]> git.proxmox.com Git - qemu.git/blame - qemu-doc.texi
Merge remote branch 'kwolf/for-stable-0.13' into stable-0.13
[qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
e080e785
SW
4
5@documentlanguage en
6@documentencoding UTF-8
7
8f40c388 8@settitle QEMU Emulator User Documentation
debc7065
FB
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
386405f7 12
a1a32b05
SW
13@ifinfo
14@direntry
15* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
0806e3f6 19@iftex
386405f7
FB
20@titlepage
21@sp 7
8f40c388 22@center @titlefont{QEMU Emulator}
debc7065
FB
23@sp 1
24@center @titlefont{User Documentation}
386405f7
FB
25@sp 3
26@end titlepage
0806e3f6 27@end iftex
386405f7 28
debc7065
FB
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
35* Installation::
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
83195237 38* QEMU User space emulator::
debc7065 39* compilation:: Compilation from the sources
7544a042 40* License::
debc7065
FB
41* Index::
42@end menu
43@end ifnottex
44
45@contents
46
47@node Introduction
386405f7
FB
48@chapter Introduction
49
debc7065
FB
50@menu
51* intro_features:: Features
52@end menu
53
54@node intro_features
322d0c66 55@section Features
386405f7 56
1f673135
FB
57QEMU is a FAST! processor emulator using dynamic translation to
58achieve good emulation speed.
1eb20527
FB
59
60QEMU has two operating modes:
0806e3f6 61
d7e5edca 62@itemize
7544a042 63@cindex operating modes
0806e3f6 64
5fafdf24 65@item
7544a042 66@cindex system emulation
1f673135 67Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
1eb20527 71
5fafdf24 72@item
7544a042 73@cindex user mode emulation
83195237
FB
74User mode emulation. In this mode, QEMU can launch
75processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77to ease cross-compilation and cross-debugging.
1eb20527
FB
78
79@end itemize
80
7c3fc84d 81QEMU can run without an host kernel driver and yet gives acceptable
5fafdf24 82performance.
322d0c66 83
52c00a5f
FB
84For system emulation, the following hardware targets are supported:
85@itemize
7544a042
SW
86@cindex emulated target systems
87@cindex supported target systems
9d0a8e6f 88@item PC (x86 or x86_64 processor)
3f9f3aa1 89@item ISA PC (old style PC without PCI bus)
52c00a5f 90@item PREP (PowerPC processor)
d45952a0 91@item G3 Beige PowerMac (PowerPC processor)
9d0a8e6f 92@item Mac99 PowerMac (PowerPC processor, in progress)
ee76f82e 93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
c7ba218d 94@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
d9aedc32 95@item Malta board (32-bit and 64-bit MIPS processors)
88cb0a02 96@item MIPS Magnum (64-bit MIPS processor)
9ee6e8bb
PB
97@item ARM Integrator/CP (ARM)
98@item ARM Versatile baseboard (ARM)
0ef849d7 99@item ARM RealView Emulation/Platform baseboard (ARM)
ef4c3856 100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
9ee6e8bb
PB
101@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 103@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 104@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 105@item Palm Tungsten|E PDA (OMAP310 processor)
c30bb264 106@item N800 and N810 tablets (OMAP2420 processor)
57cd6e97 107@item MusicPal (MV88W8618 ARM processor)
ef4c3856
AZ
108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109@item Siemens SX1 smartphone (OMAP310 processor)
4af39611 110@item Syborg SVP base model (ARM Cortex-A8).
48c50a62
EI
111@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
112@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
52c00a5f 113@end itemize
386405f7 114
7544a042
SW
115@cindex supported user mode targets
116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
0806e3f6 119
debc7065 120@node Installation
5b9f457a
FB
121@chapter Installation
122
15a34c63
FB
123If you want to compile QEMU yourself, see @ref{compilation}.
124
debc7065
FB
125@menu
126* install_linux:: Linux
127* install_windows:: Windows
128* install_mac:: Macintosh
129@end menu
130
131@node install_linux
1f673135 132@section Linux
7544a042 133@cindex installation (Linux)
1f673135 134
7c3fc84d
FB
135If a precompiled package is available for your distribution - you just
136have to install it. Otherwise, see @ref{compilation}.
5b9f457a 137
debc7065 138@node install_windows
1f673135 139@section Windows
7544a042 140@cindex installation (Windows)
8cd0ac2f 141
15a34c63 142Download the experimental binary installer at
debc7065 143@url{http://www.free.oszoo.org/@/download.html}.
7544a042 144TODO (no longer available)
d691f669 145
debc7065 146@node install_mac
1f673135 147@section Mac OS X
d691f669 148
15a34c63 149Download the experimental binary installer at
debc7065 150@url{http://www.free.oszoo.org/@/download.html}.
7544a042 151TODO (no longer available)
df0f11a0 152
debc7065 153@node QEMU PC System emulator
3f9f3aa1 154@chapter QEMU PC System emulator
7544a042 155@cindex system emulation (PC)
1eb20527 156
debc7065
FB
157@menu
158* pcsys_introduction:: Introduction
159* pcsys_quickstart:: Quick Start
160* sec_invocation:: Invocation
161* pcsys_keys:: Keys
162* pcsys_monitor:: QEMU Monitor
163* disk_images:: Disk Images
164* pcsys_network:: Network emulation
165* direct_linux_boot:: Direct Linux Boot
166* pcsys_usb:: USB emulation
f858dcae 167* vnc_security:: VNC security
debc7065
FB
168* gdb_usage:: GDB usage
169* pcsys_os_specific:: Target OS specific information
170@end menu
171
172@node pcsys_introduction
0806e3f6
FB
173@section Introduction
174
175@c man begin DESCRIPTION
176
3f9f3aa1
FB
177The QEMU PC System emulator simulates the
178following peripherals:
0806e3f6
FB
179
180@itemize @minus
5fafdf24 181@item
15a34c63 182i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 183@item
15a34c63
FB
184Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
185extensions (hardware level, including all non standard modes).
0806e3f6
FB
186@item
187PS/2 mouse and keyboard
5fafdf24 188@item
15a34c63 1892 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
190@item
191Floppy disk
5fafdf24 192@item
3a2eeac0 193PCI and ISA network adapters
0806e3f6 194@item
05d5818c
FB
195Serial ports
196@item
c0fe3827
FB
197Creative SoundBlaster 16 sound card
198@item
199ENSONIQ AudioPCI ES1370 sound card
200@item
e5c9a13e
AZ
201Intel 82801AA AC97 Audio compatible sound card
202@item
c0fe3827 203Adlib(OPL2) - Yamaha YM3812 compatible chip
b389dbfb 204@item
26463dbc
AZ
205Gravis Ultrasound GF1 sound card
206@item
cc53d26d 207CS4231A compatible sound card
208@item
b389dbfb 209PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
210@end itemize
211
3f9f3aa1
FB
212SMP is supported with up to 255 CPUs.
213
1d1f8c33 214Note that adlib, gus and cs4231a are only available when QEMU was
215configured with --audio-card-list option containing the name(s) of
e5178e8d 216required card(s).
c0fe3827 217
15a34c63
FB
218QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
219VGA BIOS.
220
c0fe3827
FB
221QEMU uses YM3812 emulation by Tatsuyuki Satoh.
222
26463dbc
AZ
223QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
224by Tibor "TS" Schütz.
423d65f4 225
720036a5 226Not that, by default, GUS shares IRQ(7) with parallel ports and so
227qemu must be told to not have parallel ports to have working GUS
228
229@example
230qemu dos.img -soundhw gus -parallel none
231@end example
232
233Alternatively:
234@example
235qemu dos.img -device gus,irq=5
236@end example
237
238Or some other unclaimed IRQ.
239
cc53d26d 240CS4231A is the chip used in Windows Sound System and GUSMAX products
241
0806e3f6
FB
242@c man end
243
debc7065 244@node pcsys_quickstart
1eb20527 245@section Quick Start
7544a042 246@cindex quick start
1eb20527 247
285dc330 248Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
249
250@example
285dc330 251qemu linux.img
0806e3f6
FB
252@end example
253
254Linux should boot and give you a prompt.
255
6cc721cf 256@node sec_invocation
ec410fc9
FB
257@section Invocation
258
259@example
0806e3f6 260@c man begin SYNOPSIS
89dfe898 261usage: qemu [options] [@var{disk_image}]
0806e3f6 262@c man end
ec410fc9
FB
263@end example
264
0806e3f6 265@c man begin OPTIONS
d2c639d6
BS
266@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
267targets do not need a disk image.
ec410fc9 268
5824d651 269@include qemu-options.texi
ec410fc9 270
3e11db9a
FB
271@c man end
272
debc7065 273@node pcsys_keys
3e11db9a
FB
274@section Keys
275
276@c man begin OPTIONS
277
a1b74fe8
FB
278During the graphical emulation, you can use the following keys:
279@table @key
f9859310 280@item Ctrl-Alt-f
7544a042 281@kindex Ctrl-Alt-f
a1b74fe8 282Toggle full screen
a0a821a4 283
c4a735f9 284@item Ctrl-Alt-u
7544a042 285@kindex Ctrl-Alt-u
c4a735f9 286Restore the screen's un-scaled dimensions
287
f9859310 288@item Ctrl-Alt-n
7544a042 289@kindex Ctrl-Alt-n
a0a821a4
FB
290Switch to virtual console 'n'. Standard console mappings are:
291@table @emph
292@item 1
293Target system display
294@item 2
295Monitor
296@item 3
297Serial port
a1b74fe8
FB
298@end table
299
f9859310 300@item Ctrl-Alt
7544a042 301@kindex Ctrl-Alt
a0a821a4
FB
302Toggle mouse and keyboard grab.
303@end table
304
7544a042
SW
305@kindex Ctrl-Up
306@kindex Ctrl-Down
307@kindex Ctrl-PageUp
308@kindex Ctrl-PageDown
3e11db9a
FB
309In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
310@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
311
7544a042 312@kindex Ctrl-a h
a0a821a4
FB
313During emulation, if you are using the @option{-nographic} option, use
314@key{Ctrl-a h} to get terminal commands:
ec410fc9
FB
315
316@table @key
a1b74fe8 317@item Ctrl-a h
7544a042 318@kindex Ctrl-a h
d2c639d6 319@item Ctrl-a ?
7544a042 320@kindex Ctrl-a ?
ec410fc9 321Print this help
3b46e624 322@item Ctrl-a x
7544a042 323@kindex Ctrl-a x
366dfc52 324Exit emulator
3b46e624 325@item Ctrl-a s
7544a042 326@kindex Ctrl-a s
1f47a922 327Save disk data back to file (if -snapshot)
20d8a3ed 328@item Ctrl-a t
7544a042 329@kindex Ctrl-a t
d2c639d6 330Toggle console timestamps
a1b74fe8 331@item Ctrl-a b
7544a042 332@kindex Ctrl-a b
1f673135 333Send break (magic sysrq in Linux)
a1b74fe8 334@item Ctrl-a c
7544a042 335@kindex Ctrl-a c
1f673135 336Switch between console and monitor
a1b74fe8 337@item Ctrl-a Ctrl-a
7544a042 338@kindex Ctrl-a a
a1b74fe8 339Send Ctrl-a
ec410fc9 340@end table
0806e3f6
FB
341@c man end
342
343@ignore
344
1f673135
FB
345@c man begin SEEALSO
346The HTML documentation of QEMU for more precise information and Linux
347user mode emulator invocation.
348@c man end
349
350@c man begin AUTHOR
351Fabrice Bellard
352@c man end
353
354@end ignore
355
debc7065 356@node pcsys_monitor
1f673135 357@section QEMU Monitor
7544a042 358@cindex QEMU monitor
1f673135
FB
359
360The QEMU monitor is used to give complex commands to the QEMU
361emulator. You can use it to:
362
363@itemize @minus
364
365@item
e598752a 366Remove or insert removable media images
89dfe898 367(such as CD-ROM or floppies).
1f673135 368
5fafdf24 369@item
1f673135
FB
370Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
371from a disk file.
372
373@item Inspect the VM state without an external debugger.
374
375@end itemize
376
377@subsection Commands
378
379The following commands are available:
380
2313086a 381@include qemu-monitor.texi
0806e3f6 382
1f673135
FB
383@subsection Integer expressions
384
385The monitor understands integers expressions for every integer
386argument. You can use register names to get the value of specifics
387CPU registers by prefixing them with @emph{$}.
ec410fc9 388
1f47a922
FB
389@node disk_images
390@section Disk Images
391
acd935ef
FB
392Since version 0.6.1, QEMU supports many disk image formats, including
393growable disk images (their size increase as non empty sectors are
13a2e80f
FB
394written), compressed and encrypted disk images. Version 0.8.3 added
395the new qcow2 disk image format which is essential to support VM
396snapshots.
1f47a922 397
debc7065
FB
398@menu
399* disk_images_quickstart:: Quick start for disk image creation
400* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 401* vm_snapshots:: VM snapshots
debc7065 402* qemu_img_invocation:: qemu-img Invocation
975b092b 403* qemu_nbd_invocation:: qemu-nbd Invocation
19cb3738 404* host_drives:: Using host drives
debc7065 405* disk_images_fat_images:: Virtual FAT disk images
75818250 406* disk_images_nbd:: NBD access
debc7065
FB
407@end menu
408
409@node disk_images_quickstart
acd935ef
FB
410@subsection Quick start for disk image creation
411
412You can create a disk image with the command:
1f47a922 413@example
acd935ef 414qemu-img create myimage.img mysize
1f47a922 415@end example
acd935ef
FB
416where @var{myimage.img} is the disk image filename and @var{mysize} is its
417size in kilobytes. You can add an @code{M} suffix to give the size in
418megabytes and a @code{G} suffix for gigabytes.
419
debc7065 420See @ref{qemu_img_invocation} for more information.
1f47a922 421
debc7065 422@node disk_images_snapshot_mode
1f47a922
FB
423@subsection Snapshot mode
424
425If you use the option @option{-snapshot}, all disk images are
426considered as read only. When sectors in written, they are written in
427a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
428write back to the raw disk images by using the @code{commit} monitor
429command (or @key{C-a s} in the serial console).
1f47a922 430
13a2e80f
FB
431@node vm_snapshots
432@subsection VM snapshots
433
434VM snapshots are snapshots of the complete virtual machine including
435CPU state, RAM, device state and the content of all the writable
436disks. In order to use VM snapshots, you must have at least one non
437removable and writable block device using the @code{qcow2} disk image
438format. Normally this device is the first virtual hard drive.
439
440Use the monitor command @code{savevm} to create a new VM snapshot or
441replace an existing one. A human readable name can be assigned to each
19d36792 442snapshot in addition to its numerical ID.
13a2e80f
FB
443
444Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
445a VM snapshot. @code{info snapshots} lists the available snapshots
446with their associated information:
447
448@example
449(qemu) info snapshots
450Snapshot devices: hda
451Snapshot list (from hda):
452ID TAG VM SIZE DATE VM CLOCK
4531 start 41M 2006-08-06 12:38:02 00:00:14.954
4542 40M 2006-08-06 12:43:29 00:00:18.633
4553 msys 40M 2006-08-06 12:44:04 00:00:23.514
456@end example
457
458A VM snapshot is made of a VM state info (its size is shown in
459@code{info snapshots}) and a snapshot of every writable disk image.
460The VM state info is stored in the first @code{qcow2} non removable
461and writable block device. The disk image snapshots are stored in
462every disk image. The size of a snapshot in a disk image is difficult
463to evaluate and is not shown by @code{info snapshots} because the
464associated disk sectors are shared among all the snapshots to save
19d36792
FB
465disk space (otherwise each snapshot would need a full copy of all the
466disk images).
13a2e80f
FB
467
468When using the (unrelated) @code{-snapshot} option
469(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
470but they are deleted as soon as you exit QEMU.
471
472VM snapshots currently have the following known limitations:
473@itemize
5fafdf24 474@item
13a2e80f
FB
475They cannot cope with removable devices if they are removed or
476inserted after a snapshot is done.
5fafdf24 477@item
13a2e80f
FB
478A few device drivers still have incomplete snapshot support so their
479state is not saved or restored properly (in particular USB).
480@end itemize
481
acd935ef
FB
482@node qemu_img_invocation
483@subsection @code{qemu-img} Invocation
1f47a922 484
acd935ef 485@include qemu-img.texi
05efe46e 486
975b092b
TS
487@node qemu_nbd_invocation
488@subsection @code{qemu-nbd} Invocation
489
490@include qemu-nbd.texi
491
19cb3738
FB
492@node host_drives
493@subsection Using host drives
494
495In addition to disk image files, QEMU can directly access host
496devices. We describe here the usage for QEMU version >= 0.8.3.
497
498@subsubsection Linux
499
500On Linux, you can directly use the host device filename instead of a
4be456f1 501disk image filename provided you have enough privileges to access
19cb3738
FB
502it. For example, use @file{/dev/cdrom} to access to the CDROM or
503@file{/dev/fd0} for the floppy.
504
f542086d 505@table @code
19cb3738
FB
506@item CD
507You can specify a CDROM device even if no CDROM is loaded. QEMU has
508specific code to detect CDROM insertion or removal. CDROM ejection by
509the guest OS is supported. Currently only data CDs are supported.
510@item Floppy
511You can specify a floppy device even if no floppy is loaded. Floppy
512removal is currently not detected accurately (if you change floppy
513without doing floppy access while the floppy is not loaded, the guest
514OS will think that the same floppy is loaded).
515@item Hard disks
516Hard disks can be used. Normally you must specify the whole disk
517(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
518see it as a partitioned disk. WARNING: unless you know what you do, it
519is better to only make READ-ONLY accesses to the hard disk otherwise
520you may corrupt your host data (use the @option{-snapshot} command
521line option or modify the device permissions accordingly).
522@end table
523
524@subsubsection Windows
525
01781963
FB
526@table @code
527@item CD
4be456f1 528The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
529alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
530supported as an alias to the first CDROM drive.
19cb3738 531
e598752a 532Currently there is no specific code to handle removable media, so it
19cb3738
FB
533is better to use the @code{change} or @code{eject} monitor commands to
534change or eject media.
01781963 535@item Hard disks
89dfe898 536Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
537where @var{N} is the drive number (0 is the first hard disk).
538
539WARNING: unless you know what you do, it is better to only make
540READ-ONLY accesses to the hard disk otherwise you may corrupt your
541host data (use the @option{-snapshot} command line so that the
542modifications are written in a temporary file).
543@end table
544
19cb3738
FB
545
546@subsubsection Mac OS X
547
5fafdf24 548@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 549
e598752a 550Currently there is no specific code to handle removable media, so it
19cb3738
FB
551is better to use the @code{change} or @code{eject} monitor commands to
552change or eject media.
553
debc7065 554@node disk_images_fat_images
2c6cadd4
FB
555@subsection Virtual FAT disk images
556
557QEMU can automatically create a virtual FAT disk image from a
558directory tree. In order to use it, just type:
559
5fafdf24 560@example
2c6cadd4
FB
561qemu linux.img -hdb fat:/my_directory
562@end example
563
564Then you access access to all the files in the @file{/my_directory}
565directory without having to copy them in a disk image or to export
566them via SAMBA or NFS. The default access is @emph{read-only}.
567
568Floppies can be emulated with the @code{:floppy:} option:
569
5fafdf24 570@example
2c6cadd4
FB
571qemu linux.img -fda fat:floppy:/my_directory
572@end example
573
574A read/write support is available for testing (beta stage) with the
575@code{:rw:} option:
576
5fafdf24 577@example
2c6cadd4
FB
578qemu linux.img -fda fat:floppy:rw:/my_directory
579@end example
580
581What you should @emph{never} do:
582@itemize
583@item use non-ASCII filenames ;
584@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
585@item expect it to work when loadvm'ing ;
586@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
587@end itemize
588
75818250
TS
589@node disk_images_nbd
590@subsection NBD access
591
592QEMU can access directly to block device exported using the Network Block Device
593protocol.
594
595@example
596qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
597@end example
598
599If the NBD server is located on the same host, you can use an unix socket instead
600of an inet socket:
601
602@example
603qemu linux.img -hdb nbd:unix:/tmp/my_socket
604@end example
605
606In this case, the block device must be exported using qemu-nbd:
607
608@example
609qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
610@end example
611
612The use of qemu-nbd allows to share a disk between several guests:
613@example
614qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
615@end example
616
617and then you can use it with two guests:
618@example
619qemu linux1.img -hdb nbd:unix:/tmp/my_socket
620qemu linux2.img -hdb nbd:unix:/tmp/my_socket
621@end example
622
debc7065 623@node pcsys_network
9d4fb82e
FB
624@section Network emulation
625
4be456f1 626QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
627target) and can connect them to an arbitrary number of Virtual Local
628Area Networks (VLANs). Host TAP devices can be connected to any QEMU
629VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 630simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
631network stack can replace the TAP device to have a basic network
632connection.
633
634@subsection VLANs
9d4fb82e 635
41d03949
FB
636QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
637connection between several network devices. These devices can be for
638example QEMU virtual Ethernet cards or virtual Host ethernet devices
639(TAP devices).
9d4fb82e 640
41d03949
FB
641@subsection Using TAP network interfaces
642
643This is the standard way to connect QEMU to a real network. QEMU adds
644a virtual network device on your host (called @code{tapN}), and you
645can then configure it as if it was a real ethernet card.
9d4fb82e 646
8f40c388
FB
647@subsubsection Linux host
648
9d4fb82e
FB
649As an example, you can download the @file{linux-test-xxx.tar.gz}
650archive and copy the script @file{qemu-ifup} in @file{/etc} and
651configure properly @code{sudo} so that the command @code{ifconfig}
652contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 653that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
654device @file{/dev/net/tun} must be present.
655
ee0f4751
FB
656See @ref{sec_invocation} to have examples of command lines using the
657TAP network interfaces.
9d4fb82e 658
8f40c388
FB
659@subsubsection Windows host
660
661There is a virtual ethernet driver for Windows 2000/XP systems, called
662TAP-Win32. But it is not included in standard QEMU for Windows,
663so you will need to get it separately. It is part of OpenVPN package,
664so download OpenVPN from : @url{http://openvpn.net/}.
665
9d4fb82e
FB
666@subsection Using the user mode network stack
667
41d03949
FB
668By using the option @option{-net user} (default configuration if no
669@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 670network stack (you don't need root privilege to use the virtual
41d03949 671network). The virtual network configuration is the following:
9d4fb82e
FB
672
673@example
674
41d03949
FB
675 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
676 | (10.0.2.2)
9d4fb82e 677 |
2518bd0d 678 ----> DNS server (10.0.2.3)
3b46e624 679 |
2518bd0d 680 ----> SMB server (10.0.2.4)
9d4fb82e
FB
681@end example
682
683The QEMU VM behaves as if it was behind a firewall which blocks all
684incoming connections. You can use a DHCP client to automatically
41d03949
FB
685configure the network in the QEMU VM. The DHCP server assign addresses
686to the hosts starting from 10.0.2.15.
9d4fb82e
FB
687
688In order to check that the user mode network is working, you can ping
689the address 10.0.2.2 and verify that you got an address in the range
69010.0.2.x from the QEMU virtual DHCP server.
691
b415a407 692Note that @code{ping} is not supported reliably to the internet as it
4be456f1 693would require root privileges. It means you can only ping the local
b415a407
FB
694router (10.0.2.2).
695
9bf05444
FB
696When using the built-in TFTP server, the router is also the TFTP
697server.
698
699When using the @option{-redir} option, TCP or UDP connections can be
700redirected from the host to the guest. It allows for example to
701redirect X11, telnet or SSH connections.
443f1376 702
41d03949
FB
703@subsection Connecting VLANs between QEMU instances
704
705Using the @option{-net socket} option, it is possible to make VLANs
706that span several QEMU instances. See @ref{sec_invocation} to have a
707basic example.
708
ec810f66
CM
709@section Other Devices
710
711@subsection Inter-VM Shared Memory device
712
713With KVM enabled on a Linux host, a shared memory device is available. Guests
714map a POSIX shared memory region into the guest as a PCI device that enables
715zero-copy communication to the application level of the guests. The basic
716syntax is:
717
718@example
719qemu -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
720@end example
721
722If desired, interrupts can be sent between guest VMs accessing the same shared
723memory region. Interrupt support requires using a shared memory server and
724using a chardev socket to connect to it. The code for the shared memory server
725is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
726memory server is:
727
728@example
729qemu -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
730 [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
731qemu -chardev socket,path=<path>,id=<id>
732@end example
733
734When using the server, the guest will be assigned a VM ID (>=0) that allows guests
735using the same server to communicate via interrupts. Guests can read their
736VM ID from a device register (see example code). Since receiving the shared
737memory region from the server is asynchronous, there is a (small) chance the
738guest may boot before the shared memory is attached. To allow an application
739to ensure shared memory is attached, the VM ID register will return -1 (an
740invalid VM ID) until the memory is attached. Once the shared memory is
741attached, the VM ID will return the guest's valid VM ID. With these semantics,
742the guest application can check to ensure the shared memory is attached to the
743guest before proceeding.
744
745The @option{role} argument can be set to either master or peer and will affect
746how the shared memory is migrated. With @option{role=master}, the guest will
747copy the shared memory on migration to the destination host. With
748@option{role=peer}, the guest will not be able to migrate with the device attached.
749With the @option{peer} case, the device should be detached and then reattached
750after migration using the PCI hotplug support.
751
9d4fb82e
FB
752@node direct_linux_boot
753@section Direct Linux Boot
1f673135
FB
754
755This section explains how to launch a Linux kernel inside QEMU without
756having to make a full bootable image. It is very useful for fast Linux
ee0f4751 757kernel testing.
1f673135 758
ee0f4751 759The syntax is:
1f673135 760@example
ee0f4751 761qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
762@end example
763
ee0f4751
FB
764Use @option{-kernel} to provide the Linux kernel image and
765@option{-append} to give the kernel command line arguments. The
766@option{-initrd} option can be used to provide an INITRD image.
1f673135 767
ee0f4751
FB
768When using the direct Linux boot, a disk image for the first hard disk
769@file{hda} is required because its boot sector is used to launch the
770Linux kernel.
1f673135 771
ee0f4751
FB
772If you do not need graphical output, you can disable it and redirect
773the virtual serial port and the QEMU monitor to the console with the
774@option{-nographic} option. The typical command line is:
1f673135 775@example
ee0f4751
FB
776qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
777 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
778@end example
779
ee0f4751
FB
780Use @key{Ctrl-a c} to switch between the serial console and the
781monitor (@pxref{pcsys_keys}).
1f673135 782
debc7065 783@node pcsys_usb
b389dbfb
FB
784@section USB emulation
785
0aff66b5
PB
786QEMU emulates a PCI UHCI USB controller. You can virtually plug
787virtual USB devices or real host USB devices (experimental, works only
788on Linux hosts). Qemu will automatically create and connect virtual USB hubs
f542086d 789as necessary to connect multiple USB devices.
b389dbfb 790
0aff66b5
PB
791@menu
792* usb_devices::
793* host_usb_devices::
794@end menu
795@node usb_devices
796@subsection Connecting USB devices
b389dbfb 797
0aff66b5
PB
798USB devices can be connected with the @option{-usbdevice} commandline option
799or the @code{usb_add} monitor command. Available devices are:
b389dbfb 800
db380c06
AZ
801@table @code
802@item mouse
0aff66b5 803Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 804@item tablet
c6d46c20 805Pointer device that uses absolute coordinates (like a touchscreen).
0aff66b5
PB
806This means qemu is able to report the mouse position without having
807to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 808@item disk:@var{file}
0aff66b5 809Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 810@item host:@var{bus.addr}
0aff66b5
PB
811Pass through the host device identified by @var{bus.addr}
812(Linux only)
db380c06 813@item host:@var{vendor_id:product_id}
0aff66b5
PB
814Pass through the host device identified by @var{vendor_id:product_id}
815(Linux only)
db380c06 816@item wacom-tablet
f6d2a316
AZ
817Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
818above but it can be used with the tslib library because in addition to touch
819coordinates it reports touch pressure.
db380c06 820@item keyboard
47b2d338 821Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
822@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
823Serial converter. This emulates an FTDI FT232BM chip connected to host character
824device @var{dev}. The available character devices are the same as for the
825@code{-serial} option. The @code{vendorid} and @code{productid} options can be
a11d070e 826used to override the default 0403:6001. For instance,
db380c06
AZ
827@example
828usb_add serial:productid=FA00:tcp:192.168.0.2:4444
829@end example
830will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
831serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
832@item braille
833Braille device. This will use BrlAPI to display the braille output on a real
834or fake device.
9ad97e65
AZ
835@item net:@var{options}
836Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
837specifies NIC options as with @code{-net nic,}@var{options} (see description).
838For instance, user-mode networking can be used with
6c9f886c 839@example
9ad97e65 840qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
841@end example
842Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
843@item bt[:@var{hci-type}]
844Bluetooth dongle whose type is specified in the same format as with
845the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
846no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
847This USB device implements the USB Transport Layer of HCI. Example
848usage:
849@example
850qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
851@end example
0aff66b5 852@end table
b389dbfb 853
0aff66b5 854@node host_usb_devices
b389dbfb
FB
855@subsection Using host USB devices on a Linux host
856
857WARNING: this is an experimental feature. QEMU will slow down when
858using it. USB devices requiring real time streaming (i.e. USB Video
859Cameras) are not supported yet.
860
861@enumerate
5fafdf24 862@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
863is actually using the USB device. A simple way to do that is simply to
864disable the corresponding kernel module by renaming it from @file{mydriver.o}
865to @file{mydriver.o.disabled}.
866
867@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
868@example
869ls /proc/bus/usb
870001 devices drivers
871@end example
872
873@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
874@example
875chown -R myuid /proc/bus/usb
876@end example
877
878@item Launch QEMU and do in the monitor:
5fafdf24 879@example
b389dbfb
FB
880info usbhost
881 Device 1.2, speed 480 Mb/s
882 Class 00: USB device 1234:5678, USB DISK
883@end example
884You should see the list of the devices you can use (Never try to use
885hubs, it won't work).
886
887@item Add the device in QEMU by using:
5fafdf24 888@example
b389dbfb
FB
889usb_add host:1234:5678
890@end example
891
892Normally the guest OS should report that a new USB device is
893plugged. You can use the option @option{-usbdevice} to do the same.
894
895@item Now you can try to use the host USB device in QEMU.
896
897@end enumerate
898
899When relaunching QEMU, you may have to unplug and plug again the USB
900device to make it work again (this is a bug).
901
f858dcae
TS
902@node vnc_security
903@section VNC security
904
905The VNC server capability provides access to the graphical console
906of the guest VM across the network. This has a number of security
907considerations depending on the deployment scenarios.
908
909@menu
910* vnc_sec_none::
911* vnc_sec_password::
912* vnc_sec_certificate::
913* vnc_sec_certificate_verify::
914* vnc_sec_certificate_pw::
2f9606b3
AL
915* vnc_sec_sasl::
916* vnc_sec_certificate_sasl::
f858dcae 917* vnc_generate_cert::
2f9606b3 918* vnc_setup_sasl::
f858dcae
TS
919@end menu
920@node vnc_sec_none
921@subsection Without passwords
922
923The simplest VNC server setup does not include any form of authentication.
924For this setup it is recommended to restrict it to listen on a UNIX domain
925socket only. For example
926
927@example
928qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
929@end example
930
931This ensures that only users on local box with read/write access to that
932path can access the VNC server. To securely access the VNC server from a
933remote machine, a combination of netcat+ssh can be used to provide a secure
934tunnel.
935
936@node vnc_sec_password
937@subsection With passwords
938
939The VNC protocol has limited support for password based authentication. Since
940the protocol limits passwords to 8 characters it should not be considered
941to provide high security. The password can be fairly easily brute-forced by
942a client making repeat connections. For this reason, a VNC server using password
943authentication should be restricted to only listen on the loopback interface
34a3d239 944or UNIX domain sockets. Password authentication is requested with the @code{password}
f858dcae
TS
945option, and then once QEMU is running the password is set with the monitor. Until
946the monitor is used to set the password all clients will be rejected.
947
948@example
949qemu [...OPTIONS...] -vnc :1,password -monitor stdio
950(qemu) change vnc password
951Password: ********
952(qemu)
953@end example
954
955@node vnc_sec_certificate
956@subsection With x509 certificates
957
958The QEMU VNC server also implements the VeNCrypt extension allowing use of
959TLS for encryption of the session, and x509 certificates for authentication.
960The use of x509 certificates is strongly recommended, because TLS on its
961own is susceptible to man-in-the-middle attacks. Basic x509 certificate
962support provides a secure session, but no authentication. This allows any
963client to connect, and provides an encrypted session.
964
965@example
966qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
967@end example
968
969In the above example @code{/etc/pki/qemu} should contain at least three files,
970@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
971users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
972NB the @code{server-key.pem} file should be protected with file mode 0600 to
973only be readable by the user owning it.
974
975@node vnc_sec_certificate_verify
976@subsection With x509 certificates and client verification
977
978Certificates can also provide a means to authenticate the client connecting.
979The server will request that the client provide a certificate, which it will
980then validate against the CA certificate. This is a good choice if deploying
981in an environment with a private internal certificate authority.
982
983@example
984qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
985@end example
986
987
988@node vnc_sec_certificate_pw
989@subsection With x509 certificates, client verification and passwords
990
991Finally, the previous method can be combined with VNC password authentication
992to provide two layers of authentication for clients.
993
994@example
995qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
996(qemu) change vnc password
997Password: ********
998(qemu)
999@end example
1000
2f9606b3
AL
1001
1002@node vnc_sec_sasl
1003@subsection With SASL authentication
1004
1005The SASL authentication method is a VNC extension, that provides an
1006easily extendable, pluggable authentication method. This allows for
1007integration with a wide range of authentication mechanisms, such as
1008PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1009The strength of the authentication depends on the exact mechanism
1010configured. If the chosen mechanism also provides a SSF layer, then
1011it will encrypt the datastream as well.
1012
1013Refer to the later docs on how to choose the exact SASL mechanism
1014used for authentication, but assuming use of one supporting SSF,
1015then QEMU can be launched with:
1016
1017@example
1018qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
1019@end example
1020
1021@node vnc_sec_certificate_sasl
1022@subsection With x509 certificates and SASL authentication
1023
1024If the desired SASL authentication mechanism does not supported
1025SSF layers, then it is strongly advised to run it in combination
1026with TLS and x509 certificates. This provides securely encrypted
1027data stream, avoiding risk of compromising of the security
1028credentials. This can be enabled, by combining the 'sasl' option
1029with the aforementioned TLS + x509 options:
1030
1031@example
1032qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1033@end example
1034
1035
f858dcae
TS
1036@node vnc_generate_cert
1037@subsection Generating certificates for VNC
1038
1039The GNU TLS packages provides a command called @code{certtool} which can
1040be used to generate certificates and keys in PEM format. At a minimum it
1041is neccessary to setup a certificate authority, and issue certificates to
1042each server. If using certificates for authentication, then each client
1043will also need to be issued a certificate. The recommendation is for the
1044server to keep its certificates in either @code{/etc/pki/qemu} or for
1045unprivileged users in @code{$HOME/.pki/qemu}.
1046
1047@menu
1048* vnc_generate_ca::
1049* vnc_generate_server::
1050* vnc_generate_client::
1051@end menu
1052@node vnc_generate_ca
1053@subsubsection Setup the Certificate Authority
1054
1055This step only needs to be performed once per organization / organizational
1056unit. First the CA needs a private key. This key must be kept VERY secret
1057and secure. If this key is compromised the entire trust chain of the certificates
1058issued with it is lost.
1059
1060@example
1061# certtool --generate-privkey > ca-key.pem
1062@end example
1063
1064A CA needs to have a public certificate. For simplicity it can be a self-signed
1065certificate, or one issue by a commercial certificate issuing authority. To
1066generate a self-signed certificate requires one core piece of information, the
1067name of the organization.
1068
1069@example
1070# cat > ca.info <<EOF
1071cn = Name of your organization
1072ca
1073cert_signing_key
1074EOF
1075# certtool --generate-self-signed \
1076 --load-privkey ca-key.pem
1077 --template ca.info \
1078 --outfile ca-cert.pem
1079@end example
1080
1081The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1082TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1083
1084@node vnc_generate_server
1085@subsubsection Issuing server certificates
1086
1087Each server (or host) needs to be issued with a key and certificate. When connecting
1088the certificate is sent to the client which validates it against the CA certificate.
1089The core piece of information for a server certificate is the hostname. This should
1090be the fully qualified hostname that the client will connect with, since the client
1091will typically also verify the hostname in the certificate. On the host holding the
1092secure CA private key:
1093
1094@example
1095# cat > server.info <<EOF
1096organization = Name of your organization
1097cn = server.foo.example.com
1098tls_www_server
1099encryption_key
1100signing_key
1101EOF
1102# certtool --generate-privkey > server-key.pem
1103# certtool --generate-certificate \
1104 --load-ca-certificate ca-cert.pem \
1105 --load-ca-privkey ca-key.pem \
1106 --load-privkey server server-key.pem \
1107 --template server.info \
1108 --outfile server-cert.pem
1109@end example
1110
1111The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1112to the server for which they were generated. The @code{server-key.pem} is security
1113sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1114
1115@node vnc_generate_client
1116@subsubsection Issuing client certificates
1117
1118If the QEMU VNC server is to use the @code{x509verify} option to validate client
1119certificates as its authentication mechanism, each client also needs to be issued
1120a certificate. The client certificate contains enough metadata to uniquely identify
1121the client, typically organization, state, city, building, etc. On the host holding
1122the secure CA private key:
1123
1124@example
1125# cat > client.info <<EOF
1126country = GB
1127state = London
1128locality = London
1129organiazation = Name of your organization
1130cn = client.foo.example.com
1131tls_www_client
1132encryption_key
1133signing_key
1134EOF
1135# certtool --generate-privkey > client-key.pem
1136# certtool --generate-certificate \
1137 --load-ca-certificate ca-cert.pem \
1138 --load-ca-privkey ca-key.pem \
1139 --load-privkey client-key.pem \
1140 --template client.info \
1141 --outfile client-cert.pem
1142@end example
1143
1144The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1145copied to the client for which they were generated.
1146
2f9606b3
AL
1147
1148@node vnc_setup_sasl
1149
1150@subsection Configuring SASL mechanisms
1151
1152The following documentation assumes use of the Cyrus SASL implementation on a
1153Linux host, but the principals should apply to any other SASL impl. When SASL
1154is enabled, the mechanism configuration will be loaded from system default
1155SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1156unprivileged user, an environment variable SASL_CONF_PATH can be used
1157to make it search alternate locations for the service config.
1158
1159The default configuration might contain
1160
1161@example
1162mech_list: digest-md5
1163sasldb_path: /etc/qemu/passwd.db
1164@end example
1165
1166This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1167Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1168in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1169command. While this mechanism is easy to configure and use, it is not
1170considered secure by modern standards, so only suitable for developers /
1171ad-hoc testing.
1172
1173A more serious deployment might use Kerberos, which is done with the 'gssapi'
1174mechanism
1175
1176@example
1177mech_list: gssapi
1178keytab: /etc/qemu/krb5.tab
1179@end example
1180
1181For this to work the administrator of your KDC must generate a Kerberos
1182principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1183replacing 'somehost.example.com' with the fully qualified host name of the
1184machine running QEMU, and 'EXAMPLE.COM' with the Keberos Realm.
1185
1186Other configurations will be left as an exercise for the reader. It should
1187be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1188encryption. For all other mechanisms, VNC should always be configured to
1189use TLS and x509 certificates to protect security credentials from snooping.
1190
0806e3f6 1191@node gdb_usage
da415d54
FB
1192@section GDB usage
1193
1194QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1195'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1196
9d4520d0 1197In order to use gdb, launch qemu with the '-s' option. It will wait for a
da415d54
FB
1198gdb connection:
1199@example
debc7065
FB
1200> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1201 -append "root=/dev/hda"
da415d54
FB
1202Connected to host network interface: tun0
1203Waiting gdb connection on port 1234
1204@end example
1205
1206Then launch gdb on the 'vmlinux' executable:
1207@example
1208> gdb vmlinux
1209@end example
1210
1211In gdb, connect to QEMU:
1212@example
6c9bf893 1213(gdb) target remote localhost:1234
da415d54
FB
1214@end example
1215
1216Then you can use gdb normally. For example, type 'c' to launch the kernel:
1217@example
1218(gdb) c
1219@end example
1220
0806e3f6
FB
1221Here are some useful tips in order to use gdb on system code:
1222
1223@enumerate
1224@item
1225Use @code{info reg} to display all the CPU registers.
1226@item
1227Use @code{x/10i $eip} to display the code at the PC position.
1228@item
1229Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1230@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1231@end enumerate
1232
60897d36
EI
1233Advanced debugging options:
1234
1235The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1236@table @code
60897d36
EI
1237@item maintenance packet qqemu.sstepbits
1238
1239This will display the MASK bits used to control the single stepping IE:
1240@example
1241(gdb) maintenance packet qqemu.sstepbits
1242sending: "qqemu.sstepbits"
1243received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1244@end example
1245@item maintenance packet qqemu.sstep
1246
1247This will display the current value of the mask used when single stepping IE:
1248@example
1249(gdb) maintenance packet qqemu.sstep
1250sending: "qqemu.sstep"
1251received: "0x7"
1252@end example
1253@item maintenance packet Qqemu.sstep=HEX_VALUE
1254
1255This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1256@example
1257(gdb) maintenance packet Qqemu.sstep=0x5
1258sending: "qemu.sstep=0x5"
1259received: "OK"
1260@end example
94d45e44 1261@end table
60897d36 1262
debc7065 1263@node pcsys_os_specific
1a084f3d
FB
1264@section Target OS specific information
1265
1266@subsection Linux
1267
15a34c63
FB
1268To have access to SVGA graphic modes under X11, use the @code{vesa} or
1269the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1270color depth in the guest and the host OS.
1a084f3d 1271
e3371e62
FB
1272When using a 2.6 guest Linux kernel, you should add the option
1273@code{clock=pit} on the kernel command line because the 2.6 Linux
1274kernels make very strict real time clock checks by default that QEMU
1275cannot simulate exactly.
1276
7c3fc84d
FB
1277When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1278not activated because QEMU is slower with this patch. The QEMU
1279Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1280Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1281patch by default. Newer kernels don't have it.
1282
1a084f3d
FB
1283@subsection Windows
1284
1285If you have a slow host, using Windows 95 is better as it gives the
1286best speed. Windows 2000 is also a good choice.
1287
e3371e62
FB
1288@subsubsection SVGA graphic modes support
1289
1290QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1291card. All Windows versions starting from Windows 95 should recognize
1292and use this graphic card. For optimal performances, use 16 bit color
1293depth in the guest and the host OS.
1a084f3d 1294
3cb0853a
FB
1295If you are using Windows XP as guest OS and if you want to use high
1296resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
12971280x1024x16), then you should use the VESA VBE virtual graphic card
1298(option @option{-std-vga}).
1299
e3371e62
FB
1300@subsubsection CPU usage reduction
1301
1302Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1303instruction. The result is that it takes host CPU cycles even when
1304idle. You can install the utility from
1305@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1306problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1307
9d0a8e6f 1308@subsubsection Windows 2000 disk full problem
e3371e62 1309
9d0a8e6f
FB
1310Windows 2000 has a bug which gives a disk full problem during its
1311installation. When installing it, use the @option{-win2k-hack} QEMU
1312option to enable a specific workaround. After Windows 2000 is
1313installed, you no longer need this option (this option slows down the
1314IDE transfers).
e3371e62 1315
6cc721cf
FB
1316@subsubsection Windows 2000 shutdown
1317
1318Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1319can. It comes from the fact that Windows 2000 does not automatically
1320use the APM driver provided by the BIOS.
1321
1322In order to correct that, do the following (thanks to Struan
1323Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1324Add/Troubleshoot a device => Add a new device & Next => No, select the
1325hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1326(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1327correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1328
1329@subsubsection Share a directory between Unix and Windows
1330
1331See @ref{sec_invocation} about the help of the option @option{-smb}.
1332
2192c332 1333@subsubsection Windows XP security problem
e3371e62
FB
1334
1335Some releases of Windows XP install correctly but give a security
1336error when booting:
1337@example
1338A problem is preventing Windows from accurately checking the
1339license for this computer. Error code: 0x800703e6.
1340@end example
e3371e62 1341
2192c332
FB
1342The workaround is to install a service pack for XP after a boot in safe
1343mode. Then reboot, and the problem should go away. Since there is no
1344network while in safe mode, its recommended to download the full
1345installation of SP1 or SP2 and transfer that via an ISO or using the
1346vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1347
a0a821a4
FB
1348@subsection MS-DOS and FreeDOS
1349
1350@subsubsection CPU usage reduction
1351
1352DOS does not correctly use the CPU HLT instruction. The result is that
1353it takes host CPU cycles even when idle. You can install the utility
1354from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1355problem.
1356
debc7065 1357@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1358@chapter QEMU System emulator for non PC targets
1359
1360QEMU is a generic emulator and it emulates many non PC
1361machines. Most of the options are similar to the PC emulator. The
4be456f1 1362differences are mentioned in the following sections.
3f9f3aa1 1363
debc7065 1364@menu
7544a042 1365* PowerPC System emulator::
24d4de45
TS
1366* Sparc32 System emulator::
1367* Sparc64 System emulator::
1368* MIPS System emulator::
1369* ARM System emulator::
1370* ColdFire System emulator::
7544a042
SW
1371* Cris System emulator::
1372* Microblaze System emulator::
1373* SH4 System emulator::
debc7065
FB
1374@end menu
1375
7544a042
SW
1376@node PowerPC System emulator
1377@section PowerPC System emulator
1378@cindex system emulation (PowerPC)
1a084f3d 1379
15a34c63
FB
1380Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1381or PowerMac PowerPC system.
1a084f3d 1382
b671f9ed 1383QEMU emulates the following PowerMac peripherals:
1a084f3d 1384
15a34c63 1385@itemize @minus
5fafdf24 1386@item
006f3a48 1387UniNorth or Grackle PCI Bridge
15a34c63
FB
1388@item
1389PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1390@item
15a34c63 13912 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1392@item
15a34c63
FB
1393NE2000 PCI adapters
1394@item
1395Non Volatile RAM
1396@item
1397VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1398@end itemize
1399
b671f9ed 1400QEMU emulates the following PREP peripherals:
52c00a5f
FB
1401
1402@itemize @minus
5fafdf24 1403@item
15a34c63
FB
1404PCI Bridge
1405@item
1406PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1407@item
52c00a5f
FB
14082 IDE interfaces with hard disk and CD-ROM support
1409@item
1410Floppy disk
5fafdf24 1411@item
15a34c63 1412NE2000 network adapters
52c00a5f
FB
1413@item
1414Serial port
1415@item
1416PREP Non Volatile RAM
15a34c63
FB
1417@item
1418PC compatible keyboard and mouse.
52c00a5f
FB
1419@end itemize
1420
15a34c63 1421QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1422@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1423
992e5acd 1424Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
1425for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1426v2) portable firmware implementation. The goal is to implement a 100%
1427IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1428
15a34c63
FB
1429@c man begin OPTIONS
1430
1431The following options are specific to the PowerPC emulation:
1432
1433@table @option
1434
4e257e5e 1435@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63
FB
1436
1437Set the initial VGA graphic mode. The default is 800x600x15.
1438
4e257e5e 1439@item -prom-env @var{string}
95efd11c
BS
1440
1441Set OpenBIOS variables in NVRAM, for example:
1442
1443@example
1444qemu-system-ppc -prom-env 'auto-boot?=false' \
1445 -prom-env 'boot-device=hd:2,\yaboot' \
1446 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1447@end example
1448
1449These variables are not used by Open Hack'Ware.
1450
15a34c63
FB
1451@end table
1452
5fafdf24 1453@c man end
15a34c63
FB
1454
1455
52c00a5f 1456More information is available at
3f9f3aa1 1457@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1458
24d4de45
TS
1459@node Sparc32 System emulator
1460@section Sparc32 System emulator
7544a042 1461@cindex system emulation (Sparc32)
e80cfcfc 1462
34a3d239
BS
1463Use the executable @file{qemu-system-sparc} to simulate the following
1464Sun4m architecture machines:
1465@itemize @minus
1466@item
1467SPARCstation 4
1468@item
1469SPARCstation 5
1470@item
1471SPARCstation 10
1472@item
1473SPARCstation 20
1474@item
1475SPARCserver 600MP
1476@item
1477SPARCstation LX
1478@item
1479SPARCstation Voyager
1480@item
1481SPARCclassic
1482@item
1483SPARCbook
1484@end itemize
1485
1486The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1487but Linux limits the number of usable CPUs to 4.
e80cfcfc 1488
34a3d239
BS
1489It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1490SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1491emulators are not usable yet.
1492
1493QEMU emulates the following sun4m/sun4c/sun4d peripherals:
e80cfcfc
FB
1494
1495@itemize @minus
3475187d 1496@item
7d85892b 1497IOMMU or IO-UNITs
e80cfcfc
FB
1498@item
1499TCX Frame buffer
5fafdf24 1500@item
e80cfcfc
FB
1501Lance (Am7990) Ethernet
1502@item
34a3d239 1503Non Volatile RAM M48T02/M48T08
e80cfcfc 1504@item
3475187d
FB
1505Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1506and power/reset logic
1507@item
1508ESP SCSI controller with hard disk and CD-ROM support
1509@item
6a3b9cc9 1510Floppy drive (not on SS-600MP)
a2502b58
BS
1511@item
1512CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
1513@end itemize
1514
6a3b9cc9
BS
1515The number of peripherals is fixed in the architecture. Maximum
1516memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 1517others 2047MB.
3475187d 1518
30a604f3 1519Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
1520@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1521firmware implementation. The goal is to implement a 100% IEEE
15221275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
1523
1524A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239
BS
1525the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1526some kernel versions work. Please note that currently Solaris kernels
1527don't work probably due to interface issues between OpenBIOS and
1528Solaris.
3475187d
FB
1529
1530@c man begin OPTIONS
1531
a2502b58 1532The following options are specific to the Sparc32 emulation:
3475187d
FB
1533
1534@table @option
1535
4e257e5e 1536@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 1537
a2502b58
BS
1538Set the initial TCX graphic mode. The default is 1024x768x8, currently
1539the only other possible mode is 1024x768x24.
3475187d 1540
4e257e5e 1541@item -prom-env @var{string}
66508601
BS
1542
1543Set OpenBIOS variables in NVRAM, for example:
1544
1545@example
1546qemu-system-sparc -prom-env 'auto-boot?=false' \
1547 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1548@end example
1549
609c1dac 1550@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook|SS-2|SS-1000|SS-2000]
a2502b58
BS
1551
1552Set the emulated machine type. Default is SS-5.
1553
3475187d
FB
1554@end table
1555
5fafdf24 1556@c man end
3475187d 1557
24d4de45
TS
1558@node Sparc64 System emulator
1559@section Sparc64 System emulator
7544a042 1560@cindex system emulation (Sparc64)
e80cfcfc 1561
34a3d239
BS
1562Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1563(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1564Niagara (T1) machine. The emulator is not usable for anything yet, but
1565it can launch some kernels.
b756921a 1566
c7ba218d 1567QEMU emulates the following peripherals:
83469015
FB
1568
1569@itemize @minus
1570@item
5fafdf24 1571UltraSparc IIi APB PCI Bridge
83469015
FB
1572@item
1573PCI VGA compatible card with VESA Bochs Extensions
1574@item
34a3d239
BS
1575PS/2 mouse and keyboard
1576@item
83469015
FB
1577Non Volatile RAM M48T59
1578@item
1579PC-compatible serial ports
c7ba218d
BS
1580@item
15812 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
1582@item
1583Floppy disk
83469015
FB
1584@end itemize
1585
c7ba218d
BS
1586@c man begin OPTIONS
1587
1588The following options are specific to the Sparc64 emulation:
1589
1590@table @option
1591
4e257e5e 1592@item -prom-env @var{string}
34a3d239
BS
1593
1594Set OpenBIOS variables in NVRAM, for example:
1595
1596@example
1597qemu-system-sparc64 -prom-env 'auto-boot?=false'
1598@end example
1599
1600@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
1601
1602Set the emulated machine type. The default is sun4u.
1603
1604@end table
1605
1606@c man end
1607
24d4de45
TS
1608@node MIPS System emulator
1609@section MIPS System emulator
7544a042 1610@cindex system emulation (MIPS)
9d0a8e6f 1611
d9aedc32
TS
1612Four executables cover simulation of 32 and 64-bit MIPS systems in
1613both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1614@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 1615Five different machine types are emulated:
24d4de45
TS
1616
1617@itemize @minus
1618@item
1619A generic ISA PC-like machine "mips"
1620@item
1621The MIPS Malta prototype board "malta"
1622@item
d9aedc32 1623An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 1624@item
f0fc6f8f 1625MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
1626@item
1627A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
1628@end itemize
1629
1630The generic emulation is supported by Debian 'Etch' and is able to
1631install Debian into a virtual disk image. The following devices are
1632emulated:
3f9f3aa1
FB
1633
1634@itemize @minus
5fafdf24 1635@item
6bf5b4e8 1636A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
1637@item
1638PC style serial port
1639@item
24d4de45
TS
1640PC style IDE disk
1641@item
3f9f3aa1
FB
1642NE2000 network card
1643@end itemize
1644
24d4de45
TS
1645The Malta emulation supports the following devices:
1646
1647@itemize @minus
1648@item
0b64d008 1649Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
1650@item
1651PIIX4 PCI/USB/SMbus controller
1652@item
1653The Multi-I/O chip's serial device
1654@item
3a2eeac0 1655PCI network cards (PCnet32 and others)
24d4de45
TS
1656@item
1657Malta FPGA serial device
1658@item
1f605a76 1659Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
1660@end itemize
1661
1662The ACER Pica emulation supports:
1663
1664@itemize @minus
1665@item
1666MIPS R4000 CPU
1667@item
1668PC-style IRQ and DMA controllers
1669@item
1670PC Keyboard
1671@item
1672IDE controller
1673@end itemize
3f9f3aa1 1674
f0fc6f8f
TS
1675The mipssim pseudo board emulation provides an environment similiar
1676to what the proprietary MIPS emulator uses for running Linux.
1677It supports:
6bf5b4e8
TS
1678
1679@itemize @minus
1680@item
1681A range of MIPS CPUs, default is the 24Kf
1682@item
1683PC style serial port
1684@item
1685MIPSnet network emulation
1686@end itemize
1687
88cb0a02
AJ
1688The MIPS Magnum R4000 emulation supports:
1689
1690@itemize @minus
1691@item
1692MIPS R4000 CPU
1693@item
1694PC-style IRQ controller
1695@item
1696PC Keyboard
1697@item
1698SCSI controller
1699@item
1700G364 framebuffer
1701@end itemize
1702
1703
24d4de45
TS
1704@node ARM System emulator
1705@section ARM System emulator
7544a042 1706@cindex system emulation (ARM)
3f9f3aa1
FB
1707
1708Use the executable @file{qemu-system-arm} to simulate a ARM
1709machine. The ARM Integrator/CP board is emulated with the following
1710devices:
1711
1712@itemize @minus
1713@item
9ee6e8bb 1714ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
1715@item
1716Two PL011 UARTs
5fafdf24 1717@item
3f9f3aa1 1718SMC 91c111 Ethernet adapter
00a9bf19
PB
1719@item
1720PL110 LCD controller
1721@item
1722PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
1723@item
1724PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
1725@end itemize
1726
1727The ARM Versatile baseboard is emulated with the following devices:
1728
1729@itemize @minus
1730@item
9ee6e8bb 1731ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
1732@item
1733PL190 Vectored Interrupt Controller
1734@item
1735Four PL011 UARTs
5fafdf24 1736@item
00a9bf19
PB
1737SMC 91c111 Ethernet adapter
1738@item
1739PL110 LCD controller
1740@item
1741PL050 KMI with PS/2 keyboard and mouse.
1742@item
1743PCI host bridge. Note the emulated PCI bridge only provides access to
1744PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
1745This means some devices (eg. ne2k_pci NIC) are not usable, and others
1746(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 1747mapped control registers.
e6de1bad
PB
1748@item
1749PCI OHCI USB controller.
1750@item
1751LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
1752@item
1753PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
1754@end itemize
1755
21a88941
PB
1756Several variants of the ARM RealView baseboard are emulated,
1757including the EB, PB-A8 and PBX-A9. Due to interactions with the
1758bootloader, only certain Linux kernel configurations work out
1759of the box on these boards.
1760
1761Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1762enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
1763should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1764disabled and expect 1024M RAM.
1765
1766The following devices are emuilated:
d7739d75
PB
1767
1768@itemize @minus
1769@item
f7c70325 1770ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
1771@item
1772ARM AMBA Generic/Distributed Interrupt Controller
1773@item
1774Four PL011 UARTs
5fafdf24 1775@item
0ef849d7 1776SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
1777@item
1778PL110 LCD controller
1779@item
1780PL050 KMI with PS/2 keyboard and mouse
1781@item
1782PCI host bridge
1783@item
1784PCI OHCI USB controller
1785@item
1786LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
1787@item
1788PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
1789@end itemize
1790
b00052e4
AZ
1791The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1792and "Terrier") emulation includes the following peripherals:
1793
1794@itemize @minus
1795@item
1796Intel PXA270 System-on-chip (ARM V5TE core)
1797@item
1798NAND Flash memory
1799@item
1800IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1801@item
1802On-chip OHCI USB controller
1803@item
1804On-chip LCD controller
1805@item
1806On-chip Real Time Clock
1807@item
1808TI ADS7846 touchscreen controller on SSP bus
1809@item
1810Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1811@item
1812GPIO-connected keyboard controller and LEDs
1813@item
549444e1 1814Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
1815@item
1816Three on-chip UARTs
1817@item
1818WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1819@end itemize
1820
02645926
AZ
1821The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
1822following elements:
1823
1824@itemize @minus
1825@item
1826Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1827@item
1828ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
1829@item
1830On-chip LCD controller
1831@item
1832On-chip Real Time Clock
1833@item
1834TI TSC2102i touchscreen controller / analog-digital converter / Audio
1835CODEC, connected through MicroWire and I@math{^2}S busses
1836@item
1837GPIO-connected matrix keypad
1838@item
1839Secure Digital card connected to OMAP MMC/SD host
1840@item
1841Three on-chip UARTs
1842@end itemize
1843
c30bb264
AZ
1844Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
1845emulation supports the following elements:
1846
1847@itemize @minus
1848@item
1849Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
1850@item
1851RAM and non-volatile OneNAND Flash memories
1852@item
1853Display connected to EPSON remote framebuffer chip and OMAP on-chip
1854display controller and a LS041y3 MIPI DBI-C controller
1855@item
1856TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
1857driven through SPI bus
1858@item
1859National Semiconductor LM8323-controlled qwerty keyboard driven
1860through I@math{^2}C bus
1861@item
1862Secure Digital card connected to OMAP MMC/SD host
1863@item
1864Three OMAP on-chip UARTs and on-chip STI debugging console
1865@item
2d564691
AZ
1866A Bluetooth(R) transciever and HCI connected to an UART
1867@item
c30bb264
AZ
1868Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
1869TUSB6010 chip - only USB host mode is supported
1870@item
1871TI TMP105 temperature sensor driven through I@math{^2}C bus
1872@item
1873TI TWL92230C power management companion with an RTC on I@math{^2}C bus
1874@item
1875Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
1876through CBUS
1877@end itemize
1878
9ee6e8bb
PB
1879The Luminary Micro Stellaris LM3S811EVB emulation includes the following
1880devices:
1881
1882@itemize @minus
1883@item
1884Cortex-M3 CPU core.
1885@item
188664k Flash and 8k SRAM.
1887@item
1888Timers, UARTs, ADC and I@math{^2}C interface.
1889@item
1890OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
1891@end itemize
1892
1893The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
1894devices:
1895
1896@itemize @minus
1897@item
1898Cortex-M3 CPU core.
1899@item
1900256k Flash and 64k SRAM.
1901@item
1902Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
1903@item
1904OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
1905@end itemize
1906
57cd6e97
AZ
1907The Freecom MusicPal internet radio emulation includes the following
1908elements:
1909
1910@itemize @minus
1911@item
1912Marvell MV88W8618 ARM core.
1913@item
191432 MB RAM, 256 KB SRAM, 8 MB flash.
1915@item
1916Up to 2 16550 UARTs
1917@item
1918MV88W8xx8 Ethernet controller
1919@item
1920MV88W8618 audio controller, WM8750 CODEC and mixer
1921@item
e080e785 1922128×64 display with brightness control
57cd6e97
AZ
1923@item
19242 buttons, 2 navigation wheels with button function
1925@end itemize
1926
997641a8
AZ
1927The Siemens SX1 models v1 and v2 (default) basic emulation.
1928The emulaton includes the following elements:
1929
1930@itemize @minus
1931@item
1932Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1933@item
1934ROM and RAM memories (ROM firmware image can be loaded with -pflash)
1935V1
19361 Flash of 16MB and 1 Flash of 8MB
1937V2
19381 Flash of 32MB
1939@item
1940On-chip LCD controller
1941@item
1942On-chip Real Time Clock
1943@item
1944Secure Digital card connected to OMAP MMC/SD host
1945@item
1946Three on-chip UARTs
1947@end itemize
1948
4af39611
PB
1949The "Syborg" Symbian Virtual Platform base model includes the following
1950elements:
1951
1952@itemize @minus
1953@item
1954ARM Cortex-A8 CPU
1955@item
1956Interrupt controller
1957@item
1958Timer
1959@item
1960Real Time Clock
1961@item
1962Keyboard
1963@item
1964Framebuffer
1965@item
1966Touchscreen
1967@item
1968UARTs
1969@end itemize
1970
3f9f3aa1
FB
1971A Linux 2.6 test image is available on the QEMU web site. More
1972information is available in the QEMU mailing-list archive.
9d0a8e6f 1973
d2c639d6
BS
1974@c man begin OPTIONS
1975
1976The following options are specific to the ARM emulation:
1977
1978@table @option
1979
1980@item -semihosting
1981Enable semihosting syscall emulation.
1982
1983On ARM this implements the "Angel" interface.
1984
1985Note that this allows guest direct access to the host filesystem,
1986so should only be used with trusted guest OS.
1987
1988@end table
1989
24d4de45
TS
1990@node ColdFire System emulator
1991@section ColdFire System emulator
7544a042
SW
1992@cindex system emulation (ColdFire)
1993@cindex system emulation (M68K)
209a4e69
PB
1994
1995Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
1996The emulator is able to boot a uClinux kernel.
707e011b
PB
1997
1998The M5208EVB emulation includes the following devices:
1999
2000@itemize @minus
5fafdf24 2001@item
707e011b
PB
2002MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2003@item
2004Three Two on-chip UARTs.
2005@item
2006Fast Ethernet Controller (FEC)
2007@end itemize
2008
2009The AN5206 emulation includes the following devices:
209a4e69
PB
2010
2011@itemize @minus
5fafdf24 2012@item
209a4e69
PB
2013MCF5206 ColdFire V2 Microprocessor.
2014@item
2015Two on-chip UARTs.
2016@end itemize
2017
d2c639d6
BS
2018@c man begin OPTIONS
2019
7544a042 2020The following options are specific to the ColdFire emulation:
d2c639d6
BS
2021
2022@table @option
2023
2024@item -semihosting
2025Enable semihosting syscall emulation.
2026
2027On M68K this implements the "ColdFire GDB" interface used by libgloss.
2028
2029Note that this allows guest direct access to the host filesystem,
2030so should only be used with trusted guest OS.
2031
2032@end table
2033
7544a042
SW
2034@node Cris System emulator
2035@section Cris System emulator
2036@cindex system emulation (Cris)
2037
2038TODO
2039
2040@node Microblaze System emulator
2041@section Microblaze System emulator
2042@cindex system emulation (Microblaze)
2043
2044TODO
2045
2046@node SH4 System emulator
2047@section SH4 System emulator
2048@cindex system emulation (SH4)
2049
2050TODO
2051
5fafdf24
TS
2052@node QEMU User space emulator
2053@chapter QEMU User space emulator
83195237
FB
2054
2055@menu
2056* Supported Operating Systems ::
2057* Linux User space emulator::
2058* Mac OS X/Darwin User space emulator ::
84778508 2059* BSD User space emulator ::
83195237
FB
2060@end menu
2061
2062@node Supported Operating Systems
2063@section Supported Operating Systems
2064
2065The following OS are supported in user space emulation:
2066
2067@itemize @minus
2068@item
4be456f1 2069Linux (referred as qemu-linux-user)
83195237 2070@item
4be456f1 2071Mac OS X/Darwin (referred as qemu-darwin-user)
84778508
BS
2072@item
2073BSD (referred as qemu-bsd-user)
83195237
FB
2074@end itemize
2075
2076@node Linux User space emulator
2077@section Linux User space emulator
386405f7 2078
debc7065
FB
2079@menu
2080* Quick Start::
2081* Wine launch::
2082* Command line options::
79737e4a 2083* Other binaries::
debc7065
FB
2084@end menu
2085
2086@node Quick Start
83195237 2087@subsection Quick Start
df0f11a0 2088
1f673135 2089In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2090itself and all the target (x86) dynamic libraries used by it.
386405f7 2091
1f673135 2092@itemize
386405f7 2093
1f673135
FB
2094@item On x86, you can just try to launch any process by using the native
2095libraries:
386405f7 2096
5fafdf24 2097@example
1f673135
FB
2098qemu-i386 -L / /bin/ls
2099@end example
386405f7 2100
1f673135
FB
2101@code{-L /} tells that the x86 dynamic linker must be searched with a
2102@file{/} prefix.
386405f7 2103
dbcf5e82
TS
2104@item Since QEMU is also a linux process, you can launch qemu with
2105qemu (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2106
5fafdf24 2107@example
1f673135
FB
2108qemu-i386 -L / qemu-i386 -L / /bin/ls
2109@end example
386405f7 2110
1f673135
FB
2111@item On non x86 CPUs, you need first to download at least an x86 glibc
2112(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2113@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2114
1f673135 2115@example
5fafdf24 2116unset LD_LIBRARY_PATH
1f673135 2117@end example
1eb87257 2118
1f673135 2119Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2120
1f673135
FB
2121@example
2122qemu-i386 tests/i386/ls
2123@end example
2124You can look at @file{qemu-binfmt-conf.sh} so that
2125QEMU is automatically launched by the Linux kernel when you try to
2126launch x86 executables. It requires the @code{binfmt_misc} module in the
2127Linux kernel.
1eb87257 2128
1f673135
FB
2129@item The x86 version of QEMU is also included. You can try weird things such as:
2130@example
debc7065
FB
2131qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2132 /usr/local/qemu-i386/bin/ls-i386
1f673135 2133@end example
1eb20527 2134
1f673135 2135@end itemize
1eb20527 2136
debc7065 2137@node Wine launch
83195237 2138@subsection Wine launch
1eb20527 2139
1f673135 2140@itemize
386405f7 2141
1f673135
FB
2142@item Ensure that you have a working QEMU with the x86 glibc
2143distribution (see previous section). In order to verify it, you must be
2144able to do:
386405f7 2145
1f673135
FB
2146@example
2147qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2148@end example
386405f7 2149
1f673135 2150@item Download the binary x86 Wine install
5fafdf24 2151(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2152
1f673135 2153@item Configure Wine on your account. Look at the provided script
debc7065 2154@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2155@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2156
1f673135 2157@item Then you can try the example @file{putty.exe}:
386405f7 2158
1f673135 2159@example
debc7065
FB
2160qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2161 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2162@end example
386405f7 2163
1f673135 2164@end itemize
fd429f2f 2165
debc7065 2166@node Command line options
83195237 2167@subsection Command line options
1eb20527 2168
1f673135 2169@example
68a1c816 2170usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
1f673135 2171@end example
1eb20527 2172
1f673135
FB
2173@table @option
2174@item -h
2175Print the help
3b46e624 2176@item -L path
1f673135
FB
2177Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2178@item -s size
2179Set the x86 stack size in bytes (default=524288)
34a3d239
BS
2180@item -cpu model
2181Select CPU model (-cpu ? for list and additional feature selection)
379f6698
PB
2182@item -B offset
2183Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2184the address region required by guest applications is reserved on the host.
2185This option is currently only supported on some hosts.
68a1c816
PB
2186@item -R size
2187Pre-allocate a guest virtual address space of the given size (in bytes).
2188"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2189@end table
2190
1f673135 2191Debug options:
386405f7 2192
1f673135
FB
2193@table @option
2194@item -d
2195Activate log (logfile=/tmp/qemu.log)
2196@item -p pagesize
2197Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2198@item -g port
2199Wait gdb connection to port
1b530a6d
AJ
2200@item -singlestep
2201Run the emulation in single step mode.
1f673135 2202@end table
386405f7 2203
b01bcae6
AZ
2204Environment variables:
2205
2206@table @env
2207@item QEMU_STRACE
2208Print system calls and arguments similar to the 'strace' program
2209(NOTE: the actual 'strace' program will not work because the user
2210space emulator hasn't implemented ptrace). At the moment this is
2211incomplete. All system calls that don't have a specific argument
2212format are printed with information for six arguments. Many
2213flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2214@end table
b01bcae6 2215
79737e4a 2216@node Other binaries
83195237 2217@subsection Other binaries
79737e4a 2218
7544a042
SW
2219@cindex user mode (Alpha)
2220@command{qemu-alpha} TODO.
2221
2222@cindex user mode (ARM)
2223@command{qemu-armeb} TODO.
2224
2225@cindex user mode (ARM)
79737e4a
PB
2226@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2227binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2228configurations), and arm-uclinux bFLT format binaries.
2229
7544a042
SW
2230@cindex user mode (ColdFire)
2231@cindex user mode (M68K)
e6e5906b
PB
2232@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2233(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2234coldfire uClinux bFLT format binaries.
2235
79737e4a
PB
2236The binary format is detected automatically.
2237
7544a042
SW
2238@cindex user mode (Cris)
2239@command{qemu-cris} TODO.
2240
2241@cindex user mode (i386)
2242@command{qemu-i386} TODO.
2243@command{qemu-x86_64} TODO.
2244
2245@cindex user mode (Microblaze)
2246@command{qemu-microblaze} TODO.
2247
2248@cindex user mode (MIPS)
2249@command{qemu-mips} TODO.
2250@command{qemu-mipsel} TODO.
2251
2252@cindex user mode (PowerPC)
2253@command{qemu-ppc64abi32} TODO.
2254@command{qemu-ppc64} TODO.
2255@command{qemu-ppc} TODO.
2256
2257@cindex user mode (SH4)
2258@command{qemu-sh4eb} TODO.
2259@command{qemu-sh4} TODO.
2260
2261@cindex user mode (SPARC)
34a3d239
BS
2262@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2263
a785e42e
BS
2264@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2265(Sparc64 CPU, 32 bit ABI).
2266
2267@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2268SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2269
83195237
FB
2270@node Mac OS X/Darwin User space emulator
2271@section Mac OS X/Darwin User space emulator
2272
2273@menu
2274* Mac OS X/Darwin Status::
2275* Mac OS X/Darwin Quick Start::
2276* Mac OS X/Darwin Command line options::
2277@end menu
2278
2279@node Mac OS X/Darwin Status
2280@subsection Mac OS X/Darwin Status
2281
2282@itemize @minus
2283@item
2284target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2285@item
2286target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2287@item
dbcf5e82 2288target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
83195237
FB
2289@item
2290target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2291@end itemize
2292
2293[1] If you're host commpage can be executed by qemu.
2294
2295@node Mac OS X/Darwin Quick Start
2296@subsection Quick Start
2297
2298In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2299itself and all the target dynamic libraries used by it. If you don't have the FAT
2300libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2301CD or compile them by hand.
2302
2303@itemize
2304
2305@item On x86, you can just try to launch any process by using the native
2306libraries:
2307
5fafdf24 2308@example
dbcf5e82 2309qemu-i386 /bin/ls
83195237
FB
2310@end example
2311
2312or to run the ppc version of the executable:
2313
5fafdf24 2314@example
dbcf5e82 2315qemu-ppc /bin/ls
83195237
FB
2316@end example
2317
2318@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2319are installed:
2320
5fafdf24 2321@example
dbcf5e82 2322qemu-i386 -L /opt/x86_root/ /bin/ls
83195237
FB
2323@end example
2324
2325@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2326@file{/opt/x86_root/usr/bin/dyld}.
2327
2328@end itemize
2329
2330@node Mac OS X/Darwin Command line options
2331@subsection Command line options
2332
2333@example
dbcf5e82 2334usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
83195237
FB
2335@end example
2336
2337@table @option
2338@item -h
2339Print the help
3b46e624 2340@item -L path
83195237
FB
2341Set the library root path (default=/)
2342@item -s size
2343Set the stack size in bytes (default=524288)
2344@end table
2345
2346Debug options:
2347
2348@table @option
2349@item -d
2350Activate log (logfile=/tmp/qemu.log)
2351@item -p pagesize
2352Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2353@item -singlestep
2354Run the emulation in single step mode.
83195237
FB
2355@end table
2356
84778508
BS
2357@node BSD User space emulator
2358@section BSD User space emulator
2359
2360@menu
2361* BSD Status::
2362* BSD Quick Start::
2363* BSD Command line options::
2364@end menu
2365
2366@node BSD Status
2367@subsection BSD Status
2368
2369@itemize @minus
2370@item
2371target Sparc64 on Sparc64: Some trivial programs work.
2372@end itemize
2373
2374@node BSD Quick Start
2375@subsection Quick Start
2376
2377In order to launch a BSD process, QEMU needs the process executable
2378itself and all the target dynamic libraries used by it.
2379
2380@itemize
2381
2382@item On Sparc64, you can just try to launch any process by using the native
2383libraries:
2384
2385@example
2386qemu-sparc64 /bin/ls
2387@end example
2388
2389@end itemize
2390
2391@node BSD Command line options
2392@subsection Command line options
2393
2394@example
2395usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2396@end example
2397
2398@table @option
2399@item -h
2400Print the help
2401@item -L path
2402Set the library root path (default=/)
2403@item -s size
2404Set the stack size in bytes (default=524288)
2405@item -bsd type
2406Set the type of the emulated BSD Operating system. Valid values are
2407FreeBSD, NetBSD and OpenBSD (default).
2408@end table
2409
2410Debug options:
2411
2412@table @option
2413@item -d
2414Activate log (logfile=/tmp/qemu.log)
2415@item -p pagesize
2416Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2417@item -singlestep
2418Run the emulation in single step mode.
84778508
BS
2419@end table
2420
15a34c63
FB
2421@node compilation
2422@chapter Compilation from the sources
2423
debc7065
FB
2424@menu
2425* Linux/Unix::
2426* Windows::
2427* Cross compilation for Windows with Linux::
2428* Mac OS X::
47eacb4f 2429* Make targets::
debc7065
FB
2430@end menu
2431
2432@node Linux/Unix
7c3fc84d
FB
2433@section Linux/Unix
2434
2435@subsection Compilation
2436
2437First you must decompress the sources:
2438@example
2439cd /tmp
2440tar zxvf qemu-x.y.z.tar.gz
2441cd qemu-x.y.z
2442@end example
2443
2444Then you configure QEMU and build it (usually no options are needed):
2445@example
2446./configure
2447make
2448@end example
2449
2450Then type as root user:
2451@example
2452make install
2453@end example
2454to install QEMU in @file{/usr/local}.
2455
debc7065 2456@node Windows
15a34c63
FB
2457@section Windows
2458
2459@itemize
2460@item Install the current versions of MSYS and MinGW from
2461@url{http://www.mingw.org/}. You can find detailed installation
2462instructions in the download section and the FAQ.
2463
5fafdf24 2464@item Download
15a34c63 2465the MinGW development library of SDL 1.2.x
debc7065 2466(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
d0a96f3d
ST
2467@url{http://www.libsdl.org}. Unpack it in a temporary place and
2468edit the @file{sdl-config} script so that it gives the
15a34c63
FB
2469correct SDL directory when invoked.
2470
d0a96f3d
ST
2471@item Install the MinGW version of zlib and make sure
2472@file{zlib.h} and @file{libz.dll.a} are in
2473MingGW's default header and linker search paths.
2474
15a34c63 2475@item Extract the current version of QEMU.
5fafdf24 2476
15a34c63
FB
2477@item Start the MSYS shell (file @file{msys.bat}).
2478
5fafdf24 2479@item Change to the QEMU directory. Launch @file{./configure} and
15a34c63
FB
2480@file{make}. If you have problems using SDL, verify that
2481@file{sdl-config} can be launched from the MSYS command line.
2482
5fafdf24 2483@item You can install QEMU in @file{Program Files/Qemu} by typing
15a34c63
FB
2484@file{make install}. Don't forget to copy @file{SDL.dll} in
2485@file{Program Files/Qemu}.
2486
2487@end itemize
2488
debc7065 2489@node Cross compilation for Windows with Linux
15a34c63
FB
2490@section Cross compilation for Windows with Linux
2491
2492@itemize
2493@item
2494Install the MinGW cross compilation tools available at
2495@url{http://www.mingw.org/}.
2496
d0a96f3d
ST
2497@item Download
2498the MinGW development library of SDL 1.2.x
2499(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2500@url{http://www.libsdl.org}. Unpack it in a temporary place and
2501edit the @file{sdl-config} script so that it gives the
2502correct SDL directory when invoked. Set up the @code{PATH} environment
2503variable so that @file{sdl-config} can be launched by
15a34c63
FB
2504the QEMU configuration script.
2505
d0a96f3d
ST
2506@item Install the MinGW version of zlib and make sure
2507@file{zlib.h} and @file{libz.dll.a} are in
2508MingGW's default header and linker search paths.
2509
5fafdf24 2510@item
15a34c63
FB
2511Configure QEMU for Windows cross compilation:
2512@example
d0a96f3d
ST
2513PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2514@end example
2515The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2516MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
2517We set the @code{PATH} environment variable to ensure the MingW version of @file{sdl-config} is used and
2518use --cross-prefix to specify the name of the cross compiler.
2519You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/Qemu}.
2520
2521Under Fedora Linux, you can run:
2522@example
2523yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
15a34c63 2524@end example
d0a96f3d 2525to get a suitable cross compilation environment.
15a34c63 2526
5fafdf24 2527@item You can install QEMU in the installation directory by typing
d0a96f3d 2528@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
5fafdf24 2529installation directory.
15a34c63
FB
2530
2531@end itemize
2532
d0a96f3d 2533Wine can be used to launch the resulting qemu.exe compiled for Win32.
15a34c63 2534
debc7065 2535@node Mac OS X
15a34c63
FB
2536@section Mac OS X
2537
2538The Mac OS X patches are not fully merged in QEMU, so you should look
2539at the QEMU mailing list archive to have all the necessary
2540information.
2541
47eacb4f
SW
2542@node Make targets
2543@section Make targets
2544
2545@table @code
2546
2547@item make
2548@item make all
2549Make everything which is typically needed.
2550
2551@item install
2552TODO
2553
2554@item install-doc
2555TODO
2556
2557@item make clean
2558Remove most files which were built during make.
2559
2560@item make distclean
2561Remove everything which was built during make.
2562
2563@item make dvi
2564@item make html
2565@item make info
2566@item make pdf
2567Create documentation in dvi, html, info or pdf format.
2568
2569@item make cscope
2570TODO
2571
2572@item make defconfig
2573(Re-)create some build configuration files.
2574User made changes will be overwritten.
2575
2576@item tar
2577@item tarbin
2578TODO
2579
2580@end table
2581
7544a042
SW
2582@node License
2583@appendix License
2584
2585QEMU is a trademark of Fabrice Bellard.
2586
2587QEMU is released under the GNU General Public License (TODO: add link).
2588Parts of QEMU have specific licenses, see file LICENSE.
2589
2590TODO (refer to file LICENSE, include it, include the GPL?)
2591
debc7065 2592@node Index
7544a042
SW
2593@appendix Index
2594@menu
2595* Concept Index::
2596* Function Index::
2597* Keystroke Index::
2598* Program Index::
2599* Data Type Index::
2600* Variable Index::
2601@end menu
2602
2603@node Concept Index
2604@section Concept Index
2605This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
2606@printindex cp
2607
7544a042
SW
2608@node Function Index
2609@section Function Index
2610This index could be used for command line options and monitor functions.
2611@printindex fn
2612
2613@node Keystroke Index
2614@section Keystroke Index
2615
2616This is a list of all keystrokes which have a special function
2617in system emulation.
2618
2619@printindex ky
2620
2621@node Program Index
2622@section Program Index
2623@printindex pg
2624
2625@node Data Type Index
2626@section Data Type Index
2627
2628This index could be used for qdev device names and options.
2629
2630@printindex tp
2631
2632@node Variable Index
2633@section Variable Index
2634@printindex vr
2635
debc7065 2636@bye