm-uclinux bFLT format binaries.
2785
7544a042
SW
2786@cindex user mode (ColdFire)
2787@cindex user mode (M68K)
e6e5906b
PB
2788@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2789(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2790coldfire uClinux bFLT format binaries.
2791
79737e4a
PB
2792The binary format is detected automatically.
2793
7544a042
SW
2794@cindex user mode (Cris)
2795@command{qemu-cris} TODO.
2796
2797@cindex user mode (i386)
2798@command{qemu-i386} TODO.
2799@command{qemu-x86_64} TODO.
2800
2801@cindex user mode (Microblaze)
2802@command{qemu-microblaze} TODO.
2803
2804@cindex user mode (MIPS)
2805@command{qemu-mips} TODO.
2806@command{qemu-mipsel} TODO.
2807
2808@cindex user mode (PowerPC)
2809@command{qemu-ppc64abi32} TODO.
2810@command{qemu-ppc64} TODO.
2811@command{qemu-ppc} TODO.
2812
2813@cindex user mode (SH4)
2814@command{qemu-sh4eb} TODO.
2815@command{qemu-sh4} TODO.
2816
2817@cindex user mode (SPARC)
34a3d239
BS
2818@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2819
a785e42e
BS
2820@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2821(Sparc64 CPU, 32 bit ABI).
2822
2823@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2824SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2825
84778508
BS
2826@node BSD User space emulator
2827@section BSD User space emulator
2828
2829@menu
2830* BSD Status::
2831* BSD Quick Start::
2832* BSD Command line options::
2833@end menu
2834
2835@node BSD Status
2836@subsection BSD Status
2837
2838@itemize @minus
2839@item
2840target Sparc64 on Sparc64: Some trivial programs work.
2841@end itemize
2842
2843@node BSD Quick Start
2844@subsection Quick Start
2845
2846In order to launch a BSD process, QEMU needs the process executable
2847itself and all the target dynamic libraries used by it.
2848
2849@itemize
2850
2851@item On Sparc64, you can just try to launch any process by using the native
2852libraries:
2853
2854@example
2855qemu-sparc64 /bin/ls
2856@end example
2857
2858@end itemize
2859
2860@node BSD Command line options
2861@subsection Command line options
2862
2863@example
2864usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2865@end example
2866
2867@table @option
2868@item -h
2869Print the help
2870@item -L path
2871Set the library root path (default=/)
2872@item -s size
2873Set the stack size in bytes (default=524288)
f66724c9
SW
2874@item -ignore-environment
2875Start with an empty environment. Without this option,
40c5c6cd 2876the initial environment is a copy of the caller's environment.
f66724c9
SW
2877@item -E @var{var}=@var{value}
2878Set environment @var{var} to @var{value}.
2879@item -U @var{var}
2880Remove @var{var} from the environment.
84778508
BS
2881@item -bsd type
2882Set the type of the emulated BSD Operating system. Valid values are
2883FreeBSD, NetBSD and OpenBSD (default).
2884@end table
2885
2886Debug options:
2887
2888@table @option
989b697d
PM
2889@item -d item1,...
2890Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2891@item -p pagesize
2892Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2893@item -singlestep
2894Run the emulation in single step mode.
84778508
BS
2895@end table
2896
15a34c63
FB
2897@node compilation
2898@chapter Compilation from the sources
2899
debc7065
FB
2900@menu
2901* Linux/Unix::
2902* Windows::
2903* Cross compilation for Windows with Linux::
2904* Mac OS X::
47eacb4f 2905* Make targets::
debc7065
FB
2906@end menu
2907
2908@node Linux/Unix
7c3fc84d
FB
2909@section Linux/Unix
2910
2911@subsection Compilation
2912
2913First you must decompress the sources:
2914@example
2915cd /tmp
2916tar zxvf qemu-x.y.z.tar.gz
2917cd qemu-x.y.z
2918@end example
2919
2920Then you configure QEMU and build it (usually no options are needed):
2921@example
2922./configure
2923make
2924@end example
2925
2926Then type as root user:
2927@example
2928make install
2929@end example
2930to install QEMU in @file{/usr/local}.
2931
debc7065 2932@node Windows
15a34c63
FB
2933@section Windows
2934
2935@itemize
2936@item Install the current versions of MSYS and MinGW from
2937@url{http://www.mingw.org/}. You can find detailed installation
2938instructions in the download section and the FAQ.
2939
5fafdf24 2940@item Download
15a34c63 2941the MinGW development library of SDL 1.2.x
debc7065 2942(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
d0a96f3d
ST
2943@url{http://www.libsdl.org}. Unpack it in a temporary place and
2944edit the @file{sdl-config} script so that it gives the
15a34c63
FB
2945correct SDL directory when invoked.
2946
d0a96f3d
ST
2947@item Install the MinGW version of zlib and make sure
2948@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2949MinGW's default header and linker search paths.
d0a96f3d 2950
15a34c63 2951@item Extract the current version of QEMU.
5fafdf24 2952
15a34c63
FB
2953@item Start the MSYS shell (file @file{msys.bat}).
2954
5fafdf24 2955@item Change to the QEMU directory. Launch @file{./configure} and
15a34c63
FB
2956@file{make}. If you have problems using SDL, verify that
2957@file{sdl-config} can be launched from the MSYS command line.
2958
c5ec15ea 2959@item You can install QEMU in @file{Program Files/QEMU} by typing
15a34c63 2960@file{make install}. Don't forget to copy @file{SDL.dll} in
c5ec15ea 2961@file{Program Files/QEMU}.
15a34c63
FB
2962
2963@end itemize
2964
debc7065 2965@node Cross compilation for Windows with Linux
15a34c63
FB
2966@section Cross compilation for Windows with Linux
2967
2968@itemize
2969@item
2970Install the MinGW cross compilation tools available at
2971@url{http://www.mingw.org/}.
2972
d0a96f3d
ST
2973@item Download
2974the MinGW development library of SDL 1.2.x
2975(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2976@url{http://www.libsdl.org}. Unpack it in a temporary place and
2977edit the @file{sdl-config} script so that it gives the
2978correct SDL directory when invoked. Set up the @code{PATH} environment
2979variable so that @file{sdl-config} can be launched by
15a34c63
FB
2980the QEMU configuration script.
2981
d0a96f3d
ST
2982@item Install the MinGW version of zlib and make sure
2983@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2984MinGW's default header and linker search paths.
d0a96f3d 2985
5fafdf24 2986@item
15a34c63
FB
2987Configure QEMU for Windows cross compilation:
2988@example
d0a96f3d
ST
2989PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2990@end example
2991The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2992MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
40c5c6cd 2993We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
d0a96f3d 2994use --cross-prefix to specify the name of the cross compiler.
c5ec15ea 2995You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
d0a96f3d
ST
2996
2997Under Fedora Linux, you can run:
2998@example
2999yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
15a34c63 3000@end example
d0a96f3d 3001to get a suitable cross compilation environment.
15a34c63 3002
5fafdf24 3003@item You can install QEMU in the installation directory by typing
d0a96f3d 3004@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
5fafdf24 3005installation directory.
15a34c63
FB
3006
3007@end itemize
3008
3804da9d
SW
3009Wine can be used to launch the resulting qemu-system-i386.exe
3010and all other qemu-system-@var{target}.exe compiled for Win32.
15a34c63 3011
debc7065 3012@node Mac OS X
15a34c63
FB
3013@section Mac OS X
3014
3015The Mac OS X patches are not fully merged in QEMU, so you should look
3016at the QEMU mailing list archive to have all the necessary
3017information.
3018
47eacb4f
SW
3019@node Make targets
3020@section Make targets
3021
3022@table @code
3023
3024@item make
3025@item make all
3026Make everything which is typically needed.
3027
3028@item install
3029TODO
3030
3031@item install-doc
3032TODO
3033
3034@item make clean
3035Remove most files which were built during make.
3036
3037@item make distclean
3038Remove everything which was built during make.
3039
3040@item make dvi
3041@item make html
3042@item make info
3043@item make pdf
3044Create documentation in dvi, html, info or pdf format.
3045
3046@item make cscope
3047TODO
3048
3049@item make defconfig
3050(Re-)create some build configuration files.
3051User made changes will be overwritten.
3052
3053@item tar
3054@item tarbin
3055TODO
3056
3057@end table
3058
7544a042
SW
3059@node License
3060@appendix License
3061
3062QEMU is a trademark of Fabrice Bellard.
3063
3064QEMU is released under the GNU General Public License (TODO: add link).
3065Parts of QEMU have specific licenses, see file LICENSE.
3066
3067TODO (refer to file LICENSE, include it, include the GPL?)
3068
debc7065 3069@node Index
7544a042
SW
3070@appendix Index
3071@menu
3072* Concept Index::
3073* Function Index::
3074* Keystroke Index::
3075* Program Index::
3076* Data Type Index::
3077* Variable Index::
3078@end menu
3079
3080@node Concept Index
3081@section Concept Index
3082This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
3083@printindex cp
3084
7544a042
SW
3085@node Function Index
3086@section Function Index
3087This index could be used for command line options and monitor functions.
3088@printindex fn
3089
3090@node Keystroke Index
3091@section Keystroke Index
3092
3093This is a list of all keystrokes which have a special function
3094in system emulation.
3095
3096@printindex ky
3097
3098@node Program Index
3099@section Program Index
3100@printindex pg
3101
3102@node Data Type Index
3103@section Data Type Index
3104
3105This index could be used for qdev device names and options.
3106
3107@printindex tp
3108
3109@node Variable Index
3110@section Variable Index
3111@printindex vr
3112
debc7065 3113@bye