]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
virtio-blk: Treat read/write beyond end as invalid
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
e080e785
SW
4
5@documentlanguage en
6@documentencoding UTF-8
7
8f40c388 8@settitle QEMU Emulator User Documentation
debc7065
FB
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
386405f7 12
a1a32b05
SW
13@ifinfo
14@direntry
15* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
0806e3f6 19@iftex
386405f7
FB
20@titlepage
21@sp 7
8f40c388 22@center @titlefont{QEMU Emulator}
debc7065
FB
23@sp 1
24@center @titlefont{User Documentation}
386405f7
FB
25@sp 3
26@end titlepage
0806e3f6 27@end iftex
386405f7 28
debc7065
FB
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
35* Installation::
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
83195237 38* QEMU User space emulator::
debc7065 39* compilation:: Compilation from the sources
7544a042 40* License::
debc7065
FB
41* Index::
42@end menu
43@end ifnottex
44
45@contents
46
47@node Introduction
386405f7
FB
48@chapter Introduction
49
debc7065
FB
50@menu
51* intro_features:: Features
52@end menu
53
54@node intro_features
322d0c66 55@section Features
386405f7 56
1f673135
FB
57QEMU is a FAST! processor emulator using dynamic translation to
58achieve good emulation speed.
1eb20527
FB
59
60QEMU has two operating modes:
0806e3f6 61
d7e5edca 62@itemize
7544a042 63@cindex operating modes
0806e3f6 64
5fafdf24 65@item
7544a042 66@cindex system emulation
1f673135 67Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
1eb20527 71
5fafdf24 72@item
7544a042 73@cindex user mode emulation
83195237
FB
74User mode emulation. In this mode, QEMU can launch
75processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77to ease cross-compilation and cross-debugging.
1eb20527
FB
78
79@end itemize
80
e1b4382c 81QEMU can run without a host kernel driver and yet gives acceptable
5fafdf24 82performance.
322d0c66 83
52c00a5f
FB
84For system emulation, the following hardware targets are supported:
85@itemize
7544a042
SW
86@cindex emulated target systems
87@cindex supported target systems
9d0a8e6f 88@item PC (x86 or x86_64 processor)
3f9f3aa1 89@item ISA PC (old style PC without PCI bus)
52c00a5f 90@item PREP (PowerPC processor)
d45952a0 91@item G3 Beige PowerMac (PowerPC processor)
9d0a8e6f 92@item Mac99 PowerMac (PowerPC processor, in progress)
ee76f82e 93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
c7ba218d 94@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
d9aedc32 95@item Malta board (32-bit and 64-bit MIPS processors)
88cb0a02 96@item MIPS Magnum (64-bit MIPS processor)
9ee6e8bb
PB
97@item ARM Integrator/CP (ARM)
98@item ARM Versatile baseboard (ARM)
0ef849d7 99@item ARM RealView Emulation/Platform baseboard (ARM)
ef4c3856 100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
9ee6e8bb
PB
101@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 103@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 104@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 105@item Palm Tungsten|E PDA (OMAP310 processor)
c30bb264 106@item N800 and N810 tablets (OMAP2420 processor)
57cd6e97 107@item MusicPal (MV88W8618 ARM processor)
ef4c3856
AZ
108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109@item Siemens SX1 smartphone (OMAP310 processor)
48c50a62
EI
110@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
3aeaea65 112@item Avnet LX60/LX110/LX200 boards (Xtensa)
52c00a5f 113@end itemize
386405f7 114
7544a042
SW
115@cindex supported user mode targets
116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
0806e3f6 119
debc7065 120@node Installation
5b9f457a
FB
121@chapter Installation
122
15a34c63
FB
123If you want to compile QEMU yourself, see @ref{compilation}.
124
debc7065
FB
125@menu
126* install_linux:: Linux
127* install_windows:: Windows
128* install_mac:: Macintosh
129@end menu
130
131@node install_linux
1f673135 132@section Linux
7544a042 133@cindex installation (Linux)
1f673135 134
7c3fc84d
FB
135If a precompiled package is available for your distribution - you just
136have to install it. Otherwise, see @ref{compilation}.
5b9f457a 137
debc7065 138@node install_windows
1f673135 139@section Windows
7544a042 140@cindex installation (Windows)
8cd0ac2f 141
15a34c63 142Download the experimental binary installer at
debc7065 143@url{http://www.free.oszoo.org/@/download.html}.
7544a042 144TODO (no longer available)
d691f669 145
debc7065 146@node install_mac
1f673135 147@section Mac OS X
d691f669 148
15a34c63 149Download the experimental binary installer at
debc7065 150@url{http://www.free.oszoo.org/@/download.html}.
7544a042 151TODO (no longer available)
df0f11a0 152
debc7065 153@node QEMU PC System emulator
3f9f3aa1 154@chapter QEMU PC System emulator
7544a042 155@cindex system emulation (PC)
1eb20527 156
debc7065
FB
157@menu
158* pcsys_introduction:: Introduction
159* pcsys_quickstart:: Quick Start
160* sec_invocation:: Invocation
161* pcsys_keys:: Keys
162* pcsys_monitor:: QEMU Monitor
163* disk_images:: Disk Images
164* pcsys_network:: Network emulation
576fd0a1 165* pcsys_other_devs:: Other Devices
debc7065
FB
166* direct_linux_boot:: Direct Linux Boot
167* pcsys_usb:: USB emulation
f858dcae 168* vnc_security:: VNC security
debc7065
FB
169* gdb_usage:: GDB usage
170* pcsys_os_specific:: Target OS specific information
171@end menu
172
173@node pcsys_introduction
0806e3f6
FB
174@section Introduction
175
176@c man begin DESCRIPTION
177
3f9f3aa1
FB
178The QEMU PC System emulator simulates the
179following peripherals:
0806e3f6
FB
180
181@itemize @minus
5fafdf24 182@item
15a34c63 183i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 184@item
15a34c63
FB
185Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186extensions (hardware level, including all non standard modes).
0806e3f6
FB
187@item
188PS/2 mouse and keyboard
5fafdf24 189@item
15a34c63 1902 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
191@item
192Floppy disk
5fafdf24 193@item
3a2eeac0 194PCI and ISA network adapters
0806e3f6 195@item
05d5818c
FB
196Serial ports
197@item
c0fe3827
FB
198Creative SoundBlaster 16 sound card
199@item
200ENSONIQ AudioPCI ES1370 sound card
201@item
e5c9a13e
AZ
202Intel 82801AA AC97 Audio compatible sound card
203@item
7d72e762
GH
204Intel HD Audio Controller and HDA codec
205@item
2d983446 206Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 207@item
26463dbc
AZ
208Gravis Ultrasound GF1 sound card
209@item
cc53d26d 210CS4231A compatible sound card
211@item
b389dbfb 212PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
213@end itemize
214
3f9f3aa1
FB
215SMP is supported with up to 255 CPUs.
216
a8ad4159 217QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
218VGA BIOS.
219
c0fe3827
FB
220QEMU uses YM3812 emulation by Tatsuyuki Satoh.
221
2d983446 222QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 223by Tibor "TS" Schütz.
423d65f4 224
1a1a0e20 225Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 226QEMU must be told to not have parallel ports to have working GUS.
720036a5 227
228@example
3804da9d 229qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 230@end example
231
232Alternatively:
233@example
3804da9d 234qemu-system-i386 dos.img -device gus,irq=5
720036a5 235@end example
236
237Or some other unclaimed IRQ.
238
cc53d26d 239CS4231A is the chip used in Windows Sound System and GUSMAX products
240
0806e3f6
FB
241@c man end
242
debc7065 243@node pcsys_quickstart
1eb20527 244@section Quick Start
7544a042 245@cindex quick start
1eb20527 246
285dc330 247Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
248
249@example
3804da9d 250qemu-system-i386 linux.img
0806e3f6
FB
251@end example
252
253Linux should boot and give you a prompt.
254
6cc721cf 255@node sec_invocation
ec410fc9
FB
256@section Invocation
257
258@example
0806e3f6 259@c man begin SYNOPSIS
3804da9d 260usage: qemu-system-i386 [options] [@var{disk_image}]
0806e3f6 261@c man end
ec410fc9
FB
262@end example
263
0806e3f6 264@c man begin OPTIONS
d2c639d6
BS
265@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
266targets do not need a disk image.
ec410fc9 267
5824d651 268@include qemu-options.texi
ec410fc9 269
3e11db9a
FB
270@c man end
271
debc7065 272@node pcsys_keys
3e11db9a
FB
273@section Keys
274
275@c man begin OPTIONS
276
de1db2a1
BH
277During the graphical emulation, you can use special key combinations to change
278modes. The default key mappings are shown below, but if you use @code{-alt-grab}
279then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
280@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
281
a1b74fe8 282@table @key
f9859310 283@item Ctrl-Alt-f
7544a042 284@kindex Ctrl-Alt-f
a1b74fe8 285Toggle full screen
a0a821a4 286
d6a65ba3
JK
287@item Ctrl-Alt-+
288@kindex Ctrl-Alt-+
289Enlarge the screen
290
291@item Ctrl-Alt--
292@kindex Ctrl-Alt--
293Shrink the screen
294
c4a735f9 295@item Ctrl-Alt-u
7544a042 296@kindex Ctrl-Alt-u
c4a735f9 297Restore the screen's un-scaled dimensions
298
f9859310 299@item Ctrl-Alt-n
7544a042 300@kindex Ctrl-Alt-n
a0a821a4
FB
301Switch to virtual console 'n'. Standard console mappings are:
302@table @emph
303@item 1
304Target system display
305@item 2
306Monitor
307@item 3
308Serial port
a1b74fe8
FB
309@end table
310
f9859310 311@item Ctrl-Alt
7544a042 312@kindex Ctrl-Alt
a0a821a4
FB
313Toggle mouse and keyboard grab.
314@end table
315
7544a042
SW
316@kindex Ctrl-Up
317@kindex Ctrl-Down
318@kindex Ctrl-PageUp
319@kindex Ctrl-PageDown
3e11db9a
FB
320In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
321@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
322
7544a042 323@kindex Ctrl-a h
a0a821a4
FB
324During emulation, if you are using the @option{-nographic} option, use
325@key{Ctrl-a h} to get terminal commands:
ec410fc9
FB
326
327@table @key
a1b74fe8 328@item Ctrl-a h
7544a042 329@kindex Ctrl-a h
d2c639d6 330@item Ctrl-a ?
7544a042 331@kindex Ctrl-a ?
ec410fc9 332Print this help
3b46e624 333@item Ctrl-a x
7544a042 334@kindex Ctrl-a x
366dfc52 335Exit emulator
3b46e624 336@item Ctrl-a s
7544a042 337@kindex Ctrl-a s
1f47a922 338Save disk data back to file (if -snapshot)
20d8a3ed 339@item Ctrl-a t
7544a042 340@kindex Ctrl-a t
d2c639d6 341Toggle console timestamps
a1b74fe8 342@item Ctrl-a b
7544a042 343@kindex Ctrl-a b
1f673135 344Send break (magic sysrq in Linux)
a1b74fe8 345@item Ctrl-a c
7544a042 346@kindex Ctrl-a c
1f673135 347Switch between console and monitor
a1b74fe8 348@item Ctrl-a Ctrl-a
7544a042 349@kindex Ctrl-a a
a1b74fe8 350Send Ctrl-a
ec410fc9 351@end table
0806e3f6
FB
352@c man end
353
354@ignore
355
1f673135
FB
356@c man begin SEEALSO
357The HTML documentation of QEMU for more precise information and Linux
358user mode emulator invocation.
359@c man end
360
361@c man begin AUTHOR
362Fabrice Bellard
363@c man end
364
365@end ignore
366
debc7065 367@node pcsys_monitor
1f673135 368@section QEMU Monitor
7544a042 369@cindex QEMU monitor
1f673135
FB
370
371The QEMU monitor is used to give complex commands to the QEMU
372emulator. You can use it to:
373
374@itemize @minus
375
376@item
e598752a 377Remove or insert removable media images
89dfe898 378(such as CD-ROM or floppies).
1f673135 379
5fafdf24 380@item
1f673135
FB
381Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
382from a disk file.
383
384@item Inspect the VM state without an external debugger.
385
386@end itemize
387
388@subsection Commands
389
390The following commands are available:
391
2313086a 392@include qemu-monitor.texi
0806e3f6 393
1f673135
FB
394@subsection Integer expressions
395
396The monitor understands integers expressions for every integer
397argument. You can use register names to get the value of specifics
398CPU registers by prefixing them with @emph{$}.
ec410fc9 399
1f47a922
FB
400@node disk_images
401@section Disk Images
402
acd935ef
FB
403Since version 0.6.1, QEMU supports many disk image formats, including
404growable disk images (their size increase as non empty sectors are
13a2e80f
FB
405written), compressed and encrypted disk images. Version 0.8.3 added
406the new qcow2 disk image format which is essential to support VM
407snapshots.
1f47a922 408
debc7065
FB
409@menu
410* disk_images_quickstart:: Quick start for disk image creation
411* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 412* vm_snapshots:: VM snapshots
debc7065 413* qemu_img_invocation:: qemu-img Invocation
975b092b 414* qemu_nbd_invocation:: qemu-nbd Invocation
d3067b02 415* disk_images_formats:: Disk image file formats
19cb3738 416* host_drives:: Using host drives
debc7065 417* disk_images_fat_images:: Virtual FAT disk images
75818250 418* disk_images_nbd:: NBD access
42af9c30 419* disk_images_sheepdog:: Sheepdog disk images
00984e39 420* disk_images_iscsi:: iSCSI LUNs
8809e289 421* disk_images_gluster:: GlusterFS disk images
0a12ec87 422* disk_images_ssh:: Secure Shell (ssh) disk images
debc7065
FB
423@end menu
424
425@node disk_images_quickstart
acd935ef
FB
426@subsection Quick start for disk image creation
427
428You can create a disk image with the command:
1f47a922 429@example
acd935ef 430qemu-img create myimage.img mysize
1f47a922 431@end example
acd935ef
FB
432where @var{myimage.img} is the disk image filename and @var{mysize} is its
433size in kilobytes. You can add an @code{M} suffix to give the size in
434megabytes and a @code{G} suffix for gigabytes.
435
debc7065 436See @ref{qemu_img_invocation} for more information.
1f47a922 437
debc7065 438@node disk_images_snapshot_mode
1f47a922
FB
439@subsection Snapshot mode
440
441If you use the option @option{-snapshot}, all disk images are
442considered as read only. When sectors in written, they are written in
443a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
444write back to the raw disk images by using the @code{commit} monitor
445command (or @key{C-a s} in the serial console).
1f47a922 446
13a2e80f
FB
447@node vm_snapshots
448@subsection VM snapshots
449
450VM snapshots are snapshots of the complete virtual machine including
451CPU state, RAM, device state and the content of all the writable
452disks. In order to use VM snapshots, you must have at least one non
453removable and writable block device using the @code{qcow2} disk image
454format. Normally this device is the first virtual hard drive.
455
456Use the monitor command @code{savevm} to create a new VM snapshot or
457replace an existing one. A human readable name can be assigned to each
19d36792 458snapshot in addition to its numerical ID.
13a2e80f
FB
459
460Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
461a VM snapshot. @code{info snapshots} lists the available snapshots
462with their associated information:
463
464@example
465(qemu) info snapshots
466Snapshot devices: hda
467Snapshot list (from hda):
468ID TAG VM SIZE DATE VM CLOCK
4691 start 41M 2006-08-06 12:38:02 00:00:14.954
4702 40M 2006-08-06 12:43:29 00:00:18.633
4713 msys 40M 2006-08-06 12:44:04 00:00:23.514
472@end example
473
474A VM snapshot is made of a VM state info (its size is shown in
475@code{info snapshots}) and a snapshot of every writable disk image.
476The VM state info is stored in the first @code{qcow2} non removable
477and writable block device. The disk image snapshots are stored in
478every disk image. The size of a snapshot in a disk image is difficult
479to evaluate and is not shown by @code{info snapshots} because the
480associated disk sectors are shared among all the snapshots to save
19d36792
FB
481disk space (otherwise each snapshot would need a full copy of all the
482disk images).
13a2e80f
FB
483
484When using the (unrelated) @code{-snapshot} option
485(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
486but they are deleted as soon as you exit QEMU.
487
488VM snapshots currently have the following known limitations:
489@itemize
5fafdf24 490@item
13a2e80f
FB
491They cannot cope with removable devices if they are removed or
492inserted after a snapshot is done.
5fafdf24 493@item
13a2e80f
FB
494A few device drivers still have incomplete snapshot support so their
495state is not saved or restored properly (in particular USB).
496@end itemize
497
acd935ef
FB
498@node qemu_img_invocation
499@subsection @code{qemu-img} Invocation
1f47a922 500
acd935ef 501@include qemu-img.texi
05efe46e 502
975b092b
TS
503@node qemu_nbd_invocation
504@subsection @code{qemu-nbd} Invocation
505
506@include qemu-nbd.texi
507
d3067b02
KW
508@node disk_images_formats
509@subsection Disk image file formats
510
511QEMU supports many image file formats that can be used with VMs as well as with
512any of the tools (like @code{qemu-img}). This includes the preferred formats
513raw and qcow2 as well as formats that are supported for compatibility with
514older QEMU versions or other hypervisors.
515
516Depending on the image format, different options can be passed to
517@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
518This section describes each format and the options that are supported for it.
519
520@table @option
521@item raw
522
523Raw disk image format. This format has the advantage of
524being simple and easily exportable to all other emulators. If your
525file system supports @emph{holes} (for example in ext2 or ext3 on
526Linux or NTFS on Windows), then only the written sectors will reserve
527space. Use @code{qemu-img info} to know the real size used by the
528image or @code{ls -ls} on Unix/Linux.
529
530@item qcow2
531QEMU image format, the most versatile format. Use it to have smaller
532images (useful if your filesystem does not supports holes, for example
533on Windows), optional AES encryption, zlib based compression and
534support of multiple VM snapshots.
535
536Supported options:
537@table @code
538@item compat
7fa9e1f9
SH
539Determines the qcow2 version to use. @code{compat=0.10} uses the
540traditional image format that can be read by any QEMU since 0.10.
d3067b02 541@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
7fa9e1f9
SH
542newer understand (this is the default). Amongst others, this includes
543zero clusters, which allow efficient copy-on-read for sparse images.
d3067b02
KW
544
545@item backing_file
546File name of a base image (see @option{create} subcommand)
547@item backing_fmt
548Image format of the base image
549@item encryption
136cd19d 550If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC.
d3067b02 551
136cd19d
DB
552The use of encryption in qcow and qcow2 images is considered to be flawed by
553modern cryptography standards, suffering from a number of design problems:
554
555@itemize @minus
556@item The AES-CBC cipher is used with predictable initialization vectors based
557on the sector number. This makes it vulnerable to chosen plaintext attacks
558which can reveal the existence of encrypted data.
559@item The user passphrase is directly used as the encryption key. A poorly
560chosen or short passphrase will compromise the security of the encryption.
561@item In the event of the passphrase being compromised there is no way to
562change the passphrase to protect data in any qcow images. The files must
563be cloned, using a different encryption passphrase in the new file. The
564original file must then be securely erased using a program like shred,
565though even this is ineffective with many modern storage technologies.
566@end itemize
567
568Use of qcow / qcow2 encryption is thus strongly discouraged. Users are
569recommended to use an alternative encryption technology such as the
570Linux dm-crypt / LUKS system.
d3067b02
KW
571
572@item cluster_size
573Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
574sizes can improve the image file size whereas larger cluster sizes generally
575provide better performance.
576
577@item preallocation
578Preallocation mode (allowed values: off, metadata). An image with preallocated
579metadata is initially larger but can improve performance when the image needs
580to grow.
581
582@item lazy_refcounts
583If this option is set to @code{on}, reference count updates are postponed with
584the goal of avoiding metadata I/O and improving performance. This is
585particularly interesting with @option{cache=writethrough} which doesn't batch
586metadata updates. The tradeoff is that after a host crash, the reference count
587tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
588check -r all} is required, which may take some time.
589
590This option can only be enabled if @code{compat=1.1} is specified.
591
4ab15590 592@item nocow
bc3a7f90 593If this option is set to @code{on}, it will turn off COW of the file. It's only
4ab15590
CL
594valid on btrfs, no effect on other file systems.
595
596Btrfs has low performance when hosting a VM image file, even more when the guest
597on the VM also using btrfs as file system. Turning off COW is a way to mitigate
598this bad performance. Generally there are two ways to turn off COW on btrfs:
599a) Disable it by mounting with nodatacow, then all newly created files will be
600NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
601does.
602
603Note: this option is only valid to new or empty files. If there is an existing
604file which is COW and has data blocks already, it couldn't be changed to NOCOW
605by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
bc3a7f90 606the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
4ab15590 607
d3067b02
KW
608@end table
609
610@item qed
611Old QEMU image format with support for backing files and compact image files
612(when your filesystem or transport medium does not support holes).
613
614When converting QED images to qcow2, you might want to consider using the
615@code{lazy_refcounts=on} option to get a more QED-like behaviour.
616
617Supported options:
618@table @code
619@item backing_file
620File name of a base image (see @option{create} subcommand).
621@item backing_fmt
622Image file format of backing file (optional). Useful if the format cannot be
623autodetected because it has no header, like some vhd/vpc files.
624@item cluster_size
625Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
626cluster sizes can improve the image file size whereas larger cluster sizes
627generally provide better performance.
628@item table_size
629Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
630and 16). There is normally no need to change this value but this option can be
631used for performance benchmarking.
632@end table
633
634@item qcow
635Old QEMU image format with support for backing files, compact image files,
636encryption and compression.
637
638Supported options:
639@table @code
640@item backing_file
641File name of a base image (see @option{create} subcommand)
642@item encryption
643If this option is set to @code{on}, the image is encrypted.
644@end table
645
646@item cow
647User Mode Linux Copy On Write image format. It is supported only for
648compatibility with previous versions.
649Supported options:
650@table @code
651@item backing_file
652File name of a base image (see @option{create} subcommand)
653@end table
654
655@item vdi
656VirtualBox 1.1 compatible image format.
657Supported options:
658@table @code
659@item static
660If this option is set to @code{on}, the image is created with metadata
661preallocation.
662@end table
663
664@item vmdk
665VMware 3 and 4 compatible image format.
666
667Supported options:
668@table @code
669@item backing_file
670File name of a base image (see @option{create} subcommand).
671@item compat6
672Create a VMDK version 6 image (instead of version 4)
673@item subformat
674Specifies which VMDK subformat to use. Valid options are
675@code{monolithicSparse} (default),
676@code{monolithicFlat},
677@code{twoGbMaxExtentSparse},
678@code{twoGbMaxExtentFlat} and
679@code{streamOptimized}.
680@end table
681
682@item vpc
683VirtualPC compatible image format (VHD).
684Supported options:
685@table @code
686@item subformat
687Specifies which VHD subformat to use. Valid options are
688@code{dynamic} (default) and @code{fixed}.
689@end table
8282db1b
JC
690
691@item VHDX
692Hyper-V compatible image format (VHDX).
693Supported options:
694@table @code
695@item subformat
696Specifies which VHDX subformat to use. Valid options are
697@code{dynamic} (default) and @code{fixed}.
698@item block_state_zero
699Force use of payload blocks of type 'ZERO'.
700@item block_size
701Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size.
702@item log_size
703Log size; min 1 MB.
704@end table
d3067b02
KW
705@end table
706
707@subsubsection Read-only formats
708More disk image file formats are supported in a read-only mode.
709@table @option
710@item bochs
711Bochs images of @code{growing} type.
712@item cloop
713Linux Compressed Loop image, useful only to reuse directly compressed
714CD-ROM images present for example in the Knoppix CD-ROMs.
715@item dmg
716Apple disk image.
717@item parallels
718Parallels disk image format.
719@end table
720
721
19cb3738
FB
722@node host_drives
723@subsection Using host drives
724
725In addition to disk image files, QEMU can directly access host
726devices. We describe here the usage for QEMU version >= 0.8.3.
727
728@subsubsection Linux
729
730On Linux, you can directly use the host device filename instead of a
4be456f1 731disk image filename provided you have enough privileges to access
19cb3738
FB
732it. For example, use @file{/dev/cdrom} to access to the CDROM or
733@file{/dev/fd0} for the floppy.
734
f542086d 735@table @code
19cb3738
FB
736@item CD
737You can specify a CDROM device even if no CDROM is loaded. QEMU has
738specific code to detect CDROM insertion or removal. CDROM ejection by
739the guest OS is supported. Currently only data CDs are supported.
740@item Floppy
741You can specify a floppy device even if no floppy is loaded. Floppy
742removal is currently not detected accurately (if you change floppy
743without doing floppy access while the floppy is not loaded, the guest
744OS will think that the same floppy is loaded).
745@item Hard disks
746Hard disks can be used. Normally you must specify the whole disk
747(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
748see it as a partitioned disk. WARNING: unless you know what you do, it
749is better to only make READ-ONLY accesses to the hard disk otherwise
750you may corrupt your host data (use the @option{-snapshot} command
751line option or modify the device permissions accordingly).
752@end table
753
754@subsubsection Windows
755
01781963
FB
756@table @code
757@item CD
4be456f1 758The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
759alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
760supported as an alias to the first CDROM drive.
19cb3738 761
e598752a 762Currently there is no specific code to handle removable media, so it
19cb3738
FB
763is better to use the @code{change} or @code{eject} monitor commands to
764change or eject media.
01781963 765@item Hard disks
89dfe898 766Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
767where @var{N} is the drive number (0 is the first hard disk).
768
769WARNING: unless you know what you do, it is better to only make
770READ-ONLY accesses to the hard disk otherwise you may corrupt your
771host data (use the @option{-snapshot} command line so that the
772modifications are written in a temporary file).
773@end table
774
19cb3738
FB
775
776@subsubsection Mac OS X
777
5fafdf24 778@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 779
e598752a 780Currently there is no specific code to handle removable media, so it
19cb3738
FB
781is better to use the @code{change} or @code{eject} monitor commands to
782change or eject media.
783
debc7065 784@node disk_images_fat_images
2c6cadd4
FB
785@subsection Virtual FAT disk images
786
787QEMU can automatically create a virtual FAT disk image from a
788directory tree. In order to use it, just type:
789
5fafdf24 790@example
3804da9d 791qemu-system-i386 linux.img -hdb fat:/my_directory
2c6cadd4
FB
792@end example
793
794Then you access access to all the files in the @file{/my_directory}
795directory without having to copy them in a disk image or to export
796them via SAMBA or NFS. The default access is @emph{read-only}.
797
798Floppies can be emulated with the @code{:floppy:} option:
799
5fafdf24 800@example
3804da9d 801qemu-system-i386 linux.img -fda fat:floppy:/my_directory
2c6cadd4
FB
802@end example
803
804A read/write support is available for testing (beta stage) with the
805@code{:rw:} option:
806
5fafdf24 807@example
3804da9d 808qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
2c6cadd4
FB
809@end example
810
811What you should @emph{never} do:
812@itemize
813@item use non-ASCII filenames ;
814@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
815@item expect it to work when loadvm'ing ;
816@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
817@end itemize
818
75818250
TS
819@node disk_images_nbd
820@subsection NBD access
821
822QEMU can access directly to block device exported using the Network Block Device
823protocol.
824
825@example
1d7d2a9d 826qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
75818250
TS
827@end example
828
829If the NBD server is located on the same host, you can use an unix socket instead
830of an inet socket:
831
832@example
1d7d2a9d 833qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
834@end example
835
836In this case, the block device must be exported using qemu-nbd:
837
838@example
839qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
840@end example
841
9d85d557 842The use of qemu-nbd allows sharing of a disk between several guests:
75818250
TS
843@example
844qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
845@end example
846
1d7d2a9d 847@noindent
75818250
TS
848and then you can use it with two guests:
849@example
1d7d2a9d
PB
850qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
851qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
852@end example
853
1d7d2a9d
PB
854If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
855own embedded NBD server), you must specify an export name in the URI:
1d45f8b5 856@example
1d7d2a9d
PB
857qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
858qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
859@end example
860
861The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
862also available. Here are some example of the older syntax:
863@example
864qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
865qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
866qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
1d45f8b5
LV
867@end example
868
42af9c30
MK
869@node disk_images_sheepdog
870@subsection Sheepdog disk images
871
872Sheepdog is a distributed storage system for QEMU. It provides highly
873available block level storage volumes that can be attached to
874QEMU-based virtual machines.
875
876You can create a Sheepdog disk image with the command:
877@example
5d6768e3 878qemu-img create sheepdog:///@var{image} @var{size}
42af9c30
MK
879@end example
880where @var{image} is the Sheepdog image name and @var{size} is its
881size.
882
883To import the existing @var{filename} to Sheepdog, you can use a
884convert command.
885@example
5d6768e3 886qemu-img convert @var{filename} sheepdog:///@var{image}
42af9c30
MK
887@end example
888
889You can boot from the Sheepdog disk image with the command:
890@example
5d6768e3 891qemu-system-i386 sheepdog:///@var{image}
42af9c30
MK
892@end example
893
894You can also create a snapshot of the Sheepdog image like qcow2.
895@example
5d6768e3 896qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
42af9c30
MK
897@end example
898where @var{tag} is a tag name of the newly created snapshot.
899
900To boot from the Sheepdog snapshot, specify the tag name of the
901snapshot.
902@example
5d6768e3 903qemu-system-i386 sheepdog:///@var{image}#@var{tag}
42af9c30
MK
904@end example
905
906You can create a cloned image from the existing snapshot.
907@example
5d6768e3 908qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
42af9c30
MK
909@end example
910where @var{base} is a image name of the source snapshot and @var{tag}
911is its tag name.
912
1b8bbb46
MK
913You can use an unix socket instead of an inet socket:
914
915@example
916qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
917@end example
918
42af9c30
MK
919If the Sheepdog daemon doesn't run on the local host, you need to
920specify one of the Sheepdog servers to connect to.
921@example
5d6768e3
MK
922qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
923qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
42af9c30
MK
924@end example
925
00984e39
RS
926@node disk_images_iscsi
927@subsection iSCSI LUNs
928
929iSCSI is a popular protocol used to access SCSI devices across a computer
930network.
931
932There are two different ways iSCSI devices can be used by QEMU.
933
934The first method is to mount the iSCSI LUN on the host, and make it appear as
935any other ordinary SCSI device on the host and then to access this device as a
936/dev/sd device from QEMU. How to do this differs between host OSes.
937
938The second method involves using the iSCSI initiator that is built into
939QEMU. This provides a mechanism that works the same way regardless of which
940host OS you are running QEMU on. This section will describe this second method
941of using iSCSI together with QEMU.
942
943In QEMU, iSCSI devices are described using special iSCSI URLs
944
945@example
946URL syntax:
947iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
948@end example
949
950Username and password are optional and only used if your target is set up
951using CHAP authentication for access control.
952Alternatively the username and password can also be set via environment
953variables to have these not show up in the process list
954
955@example
956export LIBISCSI_CHAP_USERNAME=<username>
957export LIBISCSI_CHAP_PASSWORD=<password>
958iscsi://<host>/<target-iqn-name>/<lun>
959@end example
960
f9dadc98
RS
961Various session related parameters can be set via special options, either
962in a configuration file provided via '-readconfig' or directly on the
963command line.
964
31459f46
RS
965If the initiator-name is not specified qemu will use a default name
966of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
967virtual machine.
968
969
f9dadc98
RS
970@example
971Setting a specific initiator name to use when logging in to the target
972-iscsi initiator-name=iqn.qemu.test:my-initiator
973@end example
974
975@example
976Controlling which type of header digest to negotiate with the target
977-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
978@end example
979
980These can also be set via a configuration file
981@example
982[iscsi]
983 user = "CHAP username"
984 password = "CHAP password"
985 initiator-name = "iqn.qemu.test:my-initiator"
986 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
987 header-digest = "CRC32C"
988@end example
989
990
991Setting the target name allows different options for different targets
992@example
993[iscsi "iqn.target.name"]
994 user = "CHAP username"
995 password = "CHAP password"
996 initiator-name = "iqn.qemu.test:my-initiator"
997 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
998 header-digest = "CRC32C"
999@end example
1000
1001
1002Howto use a configuration file to set iSCSI configuration options:
1003@example
1004cat >iscsi.conf <<EOF
1005[iscsi]
1006 user = "me"
1007 password = "my password"
1008 initiator-name = "iqn.qemu.test:my-initiator"
1009 header-digest = "CRC32C"
1010EOF
1011
1012qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1013 -readconfig iscsi.conf
1014@end example
1015
1016
00984e39
RS
1017Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
1018@example
1019This example shows how to set up an iSCSI target with one CDROM and one DISK
1020using the Linux STGT software target. This target is available on Red Hat based
1021systems as the package 'scsi-target-utils'.
1022
1023tgtd --iscsi portal=127.0.0.1:3260
1024tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
1025tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
1026 -b /IMAGES/disk.img --device-type=disk
1027tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
1028 -b /IMAGES/cd.iso --device-type=cd
1029tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
1030
f9dadc98
RS
1031qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
1032 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
00984e39
RS
1033 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
1034@end example
1035
8809e289
BR
1036@node disk_images_gluster
1037@subsection GlusterFS disk images
00984e39 1038
8809e289
BR
1039GlusterFS is an user space distributed file system.
1040
1041You can boot from the GlusterFS disk image with the command:
1042@example
1043qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
1044@end example
1045
1046@var{gluster} is the protocol.
1047
1048@var{transport} specifies the transport type used to connect to gluster
1049management daemon (glusterd). Valid transport types are
1050tcp, unix and rdma. If a transport type isn't specified, then tcp
1051type is assumed.
1052
1053@var{server} specifies the server where the volume file specification for
1054the given volume resides. This can be either hostname, ipv4 address
1055or ipv6 address. ipv6 address needs to be within square brackets [ ].
1056If transport type is unix, then @var{server} field should not be specifed.
1057Instead @var{socket} field needs to be populated with the path to unix domain
1058socket.
1059
1060@var{port} is the port number on which glusterd is listening. This is optional
1061and if not specified, QEMU will send 0 which will make gluster to use the
1062default port. If the transport type is unix, then @var{port} should not be
1063specified.
1064
1065@var{volname} is the name of the gluster volume which contains the disk image.
1066
1067@var{image} is the path to the actual disk image that resides on gluster volume.
1068
1069You can create a GlusterFS disk image with the command:
1070@example
1071qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
1072@end example
1073
1074Examples
1075@example
1076qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1077qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1078qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1079qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1080qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1081qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1082qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1083qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
1084@end example
00984e39 1085
0a12ec87
RJ
1086@node disk_images_ssh
1087@subsection Secure Shell (ssh) disk images
1088
1089You can access disk images located on a remote ssh server
1090by using the ssh protocol:
1091
1092@example
1093qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1094@end example
1095
1096Alternative syntax using properties:
1097
1098@example
1099qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1100@end example
1101
1102@var{ssh} is the protocol.
1103
1104@var{user} is the remote user. If not specified, then the local
1105username is tried.
1106
1107@var{server} specifies the remote ssh server. Any ssh server can be
1108used, but it must implement the sftp-server protocol. Most Unix/Linux
1109systems should work without requiring any extra configuration.
1110
1111@var{port} is the port number on which sshd is listening. By default
1112the standard ssh port (22) is used.
1113
1114@var{path} is the path to the disk image.
1115
1116The optional @var{host_key_check} parameter controls how the remote
1117host's key is checked. The default is @code{yes} which means to use
1118the local @file{.ssh/known_hosts} file. Setting this to @code{no}
1119turns off known-hosts checking. Or you can check that the host key
1120matches a specific fingerprint:
1121@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1122(@code{sha1:} can also be used as a prefix, but note that OpenSSH
1123tools only use MD5 to print fingerprints).
1124
1125Currently authentication must be done using ssh-agent. Other
1126authentication methods may be supported in future.
1127
9a2d462e
RJ
1128Note: Many ssh servers do not support an @code{fsync}-style operation.
1129The ssh driver cannot guarantee that disk flush requests are
1130obeyed, and this causes a risk of disk corruption if the remote
1131server or network goes down during writes. The driver will
1132print a warning when @code{fsync} is not supported:
1133
1134warning: ssh server @code{ssh.example.com:22} does not support fsync
1135
1136With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1137supported.
0a12ec87 1138
debc7065 1139@node pcsys_network
9d4fb82e
FB
1140@section Network emulation
1141
4be456f1 1142QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
1143target) and can connect them to an arbitrary number of Virtual Local
1144Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1145VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 1146simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
1147network stack can replace the TAP device to have a basic network
1148connection.
1149
1150@subsection VLANs
9d4fb82e 1151
41d03949
FB
1152QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1153connection between several network devices. These devices can be for
1154example QEMU virtual Ethernet cards or virtual Host ethernet devices
1155(TAP devices).
9d4fb82e 1156
41d03949
FB
1157@subsection Using TAP network interfaces
1158
1159This is the standard way to connect QEMU to a real network. QEMU adds
1160a virtual network device on your host (called @code{tapN}), and you
1161can then configure it as if it was a real ethernet card.
9d4fb82e 1162
8f40c388
FB
1163@subsubsection Linux host
1164
9d4fb82e
FB
1165As an example, you can download the @file{linux-test-xxx.tar.gz}
1166archive and copy the script @file{qemu-ifup} in @file{/etc} and
1167configure properly @code{sudo} so that the command @code{ifconfig}
1168contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 1169that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
1170device @file{/dev/net/tun} must be present.
1171
ee0f4751
FB
1172See @ref{sec_invocation} to have examples of command lines using the
1173TAP network interfaces.
9d4fb82e 1174
8f40c388
FB
1175@subsubsection Windows host
1176
1177There is a virtual ethernet driver for Windows 2000/XP systems, called
1178TAP-Win32. But it is not included in standard QEMU for Windows,
1179so you will need to get it separately. It is part of OpenVPN package,
1180so download OpenVPN from : @url{http://openvpn.net/}.
1181
9d4fb82e
FB
1182@subsection Using the user mode network stack
1183
41d03949
FB
1184By using the option @option{-net user} (default configuration if no
1185@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 1186network stack (you don't need root privilege to use the virtual
41d03949 1187network). The virtual network configuration is the following:
9d4fb82e
FB
1188
1189@example
1190
41d03949
FB
1191 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1192 | (10.0.2.2)
9d4fb82e 1193 |
2518bd0d 1194 ----> DNS server (10.0.2.3)
3b46e624 1195 |
2518bd0d 1196 ----> SMB server (10.0.2.4)
9d4fb82e
FB
1197@end example
1198
1199The QEMU VM behaves as if it was behind a firewall which blocks all
1200incoming connections. You can use a DHCP client to automatically
41d03949
FB
1201configure the network in the QEMU VM. The DHCP server assign addresses
1202to the hosts starting from 10.0.2.15.
9d4fb82e
FB
1203
1204In order to check that the user mode network is working, you can ping
1205the address 10.0.2.2 and verify that you got an address in the range
120610.0.2.x from the QEMU virtual DHCP server.
1207
b415a407 1208Note that @code{ping} is not supported reliably to the internet as it
4be456f1 1209would require root privileges. It means you can only ping the local
b415a407
FB
1210router (10.0.2.2).
1211
9bf05444
FB
1212When using the built-in TFTP server, the router is also the TFTP
1213server.
1214
1215When using the @option{-redir} option, TCP or UDP connections can be
1216redirected from the host to the guest. It allows for example to
1217redirect X11, telnet or SSH connections.
443f1376 1218
41d03949
FB
1219@subsection Connecting VLANs between QEMU instances
1220
1221Using the @option{-net socket} option, it is possible to make VLANs
1222that span several QEMU instances. See @ref{sec_invocation} to have a
1223basic example.
1224
576fd0a1 1225@node pcsys_other_devs
6cbf4c8c
CM
1226@section Other Devices
1227
1228@subsection Inter-VM Shared Memory device
1229
1230With KVM enabled on a Linux host, a shared memory device is available. Guests
1231map a POSIX shared memory region into the guest as a PCI device that enables
1232zero-copy communication to the application level of the guests. The basic
1233syntax is:
1234
1235@example
3804da9d 1236qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
6cbf4c8c
CM
1237@end example
1238
1239If desired, interrupts can be sent between guest VMs accessing the same shared
1240memory region. Interrupt support requires using a shared memory server and
1241using a chardev socket to connect to it. The code for the shared memory server
1242is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
1243memory server is:
1244
1245@example
3804da9d
SW
1246qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
1247 [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
1248qemu-system-i386 -chardev socket,path=<path>,id=<id>
6cbf4c8c
CM
1249@end example
1250
1251When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1252using the same server to communicate via interrupts. Guests can read their
1253VM ID from a device register (see example code). Since receiving the shared
1254memory region from the server is asynchronous, there is a (small) chance the
1255guest may boot before the shared memory is attached. To allow an application
1256to ensure shared memory is attached, the VM ID register will return -1 (an
1257invalid VM ID) until the memory is attached. Once the shared memory is
1258attached, the VM ID will return the guest's valid VM ID. With these semantics,
1259the guest application can check to ensure the shared memory is attached to the
1260guest before proceeding.
1261
1262The @option{role} argument can be set to either master or peer and will affect
1263how the shared memory is migrated. With @option{role=master}, the guest will
1264copy the shared memory on migration to the destination host. With
1265@option{role=peer}, the guest will not be able to migrate with the device attached.
1266With the @option{peer} case, the device should be detached and then reattached
1267after migration using the PCI hotplug support.
1268
9d4fb82e
FB
1269@node direct_linux_boot
1270@section Direct Linux Boot
1f673135
FB
1271
1272This section explains how to launch a Linux kernel inside QEMU without
1273having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1274kernel testing.
1f673135 1275
ee0f4751 1276The syntax is:
1f673135 1277@example
3804da9d 1278qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1279@end example
1280
ee0f4751
FB
1281Use @option{-kernel} to provide the Linux kernel image and
1282@option{-append} to give the kernel command line arguments. The
1283@option{-initrd} option can be used to provide an INITRD image.
1f673135 1284
ee0f4751
FB
1285When using the direct Linux boot, a disk image for the first hard disk
1286@file{hda} is required because its boot sector is used to launch the
1287Linux kernel.
1f673135 1288
ee0f4751
FB
1289If you do not need graphical output, you can disable it and redirect
1290the virtual serial port and the QEMU monitor to the console with the
1291@option{-nographic} option. The typical command line is:
1f673135 1292@example
3804da9d
SW
1293qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1294 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1295@end example
1296
ee0f4751
FB
1297Use @key{Ctrl-a c} to switch between the serial console and the
1298monitor (@pxref{pcsys_keys}).
1f673135 1299
debc7065 1300@node pcsys_usb
b389dbfb
FB
1301@section USB emulation
1302
0aff66b5
PB
1303QEMU emulates a PCI UHCI USB controller. You can virtually plug
1304virtual USB devices or real host USB devices (experimental, works only
071c9394 1305on Linux hosts). QEMU will automatically create and connect virtual USB hubs
f542086d 1306as necessary to connect multiple USB devices.
b389dbfb 1307
0aff66b5
PB
1308@menu
1309* usb_devices::
1310* host_usb_devices::
1311@end menu
1312@node usb_devices
1313@subsection Connecting USB devices
b389dbfb 1314
0aff66b5
PB
1315USB devices can be connected with the @option{-usbdevice} commandline option
1316or the @code{usb_add} monitor command. Available devices are:
b389dbfb 1317
db380c06
AZ
1318@table @code
1319@item mouse
0aff66b5 1320Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 1321@item tablet
c6d46c20 1322Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 1323This means QEMU is able to report the mouse position without having
0aff66b5 1324to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 1325@item disk:@var{file}
0aff66b5 1326Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 1327@item host:@var{bus.addr}
0aff66b5
PB
1328Pass through the host device identified by @var{bus.addr}
1329(Linux only)
db380c06 1330@item host:@var{vendor_id:product_id}
0aff66b5
PB
1331Pass through the host device identified by @var{vendor_id:product_id}
1332(Linux only)
db380c06 1333@item wacom-tablet
f6d2a316
AZ
1334Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1335above but it can be used with the tslib library because in addition to touch
1336coordinates it reports touch pressure.
db380c06 1337@item keyboard
47b2d338 1338Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
1339@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1340Serial converter. This emulates an FTDI FT232BM chip connected to host character
1341device @var{dev}. The available character devices are the same as for the
1342@code{-serial} option. The @code{vendorid} and @code{productid} options can be
0d6753e5 1343used to override the default 0403:6001. For instance,
db380c06
AZ
1344@example
1345usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1346@end example
1347will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1348serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
1349@item braille
1350Braille device. This will use BrlAPI to display the braille output on a real
1351or fake device.
9ad97e65
AZ
1352@item net:@var{options}
1353Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1354specifies NIC options as with @code{-net nic,}@var{options} (see description).
1355For instance, user-mode networking can be used with
6c9f886c 1356@example
3804da9d 1357qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
1358@end example
1359Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
1360@item bt[:@var{hci-type}]
1361Bluetooth dongle whose type is specified in the same format as with
1362the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1363no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1364This USB device implements the USB Transport Layer of HCI. Example
1365usage:
1366@example
3804da9d 1367qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
2d564691 1368@end example
0aff66b5 1369@end table
b389dbfb 1370
0aff66b5 1371@node host_usb_devices
b389dbfb
FB
1372@subsection Using host USB devices on a Linux host
1373
1374WARNING: this is an experimental feature. QEMU will slow down when
1375using it. USB devices requiring real time streaming (i.e. USB Video
1376Cameras) are not supported yet.
1377
1378@enumerate
5fafdf24 1379@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1380is actually using the USB device. A simple way to do that is simply to
1381disable the corresponding kernel module by renaming it from @file{mydriver.o}
1382to @file{mydriver.o.disabled}.
1383
1384@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1385@example
1386ls /proc/bus/usb
1387001 devices drivers
1388@end example
1389
1390@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1391@example
1392chown -R myuid /proc/bus/usb
1393@end example
1394
1395@item Launch QEMU and do in the monitor:
5fafdf24 1396@example
b389dbfb
FB
1397info usbhost
1398 Device 1.2, speed 480 Mb/s
1399 Class 00: USB device 1234:5678, USB DISK
1400@end example
1401You should see the list of the devices you can use (Never try to use
1402hubs, it won't work).
1403
1404@item Add the device in QEMU by using:
5fafdf24 1405@example
b389dbfb
FB
1406usb_add host:1234:5678
1407@end example
1408
1409Normally the guest OS should report that a new USB device is
1410plugged. You can use the option @option{-usbdevice} to do the same.
1411
1412@item Now you can try to use the host USB device in QEMU.
1413
1414@end enumerate
1415
1416When relaunching QEMU, you may have to unplug and plug again the USB
1417device to make it work again (this is a bug).
1418
f858dcae
TS
1419@node vnc_security
1420@section VNC security
1421
1422The VNC server capability provides access to the graphical console
1423of the guest VM across the network. This has a number of security
1424considerations depending on the deployment scenarios.
1425
1426@menu
1427* vnc_sec_none::
1428* vnc_sec_password::
1429* vnc_sec_certificate::
1430* vnc_sec_certificate_verify::
1431* vnc_sec_certificate_pw::
2f9606b3
AL
1432* vnc_sec_sasl::
1433* vnc_sec_certificate_sasl::
f858dcae 1434* vnc_generate_cert::
2f9606b3 1435* vnc_setup_sasl::
f858dcae
TS
1436@end menu
1437@node vnc_sec_none
1438@subsection Without passwords
1439
1440The simplest VNC server setup does not include any form of authentication.
1441For this setup it is recommended to restrict it to listen on a UNIX domain
1442socket only. For example
1443
1444@example
3804da9d 1445qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1446@end example
1447
1448This ensures that only users on local box with read/write access to that
1449path can access the VNC server. To securely access the VNC server from a
1450remote machine, a combination of netcat+ssh can be used to provide a secure
1451tunnel.
1452
1453@node vnc_sec_password
1454@subsection With passwords
1455
1456The VNC protocol has limited support for password based authentication. Since
1457the protocol limits passwords to 8 characters it should not be considered
1458to provide high security. The password can be fairly easily brute-forced by
1459a client making repeat connections. For this reason, a VNC server using password
1460authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1461or UNIX domain sockets. Password authentication is not supported when operating
1462in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1463authentication is requested with the @code{password} option, and then once QEMU
1464is running the password is set with the monitor. Until the monitor is used to
1465set the password all clients will be rejected.
f858dcae
TS
1466
1467@example
3804da9d 1468qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1469(qemu) change vnc password
1470Password: ********
1471(qemu)
1472@end example
1473
1474@node vnc_sec_certificate
1475@subsection With x509 certificates
1476
1477The QEMU VNC server also implements the VeNCrypt extension allowing use of
1478TLS for encryption of the session, and x509 certificates for authentication.
1479The use of x509 certificates is strongly recommended, because TLS on its
1480own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1481support provides a secure session, but no authentication. This allows any
1482client to connect, and provides an encrypted session.
1483
1484@example
3804da9d 1485qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
1486@end example
1487
1488In the above example @code{/etc/pki/qemu} should contain at least three files,
1489@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1490users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1491NB the @code{server-key.pem} file should be protected with file mode 0600 to
1492only be readable by the user owning it.
1493
1494@node vnc_sec_certificate_verify
1495@subsection With x509 certificates and client verification
1496
1497Certificates can also provide a means to authenticate the client connecting.
1498The server will request that the client provide a certificate, which it will
1499then validate against the CA certificate. This is a good choice if deploying
1500in an environment with a private internal certificate authority.
1501
1502@example
3804da9d 1503qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1504@end example
1505
1506
1507@node vnc_sec_certificate_pw
1508@subsection With x509 certificates, client verification and passwords
1509
1510Finally, the previous method can be combined with VNC password authentication
1511to provide two layers of authentication for clients.
1512
1513@example
3804da9d 1514qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1515(qemu) change vnc password
1516Password: ********
1517(qemu)
1518@end example
1519
2f9606b3
AL
1520
1521@node vnc_sec_sasl
1522@subsection With SASL authentication
1523
1524The SASL authentication method is a VNC extension, that provides an
1525easily extendable, pluggable authentication method. This allows for
1526integration with a wide range of authentication mechanisms, such as
1527PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1528The strength of the authentication depends on the exact mechanism
1529configured. If the chosen mechanism also provides a SSF layer, then
1530it will encrypt the datastream as well.
1531
1532Refer to the later docs on how to choose the exact SASL mechanism
1533used for authentication, but assuming use of one supporting SSF,
1534then QEMU can be launched with:
1535
1536@example
3804da9d 1537qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1538@end example
1539
1540@node vnc_sec_certificate_sasl
1541@subsection With x509 certificates and SASL authentication
1542
1543If the desired SASL authentication mechanism does not supported
1544SSF layers, then it is strongly advised to run it in combination
1545with TLS and x509 certificates. This provides securely encrypted
1546data stream, avoiding risk of compromising of the security
1547credentials. This can be enabled, by combining the 'sasl' option
1548with the aforementioned TLS + x509 options:
1549
1550@example
3804da9d 1551qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
1552@end example
1553
1554
f858dcae
TS
1555@node vnc_generate_cert
1556@subsection Generating certificates for VNC
1557
1558The GNU TLS packages provides a command called @code{certtool} which can
1559be used to generate certificates and keys in PEM format. At a minimum it
40c5c6cd 1560is necessary to setup a certificate authority, and issue certificates to
f858dcae
TS
1561each server. If using certificates for authentication, then each client
1562will also need to be issued a certificate. The recommendation is for the
1563server to keep its certificates in either @code{/etc/pki/qemu} or for
1564unprivileged users in @code{$HOME/.pki/qemu}.
1565
1566@menu
1567* vnc_generate_ca::
1568* vnc_generate_server::
1569* vnc_generate_client::
1570@end menu
1571@node vnc_generate_ca
1572@subsubsection Setup the Certificate Authority
1573
1574This step only needs to be performed once per organization / organizational
1575unit. First the CA needs a private key. This key must be kept VERY secret
1576and secure. If this key is compromised the entire trust chain of the certificates
1577issued with it is lost.
1578
1579@example
1580# certtool --generate-privkey > ca-key.pem
1581@end example
1582
1583A CA needs to have a public certificate. For simplicity it can be a self-signed
1584certificate, or one issue by a commercial certificate issuing authority. To
1585generate a self-signed certificate requires one core piece of information, the
1586name of the organization.
1587
1588@example
1589# cat > ca.info <<EOF
1590cn = Name of your organization
1591ca
1592cert_signing_key
1593EOF
1594# certtool --generate-self-signed \
1595 --load-privkey ca-key.pem
1596 --template ca.info \
1597 --outfile ca-cert.pem
1598@end example
1599
1600The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1601TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1602
1603@node vnc_generate_server
1604@subsubsection Issuing server certificates
1605
1606Each server (or host) needs to be issued with a key and certificate. When connecting
1607the certificate is sent to the client which validates it against the CA certificate.
1608The core piece of information for a server certificate is the hostname. This should
1609be the fully qualified hostname that the client will connect with, since the client
1610will typically also verify the hostname in the certificate. On the host holding the
1611secure CA private key:
1612
1613@example
1614# cat > server.info <<EOF
1615organization = Name of your organization
1616cn = server.foo.example.com
1617tls_www_server
1618encryption_key
1619signing_key
1620EOF
1621# certtool --generate-privkey > server-key.pem
1622# certtool --generate-certificate \
1623 --load-ca-certificate ca-cert.pem \
1624 --load-ca-privkey ca-key.pem \
1625 --load-privkey server server-key.pem \
1626 --template server.info \
1627 --outfile server-cert.pem
1628@end example
1629
1630The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1631to the server for which they were generated. The @code{server-key.pem} is security
1632sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1633
1634@node vnc_generate_client
1635@subsubsection Issuing client certificates
1636
1637If the QEMU VNC server is to use the @code{x509verify} option to validate client
1638certificates as its authentication mechanism, each client also needs to be issued
1639a certificate. The client certificate contains enough metadata to uniquely identify
1640the client, typically organization, state, city, building, etc. On the host holding
1641the secure CA private key:
1642
1643@example
1644# cat > client.info <<EOF
1645country = GB
1646state = London
1647locality = London
1648organiazation = Name of your organization
1649cn = client.foo.example.com
1650tls_www_client
1651encryption_key
1652signing_key
1653EOF
1654# certtool --generate-privkey > client-key.pem
1655# certtool --generate-certificate \
1656 --load-ca-certificate ca-cert.pem \
1657 --load-ca-privkey ca-key.pem \
1658 --load-privkey client-key.pem \
1659 --template client.info \
1660 --outfile client-cert.pem
1661@end example
1662
1663The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1664copied to the client for which they were generated.
1665
2f9606b3
AL
1666
1667@node vnc_setup_sasl
1668
1669@subsection Configuring SASL mechanisms
1670
1671The following documentation assumes use of the Cyrus SASL implementation on a
1672Linux host, but the principals should apply to any other SASL impl. When SASL
1673is enabled, the mechanism configuration will be loaded from system default
1674SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1675unprivileged user, an environment variable SASL_CONF_PATH can be used
1676to make it search alternate locations for the service config.
1677
1678The default configuration might contain
1679
1680@example
1681mech_list: digest-md5
1682sasldb_path: /etc/qemu/passwd.db
1683@end example
1684
1685This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1686Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1687in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1688command. While this mechanism is easy to configure and use, it is not
1689considered secure by modern standards, so only suitable for developers /
1690ad-hoc testing.
1691
1692A more serious deployment might use Kerberos, which is done with the 'gssapi'
1693mechanism
1694
1695@example
1696mech_list: gssapi
1697keytab: /etc/qemu/krb5.tab
1698@end example
1699
1700For this to work the administrator of your KDC must generate a Kerberos
1701principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1702replacing 'somehost.example.com' with the fully qualified host name of the
40c5c6cd 1703machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
2f9606b3
AL
1704
1705Other configurations will be left as an exercise for the reader. It should
1706be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1707encryption. For all other mechanisms, VNC should always be configured to
1708use TLS and x509 certificates to protect security credentials from snooping.
1709
0806e3f6 1710@node gdb_usage
da415d54
FB
1711@section GDB usage
1712
1713QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1714'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1715
b65ee4fa 1716In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1717gdb connection:
1718@example
3804da9d
SW
1719qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1720 -append "root=/dev/hda"
da415d54
FB
1721Connected to host network interface: tun0
1722Waiting gdb connection on port 1234
1723@end example
1724
1725Then launch gdb on the 'vmlinux' executable:
1726@example
1727> gdb vmlinux
1728@end example
1729
1730In gdb, connect to QEMU:
1731@example
6c9bf893 1732(gdb) target remote localhost:1234
da415d54
FB
1733@end example
1734
1735Then you can use gdb normally. For example, type 'c' to launch the kernel:
1736@example
1737(gdb) c
1738@end example
1739
0806e3f6
FB
1740Here are some useful tips in order to use gdb on system code:
1741
1742@enumerate
1743@item
1744Use @code{info reg} to display all the CPU registers.
1745@item
1746Use @code{x/10i $eip} to display the code at the PC position.
1747@item
1748Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1749@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1750@end enumerate
1751
60897d36
EI
1752Advanced debugging options:
1753
1754The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1755@table @code
60897d36
EI
1756@item maintenance packet qqemu.sstepbits
1757
1758This will display the MASK bits used to control the single stepping IE:
1759@example
1760(gdb) maintenance packet qqemu.sstepbits
1761sending: "qqemu.sstepbits"
1762received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1763@end example
1764@item maintenance packet qqemu.sstep
1765
1766This will display the current value of the mask used when single stepping IE:
1767@example
1768(gdb) maintenance packet qqemu.sstep
1769sending: "qqemu.sstep"
1770received: "0x7"
1771@end example
1772@item maintenance packet Qqemu.sstep=HEX_VALUE
1773
1774This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1775@example
1776(gdb) maintenance packet Qqemu.sstep=0x5
1777sending: "qemu.sstep=0x5"
1778received: "OK"
1779@end example
94d45e44 1780@end table
60897d36 1781
debc7065 1782@node pcsys_os_specific
1a084f3d
FB
1783@section Target OS specific information
1784
1785@subsection Linux
1786
15a34c63
FB
1787To have access to SVGA graphic modes under X11, use the @code{vesa} or
1788the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1789color depth in the guest and the host OS.
1a084f3d 1790
e3371e62
FB
1791When using a 2.6 guest Linux kernel, you should add the option
1792@code{clock=pit} on the kernel command line because the 2.6 Linux
1793kernels make very strict real time clock checks by default that QEMU
1794cannot simulate exactly.
1795
7c3fc84d
FB
1796When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1797not activated because QEMU is slower with this patch. The QEMU
1798Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1799Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1800patch by default. Newer kernels don't have it.
1801
1a084f3d
FB
1802@subsection Windows
1803
1804If you have a slow host, using Windows 95 is better as it gives the
1805best speed. Windows 2000 is also a good choice.
1806
e3371e62
FB
1807@subsubsection SVGA graphic modes support
1808
1809QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1810card. All Windows versions starting from Windows 95 should recognize
1811and use this graphic card. For optimal performances, use 16 bit color
1812depth in the guest and the host OS.
1a084f3d 1813
3cb0853a
FB
1814If you are using Windows XP as guest OS and if you want to use high
1815resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
18161280x1024x16), then you should use the VESA VBE virtual graphic card
1817(option @option{-std-vga}).
1818
e3371e62
FB
1819@subsubsection CPU usage reduction
1820
1821Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1822instruction. The result is that it takes host CPU cycles even when
1823idle. You can install the utility from
1824@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1825problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1826
9d0a8e6f 1827@subsubsection Windows 2000 disk full problem
e3371e62 1828
9d0a8e6f
FB
1829Windows 2000 has a bug which gives a disk full problem during its
1830installation. When installing it, use the @option{-win2k-hack} QEMU
1831option to enable a specific workaround. After Windows 2000 is
1832installed, you no longer need this option (this option slows down the
1833IDE transfers).
e3371e62 1834
6cc721cf
FB
1835@subsubsection Windows 2000 shutdown
1836
1837Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1838can. It comes from the fact that Windows 2000 does not automatically
1839use the APM driver provided by the BIOS.
1840
1841In order to correct that, do the following (thanks to Struan
1842Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1843Add/Troubleshoot a device => Add a new device & Next => No, select the
1844hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1845(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1846correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1847
1848@subsubsection Share a directory between Unix and Windows
1849
1850See @ref{sec_invocation} about the help of the option @option{-smb}.
1851
2192c332 1852@subsubsection Windows XP security problem
e3371e62
FB
1853
1854Some releases of Windows XP install correctly but give a security
1855error when booting:
1856@example
1857A problem is preventing Windows from accurately checking the
1858license for this computer. Error code: 0x800703e6.
1859@end example
e3371e62 1860
2192c332
FB
1861The workaround is to install a service pack for XP after a boot in safe
1862mode. Then reboot, and the problem should go away. Since there is no
1863network while in safe mode, its recommended to download the full
1864installation of SP1 or SP2 and transfer that via an ISO or using the
1865vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1866
a0a821a4
FB
1867@subsection MS-DOS and FreeDOS
1868
1869@subsubsection CPU usage reduction
1870
1871DOS does not correctly use the CPU HLT instruction. The result is that
1872it takes host CPU cycles even when idle. You can install the utility
1873from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1874problem.
1875
debc7065 1876@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1877@chapter QEMU System emulator for non PC targets
1878
1879QEMU is a generic emulator and it emulates many non PC
1880machines. Most of the options are similar to the PC emulator. The
4be456f1 1881differences are mentioned in the following sections.
3f9f3aa1 1882
debc7065 1883@menu
7544a042 1884* PowerPC System emulator::
24d4de45
TS
1885* Sparc32 System emulator::
1886* Sparc64 System emulator::
1887* MIPS System emulator::
1888* ARM System emulator::
1889* ColdFire System emulator::
7544a042
SW
1890* Cris System emulator::
1891* Microblaze System emulator::
1892* SH4 System emulator::
3aeaea65 1893* Xtensa System emulator::
debc7065
FB
1894@end menu
1895
7544a042
SW
1896@node PowerPC System emulator
1897@section PowerPC System emulator
1898@cindex system emulation (PowerPC)
1a084f3d 1899
15a34c63
FB
1900Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1901or PowerMac PowerPC system.
1a084f3d 1902
b671f9ed 1903QEMU emulates the following PowerMac peripherals:
1a084f3d 1904
15a34c63 1905@itemize @minus
5fafdf24 1906@item
006f3a48 1907UniNorth or Grackle PCI Bridge
15a34c63
FB
1908@item
1909PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1910@item
15a34c63 19112 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1912@item
15a34c63
FB
1913NE2000 PCI adapters
1914@item
1915Non Volatile RAM
1916@item
1917VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1918@end itemize
1919
b671f9ed 1920QEMU emulates the following PREP peripherals:
52c00a5f
FB
1921
1922@itemize @minus
5fafdf24 1923@item
15a34c63
FB
1924PCI Bridge
1925@item
1926PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1927@item
52c00a5f
FB
19282 IDE interfaces with hard disk and CD-ROM support
1929@item
1930Floppy disk
5fafdf24 1931@item
15a34c63 1932NE2000 network adapters
52c00a5f
FB
1933@item
1934Serial port
1935@item
1936PREP Non Volatile RAM
15a34c63
FB
1937@item
1938PC compatible keyboard and mouse.
52c00a5f
FB
1939@end itemize
1940
15a34c63 1941QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1942@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1943
992e5acd 1944Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
1945for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1946v2) portable firmware implementation. The goal is to implement a 100%
1947IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1948
15a34c63
FB
1949@c man begin OPTIONS
1950
1951The following options are specific to the PowerPC emulation:
1952
1953@table @option
1954
4e257e5e 1955@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 1956
340fb41b 1957Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 1958
4e257e5e 1959@item -prom-env @var{string}
95efd11c
BS
1960
1961Set OpenBIOS variables in NVRAM, for example:
1962
1963@example
1964qemu-system-ppc -prom-env 'auto-boot?=false' \
1965 -prom-env 'boot-device=hd:2,\yaboot' \
1966 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1967@end example
1968
1969These variables are not used by Open Hack'Ware.
1970
15a34c63
FB
1971@end table
1972
5fafdf24 1973@c man end
15a34c63
FB
1974
1975
52c00a5f 1976More information is available at
3f9f3aa1 1977@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1978
24d4de45
TS
1979@node Sparc32 System emulator
1980@section Sparc32 System emulator
7544a042 1981@cindex system emulation (Sparc32)
e80cfcfc 1982
34a3d239
BS
1983Use the executable @file{qemu-system-sparc} to simulate the following
1984Sun4m architecture machines:
1985@itemize @minus
1986@item
1987SPARCstation 4
1988@item
1989SPARCstation 5
1990@item
1991SPARCstation 10
1992@item
1993SPARCstation 20
1994@item
1995SPARCserver 600MP
1996@item
1997SPARCstation LX
1998@item
1999SPARCstation Voyager
2000@item
2001SPARCclassic
2002@item
2003SPARCbook
2004@end itemize
2005
2006The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2007but Linux limits the number of usable CPUs to 4.
e80cfcfc 2008
6a4e1771 2009QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
2010
2011@itemize @minus
3475187d 2012@item
6a4e1771 2013IOMMU
e80cfcfc 2014@item
33632788 2015TCX or cgthree Frame buffer
5fafdf24 2016@item
e80cfcfc
FB
2017Lance (Am7990) Ethernet
2018@item
34a3d239 2019Non Volatile RAM M48T02/M48T08
e80cfcfc 2020@item
3475187d
FB
2021Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2022and power/reset logic
2023@item
2024ESP SCSI controller with hard disk and CD-ROM support
2025@item
6a3b9cc9 2026Floppy drive (not on SS-600MP)
a2502b58
BS
2027@item
2028CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
2029@end itemize
2030
6a3b9cc9
BS
2031The number of peripherals is fixed in the architecture. Maximum
2032memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 2033others 2047MB.
3475187d 2034
30a604f3 2035Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
2036@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2037firmware implementation. The goal is to implement a 100% IEEE
20381275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
2039
2040A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 2041the QEMU web site. There are still issues with NetBSD and OpenBSD, but
33632788 2042some kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
2043don't work probably due to interface issues between OpenBIOS and
2044Solaris.
3475187d
FB
2045
2046@c man begin OPTIONS
2047
a2502b58 2048The following options are specific to the Sparc32 emulation:
3475187d
FB
2049
2050@table @option
2051
4e257e5e 2052@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 2053
33632788
MCA
2054Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
2055option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
2056of 1152x900x8 for people who wish to use OBP.
3475187d 2057
4e257e5e 2058@item -prom-env @var{string}
66508601
BS
2059
2060Set OpenBIOS variables in NVRAM, for example:
2061
2062@example
2063qemu-system-sparc -prom-env 'auto-boot?=false' \
2064 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2065@end example
2066
6a4e1771 2067@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
2068
2069Set the emulated machine type. Default is SS-5.
2070
3475187d
FB
2071@end table
2072
5fafdf24 2073@c man end
3475187d 2074
24d4de45
TS
2075@node Sparc64 System emulator
2076@section Sparc64 System emulator
7544a042 2077@cindex system emulation (Sparc64)
e80cfcfc 2078
34a3d239
BS
2079Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2080(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2081Niagara (T1) machine. The emulator is not usable for anything yet, but
2082it can launch some kernels.
b756921a 2083
c7ba218d 2084QEMU emulates the following peripherals:
83469015
FB
2085
2086@itemize @minus
2087@item
5fafdf24 2088UltraSparc IIi APB PCI Bridge
83469015
FB
2089@item
2090PCI VGA compatible card with VESA Bochs Extensions
2091@item
34a3d239
BS
2092PS/2 mouse and keyboard
2093@item
83469015
FB
2094Non Volatile RAM M48T59
2095@item
2096PC-compatible serial ports
c7ba218d
BS
2097@item
20982 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
2099@item
2100Floppy disk
83469015
FB
2101@end itemize
2102
c7ba218d
BS
2103@c man begin OPTIONS
2104
2105The following options are specific to the Sparc64 emulation:
2106
2107@table @option
2108
4e257e5e 2109@item -prom-env @var{string}
34a3d239
BS
2110
2111Set OpenBIOS variables in NVRAM, for example:
2112
2113@example
2114qemu-system-sparc64 -prom-env 'auto-boot?=false'
2115@end example
2116
2117@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
2118
2119Set the emulated machine type. The default is sun4u.
2120
2121@end table
2122
2123@c man end
2124
24d4de45
TS
2125@node MIPS System emulator
2126@section MIPS System emulator
7544a042 2127@cindex system emulation (MIPS)
9d0a8e6f 2128
d9aedc32
TS
2129Four executables cover simulation of 32 and 64-bit MIPS systems in
2130both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2131@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2132Five different machine types are emulated:
24d4de45
TS
2133
2134@itemize @minus
2135@item
2136A generic ISA PC-like machine "mips"
2137@item
2138The MIPS Malta prototype board "malta"
2139@item
d9aedc32 2140An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2141@item
f0fc6f8f 2142MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2143@item
2144A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2145@end itemize
2146
2147The generic emulation is supported by Debian 'Etch' and is able to
2148install Debian into a virtual disk image. The following devices are
2149emulated:
3f9f3aa1
FB
2150
2151@itemize @minus
5fafdf24 2152@item
6bf5b4e8 2153A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2154@item
2155PC style serial port
2156@item
24d4de45
TS
2157PC style IDE disk
2158@item
3f9f3aa1
FB
2159NE2000 network card
2160@end itemize
2161
24d4de45
TS
2162The Malta emulation supports the following devices:
2163
2164@itemize @minus
2165@item
0b64d008 2166Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2167@item
2168PIIX4 PCI/USB/SMbus controller
2169@item
2170The Multi-I/O chip's serial device
2171@item
3a2eeac0 2172PCI network cards (PCnet32 and others)
24d4de45
TS
2173@item
2174Malta FPGA serial device
2175@item
1f605a76 2176Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2177@end itemize
2178
2179The ACER Pica emulation supports:
2180
2181@itemize @minus
2182@item
2183MIPS R4000 CPU
2184@item
2185PC-style IRQ and DMA controllers
2186@item
2187PC Keyboard
2188@item
2189IDE controller
2190@end itemize
3f9f3aa1 2191
b5e4946f 2192The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
2193to what the proprietary MIPS emulator uses for running Linux.
2194It supports:
6bf5b4e8
TS
2195
2196@itemize @minus
2197@item
2198A range of MIPS CPUs, default is the 24Kf
2199@item
2200PC style serial port
2201@item
2202MIPSnet network emulation
2203@end itemize
2204
88cb0a02
AJ
2205The MIPS Magnum R4000 emulation supports:
2206
2207@itemize @minus
2208@item
2209MIPS R4000 CPU
2210@item
2211PC-style IRQ controller
2212@item
2213PC Keyboard
2214@item
2215SCSI controller
2216@item
2217G364 framebuffer
2218@end itemize
2219
2220
24d4de45
TS
2221@node ARM System emulator
2222@section ARM System emulator
7544a042 2223@cindex system emulation (ARM)
3f9f3aa1
FB
2224
2225Use the executable @file{qemu-system-arm} to simulate a ARM
2226machine. The ARM Integrator/CP board is emulated with the following
2227devices:
2228
2229@itemize @minus
2230@item
9ee6e8bb 2231ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2232@item
2233Two PL011 UARTs
5fafdf24 2234@item
3f9f3aa1 2235SMC 91c111 Ethernet adapter
00a9bf19
PB
2236@item
2237PL110 LCD controller
2238@item
2239PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2240@item
2241PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2242@end itemize
2243
2244The ARM Versatile baseboard is emulated with the following devices:
2245
2246@itemize @minus
2247@item
9ee6e8bb 2248ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2249@item
2250PL190 Vectored Interrupt Controller
2251@item
2252Four PL011 UARTs
5fafdf24 2253@item
00a9bf19
PB
2254SMC 91c111 Ethernet adapter
2255@item
2256PL110 LCD controller
2257@item
2258PL050 KMI with PS/2 keyboard and mouse.
2259@item
2260PCI host bridge. Note the emulated PCI bridge only provides access to
2261PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2262This means some devices (eg. ne2k_pci NIC) are not usable, and others
2263(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2264mapped control registers.
e6de1bad
PB
2265@item
2266PCI OHCI USB controller.
2267@item
2268LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2269@item
2270PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2271@end itemize
2272
21a88941
PB
2273Several variants of the ARM RealView baseboard are emulated,
2274including the EB, PB-A8 and PBX-A9. Due to interactions with the
2275bootloader, only certain Linux kernel configurations work out
2276of the box on these boards.
2277
2278Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2279enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2280should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2281disabled and expect 1024M RAM.
2282
40c5c6cd 2283The following devices are emulated:
d7739d75
PB
2284
2285@itemize @minus
2286@item
f7c70325 2287ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2288@item
2289ARM AMBA Generic/Distributed Interrupt Controller
2290@item
2291Four PL011 UARTs
5fafdf24 2292@item
0ef849d7 2293SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2294@item
2295PL110 LCD controller
2296@item
2297PL050 KMI with PS/2 keyboard and mouse
2298@item
2299PCI host bridge
2300@item
2301PCI OHCI USB controller
2302@item
2303LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2304@item
2305PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2306@end itemize
2307
b00052e4
AZ
2308The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2309and "Terrier") emulation includes the following peripherals:
2310
2311@itemize @minus
2312@item
2313Intel PXA270 System-on-chip (ARM V5TE core)
2314@item
2315NAND Flash memory
2316@item
2317IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2318@item
2319On-chip OHCI USB controller
2320@item
2321On-chip LCD controller
2322@item
2323On-chip Real Time Clock
2324@item
2325TI ADS7846 touchscreen controller on SSP bus
2326@item
2327Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2328@item
2329GPIO-connected keyboard controller and LEDs
2330@item
549444e1 2331Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2332@item
2333Three on-chip UARTs
2334@item
2335WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2336@end itemize
2337
02645926
AZ
2338The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2339following elements:
2340
2341@itemize @minus
2342@item
2343Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2344@item
2345ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2346@item
2347On-chip LCD controller
2348@item
2349On-chip Real Time Clock
2350@item
2351TI TSC2102i touchscreen controller / analog-digital converter / Audio
2352CODEC, connected through MicroWire and I@math{^2}S busses
2353@item
2354GPIO-connected matrix keypad
2355@item
2356Secure Digital card connected to OMAP MMC/SD host
2357@item
2358Three on-chip UARTs
2359@end itemize
2360
c30bb264
AZ
2361Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2362emulation supports the following elements:
2363
2364@itemize @minus
2365@item
2366Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2367@item
2368RAM and non-volatile OneNAND Flash memories
2369@item
2370Display connected to EPSON remote framebuffer chip and OMAP on-chip
2371display controller and a LS041y3 MIPI DBI-C controller
2372@item
2373TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2374driven through SPI bus
2375@item
2376National Semiconductor LM8323-controlled qwerty keyboard driven
2377through I@math{^2}C bus
2378@item
2379Secure Digital card connected to OMAP MMC/SD host
2380@item
2381Three OMAP on-chip UARTs and on-chip STI debugging console
2382@item
40c5c6cd 2383A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2384@item
c30bb264
AZ
2385Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2386TUSB6010 chip - only USB host mode is supported
2387@item
2388TI TMP105 temperature sensor driven through I@math{^2}C bus
2389@item
2390TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2391@item
2392Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2393through CBUS
2394@end itemize
2395
9ee6e8bb
PB
2396The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2397devices:
2398
2399@itemize @minus
2400@item
2401Cortex-M3 CPU core.
2402@item
240364k Flash and 8k SRAM.
2404@item
2405Timers, UARTs, ADC and I@math{^2}C interface.
2406@item
2407OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2408@end itemize
2409
2410The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2411devices:
2412
2413@itemize @minus
2414@item
2415Cortex-M3 CPU core.
2416@item
2417256k Flash and 64k SRAM.
2418@item
2419Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2420@item
2421OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2422@end itemize
2423
57cd6e97
AZ
2424The Freecom MusicPal internet radio emulation includes the following
2425elements:
2426
2427@itemize @minus
2428@item
2429Marvell MV88W8618 ARM core.
2430@item
243132 MB RAM, 256 KB SRAM, 8 MB flash.
2432@item
2433Up to 2 16550 UARTs
2434@item
2435MV88W8xx8 Ethernet controller
2436@item
2437MV88W8618 audio controller, WM8750 CODEC and mixer
2438@item
e080e785 2439128×64 display with brightness control
57cd6e97
AZ
2440@item
24412 buttons, 2 navigation wheels with button function
2442@end itemize
2443
997641a8 2444The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2445The emulation includes the following elements:
997641a8
AZ
2446
2447@itemize @minus
2448@item
2449Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2450@item
2451ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2452V1
24531 Flash of 16MB and 1 Flash of 8MB
2454V2
24551 Flash of 32MB
2456@item
2457On-chip LCD controller
2458@item
2459On-chip Real Time Clock
2460@item
2461Secure Digital card connected to OMAP MMC/SD host
2462@item
2463Three on-chip UARTs
2464@end itemize
2465
3f9f3aa1
FB
2466A Linux 2.6 test image is available on the QEMU web site. More
2467information is available in the QEMU mailing-list archive.
9d0a8e6f 2468
d2c639d6
BS
2469@c man begin OPTIONS
2470
2471The following options are specific to the ARM emulation:
2472
2473@table @option
2474
2475@item -semihosting
2476Enable semihosting syscall emulation.
2477
2478On ARM this implements the "Angel" interface.
2479
2480Note that this allows guest direct access to the host filesystem,
2481so should only be used with trusted guest OS.
2482
2483@end table
2484
24d4de45
TS
2485@node ColdFire System emulator
2486@section ColdFire System emulator
7544a042
SW
2487@cindex system emulation (ColdFire)
2488@cindex system emulation (M68K)
209a4e69
PB
2489
2490Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2491The emulator is able to boot a uClinux kernel.
707e011b
PB
2492
2493The M5208EVB emulation includes the following devices:
2494
2495@itemize @minus
5fafdf24 2496@item
707e011b
PB
2497MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2498@item
2499Three Two on-chip UARTs.
2500@item
2501Fast Ethernet Controller (FEC)
2502@end itemize
2503
2504The AN5206 emulation includes the following devices:
209a4e69
PB
2505
2506@itemize @minus
5fafdf24 2507@item
209a4e69
PB
2508MCF5206 ColdFire V2 Microprocessor.
2509@item
2510Two on-chip UARTs.
2511@end itemize
2512
d2c639d6
BS
2513@c man begin OPTIONS
2514
7544a042 2515The following options are specific to the ColdFire emulation:
d2c639d6
BS
2516
2517@table @option
2518
2519@item -semihosting
2520Enable semihosting syscall emulation.
2521
2522On M68K this implements the "ColdFire GDB" interface used by libgloss.
2523
2524Note that this allows guest direct access to the host filesystem,
2525so should only be used with trusted guest OS.
2526
2527@end table
2528
7544a042
SW
2529@node Cris System emulator
2530@section Cris System emulator
2531@cindex system emulation (Cris)
2532
2533TODO
2534
2535@node Microblaze System emulator
2536@section Microblaze System emulator
2537@cindex system emulation (Microblaze)
2538
2539TODO
2540
2541@node SH4 System emulator
2542@section SH4 System emulator
2543@cindex system emulation (SH4)
2544
2545TODO
2546
3aeaea65
MF
2547@node Xtensa System emulator
2548@section Xtensa System emulator
2549@cindex system emulation (Xtensa)
2550
2551Two executables cover simulation of both Xtensa endian options,
2552@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2553Two different machine types are emulated:
2554
2555@itemize @minus
2556@item
2557Xtensa emulator pseudo board "sim"
2558@item
2559Avnet LX60/LX110/LX200 board
2560@end itemize
2561
b5e4946f 2562The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2563to one provided by the proprietary Tensilica ISS.
2564It supports:
2565
2566@itemize @minus
2567@item
2568A range of Xtensa CPUs, default is the DC232B
2569@item
2570Console and filesystem access via semihosting calls
2571@end itemize
2572
2573The Avnet LX60/LX110/LX200 emulation supports:
2574
2575@itemize @minus
2576@item
2577A range of Xtensa CPUs, default is the DC232B
2578@item
257916550 UART
2580@item
2581OpenCores 10/100 Mbps Ethernet MAC
2582@end itemize
2583
2584@c man begin OPTIONS
2585
2586The following options are specific to the Xtensa emulation:
2587
2588@table @option
2589
2590@item -semihosting
2591Enable semihosting syscall emulation.
2592
2593Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2594Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2595
2596Note that this allows guest direct access to the host filesystem,
2597so should only be used with trusted guest OS.
2598
2599@end table
5fafdf24
TS
2600@node QEMU User space emulator
2601@chapter QEMU User space emulator
83195237
FB
2602
2603@menu
2604* Supported Operating Systems ::
2605* Linux User space emulator::
84778508 2606* BSD User space emulator ::
83195237
FB
2607@end menu
2608
2609@node Supported Operating Systems
2610@section Supported Operating Systems
2611
2612The following OS are supported in user space emulation:
2613
2614@itemize @minus
2615@item
4be456f1 2616Linux (referred as qemu-linux-user)
83195237 2617@item
84778508 2618BSD (referred as qemu-bsd-user)
83195237
FB
2619@end itemize
2620
2621@node Linux User space emulator
2622@section Linux User space emulator
386405f7 2623
debc7065
FB
2624@menu
2625* Quick Start::
2626* Wine launch::
2627* Command line options::
79737e4a 2628* Other binaries::
debc7065
FB
2629@end menu
2630
2631@node Quick Start
83195237 2632@subsection Quick Start
df0f11a0 2633
1f673135 2634In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2635itself and all the target (x86) dynamic libraries used by it.
386405f7 2636
1f673135 2637@itemize
386405f7 2638
1f673135
FB
2639@item On x86, you can just try to launch any process by using the native
2640libraries:
386405f7 2641
5fafdf24 2642@example
1f673135
FB
2643qemu-i386 -L / /bin/ls
2644@end example
386405f7 2645
1f673135
FB
2646@code{-L /} tells that the x86 dynamic linker must be searched with a
2647@file{/} prefix.
386405f7 2648
b65ee4fa
SW
2649@item Since QEMU is also a linux process, you can launch QEMU with
2650QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2651
5fafdf24 2652@example
1f673135
FB
2653qemu-i386 -L / qemu-i386 -L / /bin/ls
2654@end example
386405f7 2655
1f673135
FB
2656@item On non x86 CPUs, you need first to download at least an x86 glibc
2657(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2658@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2659
1f673135 2660@example
5fafdf24 2661unset LD_LIBRARY_PATH
1f673135 2662@end example
1eb87257 2663
1f673135 2664Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2665
1f673135
FB
2666@example
2667qemu-i386 tests/i386/ls
2668@end example
4c3b5a48 2669You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2670QEMU is automatically launched by the Linux kernel when you try to
2671launch x86 executables. It requires the @code{binfmt_misc} module in the
2672Linux kernel.
1eb87257 2673
1f673135
FB
2674@item The x86 version of QEMU is also included. You can try weird things such as:
2675@example
debc7065
FB
2676qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2677 /usr/local/qemu-i386/bin/ls-i386
1f673135 2678@end example
1eb20527 2679
1f673135 2680@end itemize
1eb20527 2681
debc7065 2682@node Wine launch
83195237 2683@subsection Wine launch
1eb20527 2684
1f673135 2685@itemize
386405f7 2686
1f673135
FB
2687@item Ensure that you have a working QEMU with the x86 glibc
2688distribution (see previous section). In order to verify it, you must be
2689able to do:
386405f7 2690
1f673135
FB
2691@example
2692qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2693@end example
386405f7 2694
1f673135 2695@item Download the binary x86 Wine install
5fafdf24 2696(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2697
1f673135 2698@item Configure Wine on your account. Look at the provided script
debc7065 2699@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2700@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2701
1f673135 2702@item Then you can try the example @file{putty.exe}:
386405f7 2703
1f673135 2704@example
debc7065
FB
2705qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2706 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2707@end example
386405f7 2708
1f673135 2709@end itemize
fd429f2f 2710
debc7065 2711@node Command line options
83195237 2712@subsection Command line options
1eb20527 2713
1f673135 2714@example
68a1c816 2715usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
1f673135 2716@end example
1eb20527 2717
1f673135
FB
2718@table @option
2719@item -h
2720Print the help
3b46e624 2721@item -L path
1f673135
FB
2722Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2723@item -s size
2724Set the x86 stack size in bytes (default=524288)
34a3d239 2725@item -cpu model
c8057f95 2726Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2727@item -E @var{var}=@var{value}
2728Set environment @var{var} to @var{value}.
2729@item -U @var{var}
2730Remove @var{var} from the environment.
379f6698
PB
2731@item -B offset
2732Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2733the address region required by guest applications is reserved on the host.
2734This option is currently only supported on some hosts.
68a1c816
PB
2735@item -R size
2736Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2737"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2738@end table
2739
1f673135 2740Debug options:
386405f7 2741
1f673135 2742@table @option
989b697d
PM
2743@item -d item1,...
2744Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2745@item -p pagesize
2746Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2747@item -g port
2748Wait gdb connection to port
1b530a6d
AJ
2749@item -singlestep
2750Run the emulation in single step mode.
1f673135 2751@end table
386405f7 2752
b01bcae6
AZ
2753Environment variables:
2754
2755@table @env
2756@item QEMU_STRACE
2757Print system calls and arguments similar to the 'strace' program
2758(NOTE: the actual 'strace' program will not work because the user
2759space emulator hasn't implemented ptrace). At the moment this is
2760incomplete. All system calls that don't have a specific argument
2761format are printed with information for six arguments. Many
2762flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2763@end table
b01bcae6 2764
79737e4a 2765@node Other binaries
83195237 2766@subsection Other binaries
79737e4a 2767
7544a042
SW
2768@cindex user mode (Alpha)
2769@command{qemu-alpha} TODO.
2770
2771@cindex user mode (ARM)
2772@command{qemu-armeb} TODO.
2773
2774@cindex user mode (ARM)
79737e4a
PB
2775@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2776binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2777configurations), and arm-uclinux bFLT format binaries.
2778
7544a042
SW
2779@cindex user mode (ColdFire)
2780@cindex user mode (M68K)
e6e5906b
PB
2781@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2782(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2783coldfire uClinux bFLT format binaries.
2784
79737e4a
PB
2785The binary format is detected automatically.
2786
7544a042
SW
2787@cindex user mode (Cris)
2788@command{qemu-cris} TODO.
2789
2790@cindex user mode (i386)
2791@command{qemu-i386} TODO.
2792@command{qemu-x86_64} TODO.
2793
2794@cindex user mode (Microblaze)
2795@command{qemu-microblaze} TODO.
2796
2797@cindex user mode (MIPS)
2798@command{qemu-mips} TODO.
2799@command{qemu-mipsel} TODO.
2800
2801@cindex user mode (PowerPC)
2802@command{qemu-ppc64abi32} TODO.
2803@command{qemu-ppc64} TODO.
2804@command{qemu-ppc} TODO.
2805
2806@cindex user mode (SH4)
2807@command{qemu-sh4eb} TODO.
2808@command{qemu-sh4} TODO.
2809
2810@cindex user mode (SPARC)
34a3d239
BS
2811@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2812
a785e42e
BS
2813@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2814(Sparc64 CPU, 32 bit ABI).
2815
2816@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2817SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2818
84778508
BS
2819@node BSD User space emulator
2820@section BSD User space emulator
2821
2822@menu
2823* BSD Status::
2824* BSD Quick Start::
2825* BSD Command line options::
2826@end menu
2827
2828@node BSD Status
2829@subsection BSD Status
2830
2831@itemize @minus
2832@item
2833target Sparc64 on Sparc64: Some trivial programs work.
2834@end itemize
2835
2836@node BSD Quick Start
2837@subsection Quick Start
2838
2839In order to launch a BSD process, QEMU needs the process executable
2840itself and all the target dynamic libraries used by it.
2841
2842@itemize
2843
2844@item On Sparc64, you can just try to launch any process by using the native
2845libraries:
2846
2847@example
2848qemu-sparc64 /bin/ls
2849@end example
2850
2851@end itemize
2852
2853@node BSD Command line options
2854@subsection Command line options
2855
2856@example
2857usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2858@end example
2859
2860@table @option
2861@item -h
2862Print the help
2863@item -L path
2864Set the library root path (default=/)
2865@item -s size
2866Set the stack size in bytes (default=524288)
f66724c9
SW
2867@item -ignore-environment
2868Start with an empty environment. Without this option,
40c5c6cd 2869the initial environment is a copy of the caller's environment.
f66724c9
SW
2870@item -E @var{var}=@var{value}
2871Set environment @var{var} to @var{value}.
2872@item -U @var{var}
2873Remove @var{var} from the environment.
84778508
BS
2874@item -bsd type
2875Set the type of the emulated BSD Operating system. Valid values are
2876FreeBSD, NetBSD and OpenBSD (default).
2877@end table
2878
2879Debug options:
2880
2881@table @option
989b697d
PM
2882@item -d item1,...
2883Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2884@item -p pagesize
2885Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2886@item -singlestep
2887Run the emulation in single step mode.
84778508
BS
2888@end table
2889
15a34c63
FB
2890@node compilation
2891@chapter Compilation from the sources
2892
debc7065
FB
2893@menu
2894* Linux/Unix::
2895* Windows::
2896* Cross compilation for Windows with Linux::
2897* Mac OS X::
47eacb4f 2898* Make targets::
debc7065
FB
2899@end menu
2900
2901@node Linux/Unix
7c3fc84d
FB
2902@section Linux/Unix
2903
2904@subsection Compilation
2905
2906First you must decompress the sources:
2907@example
2908cd /tmp
2909tar zxvf qemu-x.y.z.tar.gz
2910cd qemu-x.y.z
2911@end example
2912
2913Then you configure QEMU and build it (usually no options are needed):
2914@example
2915./configure
2916make
2917@end example
2918
2919Then type as root user:
2920@example
2921make install
2922@end example
2923to install QEMU in @file{/usr/local}.
2924
debc7065 2925@node Windows
15a34c63
FB
2926@section Windows
2927
2928@itemize
2929@item Install the current versions of MSYS and MinGW from
2930@url{http://www.mingw.org/}. You can find detailed installation
2931instructions in the download section and the FAQ.
2932
5fafdf24 2933@item Download
15a34c63 2934the MinGW development library of SDL 1.2.x
debc7065 2935(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
d0a96f3d
ST
2936@url{http://www.libsdl.org}. Unpack it in a temporary place and
2937edit the @file{sdl-config} script so that it gives the
15a34c63
FB
2938correct SDL directory when invoked.
2939
d0a96f3d
ST
2940@item Install the MinGW version of zlib and make sure
2941@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2942MinGW's default header and linker search paths.
d0a96f3d 2943
15a34c63 2944@item Extract the current version of QEMU.
5fafdf24 2945
15a34c63
FB
2946@item Start the MSYS shell (file @file{msys.bat}).
2947
5fafdf24 2948@item Change to the QEMU directory. Launch @file{./configure} and
15a34c63
FB
2949@file{make}. If you have problems using SDL, verify that
2950@file{sdl-config} can be launched from the MSYS command line.
2951
c5ec15ea 2952@item You can install QEMU in @file{Program Files/QEMU} by typing
15a34c63 2953@file{make install}. Don't forget to copy @file{SDL.dll} in
c5ec15ea 2954@file{Program Files/QEMU}.
15a34c63
FB
2955
2956@end itemize
2957
debc7065 2958@node Cross compilation for Windows with Linux
15a34c63
FB
2959@section Cross compilation for Windows with Linux
2960
2961@itemize
2962@item
2963Install the MinGW cross compilation tools available at
2964@url{http://www.mingw.org/}.
2965
d0a96f3d
ST
2966@item Download
2967the MinGW development library of SDL 1.2.x
2968(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2969@url{http://www.libsdl.org}. Unpack it in a temporary place and
2970edit the @file{sdl-config} script so that it gives the
2971correct SDL directory when invoked. Set up the @code{PATH} environment
2972variable so that @file{sdl-config} can be launched by
15a34c63
FB
2973the QEMU configuration script.
2974
d0a96f3d
ST
2975@item Install the MinGW version of zlib and make sure
2976@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2977MinGW's default header and linker search paths.
d0a96f3d 2978
5fafdf24 2979@item
15a34c63
FB
2980Configure QEMU for Windows cross compilation:
2981@example
d0a96f3d
ST
2982PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2983@end example
2984The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2985MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
40c5c6cd 2986We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
d0a96f3d 2987use --cross-prefix to specify the name of the cross compiler.
c5ec15ea 2988You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
d0a96f3d
ST
2989
2990Under Fedora Linux, you can run:
2991@example
2992yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
15a34c63 2993@end example
d0a96f3d 2994to get a suitable cross compilation environment.
15a34c63 2995
5fafdf24 2996@item You can install QEMU in the installation directory by typing
d0a96f3d 2997@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
5fafdf24 2998installation directory.
15a34c63
FB
2999
3000@end itemize
3001
3804da9d
SW
3002Wine can be used to launch the resulting qemu-system-i386.exe
3003and all other qemu-system-@var{target}.exe compiled for Win32.
15a34c63 3004
debc7065 3005@node Mac OS X
15a34c63
FB
3006@section Mac OS X
3007
3008The Mac OS X patches are not fully merged in QEMU, so you should look
3009at the QEMU mailing list archive to have all the necessary
3010information.
3011
47eacb4f
SW
3012@node Make targets
3013@section Make targets
3014
3015@table @code
3016
3017@item make
3018@item make all
3019Make everything which is typically needed.
3020
3021@item install
3022TODO
3023
3024@item install-doc
3025TODO
3026
3027@item make clean
3028Remove most files which were built during make.
3029
3030@item make distclean
3031Remove everything which was built during make.
3032
3033@item make dvi
3034@item make html
3035@item make info
3036@item make pdf
3037Create documentation in dvi, html, info or pdf format.
3038
3039@item make cscope
3040TODO
3041
3042@item make defconfig
3043(Re-)create some build configuration files.
3044User made changes will be overwritten.
3045
3046@item tar
3047@item tarbin
3048TODO
3049
3050@end table
3051
7544a042
SW
3052@node License
3053@appendix License
3054
3055QEMU is a trademark of Fabrice Bellard.
3056
3057QEMU is released under the GNU General Public License (TODO: add link).
3058Parts of QEMU have specific licenses, see file LICENSE.
3059
3060TODO (refer to file LICENSE, include it, include the GPL?)
3061
debc7065 3062@node Index
7544a042
SW
3063@appendix Index
3064@menu
3065* Concept Index::
3066* Function Index::
3067* Keystroke Index::
3068* Program Index::
3069* Data Type Index::
3070* Variable Index::
3071@end menu
3072
3073@node Concept Index
3074@section Concept Index
3075This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
3076@printindex cp
3077
7544a042
SW
3078@node Function Index
3079@section Function Index
3080This index could be used for command line options and monitor functions.
3081@printindex fn
3082
3083@node Keystroke Index
3084@section Keystroke Index
3085
3086This is a list of all keystrokes which have a special function
3087in system emulation.
3088
3089@printindex ky
3090
3091@node Program Index
3092@section Program Index
3093@printindex pg
3094
3095@node Data Type Index
3096@section Data Type Index
3097
3098This index could be used for qdev device names and options.
3099
3100@printindex tp
3101
3102@node Variable Index
3103@section Variable Index
3104@printindex vr
3105
debc7065 3106@bye