]> git.proxmox.com Git - qemu.git/blame - qemu-doc.texi
fdc: fix FD_SR0_SEEK for non-DMA transfers and multi sectors transfers
[qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
e080e785
SW
4
5@documentlanguage en
6@documentencoding UTF-8
7
8f40c388 8@settitle QEMU Emulator User Documentation
debc7065
FB
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
386405f7 12
a1a32b05
SW
13@ifinfo
14@direntry
15* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
0806e3f6 19@iftex
386405f7
FB
20@titlepage
21@sp 7
8f40c388 22@center @titlefont{QEMU Emulator}
debc7065
FB
23@sp 1
24@center @titlefont{User Documentation}
386405f7
FB
25@sp 3
26@end titlepage
0806e3f6 27@end iftex
386405f7 28
debc7065
FB
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
35* Installation::
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
83195237 38* QEMU User space emulator::
debc7065 39* compilation:: Compilation from the sources
7544a042 40* License::
debc7065
FB
41* Index::
42@end menu
43@end ifnottex
44
45@contents
46
47@node Introduction
386405f7
FB
48@chapter Introduction
49
debc7065
FB
50@menu
51* intro_features:: Features
52@end menu
53
54@node intro_features
322d0c66 55@section Features
386405f7 56
1f673135
FB
57QEMU is a FAST! processor emulator using dynamic translation to
58achieve good emulation speed.
1eb20527
FB
59
60QEMU has two operating modes:
0806e3f6 61
d7e5edca 62@itemize
7544a042 63@cindex operating modes
0806e3f6 64
5fafdf24 65@item
7544a042 66@cindex system emulation
1f673135 67Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
1eb20527 71
5fafdf24 72@item
7544a042 73@cindex user mode emulation
83195237
FB
74User mode emulation. In this mode, QEMU can launch
75processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77to ease cross-compilation and cross-debugging.
1eb20527
FB
78
79@end itemize
80
e1b4382c 81QEMU can run without a host kernel driver and yet gives acceptable
5fafdf24 82performance.
322d0c66 83
52c00a5f
FB
84For system emulation, the following hardware targets are supported:
85@itemize
7544a042
SW
86@cindex emulated target systems
87@cindex supported target systems
9d0a8e6f 88@item PC (x86 or x86_64 processor)
3f9f3aa1 89@item ISA PC (old style PC without PCI bus)
52c00a5f 90@item PREP (PowerPC processor)
d45952a0 91@item G3 Beige PowerMac (PowerPC processor)
9d0a8e6f 92@item Mac99 PowerMac (PowerPC processor, in progress)
ee76f82e 93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
c7ba218d 94@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
d9aedc32 95@item Malta board (32-bit and 64-bit MIPS processors)
88cb0a02 96@item MIPS Magnum (64-bit MIPS processor)
9ee6e8bb
PB
97@item ARM Integrator/CP (ARM)
98@item ARM Versatile baseboard (ARM)
0ef849d7 99@item ARM RealView Emulation/Platform baseboard (ARM)
ef4c3856 100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
9ee6e8bb
PB
101@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 103@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 104@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 105@item Palm Tungsten|E PDA (OMAP310 processor)
c30bb264 106@item N800 and N810 tablets (OMAP2420 processor)
57cd6e97 107@item MusicPal (MV88W8618 ARM processor)
ef4c3856
AZ
108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109@item Siemens SX1 smartphone (OMAP310 processor)
48c50a62
EI
110@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
3aeaea65 112@item Avnet LX60/LX110/LX200 boards (Xtensa)
52c00a5f 113@end itemize
386405f7 114
7544a042
SW
115@cindex supported user mode targets
116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
0806e3f6 119
debc7065 120@node Installation
5b9f457a
FB
121@chapter Installation
122
15a34c63
FB
123If you want to compile QEMU yourself, see @ref{compilation}.
124
debc7065
FB
125@menu
126* install_linux:: Linux
127* install_windows:: Windows
128* install_mac:: Macintosh
129@end menu
130
131@node install_linux
1f673135 132@section Linux
7544a042 133@cindex installation (Linux)
1f673135 134
7c3fc84d
FB
135If a precompiled package is available for your distribution - you just
136have to install it. Otherwise, see @ref{compilation}.
5b9f457a 137
debc7065 138@node install_windows
1f673135 139@section Windows
7544a042 140@cindex installation (Windows)
8cd0ac2f 141
15a34c63 142Download the experimental binary installer at
debc7065 143@url{http://www.free.oszoo.org/@/download.html}.
7544a042 144TODO (no longer available)
d691f669 145
debc7065 146@node install_mac
1f673135 147@section Mac OS X
d691f669 148
15a34c63 149Download the experimental binary installer at
debc7065 150@url{http://www.free.oszoo.org/@/download.html}.
7544a042 151TODO (no longer available)
df0f11a0 152
debc7065 153@node QEMU PC System emulator
3f9f3aa1 154@chapter QEMU PC System emulator
7544a042 155@cindex system emulation (PC)
1eb20527 156
debc7065
FB
157@menu
158* pcsys_introduction:: Introduction
159* pcsys_quickstart:: Quick Start
160* sec_invocation:: Invocation
161* pcsys_keys:: Keys
162* pcsys_monitor:: QEMU Monitor
163* disk_images:: Disk Images
164* pcsys_network:: Network emulation
576fd0a1 165* pcsys_other_devs:: Other Devices
debc7065
FB
166* direct_linux_boot:: Direct Linux Boot
167* pcsys_usb:: USB emulation
f858dcae 168* vnc_security:: VNC security
debc7065
FB
169* gdb_usage:: GDB usage
170* pcsys_os_specific:: Target OS specific information
171@end menu
172
173@node pcsys_introduction
0806e3f6
FB
174@section Introduction
175
176@c man begin DESCRIPTION
177
3f9f3aa1
FB
178The QEMU PC System emulator simulates the
179following peripherals:
0806e3f6
FB
180
181@itemize @minus
5fafdf24 182@item
15a34c63 183i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 184@item
15a34c63
FB
185Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186extensions (hardware level, including all non standard modes).
0806e3f6
FB
187@item
188PS/2 mouse and keyboard
5fafdf24 189@item
15a34c63 1902 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
191@item
192Floppy disk
5fafdf24 193@item
3a2eeac0 194PCI and ISA network adapters
0806e3f6 195@item
05d5818c
FB
196Serial ports
197@item
c0fe3827
FB
198Creative SoundBlaster 16 sound card
199@item
200ENSONIQ AudioPCI ES1370 sound card
201@item
e5c9a13e
AZ
202Intel 82801AA AC97 Audio compatible sound card
203@item
7d72e762
GH
204Intel HD Audio Controller and HDA codec
205@item
2d983446 206Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 207@item
26463dbc
AZ
208Gravis Ultrasound GF1 sound card
209@item
cc53d26d 210CS4231A compatible sound card
211@item
b389dbfb 212PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
213@end itemize
214
3f9f3aa1
FB
215SMP is supported with up to 255 CPUs.
216
1d1f8c33 217Note that adlib, gus and cs4231a are only available when QEMU was
218configured with --audio-card-list option containing the name(s) of
e5178e8d 219required card(s).
c0fe3827 220
15a34c63
FB
221QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
222VGA BIOS.
223
c0fe3827
FB
224QEMU uses YM3812 emulation by Tatsuyuki Satoh.
225
2d983446 226QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 227by Tibor "TS" Schütz.
423d65f4 228
1a1a0e20 229Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 230QEMU must be told to not have parallel ports to have working GUS.
720036a5 231
232@example
3804da9d 233qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 234@end example
235
236Alternatively:
237@example
3804da9d 238qemu-system-i386 dos.img -device gus,irq=5
720036a5 239@end example
240
241Or some other unclaimed IRQ.
242
cc53d26d 243CS4231A is the chip used in Windows Sound System and GUSMAX products
244
0806e3f6
FB
245@c man end
246
debc7065 247@node pcsys_quickstart
1eb20527 248@section Quick Start
7544a042 249@cindex quick start
1eb20527 250
285dc330 251Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
252
253@example
3804da9d 254qemu-system-i386 linux.img
0806e3f6
FB
255@end example
256
257Linux should boot and give you a prompt.
258
6cc721cf 259@node sec_invocation
ec410fc9
FB
260@section Invocation
261
262@example
0806e3f6 263@c man begin SYNOPSIS
3804da9d 264usage: qemu-system-i386 [options] [@var{disk_image}]
0806e3f6 265@c man end
ec410fc9
FB
266@end example
267
0806e3f6 268@c man begin OPTIONS
d2c639d6
BS
269@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
270targets do not need a disk image.
ec410fc9 271
5824d651 272@include qemu-options.texi
ec410fc9 273
3e11db9a
FB
274@c man end
275
debc7065 276@node pcsys_keys
3e11db9a
FB
277@section Keys
278
279@c man begin OPTIONS
280
de1db2a1
BH
281During the graphical emulation, you can use special key combinations to change
282modes. The default key mappings are shown below, but if you use @code{-alt-grab}
283then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
284@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
285
a1b74fe8 286@table @key
f9859310 287@item Ctrl-Alt-f
7544a042 288@kindex Ctrl-Alt-f
a1b74fe8 289Toggle full screen
a0a821a4 290
d6a65ba3
JK
291@item Ctrl-Alt-+
292@kindex Ctrl-Alt-+
293Enlarge the screen
294
295@item Ctrl-Alt--
296@kindex Ctrl-Alt--
297Shrink the screen
298
c4a735f9 299@item Ctrl-Alt-u
7544a042 300@kindex Ctrl-Alt-u
c4a735f9 301Restore the screen's un-scaled dimensions
302
f9859310 303@item Ctrl-Alt-n
7544a042 304@kindex Ctrl-Alt-n
a0a821a4
FB
305Switch to virtual console 'n'. Standard console mappings are:
306@table @emph
307@item 1
308Target system display
309@item 2
310Monitor
311@item 3
312Serial port
a1b74fe8
FB
313@end table
314
f9859310 315@item Ctrl-Alt
7544a042 316@kindex Ctrl-Alt
a0a821a4
FB
317Toggle mouse and keyboard grab.
318@end table
319
7544a042
SW
320@kindex Ctrl-Up
321@kindex Ctrl-Down
322@kindex Ctrl-PageUp
323@kindex Ctrl-PageDown
3e11db9a
FB
324In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
325@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
326
7544a042 327@kindex Ctrl-a h
a0a821a4
FB
328During emulation, if you are using the @option{-nographic} option, use
329@key{Ctrl-a h} to get terminal commands:
ec410fc9
FB
330
331@table @key
a1b74fe8 332@item Ctrl-a h
7544a042 333@kindex Ctrl-a h
d2c639d6 334@item Ctrl-a ?
7544a042 335@kindex Ctrl-a ?
ec410fc9 336Print this help
3b46e624 337@item Ctrl-a x
7544a042 338@kindex Ctrl-a x
366dfc52 339Exit emulator
3b46e624 340@item Ctrl-a s
7544a042 341@kindex Ctrl-a s
1f47a922 342Save disk data back to file (if -snapshot)
20d8a3ed 343@item Ctrl-a t
7544a042 344@kindex Ctrl-a t
d2c639d6 345Toggle console timestamps
a1b74fe8 346@item Ctrl-a b
7544a042 347@kindex Ctrl-a b
1f673135 348Send break (magic sysrq in Linux)
a1b74fe8 349@item Ctrl-a c
7544a042 350@kindex Ctrl-a c
1f673135 351Switch between console and monitor
a1b74fe8 352@item Ctrl-a Ctrl-a
7544a042 353@kindex Ctrl-a a
a1b74fe8 354Send Ctrl-a
ec410fc9 355@end table
0806e3f6
FB
356@c man end
357
358@ignore
359
1f673135
FB
360@c man begin SEEALSO
361The HTML documentation of QEMU for more precise information and Linux
362user mode emulator invocation.
363@c man end
364
365@c man begin AUTHOR
366Fabrice Bellard
367@c man end
368
369@end ignore
370
debc7065 371@node pcsys_monitor
1f673135 372@section QEMU Monitor
7544a042 373@cindex QEMU monitor
1f673135
FB
374
375The QEMU monitor is used to give complex commands to the QEMU
376emulator. You can use it to:
377
378@itemize @minus
379
380@item
e598752a 381Remove or insert removable media images
89dfe898 382(such as CD-ROM or floppies).
1f673135 383
5fafdf24 384@item
1f673135
FB
385Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
386from a disk file.
387
388@item Inspect the VM state without an external debugger.
389
390@end itemize
391
392@subsection Commands
393
394The following commands are available:
395
2313086a 396@include qemu-monitor.texi
0806e3f6 397
1f673135
FB
398@subsection Integer expressions
399
400The monitor understands integers expressions for every integer
401argument. You can use register names to get the value of specifics
402CPU registers by prefixing them with @emph{$}.
ec410fc9 403
1f47a922
FB
404@node disk_images
405@section Disk Images
406
acd935ef
FB
407Since version 0.6.1, QEMU supports many disk image formats, including
408growable disk images (their size increase as non empty sectors are
13a2e80f
FB
409written), compressed and encrypted disk images. Version 0.8.3 added
410the new qcow2 disk image format which is essential to support VM
411snapshots.
1f47a922 412
debc7065
FB
413@menu
414* disk_images_quickstart:: Quick start for disk image creation
415* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 416* vm_snapshots:: VM snapshots
debc7065 417* qemu_img_invocation:: qemu-img Invocation
975b092b 418* qemu_nbd_invocation:: qemu-nbd Invocation
19cb3738 419* host_drives:: Using host drives
debc7065 420* disk_images_fat_images:: Virtual FAT disk images
75818250 421* disk_images_nbd:: NBD access
42af9c30 422* disk_images_sheepdog:: Sheepdog disk images
00984e39 423* disk_images_iscsi:: iSCSI LUNs
8809e289 424* disk_images_gluster:: GlusterFS disk images
debc7065
FB
425@end menu
426
427@node disk_images_quickstart
acd935ef
FB
428@subsection Quick start for disk image creation
429
430You can create a disk image with the command:
1f47a922 431@example
acd935ef 432qemu-img create myimage.img mysize
1f47a922 433@end example
acd935ef
FB
434where @var{myimage.img} is the disk image filename and @var{mysize} is its
435size in kilobytes. You can add an @code{M} suffix to give the size in
436megabytes and a @code{G} suffix for gigabytes.
437
debc7065 438See @ref{qemu_img_invocation} for more information.
1f47a922 439
debc7065 440@node disk_images_snapshot_mode
1f47a922
FB
441@subsection Snapshot mode
442
443If you use the option @option{-snapshot}, all disk images are
444considered as read only. When sectors in written, they are written in
445a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
446write back to the raw disk images by using the @code{commit} monitor
447command (or @key{C-a s} in the serial console).
1f47a922 448
13a2e80f
FB
449@node vm_snapshots
450@subsection VM snapshots
451
452VM snapshots are snapshots of the complete virtual machine including
453CPU state, RAM, device state and the content of all the writable
454disks. In order to use VM snapshots, you must have at least one non
455removable and writable block device using the @code{qcow2} disk image
456format. Normally this device is the first virtual hard drive.
457
458Use the monitor command @code{savevm} to create a new VM snapshot or
459replace an existing one. A human readable name can be assigned to each
19d36792 460snapshot in addition to its numerical ID.
13a2e80f
FB
461
462Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
463a VM snapshot. @code{info snapshots} lists the available snapshots
464with their associated information:
465
466@example
467(qemu) info snapshots
468Snapshot devices: hda
469Snapshot list (from hda):
470ID TAG VM SIZE DATE VM CLOCK
4711 start 41M 2006-08-06 12:38:02 00:00:14.954
4722 40M 2006-08-06 12:43:29 00:00:18.633
4733 msys 40M 2006-08-06 12:44:04 00:00:23.514
474@end example
475
476A VM snapshot is made of a VM state info (its size is shown in
477@code{info snapshots}) and a snapshot of every writable disk image.
478The VM state info is stored in the first @code{qcow2} non removable
479and writable block device. The disk image snapshots are stored in
480every disk image. The size of a snapshot in a disk image is difficult
481to evaluate and is not shown by @code{info snapshots} because the
482associated disk sectors are shared among all the snapshots to save
19d36792
FB
483disk space (otherwise each snapshot would need a full copy of all the
484disk images).
13a2e80f
FB
485
486When using the (unrelated) @code{-snapshot} option
487(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
488but they are deleted as soon as you exit QEMU.
489
490VM snapshots currently have the following known limitations:
491@itemize
5fafdf24 492@item
13a2e80f
FB
493They cannot cope with removable devices if they are removed or
494inserted after a snapshot is done.
5fafdf24 495@item
13a2e80f
FB
496A few device drivers still have incomplete snapshot support so their
497state is not saved or restored properly (in particular USB).
498@end itemize
499
acd935ef
FB
500@node qemu_img_invocation
501@subsection @code{qemu-img} Invocation
1f47a922 502
acd935ef 503@include qemu-img.texi
05efe46e 504
975b092b
TS
505@node qemu_nbd_invocation
506@subsection @code{qemu-nbd} Invocation
507
508@include qemu-nbd.texi
509
19cb3738
FB
510@node host_drives
511@subsection Using host drives
512
513In addition to disk image files, QEMU can directly access host
514devices. We describe here the usage for QEMU version >= 0.8.3.
515
516@subsubsection Linux
517
518On Linux, you can directly use the host device filename instead of a
4be456f1 519disk image filename provided you have enough privileges to access
19cb3738
FB
520it. For example, use @file{/dev/cdrom} to access to the CDROM or
521@file{/dev/fd0} for the floppy.
522
f542086d 523@table @code
19cb3738
FB
524@item CD
525You can specify a CDROM device even if no CDROM is loaded. QEMU has
526specific code to detect CDROM insertion or removal. CDROM ejection by
527the guest OS is supported. Currently only data CDs are supported.
528@item Floppy
529You can specify a floppy device even if no floppy is loaded. Floppy
530removal is currently not detected accurately (if you change floppy
531without doing floppy access while the floppy is not loaded, the guest
532OS will think that the same floppy is loaded).
533@item Hard disks
534Hard disks can be used. Normally you must specify the whole disk
535(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
536see it as a partitioned disk. WARNING: unless you know what you do, it
537is better to only make READ-ONLY accesses to the hard disk otherwise
538you may corrupt your host data (use the @option{-snapshot} command
539line option or modify the device permissions accordingly).
540@end table
541
542@subsubsection Windows
543
01781963
FB
544@table @code
545@item CD
4be456f1 546The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
547alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
548supported as an alias to the first CDROM drive.
19cb3738 549
e598752a 550Currently there is no specific code to handle removable media, so it
19cb3738
FB
551is better to use the @code{change} or @code{eject} monitor commands to
552change or eject media.
01781963 553@item Hard disks
89dfe898 554Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
555where @var{N} is the drive number (0 is the first hard disk).
556
557WARNING: unless you know what you do, it is better to only make
558READ-ONLY accesses to the hard disk otherwise you may corrupt your
559host data (use the @option{-snapshot} command line so that the
560modifications are written in a temporary file).
561@end table
562
19cb3738
FB
563
564@subsubsection Mac OS X
565
5fafdf24 566@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 567
e598752a 568Currently there is no specific code to handle removable media, so it
19cb3738
FB
569is better to use the @code{change} or @code{eject} monitor commands to
570change or eject media.
571
debc7065 572@node disk_images_fat_images
2c6cadd4
FB
573@subsection Virtual FAT disk images
574
575QEMU can automatically create a virtual FAT disk image from a
576directory tree. In order to use it, just type:
577
5fafdf24 578@example
3804da9d 579qemu-system-i386 linux.img -hdb fat:/my_directory
2c6cadd4
FB
580@end example
581
582Then you access access to all the files in the @file{/my_directory}
583directory without having to copy them in a disk image or to export
584them via SAMBA or NFS. The default access is @emph{read-only}.
585
586Floppies can be emulated with the @code{:floppy:} option:
587
5fafdf24 588@example
3804da9d 589qemu-system-i386 linux.img -fda fat:floppy:/my_directory
2c6cadd4
FB
590@end example
591
592A read/write support is available for testing (beta stage) with the
593@code{:rw:} option:
594
5fafdf24 595@example
3804da9d 596qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
2c6cadd4
FB
597@end example
598
599What you should @emph{never} do:
600@itemize
601@item use non-ASCII filenames ;
602@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
603@item expect it to work when loadvm'ing ;
604@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
605@end itemize
606
75818250
TS
607@node disk_images_nbd
608@subsection NBD access
609
610QEMU can access directly to block device exported using the Network Block Device
611protocol.
612
613@example
1d7d2a9d 614qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
75818250
TS
615@end example
616
617If the NBD server is located on the same host, you can use an unix socket instead
618of an inet socket:
619
620@example
1d7d2a9d 621qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
622@end example
623
624In this case, the block device must be exported using qemu-nbd:
625
626@example
627qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
628@end example
629
630The use of qemu-nbd allows to share a disk between several guests:
631@example
632qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
633@end example
634
1d7d2a9d 635@noindent
75818250
TS
636and then you can use it with two guests:
637@example
1d7d2a9d
PB
638qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
639qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
640@end example
641
1d7d2a9d
PB
642If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
643own embedded NBD server), you must specify an export name in the URI:
1d45f8b5 644@example
1d7d2a9d
PB
645qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
646qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
647@end example
648
649The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
650also available. Here are some example of the older syntax:
651@example
652qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
653qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
654qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
1d45f8b5
LV
655@end example
656
42af9c30
MK
657@node disk_images_sheepdog
658@subsection Sheepdog disk images
659
660Sheepdog is a distributed storage system for QEMU. It provides highly
661available block level storage volumes that can be attached to
662QEMU-based virtual machines.
663
664You can create a Sheepdog disk image with the command:
665@example
666qemu-img create sheepdog:@var{image} @var{size}
667@end example
668where @var{image} is the Sheepdog image name and @var{size} is its
669size.
670
671To import the existing @var{filename} to Sheepdog, you can use a
672convert command.
673@example
674qemu-img convert @var{filename} sheepdog:@var{image}
675@end example
676
677You can boot from the Sheepdog disk image with the command:
678@example
3804da9d 679qemu-system-i386 sheepdog:@var{image}
42af9c30
MK
680@end example
681
682You can also create a snapshot of the Sheepdog image like qcow2.
683@example
684qemu-img snapshot -c @var{tag} sheepdog:@var{image}
685@end example
686where @var{tag} is a tag name of the newly created snapshot.
687
688To boot from the Sheepdog snapshot, specify the tag name of the
689snapshot.
690@example
3804da9d 691qemu-system-i386 sheepdog:@var{image}:@var{tag}
42af9c30
MK
692@end example
693
694You can create a cloned image from the existing snapshot.
695@example
696qemu-img create -b sheepdog:@var{base}:@var{tag} sheepdog:@var{image}
697@end example
698where @var{base} is a image name of the source snapshot and @var{tag}
699is its tag name.
700
701If the Sheepdog daemon doesn't run on the local host, you need to
702specify one of the Sheepdog servers to connect to.
703@example
704qemu-img create sheepdog:@var{hostname}:@var{port}:@var{image} @var{size}
3804da9d 705qemu-system-i386 sheepdog:@var{hostname}:@var{port}:@var{image}
42af9c30
MK
706@end example
707
00984e39
RS
708@node disk_images_iscsi
709@subsection iSCSI LUNs
710
711iSCSI is a popular protocol used to access SCSI devices across a computer
712network.
713
714There are two different ways iSCSI devices can be used by QEMU.
715
716The first method is to mount the iSCSI LUN on the host, and make it appear as
717any other ordinary SCSI device on the host and then to access this device as a
718/dev/sd device from QEMU. How to do this differs between host OSes.
719
720The second method involves using the iSCSI initiator that is built into
721QEMU. This provides a mechanism that works the same way regardless of which
722host OS you are running QEMU on. This section will describe this second method
723of using iSCSI together with QEMU.
724
725In QEMU, iSCSI devices are described using special iSCSI URLs
726
727@example
728URL syntax:
729iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
730@end example
731
732Username and password are optional and only used if your target is set up
733using CHAP authentication for access control.
734Alternatively the username and password can also be set via environment
735variables to have these not show up in the process list
736
737@example
738export LIBISCSI_CHAP_USERNAME=<username>
739export LIBISCSI_CHAP_PASSWORD=<password>
740iscsi://<host>/<target-iqn-name>/<lun>
741@end example
742
f9dadc98
RS
743Various session related parameters can be set via special options, either
744in a configuration file provided via '-readconfig' or directly on the
745command line.
746
31459f46
RS
747If the initiator-name is not specified qemu will use a default name
748of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
749virtual machine.
750
751
f9dadc98
RS
752@example
753Setting a specific initiator name to use when logging in to the target
754-iscsi initiator-name=iqn.qemu.test:my-initiator
755@end example
756
757@example
758Controlling which type of header digest to negotiate with the target
759-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
760@end example
761
762These can also be set via a configuration file
763@example
764[iscsi]
765 user = "CHAP username"
766 password = "CHAP password"
767 initiator-name = "iqn.qemu.test:my-initiator"
768 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
769 header-digest = "CRC32C"
770@end example
771
772
773Setting the target name allows different options for different targets
774@example
775[iscsi "iqn.target.name"]
776 user = "CHAP username"
777 password = "CHAP password"
778 initiator-name = "iqn.qemu.test:my-initiator"
779 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
780 header-digest = "CRC32C"
781@end example
782
783
784Howto use a configuration file to set iSCSI configuration options:
785@example
786cat >iscsi.conf <<EOF
787[iscsi]
788 user = "me"
789 password = "my password"
790 initiator-name = "iqn.qemu.test:my-initiator"
791 header-digest = "CRC32C"
792EOF
793
794qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
795 -readconfig iscsi.conf
796@end example
797
798
00984e39
RS
799Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
800@example
801This example shows how to set up an iSCSI target with one CDROM and one DISK
802using the Linux STGT software target. This target is available on Red Hat based
803systems as the package 'scsi-target-utils'.
804
805tgtd --iscsi portal=127.0.0.1:3260
806tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
807tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
808 -b /IMAGES/disk.img --device-type=disk
809tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
810 -b /IMAGES/cd.iso --device-type=cd
811tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
812
f9dadc98
RS
813qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
814 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
00984e39
RS
815 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
816@end example
817
8809e289
BR
818@node disk_images_gluster
819@subsection GlusterFS disk images
00984e39 820
8809e289
BR
821GlusterFS is an user space distributed file system.
822
823You can boot from the GlusterFS disk image with the command:
824@example
825qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
826@end example
827
828@var{gluster} is the protocol.
829
830@var{transport} specifies the transport type used to connect to gluster
831management daemon (glusterd). Valid transport types are
832tcp, unix and rdma. If a transport type isn't specified, then tcp
833type is assumed.
834
835@var{server} specifies the server where the volume file specification for
836the given volume resides. This can be either hostname, ipv4 address
837or ipv6 address. ipv6 address needs to be within square brackets [ ].
838If transport type is unix, then @var{server} field should not be specifed.
839Instead @var{socket} field needs to be populated with the path to unix domain
840socket.
841
842@var{port} is the port number on which glusterd is listening. This is optional
843and if not specified, QEMU will send 0 which will make gluster to use the
844default port. If the transport type is unix, then @var{port} should not be
845specified.
846
847@var{volname} is the name of the gluster volume which contains the disk image.
848
849@var{image} is the path to the actual disk image that resides on gluster volume.
850
851You can create a GlusterFS disk image with the command:
852@example
853qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
854@end example
855
856Examples
857@example
858qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
859qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
860qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
861qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
862qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
863qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
864qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
865qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
866@end example
00984e39 867
debc7065 868@node pcsys_network
9d4fb82e
FB
869@section Network emulation
870
4be456f1 871QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
872target) and can connect them to an arbitrary number of Virtual Local
873Area Networks (VLANs). Host TAP devices can be connected to any QEMU
874VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 875simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
876network stack can replace the TAP device to have a basic network
877connection.
878
879@subsection VLANs
9d4fb82e 880
41d03949
FB
881QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
882connection between several network devices. These devices can be for
883example QEMU virtual Ethernet cards or virtual Host ethernet devices
884(TAP devices).
9d4fb82e 885
41d03949
FB
886@subsection Using TAP network interfaces
887
888This is the standard way to connect QEMU to a real network. QEMU adds
889a virtual network device on your host (called @code{tapN}), and you
890can then configure it as if it was a real ethernet card.
9d4fb82e 891
8f40c388
FB
892@subsubsection Linux host
893
9d4fb82e
FB
894As an example, you can download the @file{linux-test-xxx.tar.gz}
895archive and copy the script @file{qemu-ifup} in @file{/etc} and
896configure properly @code{sudo} so that the command @code{ifconfig}
897contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 898that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
899device @file{/dev/net/tun} must be present.
900
ee0f4751
FB
901See @ref{sec_invocation} to have examples of command lines using the
902TAP network interfaces.
9d4fb82e 903
8f40c388
FB
904@subsubsection Windows host
905
906There is a virtual ethernet driver for Windows 2000/XP systems, called
907TAP-Win32. But it is not included in standard QEMU for Windows,
908so you will need to get it separately. It is part of OpenVPN package,
909so download OpenVPN from : @url{http://openvpn.net/}.
910
9d4fb82e
FB
911@subsection Using the user mode network stack
912
41d03949
FB
913By using the option @option{-net user} (default configuration if no
914@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 915network stack (you don't need root privilege to use the virtual
41d03949 916network). The virtual network configuration is the following:
9d4fb82e
FB
917
918@example
919
41d03949
FB
920 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
921 | (10.0.2.2)
9d4fb82e 922 |
2518bd0d 923 ----> DNS server (10.0.2.3)
3b46e624 924 |
2518bd0d 925 ----> SMB server (10.0.2.4)
9d4fb82e
FB
926@end example
927
928The QEMU VM behaves as if it was behind a firewall which blocks all
929incoming connections. You can use a DHCP client to automatically
41d03949
FB
930configure the network in the QEMU VM. The DHCP server assign addresses
931to the hosts starting from 10.0.2.15.
9d4fb82e
FB
932
933In order to check that the user mode network is working, you can ping
934the address 10.0.2.2 and verify that you got an address in the range
93510.0.2.x from the QEMU virtual DHCP server.
936
b415a407 937Note that @code{ping} is not supported reliably to the internet as it
4be456f1 938would require root privileges. It means you can only ping the local
b415a407
FB
939router (10.0.2.2).
940
9bf05444
FB
941When using the built-in TFTP server, the router is also the TFTP
942server.
943
944When using the @option{-redir} option, TCP or UDP connections can be
945redirected from the host to the guest. It allows for example to
946redirect X11, telnet or SSH connections.
443f1376 947
41d03949
FB
948@subsection Connecting VLANs between QEMU instances
949
950Using the @option{-net socket} option, it is possible to make VLANs
951that span several QEMU instances. See @ref{sec_invocation} to have a
952basic example.
953
576fd0a1 954@node pcsys_other_devs
6cbf4c8c
CM
955@section Other Devices
956
957@subsection Inter-VM Shared Memory device
958
959With KVM enabled on a Linux host, a shared memory device is available. Guests
960map a POSIX shared memory region into the guest as a PCI device that enables
961zero-copy communication to the application level of the guests. The basic
962syntax is:
963
964@example
3804da9d 965qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
6cbf4c8c
CM
966@end example
967
968If desired, interrupts can be sent between guest VMs accessing the same shared
969memory region. Interrupt support requires using a shared memory server and
970using a chardev socket to connect to it. The code for the shared memory server
971is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
972memory server is:
973
974@example
3804da9d
SW
975qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
976 [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
977qemu-system-i386 -chardev socket,path=<path>,id=<id>
6cbf4c8c
CM
978@end example
979
980When using the server, the guest will be assigned a VM ID (>=0) that allows guests
981using the same server to communicate via interrupts. Guests can read their
982VM ID from a device register (see example code). Since receiving the shared
983memory region from the server is asynchronous, there is a (small) chance the
984guest may boot before the shared memory is attached. To allow an application
985to ensure shared memory is attached, the VM ID register will return -1 (an
986invalid VM ID) until the memory is attached. Once the shared memory is
987attached, the VM ID will return the guest's valid VM ID. With these semantics,
988the guest application can check to ensure the shared memory is attached to the
989guest before proceeding.
990
991The @option{role} argument can be set to either master or peer and will affect
992how the shared memory is migrated. With @option{role=master}, the guest will
993copy the shared memory on migration to the destination host. With
994@option{role=peer}, the guest will not be able to migrate with the device attached.
995With the @option{peer} case, the device should be detached and then reattached
996after migration using the PCI hotplug support.
997
9d4fb82e
FB
998@node direct_linux_boot
999@section Direct Linux Boot
1f673135
FB
1000
1001This section explains how to launch a Linux kernel inside QEMU without
1002having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1003kernel testing.
1f673135 1004
ee0f4751 1005The syntax is:
1f673135 1006@example
3804da9d 1007qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1008@end example
1009
ee0f4751
FB
1010Use @option{-kernel} to provide the Linux kernel image and
1011@option{-append} to give the kernel command line arguments. The
1012@option{-initrd} option can be used to provide an INITRD image.
1f673135 1013
ee0f4751
FB
1014When using the direct Linux boot, a disk image for the first hard disk
1015@file{hda} is required because its boot sector is used to launch the
1016Linux kernel.
1f673135 1017
ee0f4751
FB
1018If you do not need graphical output, you can disable it and redirect
1019the virtual serial port and the QEMU monitor to the console with the
1020@option{-nographic} option. The typical command line is:
1f673135 1021@example
3804da9d
SW
1022qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1023 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1024@end example
1025
ee0f4751
FB
1026Use @key{Ctrl-a c} to switch between the serial console and the
1027monitor (@pxref{pcsys_keys}).
1f673135 1028
debc7065 1029@node pcsys_usb
b389dbfb
FB
1030@section USB emulation
1031
0aff66b5
PB
1032QEMU emulates a PCI UHCI USB controller. You can virtually plug
1033virtual USB devices or real host USB devices (experimental, works only
071c9394 1034on Linux hosts). QEMU will automatically create and connect virtual USB hubs
f542086d 1035as necessary to connect multiple USB devices.
b389dbfb 1036
0aff66b5
PB
1037@menu
1038* usb_devices::
1039* host_usb_devices::
1040@end menu
1041@node usb_devices
1042@subsection Connecting USB devices
b389dbfb 1043
0aff66b5
PB
1044USB devices can be connected with the @option{-usbdevice} commandline option
1045or the @code{usb_add} monitor command. Available devices are:
b389dbfb 1046
db380c06
AZ
1047@table @code
1048@item mouse
0aff66b5 1049Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 1050@item tablet
c6d46c20 1051Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 1052This means QEMU is able to report the mouse position without having
0aff66b5 1053to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 1054@item disk:@var{file}
0aff66b5 1055Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 1056@item host:@var{bus.addr}
0aff66b5
PB
1057Pass through the host device identified by @var{bus.addr}
1058(Linux only)
db380c06 1059@item host:@var{vendor_id:product_id}
0aff66b5
PB
1060Pass through the host device identified by @var{vendor_id:product_id}
1061(Linux only)
db380c06 1062@item wacom-tablet
f6d2a316
AZ
1063Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1064above but it can be used with the tslib library because in addition to touch
1065coordinates it reports touch pressure.
db380c06 1066@item keyboard
47b2d338 1067Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
1068@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1069Serial converter. This emulates an FTDI FT232BM chip connected to host character
1070device @var{dev}. The available character devices are the same as for the
1071@code{-serial} option. The @code{vendorid} and @code{productid} options can be
0d6753e5 1072used to override the default 0403:6001. For instance,
db380c06
AZ
1073@example
1074usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1075@end example
1076will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1077serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
1078@item braille
1079Braille device. This will use BrlAPI to display the braille output on a real
1080or fake device.
9ad97e65
AZ
1081@item net:@var{options}
1082Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1083specifies NIC options as with @code{-net nic,}@var{options} (see description).
1084For instance, user-mode networking can be used with
6c9f886c 1085@example
3804da9d 1086qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
1087@end example
1088Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
1089@item bt[:@var{hci-type}]
1090Bluetooth dongle whose type is specified in the same format as with
1091the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1092no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1093This USB device implements the USB Transport Layer of HCI. Example
1094usage:
1095@example
3804da9d 1096qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
2d564691 1097@end example
0aff66b5 1098@end table
b389dbfb 1099
0aff66b5 1100@node host_usb_devices
b389dbfb
FB
1101@subsection Using host USB devices on a Linux host
1102
1103WARNING: this is an experimental feature. QEMU will slow down when
1104using it. USB devices requiring real time streaming (i.e. USB Video
1105Cameras) are not supported yet.
1106
1107@enumerate
5fafdf24 1108@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1109is actually using the USB device. A simple way to do that is simply to
1110disable the corresponding kernel module by renaming it from @file{mydriver.o}
1111to @file{mydriver.o.disabled}.
1112
1113@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1114@example
1115ls /proc/bus/usb
1116001 devices drivers
1117@end example
1118
1119@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1120@example
1121chown -R myuid /proc/bus/usb
1122@end example
1123
1124@item Launch QEMU and do in the monitor:
5fafdf24 1125@example
b389dbfb
FB
1126info usbhost
1127 Device 1.2, speed 480 Mb/s
1128 Class 00: USB device 1234:5678, USB DISK
1129@end example
1130You should see the list of the devices you can use (Never try to use
1131hubs, it won't work).
1132
1133@item Add the device in QEMU by using:
5fafdf24 1134@example
b389dbfb
FB
1135usb_add host:1234:5678
1136@end example
1137
1138Normally the guest OS should report that a new USB device is
1139plugged. You can use the option @option{-usbdevice} to do the same.
1140
1141@item Now you can try to use the host USB device in QEMU.
1142
1143@end enumerate
1144
1145When relaunching QEMU, you may have to unplug and plug again the USB
1146device to make it work again (this is a bug).
1147
f858dcae
TS
1148@node vnc_security
1149@section VNC security
1150
1151The VNC server capability provides access to the graphical console
1152of the guest VM across the network. This has a number of security
1153considerations depending on the deployment scenarios.
1154
1155@menu
1156* vnc_sec_none::
1157* vnc_sec_password::
1158* vnc_sec_certificate::
1159* vnc_sec_certificate_verify::
1160* vnc_sec_certificate_pw::
2f9606b3
AL
1161* vnc_sec_sasl::
1162* vnc_sec_certificate_sasl::
f858dcae 1163* vnc_generate_cert::
2f9606b3 1164* vnc_setup_sasl::
f858dcae
TS
1165@end menu
1166@node vnc_sec_none
1167@subsection Without passwords
1168
1169The simplest VNC server setup does not include any form of authentication.
1170For this setup it is recommended to restrict it to listen on a UNIX domain
1171socket only. For example
1172
1173@example
3804da9d 1174qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1175@end example
1176
1177This ensures that only users on local box with read/write access to that
1178path can access the VNC server. To securely access the VNC server from a
1179remote machine, a combination of netcat+ssh can be used to provide a secure
1180tunnel.
1181
1182@node vnc_sec_password
1183@subsection With passwords
1184
1185The VNC protocol has limited support for password based authentication. Since
1186the protocol limits passwords to 8 characters it should not be considered
1187to provide high security. The password can be fairly easily brute-forced by
1188a client making repeat connections. For this reason, a VNC server using password
1189authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1190or UNIX domain sockets. Password authentication is not supported when operating
1191in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1192authentication is requested with the @code{password} option, and then once QEMU
1193is running the password is set with the monitor. Until the monitor is used to
1194set the password all clients will be rejected.
f858dcae
TS
1195
1196@example
3804da9d 1197qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1198(qemu) change vnc password
1199Password: ********
1200(qemu)
1201@end example
1202
1203@node vnc_sec_certificate
1204@subsection With x509 certificates
1205
1206The QEMU VNC server also implements the VeNCrypt extension allowing use of
1207TLS for encryption of the session, and x509 certificates for authentication.
1208The use of x509 certificates is strongly recommended, because TLS on its
1209own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1210support provides a secure session, but no authentication. This allows any
1211client to connect, and provides an encrypted session.
1212
1213@example
3804da9d 1214qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
1215@end example
1216
1217In the above example @code{/etc/pki/qemu} should contain at least three files,
1218@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1219users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1220NB the @code{server-key.pem} file should be protected with file mode 0600 to
1221only be readable by the user owning it.
1222
1223@node vnc_sec_certificate_verify
1224@subsection With x509 certificates and client verification
1225
1226Certificates can also provide a means to authenticate the client connecting.
1227The server will request that the client provide a certificate, which it will
1228then validate against the CA certificate. This is a good choice if deploying
1229in an environment with a private internal certificate authority.
1230
1231@example
3804da9d 1232qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1233@end example
1234
1235
1236@node vnc_sec_certificate_pw
1237@subsection With x509 certificates, client verification and passwords
1238
1239Finally, the previous method can be combined with VNC password authentication
1240to provide two layers of authentication for clients.
1241
1242@example
3804da9d 1243qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1244(qemu) change vnc password
1245Password: ********
1246(qemu)
1247@end example
1248
2f9606b3
AL
1249
1250@node vnc_sec_sasl
1251@subsection With SASL authentication
1252
1253The SASL authentication method is a VNC extension, that provides an
1254easily extendable, pluggable authentication method. This allows for
1255integration with a wide range of authentication mechanisms, such as
1256PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1257The strength of the authentication depends on the exact mechanism
1258configured. If the chosen mechanism also provides a SSF layer, then
1259it will encrypt the datastream as well.
1260
1261Refer to the later docs on how to choose the exact SASL mechanism
1262used for authentication, but assuming use of one supporting SSF,
1263then QEMU can be launched with:
1264
1265@example
3804da9d 1266qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1267@end example
1268
1269@node vnc_sec_certificate_sasl
1270@subsection With x509 certificates and SASL authentication
1271
1272If the desired SASL authentication mechanism does not supported
1273SSF layers, then it is strongly advised to run it in combination
1274with TLS and x509 certificates. This provides securely encrypted
1275data stream, avoiding risk of compromising of the security
1276credentials. This can be enabled, by combining the 'sasl' option
1277with the aforementioned TLS + x509 options:
1278
1279@example
3804da9d 1280qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
1281@end example
1282
1283
f858dcae
TS
1284@node vnc_generate_cert
1285@subsection Generating certificates for VNC
1286
1287The GNU TLS packages provides a command called @code{certtool} which can
1288be used to generate certificates and keys in PEM format. At a minimum it
40c5c6cd 1289is necessary to setup a certificate authority, and issue certificates to
f858dcae
TS
1290each server. If using certificates for authentication, then each client
1291will also need to be issued a certificate. The recommendation is for the
1292server to keep its certificates in either @code{/etc/pki/qemu} or for
1293unprivileged users in @code{$HOME/.pki/qemu}.
1294
1295@menu
1296* vnc_generate_ca::
1297* vnc_generate_server::
1298* vnc_generate_client::
1299@end menu
1300@node vnc_generate_ca
1301@subsubsection Setup the Certificate Authority
1302
1303This step only needs to be performed once per organization / organizational
1304unit. First the CA needs a private key. This key must be kept VERY secret
1305and secure. If this key is compromised the entire trust chain of the certificates
1306issued with it is lost.
1307
1308@example
1309# certtool --generate-privkey > ca-key.pem
1310@end example
1311
1312A CA needs to have a public certificate. For simplicity it can be a self-signed
1313certificate, or one issue by a commercial certificate issuing authority. To
1314generate a self-signed certificate requires one core piece of information, the
1315name of the organization.
1316
1317@example
1318# cat > ca.info <<EOF
1319cn = Name of your organization
1320ca
1321cert_signing_key
1322EOF
1323# certtool --generate-self-signed \
1324 --load-privkey ca-key.pem
1325 --template ca.info \
1326 --outfile ca-cert.pem
1327@end example
1328
1329The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1330TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1331
1332@node vnc_generate_server
1333@subsubsection Issuing server certificates
1334
1335Each server (or host) needs to be issued with a key and certificate. When connecting
1336the certificate is sent to the client which validates it against the CA certificate.
1337The core piece of information for a server certificate is the hostname. This should
1338be the fully qualified hostname that the client will connect with, since the client
1339will typically also verify the hostname in the certificate. On the host holding the
1340secure CA private key:
1341
1342@example
1343# cat > server.info <<EOF
1344organization = Name of your organization
1345cn = server.foo.example.com
1346tls_www_server
1347encryption_key
1348signing_key
1349EOF
1350# certtool --generate-privkey > server-key.pem
1351# certtool --generate-certificate \
1352 --load-ca-certificate ca-cert.pem \
1353 --load-ca-privkey ca-key.pem \
1354 --load-privkey server server-key.pem \
1355 --template server.info \
1356 --outfile server-cert.pem
1357@end example
1358
1359The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1360to the server for which they were generated. The @code{server-key.pem} is security
1361sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1362
1363@node vnc_generate_client
1364@subsubsection Issuing client certificates
1365
1366If the QEMU VNC server is to use the @code{x509verify} option to validate client
1367certificates as its authentication mechanism, each client also needs to be issued
1368a certificate. The client certificate contains enough metadata to uniquely identify
1369the client, typically organization, state, city, building, etc. On the host holding
1370the secure CA private key:
1371
1372@example
1373# cat > client.info <<EOF
1374country = GB
1375state = London
1376locality = London
1377organiazation = Name of your organization
1378cn = client.foo.example.com
1379tls_www_client
1380encryption_key
1381signing_key
1382EOF
1383# certtool --generate-privkey > client-key.pem
1384# certtool --generate-certificate \
1385 --load-ca-certificate ca-cert.pem \
1386 --load-ca-privkey ca-key.pem \
1387 --load-privkey client-key.pem \
1388 --template client.info \
1389 --outfile client-cert.pem
1390@end example
1391
1392The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1393copied to the client for which they were generated.
1394
2f9606b3
AL
1395
1396@node vnc_setup_sasl
1397
1398@subsection Configuring SASL mechanisms
1399
1400The following documentation assumes use of the Cyrus SASL implementation on a
1401Linux host, but the principals should apply to any other SASL impl. When SASL
1402is enabled, the mechanism configuration will be loaded from system default
1403SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1404unprivileged user, an environment variable SASL_CONF_PATH can be used
1405to make it search alternate locations for the service config.
1406
1407The default configuration might contain
1408
1409@example
1410mech_list: digest-md5
1411sasldb_path: /etc/qemu/passwd.db
1412@end example
1413
1414This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1415Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1416in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1417command. While this mechanism is easy to configure and use, it is not
1418considered secure by modern standards, so only suitable for developers /
1419ad-hoc testing.
1420
1421A more serious deployment might use Kerberos, which is done with the 'gssapi'
1422mechanism
1423
1424@example
1425mech_list: gssapi
1426keytab: /etc/qemu/krb5.tab
1427@end example
1428
1429For this to work the administrator of your KDC must generate a Kerberos
1430principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1431replacing 'somehost.example.com' with the fully qualified host name of the
40c5c6cd 1432machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
2f9606b3
AL
1433
1434Other configurations will be left as an exercise for the reader. It should
1435be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1436encryption. For all other mechanisms, VNC should always be configured to
1437use TLS and x509 certificates to protect security credentials from snooping.
1438
0806e3f6 1439@node gdb_usage
da415d54
FB
1440@section GDB usage
1441
1442QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1443'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1444
b65ee4fa 1445In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1446gdb connection:
1447@example
3804da9d
SW
1448qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1449 -append "root=/dev/hda"
da415d54
FB
1450Connected to host network interface: tun0
1451Waiting gdb connection on port 1234
1452@end example
1453
1454Then launch gdb on the 'vmlinux' executable:
1455@example
1456> gdb vmlinux
1457@end example
1458
1459In gdb, connect to QEMU:
1460@example
6c9bf893 1461(gdb) target remote localhost:1234
da415d54
FB
1462@end example
1463
1464Then you can use gdb normally. For example, type 'c' to launch the kernel:
1465@example
1466(gdb) c
1467@end example
1468
0806e3f6
FB
1469Here are some useful tips in order to use gdb on system code:
1470
1471@enumerate
1472@item
1473Use @code{info reg} to display all the CPU registers.
1474@item
1475Use @code{x/10i $eip} to display the code at the PC position.
1476@item
1477Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1478@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1479@end enumerate
1480
60897d36
EI
1481Advanced debugging options:
1482
1483The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1484@table @code
60897d36
EI
1485@item maintenance packet qqemu.sstepbits
1486
1487This will display the MASK bits used to control the single stepping IE:
1488@example
1489(gdb) maintenance packet qqemu.sstepbits
1490sending: "qqemu.sstepbits"
1491received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1492@end example
1493@item maintenance packet qqemu.sstep
1494
1495This will display the current value of the mask used when single stepping IE:
1496@example
1497(gdb) maintenance packet qqemu.sstep
1498sending: "qqemu.sstep"
1499received: "0x7"
1500@end example
1501@item maintenance packet Qqemu.sstep=HEX_VALUE
1502
1503This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1504@example
1505(gdb) maintenance packet Qqemu.sstep=0x5
1506sending: "qemu.sstep=0x5"
1507received: "OK"
1508@end example
94d45e44 1509@end table
60897d36 1510
debc7065 1511@node pcsys_os_specific
1a084f3d
FB
1512@section Target OS specific information
1513
1514@subsection Linux
1515
15a34c63
FB
1516To have access to SVGA graphic modes under X11, use the @code{vesa} or
1517the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1518color depth in the guest and the host OS.
1a084f3d 1519
e3371e62
FB
1520When using a 2.6 guest Linux kernel, you should add the option
1521@code{clock=pit} on the kernel command line because the 2.6 Linux
1522kernels make very strict real time clock checks by default that QEMU
1523cannot simulate exactly.
1524
7c3fc84d
FB
1525When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1526not activated because QEMU is slower with this patch. The QEMU
1527Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1528Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1529patch by default. Newer kernels don't have it.
1530
1a084f3d
FB
1531@subsection Windows
1532
1533If you have a slow host, using Windows 95 is better as it gives the
1534best speed. Windows 2000 is also a good choice.
1535
e3371e62
FB
1536@subsubsection SVGA graphic modes support
1537
1538QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1539card. All Windows versions starting from Windows 95 should recognize
1540and use this graphic card. For optimal performances, use 16 bit color
1541depth in the guest and the host OS.
1a084f3d 1542
3cb0853a
FB
1543If you are using Windows XP as guest OS and if you want to use high
1544resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
15451280x1024x16), then you should use the VESA VBE virtual graphic card
1546(option @option{-std-vga}).
1547
e3371e62
FB
1548@subsubsection CPU usage reduction
1549
1550Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1551instruction. The result is that it takes host CPU cycles even when
1552idle. You can install the utility from
1553@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1554problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1555
9d0a8e6f 1556@subsubsection Windows 2000 disk full problem
e3371e62 1557
9d0a8e6f
FB
1558Windows 2000 has a bug which gives a disk full problem during its
1559installation. When installing it, use the @option{-win2k-hack} QEMU
1560option to enable a specific workaround. After Windows 2000 is
1561installed, you no longer need this option (this option slows down the
1562IDE transfers).
e3371e62 1563
6cc721cf
FB
1564@subsubsection Windows 2000 shutdown
1565
1566Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1567can. It comes from the fact that Windows 2000 does not automatically
1568use the APM driver provided by the BIOS.
1569
1570In order to correct that, do the following (thanks to Struan
1571Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1572Add/Troubleshoot a device => Add a new device & Next => No, select the
1573hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1574(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1575correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1576
1577@subsubsection Share a directory between Unix and Windows
1578
1579See @ref{sec_invocation} about the help of the option @option{-smb}.
1580
2192c332 1581@subsubsection Windows XP security problem
e3371e62
FB
1582
1583Some releases of Windows XP install correctly but give a security
1584error when booting:
1585@example
1586A problem is preventing Windows from accurately checking the
1587license for this computer. Error code: 0x800703e6.
1588@end example
e3371e62 1589
2192c332
FB
1590The workaround is to install a service pack for XP after a boot in safe
1591mode. Then reboot, and the problem should go away. Since there is no
1592network while in safe mode, its recommended to download the full
1593installation of SP1 or SP2 and transfer that via an ISO or using the
1594vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1595
a0a821a4
FB
1596@subsection MS-DOS and FreeDOS
1597
1598@subsubsection CPU usage reduction
1599
1600DOS does not correctly use the CPU HLT instruction. The result is that
1601it takes host CPU cycles even when idle. You can install the utility
1602from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1603problem.
1604
debc7065 1605@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1606@chapter QEMU System emulator for non PC targets
1607
1608QEMU is a generic emulator and it emulates many non PC
1609machines. Most of the options are similar to the PC emulator. The
4be456f1 1610differences are mentioned in the following sections.
3f9f3aa1 1611
debc7065 1612@menu
7544a042 1613* PowerPC System emulator::
24d4de45
TS
1614* Sparc32 System emulator::
1615* Sparc64 System emulator::
1616* MIPS System emulator::
1617* ARM System emulator::
1618* ColdFire System emulator::
7544a042
SW
1619* Cris System emulator::
1620* Microblaze System emulator::
1621* SH4 System emulator::
3aeaea65 1622* Xtensa System emulator::
debc7065
FB
1623@end menu
1624
7544a042
SW
1625@node PowerPC System emulator
1626@section PowerPC System emulator
1627@cindex system emulation (PowerPC)
1a084f3d 1628
15a34c63
FB
1629Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1630or PowerMac PowerPC system.
1a084f3d 1631
b671f9ed 1632QEMU emulates the following PowerMac peripherals:
1a084f3d 1633
15a34c63 1634@itemize @minus
5fafdf24 1635@item
006f3a48 1636UniNorth or Grackle PCI Bridge
15a34c63
FB
1637@item
1638PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1639@item
15a34c63 16402 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1641@item
15a34c63
FB
1642NE2000 PCI adapters
1643@item
1644Non Volatile RAM
1645@item
1646VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1647@end itemize
1648
b671f9ed 1649QEMU emulates the following PREP peripherals:
52c00a5f
FB
1650
1651@itemize @minus
5fafdf24 1652@item
15a34c63
FB
1653PCI Bridge
1654@item
1655PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1656@item
52c00a5f
FB
16572 IDE interfaces with hard disk and CD-ROM support
1658@item
1659Floppy disk
5fafdf24 1660@item
15a34c63 1661NE2000 network adapters
52c00a5f
FB
1662@item
1663Serial port
1664@item
1665PREP Non Volatile RAM
15a34c63
FB
1666@item
1667PC compatible keyboard and mouse.
52c00a5f
FB
1668@end itemize
1669
15a34c63 1670QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1671@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1672
992e5acd 1673Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
1674for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1675v2) portable firmware implementation. The goal is to implement a 100%
1676IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1677
15a34c63
FB
1678@c man begin OPTIONS
1679
1680The following options are specific to the PowerPC emulation:
1681
1682@table @option
1683
4e257e5e 1684@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63
FB
1685
1686Set the initial VGA graphic mode. The default is 800x600x15.
1687
4e257e5e 1688@item -prom-env @var{string}
95efd11c
BS
1689
1690Set OpenBIOS variables in NVRAM, for example:
1691
1692@example
1693qemu-system-ppc -prom-env 'auto-boot?=false' \
1694 -prom-env 'boot-device=hd:2,\yaboot' \
1695 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1696@end example
1697
1698These variables are not used by Open Hack'Ware.
1699
15a34c63
FB
1700@end table
1701
5fafdf24 1702@c man end
15a34c63
FB
1703
1704
52c00a5f 1705More information is available at
3f9f3aa1 1706@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1707
24d4de45
TS
1708@node Sparc32 System emulator
1709@section Sparc32 System emulator
7544a042 1710@cindex system emulation (Sparc32)
e80cfcfc 1711
34a3d239
BS
1712Use the executable @file{qemu-system-sparc} to simulate the following
1713Sun4m architecture machines:
1714@itemize @minus
1715@item
1716SPARCstation 4
1717@item
1718SPARCstation 5
1719@item
1720SPARCstation 10
1721@item
1722SPARCstation 20
1723@item
1724SPARCserver 600MP
1725@item
1726SPARCstation LX
1727@item
1728SPARCstation Voyager
1729@item
1730SPARCclassic
1731@item
1732SPARCbook
1733@end itemize
1734
1735The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1736but Linux limits the number of usable CPUs to 4.
e80cfcfc 1737
34a3d239
BS
1738It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1739SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1740emulators are not usable yet.
1741
1742QEMU emulates the following sun4m/sun4c/sun4d peripherals:
e80cfcfc
FB
1743
1744@itemize @minus
3475187d 1745@item
7d85892b 1746IOMMU or IO-UNITs
e80cfcfc
FB
1747@item
1748TCX Frame buffer
5fafdf24 1749@item
e80cfcfc
FB
1750Lance (Am7990) Ethernet
1751@item
34a3d239 1752Non Volatile RAM M48T02/M48T08
e80cfcfc 1753@item
3475187d
FB
1754Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1755and power/reset logic
1756@item
1757ESP SCSI controller with hard disk and CD-ROM support
1758@item
6a3b9cc9 1759Floppy drive (not on SS-600MP)
a2502b58
BS
1760@item
1761CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
1762@end itemize
1763
6a3b9cc9
BS
1764The number of peripherals is fixed in the architecture. Maximum
1765memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 1766others 2047MB.
3475187d 1767
30a604f3 1768Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
1769@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1770firmware implementation. The goal is to implement a 100% IEEE
17711275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
1772
1773A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239
BS
1774the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1775some kernel versions work. Please note that currently Solaris kernels
1776don't work probably due to interface issues between OpenBIOS and
1777Solaris.
3475187d
FB
1778
1779@c man begin OPTIONS
1780
a2502b58 1781The following options are specific to the Sparc32 emulation:
3475187d
FB
1782
1783@table @option
1784
4e257e5e 1785@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 1786
a2502b58
BS
1787Set the initial TCX graphic mode. The default is 1024x768x8, currently
1788the only other possible mode is 1024x768x24.
3475187d 1789
4e257e5e 1790@item -prom-env @var{string}
66508601
BS
1791
1792Set OpenBIOS variables in NVRAM, for example:
1793
1794@example
1795qemu-system-sparc -prom-env 'auto-boot?=false' \
1796 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1797@end example
1798
609c1dac 1799@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook|SS-2|SS-1000|SS-2000]
a2502b58
BS
1800
1801Set the emulated machine type. Default is SS-5.
1802
3475187d
FB
1803@end table
1804
5fafdf24 1805@c man end
3475187d 1806
24d4de45
TS
1807@node Sparc64 System emulator
1808@section Sparc64 System emulator
7544a042 1809@cindex system emulation (Sparc64)
e80cfcfc 1810
34a3d239
BS
1811Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1812(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1813Niagara (T1) machine. The emulator is not usable for anything yet, but
1814it can launch some kernels.
b756921a 1815
c7ba218d 1816QEMU emulates the following peripherals:
83469015
FB
1817
1818@itemize @minus
1819@item
5fafdf24 1820UltraSparc IIi APB PCI Bridge
83469015
FB
1821@item
1822PCI VGA compatible card with VESA Bochs Extensions
1823@item
34a3d239
BS
1824PS/2 mouse and keyboard
1825@item
83469015
FB
1826Non Volatile RAM M48T59
1827@item
1828PC-compatible serial ports
c7ba218d
BS
1829@item
18302 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
1831@item
1832Floppy disk
83469015
FB
1833@end itemize
1834
c7ba218d
BS
1835@c man begin OPTIONS
1836
1837The following options are specific to the Sparc64 emulation:
1838
1839@table @option
1840
4e257e5e 1841@item -prom-env @var{string}
34a3d239
BS
1842
1843Set OpenBIOS variables in NVRAM, for example:
1844
1845@example
1846qemu-system-sparc64 -prom-env 'auto-boot?=false'
1847@end example
1848
1849@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
1850
1851Set the emulated machine type. The default is sun4u.
1852
1853@end table
1854
1855@c man end
1856
24d4de45
TS
1857@node MIPS System emulator
1858@section MIPS System emulator
7544a042 1859@cindex system emulation (MIPS)
9d0a8e6f 1860
d9aedc32
TS
1861Four executables cover simulation of 32 and 64-bit MIPS systems in
1862both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1863@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 1864Five different machine types are emulated:
24d4de45
TS
1865
1866@itemize @minus
1867@item
1868A generic ISA PC-like machine "mips"
1869@item
1870The MIPS Malta prototype board "malta"
1871@item
d9aedc32 1872An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 1873@item
f0fc6f8f 1874MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
1875@item
1876A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
1877@end itemize
1878
1879The generic emulation is supported by Debian 'Etch' and is able to
1880install Debian into a virtual disk image. The following devices are
1881emulated:
3f9f3aa1
FB
1882
1883@itemize @minus
5fafdf24 1884@item
6bf5b4e8 1885A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
1886@item
1887PC style serial port
1888@item
24d4de45
TS
1889PC style IDE disk
1890@item
3f9f3aa1
FB
1891NE2000 network card
1892@end itemize
1893
24d4de45
TS
1894The Malta emulation supports the following devices:
1895
1896@itemize @minus
1897@item
0b64d008 1898Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
1899@item
1900PIIX4 PCI/USB/SMbus controller
1901@item
1902The Multi-I/O chip's serial device
1903@item
3a2eeac0 1904PCI network cards (PCnet32 and others)
24d4de45
TS
1905@item
1906Malta FPGA serial device
1907@item
1f605a76 1908Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
1909@end itemize
1910
1911The ACER Pica emulation supports:
1912
1913@itemize @minus
1914@item
1915MIPS R4000 CPU
1916@item
1917PC-style IRQ and DMA controllers
1918@item
1919PC Keyboard
1920@item
1921IDE controller
1922@end itemize
3f9f3aa1 1923
b5e4946f 1924The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
1925to what the proprietary MIPS emulator uses for running Linux.
1926It supports:
6bf5b4e8
TS
1927
1928@itemize @minus
1929@item
1930A range of MIPS CPUs, default is the 24Kf
1931@item
1932PC style serial port
1933@item
1934MIPSnet network emulation
1935@end itemize
1936
88cb0a02
AJ
1937The MIPS Magnum R4000 emulation supports:
1938
1939@itemize @minus
1940@item
1941MIPS R4000 CPU
1942@item
1943PC-style IRQ controller
1944@item
1945PC Keyboard
1946@item
1947SCSI controller
1948@item
1949G364 framebuffer
1950@end itemize
1951
1952
24d4de45
TS
1953@node ARM System emulator
1954@section ARM System emulator
7544a042 1955@cindex system emulation (ARM)
3f9f3aa1
FB
1956
1957Use the executable @file{qemu-system-arm} to simulate a ARM
1958machine. The ARM Integrator/CP board is emulated with the following
1959devices:
1960
1961@itemize @minus
1962@item
9ee6e8bb 1963ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
1964@item
1965Two PL011 UARTs
5fafdf24 1966@item
3f9f3aa1 1967SMC 91c111 Ethernet adapter
00a9bf19
PB
1968@item
1969PL110 LCD controller
1970@item
1971PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
1972@item
1973PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
1974@end itemize
1975
1976The ARM Versatile baseboard is emulated with the following devices:
1977
1978@itemize @minus
1979@item
9ee6e8bb 1980ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
1981@item
1982PL190 Vectored Interrupt Controller
1983@item
1984Four PL011 UARTs
5fafdf24 1985@item
00a9bf19
PB
1986SMC 91c111 Ethernet adapter
1987@item
1988PL110 LCD controller
1989@item
1990PL050 KMI with PS/2 keyboard and mouse.
1991@item
1992PCI host bridge. Note the emulated PCI bridge only provides access to
1993PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
1994This means some devices (eg. ne2k_pci NIC) are not usable, and others
1995(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 1996mapped control registers.
e6de1bad
PB
1997@item
1998PCI OHCI USB controller.
1999@item
2000LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2001@item
2002PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2003@end itemize
2004
21a88941
PB
2005Several variants of the ARM RealView baseboard are emulated,
2006including the EB, PB-A8 and PBX-A9. Due to interactions with the
2007bootloader, only certain Linux kernel configurations work out
2008of the box on these boards.
2009
2010Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2011enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2012should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2013disabled and expect 1024M RAM.
2014
40c5c6cd 2015The following devices are emulated:
d7739d75
PB
2016
2017@itemize @minus
2018@item
f7c70325 2019ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2020@item
2021ARM AMBA Generic/Distributed Interrupt Controller
2022@item
2023Four PL011 UARTs
5fafdf24 2024@item
0ef849d7 2025SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2026@item
2027PL110 LCD controller
2028@item
2029PL050 KMI with PS/2 keyboard and mouse
2030@item
2031PCI host bridge
2032@item
2033PCI OHCI USB controller
2034@item
2035LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2036@item
2037PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2038@end itemize
2039
b00052e4
AZ
2040The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2041and "Terrier") emulation includes the following peripherals:
2042
2043@itemize @minus
2044@item
2045Intel PXA270 System-on-chip (ARM V5TE core)
2046@item
2047NAND Flash memory
2048@item
2049IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2050@item
2051On-chip OHCI USB controller
2052@item
2053On-chip LCD controller
2054@item
2055On-chip Real Time Clock
2056@item
2057TI ADS7846 touchscreen controller on SSP bus
2058@item
2059Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2060@item
2061GPIO-connected keyboard controller and LEDs
2062@item
549444e1 2063Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2064@item
2065Three on-chip UARTs
2066@item
2067WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2068@end itemize
2069
02645926
AZ
2070The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2071following elements:
2072
2073@itemize @minus
2074@item
2075Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2076@item
2077ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2078@item
2079On-chip LCD controller
2080@item
2081On-chip Real Time Clock
2082@item
2083TI TSC2102i touchscreen controller / analog-digital converter / Audio
2084CODEC, connected through MicroWire and I@math{^2}S busses
2085@item
2086GPIO-connected matrix keypad
2087@item
2088Secure Digital card connected to OMAP MMC/SD host
2089@item
2090Three on-chip UARTs
2091@end itemize
2092
c30bb264
AZ
2093Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2094emulation supports the following elements:
2095
2096@itemize @minus
2097@item
2098Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2099@item
2100RAM and non-volatile OneNAND Flash memories
2101@item
2102Display connected to EPSON remote framebuffer chip and OMAP on-chip
2103display controller and a LS041y3 MIPI DBI-C controller
2104@item
2105TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2106driven through SPI bus
2107@item
2108National Semiconductor LM8323-controlled qwerty keyboard driven
2109through I@math{^2}C bus
2110@item
2111Secure Digital card connected to OMAP MMC/SD host
2112@item
2113Three OMAP on-chip UARTs and on-chip STI debugging console
2114@item
40c5c6cd 2115A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2116@item
c30bb264
AZ
2117Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2118TUSB6010 chip - only USB host mode is supported
2119@item
2120TI TMP105 temperature sensor driven through I@math{^2}C bus
2121@item
2122TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2123@item
2124Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2125through CBUS
2126@end itemize
2127
9ee6e8bb
PB
2128The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2129devices:
2130
2131@itemize @minus
2132@item
2133Cortex-M3 CPU core.
2134@item
213564k Flash and 8k SRAM.
2136@item
2137Timers, UARTs, ADC and I@math{^2}C interface.
2138@item
2139OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2140@end itemize
2141
2142The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2143devices:
2144
2145@itemize @minus
2146@item
2147Cortex-M3 CPU core.
2148@item
2149256k Flash and 64k SRAM.
2150@item
2151Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2152@item
2153OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2154@end itemize
2155
57cd6e97
AZ
2156The Freecom MusicPal internet radio emulation includes the following
2157elements:
2158
2159@itemize @minus
2160@item
2161Marvell MV88W8618 ARM core.
2162@item
216332 MB RAM, 256 KB SRAM, 8 MB flash.
2164@item
2165Up to 2 16550 UARTs
2166@item
2167MV88W8xx8 Ethernet controller
2168@item
2169MV88W8618 audio controller, WM8750 CODEC and mixer
2170@item
e080e785 2171128×64 display with brightness control
57cd6e97
AZ
2172@item
21732 buttons, 2 navigation wheels with button function
2174@end itemize
2175
997641a8 2176The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2177The emulation includes the following elements:
997641a8
AZ
2178
2179@itemize @minus
2180@item
2181Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2182@item
2183ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2184V1
21851 Flash of 16MB and 1 Flash of 8MB
2186V2
21871 Flash of 32MB
2188@item
2189On-chip LCD controller
2190@item
2191On-chip Real Time Clock
2192@item
2193Secure Digital card connected to OMAP MMC/SD host
2194@item
2195Three on-chip UARTs
2196@end itemize
2197
3f9f3aa1
FB
2198A Linux 2.6 test image is available on the QEMU web site. More
2199information is available in the QEMU mailing-list archive.
9d0a8e6f 2200
d2c639d6
BS
2201@c man begin OPTIONS
2202
2203The following options are specific to the ARM emulation:
2204
2205@table @option
2206
2207@item -semihosting
2208Enable semihosting syscall emulation.
2209
2210On ARM this implements the "Angel" interface.
2211
2212Note that this allows guest direct access to the host filesystem,
2213so should only be used with trusted guest OS.
2214
2215@end table
2216
24d4de45
TS
2217@node ColdFire System emulator
2218@section ColdFire System emulator
7544a042
SW
2219@cindex system emulation (ColdFire)
2220@cindex system emulation (M68K)
209a4e69
PB
2221
2222Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2223The emulator is able to boot a uClinux kernel.
707e011b
PB
2224
2225The M5208EVB emulation includes the following devices:
2226
2227@itemize @minus
5fafdf24 2228@item
707e011b
PB
2229MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2230@item
2231Three Two on-chip UARTs.
2232@item
2233Fast Ethernet Controller (FEC)
2234@end itemize
2235
2236The AN5206 emulation includes the following devices:
209a4e69
PB
2237
2238@itemize @minus
5fafdf24 2239@item
209a4e69
PB
2240MCF5206 ColdFire V2 Microprocessor.
2241@item
2242Two on-chip UARTs.
2243@end itemize
2244
d2c639d6
BS
2245@c man begin OPTIONS
2246
7544a042 2247The following options are specific to the ColdFire emulation:
d2c639d6
BS
2248
2249@table @option
2250
2251@item -semihosting
2252Enable semihosting syscall emulation.
2253
2254On M68K this implements the "ColdFire GDB" interface used by libgloss.
2255
2256Note that this allows guest direct access to the host filesystem,
2257so should only be used with trusted guest OS.
2258
2259@end table
2260
7544a042
SW
2261@node Cris System emulator
2262@section Cris System emulator
2263@cindex system emulation (Cris)
2264
2265TODO
2266
2267@node Microblaze System emulator
2268@section Microblaze System emulator
2269@cindex system emulation (Microblaze)
2270
2271TODO
2272
2273@node SH4 System emulator
2274@section SH4 System emulator
2275@cindex system emulation (SH4)
2276
2277TODO
2278
3aeaea65
MF
2279@node Xtensa System emulator
2280@section Xtensa System emulator
2281@cindex system emulation (Xtensa)
2282
2283Two executables cover simulation of both Xtensa endian options,
2284@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2285Two different machine types are emulated:
2286
2287@itemize @minus
2288@item
2289Xtensa emulator pseudo board "sim"
2290@item
2291Avnet LX60/LX110/LX200 board
2292@end itemize
2293
b5e4946f 2294The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2295to one provided by the proprietary Tensilica ISS.
2296It supports:
2297
2298@itemize @minus
2299@item
2300A range of Xtensa CPUs, default is the DC232B
2301@item
2302Console and filesystem access via semihosting calls
2303@end itemize
2304
2305The Avnet LX60/LX110/LX200 emulation supports:
2306
2307@itemize @minus
2308@item
2309A range of Xtensa CPUs, default is the DC232B
2310@item
231116550 UART
2312@item
2313OpenCores 10/100 Mbps Ethernet MAC
2314@end itemize
2315
2316@c man begin OPTIONS
2317
2318The following options are specific to the Xtensa emulation:
2319
2320@table @option
2321
2322@item -semihosting
2323Enable semihosting syscall emulation.
2324
2325Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2326Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2327
2328Note that this allows guest direct access to the host filesystem,
2329so should only be used with trusted guest OS.
2330
2331@end table
5fafdf24
TS
2332@node QEMU User space emulator
2333@chapter QEMU User space emulator
83195237
FB
2334
2335@menu
2336* Supported Operating Systems ::
2337* Linux User space emulator::
84778508 2338* BSD User space emulator ::
83195237
FB
2339@end menu
2340
2341@node Supported Operating Systems
2342@section Supported Operating Systems
2343
2344The following OS are supported in user space emulation:
2345
2346@itemize @minus
2347@item
4be456f1 2348Linux (referred as qemu-linux-user)
83195237 2349@item
84778508 2350BSD (referred as qemu-bsd-user)
83195237
FB
2351@end itemize
2352
2353@node Linux User space emulator
2354@section Linux User space emulator
386405f7 2355
debc7065
FB
2356@menu
2357* Quick Start::
2358* Wine launch::
2359* Command line options::
79737e4a 2360* Other binaries::
debc7065
FB
2361@end menu
2362
2363@node Quick Start
83195237 2364@subsection Quick Start
df0f11a0 2365
1f673135 2366In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2367itself and all the target (x86) dynamic libraries used by it.
386405f7 2368
1f673135 2369@itemize
386405f7 2370
1f673135
FB
2371@item On x86, you can just try to launch any process by using the native
2372libraries:
386405f7 2373
5fafdf24 2374@example
1f673135
FB
2375qemu-i386 -L / /bin/ls
2376@end example
386405f7 2377
1f673135
FB
2378@code{-L /} tells that the x86 dynamic linker must be searched with a
2379@file{/} prefix.
386405f7 2380
b65ee4fa
SW
2381@item Since QEMU is also a linux process, you can launch QEMU with
2382QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2383
5fafdf24 2384@example
1f673135
FB
2385qemu-i386 -L / qemu-i386 -L / /bin/ls
2386@end example
386405f7 2387
1f673135
FB
2388@item On non x86 CPUs, you need first to download at least an x86 glibc
2389(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2390@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2391
1f673135 2392@example
5fafdf24 2393unset LD_LIBRARY_PATH
1f673135 2394@end example
1eb87257 2395
1f673135 2396Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2397
1f673135
FB
2398@example
2399qemu-i386 tests/i386/ls
2400@end example
4c3b5a48 2401You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2402QEMU is automatically launched by the Linux kernel when you try to
2403launch x86 executables. It requires the @code{binfmt_misc} module in the
2404Linux kernel.
1eb87257 2405
1f673135
FB
2406@item The x86 version of QEMU is also included. You can try weird things such as:
2407@example
debc7065
FB
2408qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2409 /usr/local/qemu-i386/bin/ls-i386
1f673135 2410@end example
1eb20527 2411
1f673135 2412@end itemize
1eb20527 2413
debc7065 2414@node Wine launch
83195237 2415@subsection Wine launch
1eb20527 2416
1f673135 2417@itemize
386405f7 2418
1f673135
FB
2419@item Ensure that you have a working QEMU with the x86 glibc
2420distribution (see previous section). In order to verify it, you must be
2421able to do:
386405f7 2422
1f673135
FB
2423@example
2424qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2425@end example
386405f7 2426
1f673135 2427@item Download the binary x86 Wine install
5fafdf24 2428(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2429
1f673135 2430@item Configure Wine on your account. Look at the provided script
debc7065 2431@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2432@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2433
1f673135 2434@item Then you can try the example @file{putty.exe}:
386405f7 2435
1f673135 2436@example
debc7065
FB
2437qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2438 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2439@end example
386405f7 2440
1f673135 2441@end itemize
fd429f2f 2442
debc7065 2443@node Command line options
83195237 2444@subsection Command line options
1eb20527 2445
1f673135 2446@example
68a1c816 2447usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
1f673135 2448@end example
1eb20527 2449
1f673135
FB
2450@table @option
2451@item -h
2452Print the help
3b46e624 2453@item -L path
1f673135
FB
2454Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2455@item -s size
2456Set the x86 stack size in bytes (default=524288)
34a3d239 2457@item -cpu model
c8057f95 2458Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2459@item -ignore-environment
2460Start with an empty environment. Without this option,
40c5c6cd 2461the initial environment is a copy of the caller's environment.
f66724c9
SW
2462@item -E @var{var}=@var{value}
2463Set environment @var{var} to @var{value}.
2464@item -U @var{var}
2465Remove @var{var} from the environment.
379f6698
PB
2466@item -B offset
2467Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2468the address region required by guest applications is reserved on the host.
2469This option is currently only supported on some hosts.
68a1c816
PB
2470@item -R size
2471Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2472"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2473@end table
2474
1f673135 2475Debug options:
386405f7 2476
1f673135
FB
2477@table @option
2478@item -d
2479Activate log (logfile=/tmp/qemu.log)
2480@item -p pagesize
2481Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2482@item -g port
2483Wait gdb connection to port
1b530a6d
AJ
2484@item -singlestep
2485Run the emulation in single step mode.
1f673135 2486@end table
386405f7 2487
b01bcae6
AZ
2488Environment variables:
2489
2490@table @env
2491@item QEMU_STRACE
2492Print system calls and arguments similar to the 'strace' program
2493(NOTE: the actual 'strace' program will not work because the user
2494space emulator hasn't implemented ptrace). At the moment this is
2495incomplete. All system calls that don't have a specific argument
2496format are printed with information for six arguments. Many
2497flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2498@end table
b01bcae6 2499
79737e4a 2500@node Other binaries
83195237 2501@subsection Other binaries
79737e4a 2502
7544a042
SW
2503@cindex user mode (Alpha)
2504@command{qemu-alpha} TODO.
2505
2506@cindex user mode (ARM)
2507@command{qemu-armeb} TODO.
2508
2509@cindex user mode (ARM)
79737e4a
PB
2510@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2511binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2512configurations), and arm-uclinux bFLT format binaries.
2513
7544a042
SW
2514@cindex user mode (ColdFire)
2515@cindex user mode (M68K)
e6e5906b
PB
2516@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2517(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2518coldfire uClinux bFLT format binaries.
2519
79737e4a
PB
2520The binary format is detected automatically.
2521
7544a042
SW
2522@cindex user mode (Cris)
2523@command{qemu-cris} TODO.
2524
2525@cindex user mode (i386)
2526@command{qemu-i386} TODO.
2527@command{qemu-x86_64} TODO.
2528
2529@cindex user mode (Microblaze)
2530@command{qemu-microblaze} TODO.
2531
2532@cindex user mode (MIPS)
2533@command{qemu-mips} TODO.
2534@command{qemu-mipsel} TODO.
2535
2536@cindex user mode (PowerPC)
2537@command{qemu-ppc64abi32} TODO.
2538@command{qemu-ppc64} TODO.
2539@command{qemu-ppc} TODO.
2540
2541@cindex user mode (SH4)
2542@command{qemu-sh4eb} TODO.
2543@command{qemu-sh4} TODO.
2544
2545@cindex user mode (SPARC)
34a3d239
BS
2546@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2547
a785e42e
BS
2548@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2549(Sparc64 CPU, 32 bit ABI).
2550
2551@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2552SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2553
84778508
BS
2554@node BSD User space emulator
2555@section BSD User space emulator
2556
2557@menu
2558* BSD Status::
2559* BSD Quick Start::
2560* BSD Command line options::
2561@end menu
2562
2563@node BSD Status
2564@subsection BSD Status
2565
2566@itemize @minus
2567@item
2568target Sparc64 on Sparc64: Some trivial programs work.
2569@end itemize
2570
2571@node BSD Quick Start
2572@subsection Quick Start
2573
2574In order to launch a BSD process, QEMU needs the process executable
2575itself and all the target dynamic libraries used by it.
2576
2577@itemize
2578
2579@item On Sparc64, you can just try to launch any process by using the native
2580libraries:
2581
2582@example
2583qemu-sparc64 /bin/ls
2584@end example
2585
2586@end itemize
2587
2588@node BSD Command line options
2589@subsection Command line options
2590
2591@example
2592usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2593@end example
2594
2595@table @option
2596@item -h
2597Print the help
2598@item -L path
2599Set the library root path (default=/)
2600@item -s size
2601Set the stack size in bytes (default=524288)
f66724c9
SW
2602@item -ignore-environment
2603Start with an empty environment. Without this option,
40c5c6cd 2604the initial environment is a copy of the caller's environment.
f66724c9
SW
2605@item -E @var{var}=@var{value}
2606Set environment @var{var} to @var{value}.
2607@item -U @var{var}
2608Remove @var{var} from the environment.
84778508
BS
2609@item -bsd type
2610Set the type of the emulated BSD Operating system. Valid values are
2611FreeBSD, NetBSD and OpenBSD (default).
2612@end table
2613
2614Debug options:
2615
2616@table @option
2617@item -d
2618Activate log (logfile=/tmp/qemu.log)
2619@item -p pagesize
2620Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2621@item -singlestep
2622Run the emulation in single step mode.
84778508
BS
2623@end table
2624
15a34c63
FB
2625@node compilation
2626@chapter Compilation from the sources
2627
debc7065
FB
2628@menu
2629* Linux/Unix::
2630* Windows::
2631* Cross compilation for Windows with Linux::
2632* Mac OS X::
47eacb4f 2633* Make targets::
debc7065
FB
2634@end menu
2635
2636@node Linux/Unix
7c3fc84d
FB
2637@section Linux/Unix
2638
2639@subsection Compilation
2640
2641First you must decompress the sources:
2642@example
2643cd /tmp
2644tar zxvf qemu-x.y.z.tar.gz
2645cd qemu-x.y.z
2646@end example
2647
2648Then you configure QEMU and build it (usually no options are needed):
2649@example
2650./configure
2651make
2652@end example
2653
2654Then type as root user:
2655@example
2656make install
2657@end example
2658to install QEMU in @file{/usr/local}.
2659
debc7065 2660@node Windows
15a34c63
FB
2661@section Windows
2662
2663@itemize
2664@item Install the current versions of MSYS and MinGW from
2665@url{http://www.mingw.org/}. You can find detailed installation
2666instructions in the download section and the FAQ.
2667
5fafdf24 2668@item Download
15a34c63 2669the MinGW development library of SDL 1.2.x
debc7065 2670(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
d0a96f3d
ST
2671@url{http://www.libsdl.org}. Unpack it in a temporary place and
2672edit the @file{sdl-config} script so that it gives the
15a34c63
FB
2673correct SDL directory when invoked.
2674
d0a96f3d
ST
2675@item Install the MinGW version of zlib and make sure
2676@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2677MinGW's default header and linker search paths.
d0a96f3d 2678
15a34c63 2679@item Extract the current version of QEMU.
5fafdf24 2680
15a34c63
FB
2681@item Start the MSYS shell (file @file{msys.bat}).
2682
5fafdf24 2683@item Change to the QEMU directory. Launch @file{./configure} and
15a34c63
FB
2684@file{make}. If you have problems using SDL, verify that
2685@file{sdl-config} can be launched from the MSYS command line.
2686
c5ec15ea 2687@item You can install QEMU in @file{Program Files/QEMU} by typing
15a34c63 2688@file{make install}. Don't forget to copy @file{SDL.dll} in
c5ec15ea 2689@file{Program Files/QEMU}.
15a34c63
FB
2690
2691@end itemize
2692
debc7065 2693@node Cross compilation for Windows with Linux
15a34c63
FB
2694@section Cross compilation for Windows with Linux
2695
2696@itemize
2697@item
2698Install the MinGW cross compilation tools available at
2699@url{http://www.mingw.org/}.
2700
d0a96f3d
ST
2701@item Download
2702the MinGW development library of SDL 1.2.x
2703(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2704@url{http://www.libsdl.org}. Unpack it in a temporary place and
2705edit the @file{sdl-config} script so that it gives the
2706correct SDL directory when invoked. Set up the @code{PATH} environment
2707variable so that @file{sdl-config} can be launched by
15a34c63
FB
2708the QEMU configuration script.
2709
d0a96f3d
ST
2710@item Install the MinGW version of zlib and make sure
2711@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2712MinGW's default header and linker search paths.
d0a96f3d 2713
5fafdf24 2714@item
15a34c63
FB
2715Configure QEMU for Windows cross compilation:
2716@example
d0a96f3d
ST
2717PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2718@end example
2719The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2720MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
40c5c6cd 2721We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
d0a96f3d 2722use --cross-prefix to specify the name of the cross compiler.
c5ec15ea 2723You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
d0a96f3d
ST
2724
2725Under Fedora Linux, you can run:
2726@example
2727yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
15a34c63 2728@end example
d0a96f3d 2729to get a suitable cross compilation environment.
15a34c63 2730
5fafdf24 2731@item You can install QEMU in the installation directory by typing
d0a96f3d 2732@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
5fafdf24 2733installation directory.
15a34c63
FB
2734
2735@end itemize
2736
3804da9d
SW
2737Wine can be used to launch the resulting qemu-system-i386.exe
2738and all other qemu-system-@var{target}.exe compiled for Win32.
15a34c63 2739
debc7065 2740@node Mac OS X
15a34c63
FB
2741@section Mac OS X
2742
2743The Mac OS X patches are not fully merged in QEMU, so you should look
2744at the QEMU mailing list archive to have all the necessary
2745information.
2746
47eacb4f
SW
2747@node Make targets
2748@section Make targets
2749
2750@table @code
2751
2752@item make
2753@item make all
2754Make everything which is typically needed.
2755
2756@item install
2757TODO
2758
2759@item install-doc
2760TODO
2761
2762@item make clean
2763Remove most files which were built during make.
2764
2765@item make distclean
2766Remove everything which was built during make.
2767
2768@item make dvi
2769@item make html
2770@item make info
2771@item make pdf
2772Create documentation in dvi, html, info or pdf format.
2773
2774@item make cscope
2775TODO
2776
2777@item make defconfig
2778(Re-)create some build configuration files.
2779User made changes will be overwritten.
2780
2781@item tar
2782@item tarbin
2783TODO
2784
2785@end table
2786
7544a042
SW
2787@node License
2788@appendix License
2789
2790QEMU is a trademark of Fabrice Bellard.
2791
2792QEMU is released under the GNU General Public License (TODO: add link).
2793Parts of QEMU have specific licenses, see file LICENSE.
2794
2795TODO (refer to file LICENSE, include it, include the GPL?)
2796
debc7065 2797@node Index
7544a042
SW
2798@appendix Index
2799@menu
2800* Concept Index::
2801* Function Index::
2802* Keystroke Index::
2803* Program Index::
2804* Data Type Index::
2805* Variable Index::
2806@end menu
2807
2808@node Concept Index
2809@section Concept Index
2810This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
2811@printindex cp
2812
7544a042
SW
2813@node Function Index
2814@section Function Index
2815This index could be used for command line options and monitor functions.
2816@printindex fn
2817
2818@node Keystroke Index
2819@section Keystroke Index
2820
2821This is a list of all keystrokes which have a special function
2822in system emulation.
2823
2824@printindex ky
2825
2826@node Program Index
2827@section Program Index
2828@printindex pg
2829
2830@node Data Type Index
2831@section Data Type Index
2832
2833This index could be used for qdev device names and options.
2834
2835@printindex tp
2836
2837@node Variable Index
2838@section Variable Index
2839@printindex vr
2840
debc7065 2841@bye