]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
s390x: Implement SAM{24,31,64}
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
e080e785
SW
4
5@documentlanguage en
6@documentencoding UTF-8
7
8f40c388 8@settitle QEMU Emulator User Documentation
debc7065
FB
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
386405f7 12
a1a32b05
SW
13@ifinfo
14@direntry
15* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
0806e3f6 19@iftex
386405f7
FB
20@titlepage
21@sp 7
8f40c388 22@center @titlefont{QEMU Emulator}
debc7065
FB
23@sp 1
24@center @titlefont{User Documentation}
386405f7
FB
25@sp 3
26@end titlepage
0806e3f6 27@end iftex
386405f7 28
debc7065
FB
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
35* Installation::
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
83195237 38* QEMU User space emulator::
debc7065 39* compilation:: Compilation from the sources
7544a042 40* License::
debc7065
FB
41* Index::
42@end menu
43@end ifnottex
44
45@contents
46
47@node Introduction
386405f7
FB
48@chapter Introduction
49
debc7065
FB
50@menu
51* intro_features:: Features
52@end menu
53
54@node intro_features
322d0c66 55@section Features
386405f7 56
1f673135
FB
57QEMU is a FAST! processor emulator using dynamic translation to
58achieve good emulation speed.
1eb20527
FB
59
60QEMU has two operating modes:
0806e3f6 61
d7e5edca 62@itemize
7544a042 63@cindex operating modes
0806e3f6 64
5fafdf24 65@item
7544a042 66@cindex system emulation
1f673135 67Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
1eb20527 71
5fafdf24 72@item
7544a042 73@cindex user mode emulation
83195237
FB
74User mode emulation. In this mode, QEMU can launch
75processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77to ease cross-compilation and cross-debugging.
1eb20527
FB
78
79@end itemize
80
e1b4382c 81QEMU can run without a host kernel driver and yet gives acceptable
5fafdf24 82performance.
322d0c66 83
52c00a5f
FB
84For system emulation, the following hardware targets are supported:
85@itemize
7544a042
SW
86@cindex emulated target systems
87@cindex supported target systems
9d0a8e6f 88@item PC (x86 or x86_64 processor)
3f9f3aa1 89@item ISA PC (old style PC without PCI bus)
52c00a5f 90@item PREP (PowerPC processor)
d45952a0 91@item G3 Beige PowerMac (PowerPC processor)
9d0a8e6f 92@item Mac99 PowerMac (PowerPC processor, in progress)
ee76f82e 93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
c7ba218d 94@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
d9aedc32 95@item Malta board (32-bit and 64-bit MIPS processors)
88cb0a02 96@item MIPS Magnum (64-bit MIPS processor)
9ee6e8bb
PB
97@item ARM Integrator/CP (ARM)
98@item ARM Versatile baseboard (ARM)
0ef849d7 99@item ARM RealView Emulation/Platform baseboard (ARM)
ef4c3856 100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
9ee6e8bb
PB
101@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 103@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 104@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 105@item Palm Tungsten|E PDA (OMAP310 processor)
c30bb264 106@item N800 and N810 tablets (OMAP2420 processor)
57cd6e97 107@item MusicPal (MV88W8618 ARM processor)
ef4c3856
AZ
108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109@item Siemens SX1 smartphone (OMAP310 processor)
48c50a62
EI
110@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
3aeaea65 112@item Avnet LX60/LX110/LX200 boards (Xtensa)
52c00a5f 113@end itemize
386405f7 114
7544a042
SW
115@cindex supported user mode targets
116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
0806e3f6 119
debc7065 120@node Installation
5b9f457a
FB
121@chapter Installation
122
15a34c63
FB
123If you want to compile QEMU yourself, see @ref{compilation}.
124
debc7065
FB
125@menu
126* install_linux:: Linux
127* install_windows:: Windows
128* install_mac:: Macintosh
129@end menu
130
131@node install_linux
1f673135 132@section Linux
7544a042 133@cindex installation (Linux)
1f673135 134
7c3fc84d
FB
135If a precompiled package is available for your distribution - you just
136have to install it. Otherwise, see @ref{compilation}.
5b9f457a 137
debc7065 138@node install_windows
1f673135 139@section Windows
7544a042 140@cindex installation (Windows)
8cd0ac2f 141
15a34c63 142Download the experimental binary installer at
debc7065 143@url{http://www.free.oszoo.org/@/download.html}.
7544a042 144TODO (no longer available)
d691f669 145
debc7065 146@node install_mac
1f673135 147@section Mac OS X
d691f669 148
15a34c63 149Download the experimental binary installer at
debc7065 150@url{http://www.free.oszoo.org/@/download.html}.
7544a042 151TODO (no longer available)
df0f11a0 152
debc7065 153@node QEMU PC System emulator
3f9f3aa1 154@chapter QEMU PC System emulator
7544a042 155@cindex system emulation (PC)
1eb20527 156
debc7065
FB
157@menu
158* pcsys_introduction:: Introduction
159* pcsys_quickstart:: Quick Start
160* sec_invocation:: Invocation
161* pcsys_keys:: Keys
162* pcsys_monitor:: QEMU Monitor
163* disk_images:: Disk Images
164* pcsys_network:: Network emulation
576fd0a1 165* pcsys_other_devs:: Other Devices
debc7065
FB
166* direct_linux_boot:: Direct Linux Boot
167* pcsys_usb:: USB emulation
f858dcae 168* vnc_security:: VNC security
debc7065
FB
169* gdb_usage:: GDB usage
170* pcsys_os_specific:: Target OS specific information
171@end menu
172
173@node pcsys_introduction
0806e3f6
FB
174@section Introduction
175
176@c man begin DESCRIPTION
177
3f9f3aa1
FB
178The QEMU PC System emulator simulates the
179following peripherals:
0806e3f6
FB
180
181@itemize @minus
5fafdf24 182@item
15a34c63 183i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 184@item
15a34c63
FB
185Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186extensions (hardware level, including all non standard modes).
0806e3f6
FB
187@item
188PS/2 mouse and keyboard
5fafdf24 189@item
15a34c63 1902 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
191@item
192Floppy disk
5fafdf24 193@item
3a2eeac0 194PCI and ISA network adapters
0806e3f6 195@item
05d5818c
FB
196Serial ports
197@item
c0fe3827
FB
198Creative SoundBlaster 16 sound card
199@item
200ENSONIQ AudioPCI ES1370 sound card
201@item
e5c9a13e
AZ
202Intel 82801AA AC97 Audio compatible sound card
203@item
7d72e762
GH
204Intel HD Audio Controller and HDA codec
205@item
2d983446 206Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 207@item
26463dbc
AZ
208Gravis Ultrasound GF1 sound card
209@item
cc53d26d 210CS4231A compatible sound card
211@item
b389dbfb 212PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
213@end itemize
214
3f9f3aa1
FB
215SMP is supported with up to 255 CPUs.
216
a8ad4159 217QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
218VGA BIOS.
219
c0fe3827
FB
220QEMU uses YM3812 emulation by Tatsuyuki Satoh.
221
2d983446 222QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 223by Tibor "TS" Schütz.
423d65f4 224
1a1a0e20 225Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 226QEMU must be told to not have parallel ports to have working GUS.
720036a5 227
228@example
3804da9d 229qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 230@end example
231
232Alternatively:
233@example
3804da9d 234qemu-system-i386 dos.img -device gus,irq=5
720036a5 235@end example
236
237Or some other unclaimed IRQ.
238
cc53d26d 239CS4231A is the chip used in Windows Sound System and GUSMAX products
240
0806e3f6
FB
241@c man end
242
debc7065 243@node pcsys_quickstart
1eb20527 244@section Quick Start
7544a042 245@cindex quick start
1eb20527 246
285dc330 247Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
248
249@example
3804da9d 250qemu-system-i386 linux.img
0806e3f6
FB
251@end example
252
253Linux should boot and give you a prompt.
254
6cc721cf 255@node sec_invocation
ec410fc9
FB
256@section Invocation
257
258@example
0806e3f6 259@c man begin SYNOPSIS
3804da9d 260usage: qemu-system-i386 [options] [@var{disk_image}]
0806e3f6 261@c man end
ec410fc9
FB
262@end example
263
0806e3f6 264@c man begin OPTIONS
d2c639d6
BS
265@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
266targets do not need a disk image.
ec410fc9 267
5824d651 268@include qemu-options.texi
ec410fc9 269
3e11db9a
FB
270@c man end
271
debc7065 272@node pcsys_keys
3e11db9a
FB
273@section Keys
274
275@c man begin OPTIONS
276
de1db2a1
BH
277During the graphical emulation, you can use special key combinations to change
278modes. The default key mappings are shown below, but if you use @code{-alt-grab}
279then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
280@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
281
a1b74fe8 282@table @key
f9859310 283@item Ctrl-Alt-f
7544a042 284@kindex Ctrl-Alt-f
a1b74fe8 285Toggle full screen
a0a821a4 286
d6a65ba3
JK
287@item Ctrl-Alt-+
288@kindex Ctrl-Alt-+
289Enlarge the screen
290
291@item Ctrl-Alt--
292@kindex Ctrl-Alt--
293Shrink the screen
294
c4a735f9 295@item Ctrl-Alt-u
7544a042 296@kindex Ctrl-Alt-u
c4a735f9 297Restore the screen's un-scaled dimensions
298
f9859310 299@item Ctrl-Alt-n
7544a042 300@kindex Ctrl-Alt-n
a0a821a4
FB
301Switch to virtual console 'n'. Standard console mappings are:
302@table @emph
303@item 1
304Target system display
305@item 2
306Monitor
307@item 3
308Serial port
a1b74fe8
FB
309@end table
310
f9859310 311@item Ctrl-Alt
7544a042 312@kindex Ctrl-Alt
a0a821a4
FB
313Toggle mouse and keyboard grab.
314@end table
315
7544a042
SW
316@kindex Ctrl-Up
317@kindex Ctrl-Down
318@kindex Ctrl-PageUp
319@kindex Ctrl-PageDown
3e11db9a
FB
320In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
321@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
322
7544a042 323@kindex Ctrl-a h
a0a821a4
FB
324During emulation, if you are using the @option{-nographic} option, use
325@key{Ctrl-a h} to get terminal commands:
ec410fc9
FB
326
327@table @key
a1b74fe8 328@item Ctrl-a h
7544a042 329@kindex Ctrl-a h
d2c639d6 330@item Ctrl-a ?
7544a042 331@kindex Ctrl-a ?
ec410fc9 332Print this help
3b46e624 333@item Ctrl-a x
7544a042 334@kindex Ctrl-a x
366dfc52 335Exit emulator
3b46e624 336@item Ctrl-a s
7544a042 337@kindex Ctrl-a s
1f47a922 338Save disk data back to file (if -snapshot)
20d8a3ed 339@item Ctrl-a t
7544a042 340@kindex Ctrl-a t
d2c639d6 341Toggle console timestamps
a1b74fe8 342@item Ctrl-a b
7544a042 343@kindex Ctrl-a b
1f673135 344Send break (magic sysrq in Linux)
a1b74fe8 345@item Ctrl-a c
7544a042 346@kindex Ctrl-a c
1f673135 347Switch between console and monitor
a1b74fe8 348@item Ctrl-a Ctrl-a
7544a042 349@kindex Ctrl-a a
a1b74fe8 350Send Ctrl-a
ec410fc9 351@end table
0806e3f6
FB
352@c man end
353
354@ignore
355
1f673135
FB
356@c man begin SEEALSO
357The HTML documentation of QEMU for more precise information and Linux
358user mode emulator invocation.
359@c man end
360
361@c man begin AUTHOR
362Fabrice Bellard
363@c man end
364
365@end ignore
366
debc7065 367@node pcsys_monitor
1f673135 368@section QEMU Monitor
7544a042 369@cindex QEMU monitor
1f673135
FB
370
371The QEMU monitor is used to give complex commands to the QEMU
372emulator. You can use it to:
373
374@itemize @minus
375
376@item
e598752a 377Remove or insert removable media images
89dfe898 378(such as CD-ROM or floppies).
1f673135 379
5fafdf24 380@item
1f673135
FB
381Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
382from a disk file.
383
384@item Inspect the VM state without an external debugger.
385
386@end itemize
387
388@subsection Commands
389
390The following commands are available:
391
2313086a 392@include qemu-monitor.texi
0806e3f6 393
1f673135
FB
394@subsection Integer expressions
395
396The monitor understands integers expressions for every integer
397argument. You can use register names to get the value of specifics
398CPU registers by prefixing them with @emph{$}.
ec410fc9 399
1f47a922
FB
400@node disk_images
401@section Disk Images
402
acd935ef
FB
403Since version 0.6.1, QEMU supports many disk image formats, including
404growable disk images (their size increase as non empty sectors are
13a2e80f
FB
405written), compressed and encrypted disk images. Version 0.8.3 added
406the new qcow2 disk image format which is essential to support VM
407snapshots.
1f47a922 408
debc7065
FB
409@menu
410* disk_images_quickstart:: Quick start for disk image creation
411* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 412* vm_snapshots:: VM snapshots
debc7065 413* qemu_img_invocation:: qemu-img Invocation
975b092b 414* qemu_nbd_invocation:: qemu-nbd Invocation
d3067b02 415* disk_images_formats:: Disk image file formats
19cb3738 416* host_drives:: Using host drives
debc7065 417* disk_images_fat_images:: Virtual FAT disk images
75818250 418* disk_images_nbd:: NBD access
42af9c30 419* disk_images_sheepdog:: Sheepdog disk images
00984e39 420* disk_images_iscsi:: iSCSI LUNs
8809e289 421* disk_images_gluster:: GlusterFS disk images
0a12ec87 422* disk_images_ssh:: Secure Shell (ssh) disk images
debc7065
FB
423@end menu
424
425@node disk_images_quickstart
acd935ef
FB
426@subsection Quick start for disk image creation
427
428You can create a disk image with the command:
1f47a922 429@example
acd935ef 430qemu-img create myimage.img mysize
1f47a922 431@end example
acd935ef
FB
432where @var{myimage.img} is the disk image filename and @var{mysize} is its
433size in kilobytes. You can add an @code{M} suffix to give the size in
434megabytes and a @code{G} suffix for gigabytes.
435
debc7065 436See @ref{qemu_img_invocation} for more information.
1f47a922 437
debc7065 438@node disk_images_snapshot_mode
1f47a922
FB
439@subsection Snapshot mode
440
441If you use the option @option{-snapshot}, all disk images are
442considered as read only. When sectors in written, they are written in
443a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
444write back to the raw disk images by using the @code{commit} monitor
445command (or @key{C-a s} in the serial console).
1f47a922 446
13a2e80f
FB
447@node vm_snapshots
448@subsection VM snapshots
449
450VM snapshots are snapshots of the complete virtual machine including
451CPU state, RAM, device state and the content of all the writable
452disks. In order to use VM snapshots, you must have at least one non
453removable and writable block device using the @code{qcow2} disk image
454format. Normally this device is the first virtual hard drive.
455
456Use the monitor command @code{savevm} to create a new VM snapshot or
457replace an existing one. A human readable name can be assigned to each
19d36792 458snapshot in addition to its numerical ID.
13a2e80f
FB
459
460Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
461a VM snapshot. @code{info snapshots} lists the available snapshots
462with their associated information:
463
464@example
465(qemu) info snapshots
466Snapshot devices: hda
467Snapshot list (from hda):
468ID TAG VM SIZE DATE VM CLOCK
4691 start 41M 2006-08-06 12:38:02 00:00:14.954
4702 40M 2006-08-06 12:43:29 00:00:18.633
4713 msys 40M 2006-08-06 12:44:04 00:00:23.514
472@end example
473
474A VM snapshot is made of a VM state info (its size is shown in
475@code{info snapshots}) and a snapshot of every writable disk image.
476The VM state info is stored in the first @code{qcow2} non removable
477and writable block device. The disk image snapshots are stored in
478every disk image. The size of a snapshot in a disk image is difficult
479to evaluate and is not shown by @code{info snapshots} because the
480associated disk sectors are shared among all the snapshots to save
19d36792
FB
481disk space (otherwise each snapshot would need a full copy of all the
482disk images).
13a2e80f
FB
483
484When using the (unrelated) @code{-snapshot} option
485(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
486but they are deleted as soon as you exit QEMU.
487
488VM snapshots currently have the following known limitations:
489@itemize
5fafdf24 490@item
13a2e80f
FB
491They cannot cope with removable devices if they are removed or
492inserted after a snapshot is done.
5fafdf24 493@item
13a2e80f
FB
494A few device drivers still have incomplete snapshot support so their
495state is not saved or restored properly (in particular USB).
496@end itemize
497
acd935ef
FB
498@node qemu_img_invocation
499@subsection @code{qemu-img} Invocation
1f47a922 500
acd935ef 501@include qemu-img.texi
05efe46e 502
975b092b
TS
503@node qemu_nbd_invocation
504@subsection @code{qemu-nbd} Invocation
505
506@include qemu-nbd.texi
507
d3067b02
KW
508@node disk_images_formats
509@subsection Disk image file formats
510
511QEMU supports many image file formats that can be used with VMs as well as with
512any of the tools (like @code{qemu-img}). This includes the preferred formats
513raw and qcow2 as well as formats that are supported for compatibility with
514older QEMU versions or other hypervisors.
515
516Depending on the image format, different options can be passed to
517@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
518This section describes each format and the options that are supported for it.
519
520@table @option
521@item raw
522
523Raw disk image format. This format has the advantage of
524being simple and easily exportable to all other emulators. If your
525file system supports @emph{holes} (for example in ext2 or ext3 on
526Linux or NTFS on Windows), then only the written sectors will reserve
527space. Use @code{qemu-img info} to know the real size used by the
528image or @code{ls -ls} on Unix/Linux.
529
06247428
HT
530Supported options:
531@table @code
532@item preallocation
533Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
534@code{falloc} mode preallocates space for image by calling posix_fallocate().
535@code{full} mode preallocates space for image by writing zeros to underlying
536storage.
537@end table
538
d3067b02
KW
539@item qcow2
540QEMU image format, the most versatile format. Use it to have smaller
541images (useful if your filesystem does not supports holes, for example
542on Windows), optional AES encryption, zlib based compression and
543support of multiple VM snapshots.
544
545Supported options:
546@table @code
547@item compat
7fa9e1f9
SH
548Determines the qcow2 version to use. @code{compat=0.10} uses the
549traditional image format that can be read by any QEMU since 0.10.
d3067b02 550@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
7fa9e1f9
SH
551newer understand (this is the default). Amongst others, this includes
552zero clusters, which allow efficient copy-on-read for sparse images.
d3067b02
KW
553
554@item backing_file
555File name of a base image (see @option{create} subcommand)
556@item backing_fmt
557Image format of the base image
558@item encryption
136cd19d 559If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC.
d3067b02 560
136cd19d
DB
561The use of encryption in qcow and qcow2 images is considered to be flawed by
562modern cryptography standards, suffering from a number of design problems:
563
564@itemize @minus
565@item The AES-CBC cipher is used with predictable initialization vectors based
566on the sector number. This makes it vulnerable to chosen plaintext attacks
567which can reveal the existence of encrypted data.
568@item The user passphrase is directly used as the encryption key. A poorly
569chosen or short passphrase will compromise the security of the encryption.
570@item In the event of the passphrase being compromised there is no way to
571change the passphrase to protect data in any qcow images. The files must
572be cloned, using a different encryption passphrase in the new file. The
573original file must then be securely erased using a program like shred,
574though even this is ineffective with many modern storage technologies.
575@end itemize
576
577Use of qcow / qcow2 encryption is thus strongly discouraged. Users are
578recommended to use an alternative encryption technology such as the
579Linux dm-crypt / LUKS system.
d3067b02
KW
580
581@item cluster_size
582Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
583sizes can improve the image file size whereas larger cluster sizes generally
584provide better performance.
585
586@item preallocation
0e4271b7
HT
587Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
588@code{full}). An image with preallocated metadata is initially larger but can
589improve performance when the image needs to grow. @code{falloc} and @code{full}
590preallocations are like the same options of @code{raw} format, but sets up
591metadata also.
d3067b02
KW
592
593@item lazy_refcounts
594If this option is set to @code{on}, reference count updates are postponed with
595the goal of avoiding metadata I/O and improving performance. This is
596particularly interesting with @option{cache=writethrough} which doesn't batch
597metadata updates. The tradeoff is that after a host crash, the reference count
598tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
599check -r all} is required, which may take some time.
600
601This option can only be enabled if @code{compat=1.1} is specified.
602
4ab15590 603@item nocow
bc3a7f90 604If this option is set to @code{on}, it will turn off COW of the file. It's only
4ab15590
CL
605valid on btrfs, no effect on other file systems.
606
607Btrfs has low performance when hosting a VM image file, even more when the guest
608on the VM also using btrfs as file system. Turning off COW is a way to mitigate
609this bad performance. Generally there are two ways to turn off COW on btrfs:
610a) Disable it by mounting with nodatacow, then all newly created files will be
611NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
612does.
613
614Note: this option is only valid to new or empty files. If there is an existing
615file which is COW and has data blocks already, it couldn't be changed to NOCOW
616by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
bc3a7f90 617the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
4ab15590 618
d3067b02
KW
619@end table
620
621@item qed
622Old QEMU image format with support for backing files and compact image files
623(when your filesystem or transport medium does not support holes).
624
625When converting QED images to qcow2, you might want to consider using the
626@code{lazy_refcounts=on} option to get a more QED-like behaviour.
627
628Supported options:
629@table @code
630@item backing_file
631File name of a base image (see @option{create} subcommand).
632@item backing_fmt
633Image file format of backing file (optional). Useful if the format cannot be
634autodetected because it has no header, like some vhd/vpc files.
635@item cluster_size
636Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
637cluster sizes can improve the image file size whereas larger cluster sizes
638generally provide better performance.
639@item table_size
640Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
641and 16). There is normally no need to change this value but this option can be
642used for performance benchmarking.
643@end table
644
645@item qcow
646Old QEMU image format with support for backing files, compact image files,
647encryption and compression.
648
649Supported options:
650@table @code
651@item backing_file
652File name of a base image (see @option{create} subcommand)
653@item encryption
654If this option is set to @code{on}, the image is encrypted.
655@end table
656
d3067b02
KW
657@item vdi
658VirtualBox 1.1 compatible image format.
659Supported options:
660@table @code
661@item static
662If this option is set to @code{on}, the image is created with metadata
663preallocation.
664@end table
665
666@item vmdk
667VMware 3 and 4 compatible image format.
668
669Supported options:
670@table @code
671@item backing_file
672File name of a base image (see @option{create} subcommand).
673@item compat6
674Create a VMDK version 6 image (instead of version 4)
675@item subformat
676Specifies which VMDK subformat to use. Valid options are
677@code{monolithicSparse} (default),
678@code{monolithicFlat},
679@code{twoGbMaxExtentSparse},
680@code{twoGbMaxExtentFlat} and
681@code{streamOptimized}.
682@end table
683
684@item vpc
685VirtualPC compatible image format (VHD).
686Supported options:
687@table @code
688@item subformat
689Specifies which VHD subformat to use. Valid options are
690@code{dynamic} (default) and @code{fixed}.
691@end table
8282db1b
JC
692
693@item VHDX
694Hyper-V compatible image format (VHDX).
695Supported options:
696@table @code
697@item subformat
698Specifies which VHDX subformat to use. Valid options are
699@code{dynamic} (default) and @code{fixed}.
700@item block_state_zero
701Force use of payload blocks of type 'ZERO'.
702@item block_size
703Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size.
704@item log_size
705Log size; min 1 MB.
706@end table
d3067b02
KW
707@end table
708
709@subsubsection Read-only formats
710More disk image file formats are supported in a read-only mode.
711@table @option
712@item bochs
713Bochs images of @code{growing} type.
714@item cloop
715Linux Compressed Loop image, useful only to reuse directly compressed
716CD-ROM images present for example in the Knoppix CD-ROMs.
717@item dmg
718Apple disk image.
719@item parallels
720Parallels disk image format.
721@end table
722
723
19cb3738
FB
724@node host_drives
725@subsection Using host drives
726
727In addition to disk image files, QEMU can directly access host
728devices. We describe here the usage for QEMU version >= 0.8.3.
729
730@subsubsection Linux
731
732On Linux, you can directly use the host device filename instead of a
4be456f1 733disk image filename provided you have enough privileges to access
19cb3738
FB
734it. For example, use @file{/dev/cdrom} to access to the CDROM or
735@file{/dev/fd0} for the floppy.
736
f542086d 737@table @code
19cb3738
FB
738@item CD
739You can specify a CDROM device even if no CDROM is loaded. QEMU has
740specific code to detect CDROM insertion or removal. CDROM ejection by
741the guest OS is supported. Currently only data CDs are supported.
742@item Floppy
743You can specify a floppy device even if no floppy is loaded. Floppy
744removal is currently not detected accurately (if you change floppy
745without doing floppy access while the floppy is not loaded, the guest
746OS will think that the same floppy is loaded).
747@item Hard disks
748Hard disks can be used. Normally you must specify the whole disk
749(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
750see it as a partitioned disk. WARNING: unless you know what you do, it
751is better to only make READ-ONLY accesses to the hard disk otherwise
752you may corrupt your host data (use the @option{-snapshot} command
753line option or modify the device permissions accordingly).
754@end table
755
756@subsubsection Windows
757
01781963
FB
758@table @code
759@item CD
4be456f1 760The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
761alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
762supported as an alias to the first CDROM drive.
19cb3738 763
e598752a 764Currently there is no specific code to handle removable media, so it
19cb3738
FB
765is better to use the @code{change} or @code{eject} monitor commands to
766change or eject media.
01781963 767@item Hard disks
89dfe898 768Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
769where @var{N} is the drive number (0 is the first hard disk).
770
771WARNING: unless you know what you do, it is better to only make
772READ-ONLY accesses to the hard disk otherwise you may corrupt your
773host data (use the @option{-snapshot} command line so that the
774modifications are written in a temporary file).
775@end table
776
19cb3738
FB
777
778@subsubsection Mac OS X
779
5fafdf24 780@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 781
e598752a 782Currently there is no specific code to handle removable media, so it
19cb3738
FB
783is better to use the @code{change} or @code{eject} monitor commands to
784change or eject media.
785
debc7065 786@node disk_images_fat_images
2c6cadd4
FB
787@subsection Virtual FAT disk images
788
789QEMU can automatically create a virtual FAT disk image from a
790directory tree. In order to use it, just type:
791
5fafdf24 792@example
3804da9d 793qemu-system-i386 linux.img -hdb fat:/my_directory
2c6cadd4
FB
794@end example
795
796Then you access access to all the files in the @file{/my_directory}
797directory without having to copy them in a disk image or to export
798them via SAMBA or NFS. The default access is @emph{read-only}.
799
800Floppies can be emulated with the @code{:floppy:} option:
801
5fafdf24 802@example
3804da9d 803qemu-system-i386 linux.img -fda fat:floppy:/my_directory
2c6cadd4
FB
804@end example
805
806A read/write support is available for testing (beta stage) with the
807@code{:rw:} option:
808
5fafdf24 809@example
3804da9d 810qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
2c6cadd4
FB
811@end example
812
813What you should @emph{never} do:
814@itemize
815@item use non-ASCII filenames ;
816@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
817@item expect it to work when loadvm'ing ;
818@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
819@end itemize
820
75818250
TS
821@node disk_images_nbd
822@subsection NBD access
823
824QEMU can access directly to block device exported using the Network Block Device
825protocol.
826
827@example
1d7d2a9d 828qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
75818250
TS
829@end example
830
831If the NBD server is located on the same host, you can use an unix socket instead
832of an inet socket:
833
834@example
1d7d2a9d 835qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
836@end example
837
838In this case, the block device must be exported using qemu-nbd:
839
840@example
841qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
842@end example
843
9d85d557 844The use of qemu-nbd allows sharing of a disk between several guests:
75818250
TS
845@example
846qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
847@end example
848
1d7d2a9d 849@noindent
75818250
TS
850and then you can use it with two guests:
851@example
1d7d2a9d
PB
852qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
853qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
854@end example
855
1d7d2a9d
PB
856If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
857own embedded NBD server), you must specify an export name in the URI:
1d45f8b5 858@example
1d7d2a9d
PB
859qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
860qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
861@end example
862
863The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
864also available. Here are some example of the older syntax:
865@example
866qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
867qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
868qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
1d45f8b5
LV
869@end example
870
42af9c30
MK
871@node disk_images_sheepdog
872@subsection Sheepdog disk images
873
874Sheepdog is a distributed storage system for QEMU. It provides highly
875available block level storage volumes that can be attached to
876QEMU-based virtual machines.
877
878You can create a Sheepdog disk image with the command:
879@example
5d6768e3 880qemu-img create sheepdog:///@var{image} @var{size}
42af9c30
MK
881@end example
882where @var{image} is the Sheepdog image name and @var{size} is its
883size.
884
885To import the existing @var{filename} to Sheepdog, you can use a
886convert command.
887@example
5d6768e3 888qemu-img convert @var{filename} sheepdog:///@var{image}
42af9c30
MK
889@end example
890
891You can boot from the Sheepdog disk image with the command:
892@example
5d6768e3 893qemu-system-i386 sheepdog:///@var{image}
42af9c30
MK
894@end example
895
896You can also create a snapshot of the Sheepdog image like qcow2.
897@example
5d6768e3 898qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
42af9c30
MK
899@end example
900where @var{tag} is a tag name of the newly created snapshot.
901
902To boot from the Sheepdog snapshot, specify the tag name of the
903snapshot.
904@example
5d6768e3 905qemu-system-i386 sheepdog:///@var{image}#@var{tag}
42af9c30
MK
906@end example
907
908You can create a cloned image from the existing snapshot.
909@example
5d6768e3 910qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
42af9c30
MK
911@end example
912where @var{base} is a image name of the source snapshot and @var{tag}
913is its tag name.
914
1b8bbb46
MK
915You can use an unix socket instead of an inet socket:
916
917@example
918qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
919@end example
920
42af9c30
MK
921If the Sheepdog daemon doesn't run on the local host, you need to
922specify one of the Sheepdog servers to connect to.
923@example
5d6768e3
MK
924qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
925qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
42af9c30
MK
926@end example
927
00984e39
RS
928@node disk_images_iscsi
929@subsection iSCSI LUNs
930
931iSCSI is a popular protocol used to access SCSI devices across a computer
932network.
933
934There are two different ways iSCSI devices can be used by QEMU.
935
936The first method is to mount the iSCSI LUN on the host, and make it appear as
937any other ordinary SCSI device on the host and then to access this device as a
938/dev/sd device from QEMU. How to do this differs between host OSes.
939
940The second method involves using the iSCSI initiator that is built into
941QEMU. This provides a mechanism that works the same way regardless of which
942host OS you are running QEMU on. This section will describe this second method
943of using iSCSI together with QEMU.
944
945In QEMU, iSCSI devices are described using special iSCSI URLs
946
947@example
948URL syntax:
949iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
950@end example
951
952Username and password are optional and only used if your target is set up
953using CHAP authentication for access control.
954Alternatively the username and password can also be set via environment
955variables to have these not show up in the process list
956
957@example
958export LIBISCSI_CHAP_USERNAME=<username>
959export LIBISCSI_CHAP_PASSWORD=<password>
960iscsi://<host>/<target-iqn-name>/<lun>
961@end example
962
f9dadc98
RS
963Various session related parameters can be set via special options, either
964in a configuration file provided via '-readconfig' or directly on the
965command line.
966
31459f46
RS
967If the initiator-name is not specified qemu will use a default name
968of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
969virtual machine.
970
971
f9dadc98
RS
972@example
973Setting a specific initiator name to use when logging in to the target
974-iscsi initiator-name=iqn.qemu.test:my-initiator
975@end example
976
977@example
978Controlling which type of header digest to negotiate with the target
979-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
980@end example
981
982These can also be set via a configuration file
983@example
984[iscsi]
985 user = "CHAP username"
986 password = "CHAP password"
987 initiator-name = "iqn.qemu.test:my-initiator"
988 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
989 header-digest = "CRC32C"
990@end example
991
992
993Setting the target name allows different options for different targets
994@example
995[iscsi "iqn.target.name"]
996 user = "CHAP username"
997 password = "CHAP password"
998 initiator-name = "iqn.qemu.test:my-initiator"
999 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1000 header-digest = "CRC32C"
1001@end example
1002
1003
1004Howto use a configuration file to set iSCSI configuration options:
1005@example
1006cat >iscsi.conf <<EOF
1007[iscsi]
1008 user = "me"
1009 password = "my password"
1010 initiator-name = "iqn.qemu.test:my-initiator"
1011 header-digest = "CRC32C"
1012EOF
1013
1014qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1015 -readconfig iscsi.conf
1016@end example
1017
1018
00984e39
RS
1019Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
1020@example
1021This example shows how to set up an iSCSI target with one CDROM and one DISK
1022using the Linux STGT software target. This target is available on Red Hat based
1023systems as the package 'scsi-target-utils'.
1024
1025tgtd --iscsi portal=127.0.0.1:3260
1026tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
1027tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
1028 -b /IMAGES/disk.img --device-type=disk
1029tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
1030 -b /IMAGES/cd.iso --device-type=cd
1031tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
1032
f9dadc98
RS
1033qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
1034 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
00984e39
RS
1035 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
1036@end example
1037
8809e289
BR
1038@node disk_images_gluster
1039@subsection GlusterFS disk images
00984e39 1040
8809e289
BR
1041GlusterFS is an user space distributed file system.
1042
1043You can boot from the GlusterFS disk image with the command:
1044@example
1045qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
1046@end example
1047
1048@var{gluster} is the protocol.
1049
1050@var{transport} specifies the transport type used to connect to gluster
1051management daemon (glusterd). Valid transport types are
1052tcp, unix and rdma. If a transport type isn't specified, then tcp
1053type is assumed.
1054
1055@var{server} specifies the server where the volume file specification for
1056the given volume resides. This can be either hostname, ipv4 address
1057or ipv6 address. ipv6 address needs to be within square brackets [ ].
1058If transport type is unix, then @var{server} field should not be specifed.
1059Instead @var{socket} field needs to be populated with the path to unix domain
1060socket.
1061
1062@var{port} is the port number on which glusterd is listening. This is optional
1063and if not specified, QEMU will send 0 which will make gluster to use the
1064default port. If the transport type is unix, then @var{port} should not be
1065specified.
1066
1067@var{volname} is the name of the gluster volume which contains the disk image.
1068
1069@var{image} is the path to the actual disk image that resides on gluster volume.
1070
1071You can create a GlusterFS disk image with the command:
1072@example
1073qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
1074@end example
1075
1076Examples
1077@example
1078qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1079qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1080qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1081qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1082qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1083qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1084qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1085qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
1086@end example
00984e39 1087
0a12ec87
RJ
1088@node disk_images_ssh
1089@subsection Secure Shell (ssh) disk images
1090
1091You can access disk images located on a remote ssh server
1092by using the ssh protocol:
1093
1094@example
1095qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1096@end example
1097
1098Alternative syntax using properties:
1099
1100@example
1101qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1102@end example
1103
1104@var{ssh} is the protocol.
1105
1106@var{user} is the remote user. If not specified, then the local
1107username is tried.
1108
1109@var{server} specifies the remote ssh server. Any ssh server can be
1110used, but it must implement the sftp-server protocol. Most Unix/Linux
1111systems should work without requiring any extra configuration.
1112
1113@var{port} is the port number on which sshd is listening. By default
1114the standard ssh port (22) is used.
1115
1116@var{path} is the path to the disk image.
1117
1118The optional @var{host_key_check} parameter controls how the remote
1119host's key is checked. The default is @code{yes} which means to use
1120the local @file{.ssh/known_hosts} file. Setting this to @code{no}
1121turns off known-hosts checking. Or you can check that the host key
1122matches a specific fingerprint:
1123@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1124(@code{sha1:} can also be used as a prefix, but note that OpenSSH
1125tools only use MD5 to print fingerprints).
1126
1127Currently authentication must be done using ssh-agent. Other
1128authentication methods may be supported in future.
1129
9a2d462e
RJ
1130Note: Many ssh servers do not support an @code{fsync}-style operation.
1131The ssh driver cannot guarantee that disk flush requests are
1132obeyed, and this causes a risk of disk corruption if the remote
1133server or network goes down during writes. The driver will
1134print a warning when @code{fsync} is not supported:
1135
1136warning: ssh server @code{ssh.example.com:22} does not support fsync
1137
1138With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1139supported.
0a12ec87 1140
debc7065 1141@node pcsys_network
9d4fb82e
FB
1142@section Network emulation
1143
4be456f1 1144QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
1145target) and can connect them to an arbitrary number of Virtual Local
1146Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1147VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 1148simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
1149network stack can replace the TAP device to have a basic network
1150connection.
1151
1152@subsection VLANs
9d4fb82e 1153
41d03949
FB
1154QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1155connection between several network devices. These devices can be for
1156example QEMU virtual Ethernet cards or virtual Host ethernet devices
1157(TAP devices).
9d4fb82e 1158
41d03949
FB
1159@subsection Using TAP network interfaces
1160
1161This is the standard way to connect QEMU to a real network. QEMU adds
1162a virtual network device on your host (called @code{tapN}), and you
1163can then configure it as if it was a real ethernet card.
9d4fb82e 1164
8f40c388
FB
1165@subsubsection Linux host
1166
9d4fb82e
FB
1167As an example, you can download the @file{linux-test-xxx.tar.gz}
1168archive and copy the script @file{qemu-ifup} in @file{/etc} and
1169configure properly @code{sudo} so that the command @code{ifconfig}
1170contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 1171that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
1172device @file{/dev/net/tun} must be present.
1173
ee0f4751
FB
1174See @ref{sec_invocation} to have examples of command lines using the
1175TAP network interfaces.
9d4fb82e 1176
8f40c388
FB
1177@subsubsection Windows host
1178
1179There is a virtual ethernet driver for Windows 2000/XP systems, called
1180TAP-Win32. But it is not included in standard QEMU for Windows,
1181so you will need to get it separately. It is part of OpenVPN package,
1182so download OpenVPN from : @url{http://openvpn.net/}.
1183
9d4fb82e
FB
1184@subsection Using the user mode network stack
1185
41d03949
FB
1186By using the option @option{-net user} (default configuration if no
1187@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 1188network stack (you don't need root privilege to use the virtual
41d03949 1189network). The virtual network configuration is the following:
9d4fb82e
FB
1190
1191@example
1192
41d03949
FB
1193 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1194 | (10.0.2.2)
9d4fb82e 1195 |
2518bd0d 1196 ----> DNS server (10.0.2.3)
3b46e624 1197 |
2518bd0d 1198 ----> SMB server (10.0.2.4)
9d4fb82e
FB
1199@end example
1200
1201The QEMU VM behaves as if it was behind a firewall which blocks all
1202incoming connections. You can use a DHCP client to automatically
41d03949
FB
1203configure the network in the QEMU VM. The DHCP server assign addresses
1204to the hosts starting from 10.0.2.15.
9d4fb82e
FB
1205
1206In order to check that the user mode network is working, you can ping
1207the address 10.0.2.2 and verify that you got an address in the range
120810.0.2.x from the QEMU virtual DHCP server.
1209
37cbfcce
GH
1210Note that ICMP traffic in general does not work with user mode networking.
1211@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
1212however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
1213ping sockets to allow @code{ping} to the Internet. The host admin has to set
1214the ping_group_range in order to grant access to those sockets. To allow ping
1215for GID 100 (usually users group):
1216
1217@example
1218echo 100 100 > /proc/sys/net/ipv4/ping_group_range
1219@end example
b415a407 1220
9bf05444
FB
1221When using the built-in TFTP server, the router is also the TFTP
1222server.
1223
1224When using the @option{-redir} option, TCP or UDP connections can be
1225redirected from the host to the guest. It allows for example to
1226redirect X11, telnet or SSH connections.
443f1376 1227
41d03949
FB
1228@subsection Connecting VLANs between QEMU instances
1229
1230Using the @option{-net socket} option, it is possible to make VLANs
1231that span several QEMU instances. See @ref{sec_invocation} to have a
1232basic example.
1233
576fd0a1 1234@node pcsys_other_devs
6cbf4c8c
CM
1235@section Other Devices
1236
1237@subsection Inter-VM Shared Memory device
1238
1239With KVM enabled on a Linux host, a shared memory device is available. Guests
1240map a POSIX shared memory region into the guest as a PCI device that enables
1241zero-copy communication to the application level of the guests. The basic
1242syntax is:
1243
1244@example
3804da9d 1245qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
6cbf4c8c
CM
1246@end example
1247
1248If desired, interrupts can be sent between guest VMs accessing the same shared
1249memory region. Interrupt support requires using a shared memory server and
1250using a chardev socket to connect to it. The code for the shared memory server
1251is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
1252memory server is:
1253
1254@example
3804da9d
SW
1255qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
1256 [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
1257qemu-system-i386 -chardev socket,path=<path>,id=<id>
6cbf4c8c
CM
1258@end example
1259
1260When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1261using the same server to communicate via interrupts. Guests can read their
1262VM ID from a device register (see example code). Since receiving the shared
1263memory region from the server is asynchronous, there is a (small) chance the
1264guest may boot before the shared memory is attached. To allow an application
1265to ensure shared memory is attached, the VM ID register will return -1 (an
1266invalid VM ID) until the memory is attached. Once the shared memory is
1267attached, the VM ID will return the guest's valid VM ID. With these semantics,
1268the guest application can check to ensure the shared memory is attached to the
1269guest before proceeding.
1270
1271The @option{role} argument can be set to either master or peer and will affect
1272how the shared memory is migrated. With @option{role=master}, the guest will
1273copy the shared memory on migration to the destination host. With
1274@option{role=peer}, the guest will not be able to migrate with the device attached.
1275With the @option{peer} case, the device should be detached and then reattached
1276after migration using the PCI hotplug support.
1277
9d4fb82e
FB
1278@node direct_linux_boot
1279@section Direct Linux Boot
1f673135
FB
1280
1281This section explains how to launch a Linux kernel inside QEMU without
1282having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1283kernel testing.
1f673135 1284
ee0f4751 1285The syntax is:
1f673135 1286@example
3804da9d 1287qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1288@end example
1289
ee0f4751
FB
1290Use @option{-kernel} to provide the Linux kernel image and
1291@option{-append} to give the kernel command line arguments. The
1292@option{-initrd} option can be used to provide an INITRD image.
1f673135 1293
ee0f4751
FB
1294When using the direct Linux boot, a disk image for the first hard disk
1295@file{hda} is required because its boot sector is used to launch the
1296Linux kernel.
1f673135 1297
ee0f4751
FB
1298If you do not need graphical output, you can disable it and redirect
1299the virtual serial port and the QEMU monitor to the console with the
1300@option{-nographic} option. The typical command line is:
1f673135 1301@example
3804da9d
SW
1302qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1303 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1304@end example
1305
ee0f4751
FB
1306Use @key{Ctrl-a c} to switch between the serial console and the
1307monitor (@pxref{pcsys_keys}).
1f673135 1308
debc7065 1309@node pcsys_usb
b389dbfb
FB
1310@section USB emulation
1311
0aff66b5
PB
1312QEMU emulates a PCI UHCI USB controller. You can virtually plug
1313virtual USB devices or real host USB devices (experimental, works only
071c9394 1314on Linux hosts). QEMU will automatically create and connect virtual USB hubs
f542086d 1315as necessary to connect multiple USB devices.
b389dbfb 1316
0aff66b5
PB
1317@menu
1318* usb_devices::
1319* host_usb_devices::
1320@end menu
1321@node usb_devices
1322@subsection Connecting USB devices
b389dbfb 1323
0aff66b5
PB
1324USB devices can be connected with the @option{-usbdevice} commandline option
1325or the @code{usb_add} monitor command. Available devices are:
b389dbfb 1326
db380c06
AZ
1327@table @code
1328@item mouse
0aff66b5 1329Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 1330@item tablet
c6d46c20 1331Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 1332This means QEMU is able to report the mouse position without having
0aff66b5 1333to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 1334@item disk:@var{file}
0aff66b5 1335Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 1336@item host:@var{bus.addr}
0aff66b5
PB
1337Pass through the host device identified by @var{bus.addr}
1338(Linux only)
db380c06 1339@item host:@var{vendor_id:product_id}
0aff66b5
PB
1340Pass through the host device identified by @var{vendor_id:product_id}
1341(Linux only)
db380c06 1342@item wacom-tablet
f6d2a316
AZ
1343Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1344above but it can be used with the tslib library because in addition to touch
1345coordinates it reports touch pressure.
db380c06 1346@item keyboard
47b2d338 1347Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
1348@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1349Serial converter. This emulates an FTDI FT232BM chip connected to host character
1350device @var{dev}. The available character devices are the same as for the
1351@code{-serial} option. The @code{vendorid} and @code{productid} options can be
0d6753e5 1352used to override the default 0403:6001. For instance,
db380c06
AZ
1353@example
1354usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1355@end example
1356will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1357serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
1358@item braille
1359Braille device. This will use BrlAPI to display the braille output on a real
1360or fake device.
9ad97e65
AZ
1361@item net:@var{options}
1362Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1363specifies NIC options as with @code{-net nic,}@var{options} (see description).
1364For instance, user-mode networking can be used with
6c9f886c 1365@example
3804da9d 1366qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
1367@end example
1368Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
1369@item bt[:@var{hci-type}]
1370Bluetooth dongle whose type is specified in the same format as with
1371the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1372no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1373This USB device implements the USB Transport Layer of HCI. Example
1374usage:
1375@example
3804da9d 1376qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
2d564691 1377@end example
0aff66b5 1378@end table
b389dbfb 1379
0aff66b5 1380@node host_usb_devices
b389dbfb
FB
1381@subsection Using host USB devices on a Linux host
1382
1383WARNING: this is an experimental feature. QEMU will slow down when
1384using it. USB devices requiring real time streaming (i.e. USB Video
1385Cameras) are not supported yet.
1386
1387@enumerate
5fafdf24 1388@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1389is actually using the USB device. A simple way to do that is simply to
1390disable the corresponding kernel module by renaming it from @file{mydriver.o}
1391to @file{mydriver.o.disabled}.
1392
1393@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1394@example
1395ls /proc/bus/usb
1396001 devices drivers
1397@end example
1398
1399@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1400@example
1401chown -R myuid /proc/bus/usb
1402@end example
1403
1404@item Launch QEMU and do in the monitor:
5fafdf24 1405@example
b389dbfb
FB
1406info usbhost
1407 Device 1.2, speed 480 Mb/s
1408 Class 00: USB device 1234:5678, USB DISK
1409@end example
1410You should see the list of the devices you can use (Never try to use
1411hubs, it won't work).
1412
1413@item Add the device in QEMU by using:
5fafdf24 1414@example
b389dbfb
FB
1415usb_add host:1234:5678
1416@end example
1417
1418Normally the guest OS should report that a new USB device is
1419plugged. You can use the option @option{-usbdevice} to do the same.
1420
1421@item Now you can try to use the host USB device in QEMU.
1422
1423@end enumerate
1424
1425When relaunching QEMU, you may have to unplug and plug again the USB
1426device to make it work again (this is a bug).
1427
f858dcae
TS
1428@node vnc_security
1429@section VNC security
1430
1431The VNC server capability provides access to the graphical console
1432of the guest VM across the network. This has a number of security
1433considerations depending on the deployment scenarios.
1434
1435@menu
1436* vnc_sec_none::
1437* vnc_sec_password::
1438* vnc_sec_certificate::
1439* vnc_sec_certificate_verify::
1440* vnc_sec_certificate_pw::
2f9606b3
AL
1441* vnc_sec_sasl::
1442* vnc_sec_certificate_sasl::
f858dcae 1443* vnc_generate_cert::
2f9606b3 1444* vnc_setup_sasl::
f858dcae
TS
1445@end menu
1446@node vnc_sec_none
1447@subsection Without passwords
1448
1449The simplest VNC server setup does not include any form of authentication.
1450For this setup it is recommended to restrict it to listen on a UNIX domain
1451socket only. For example
1452
1453@example
3804da9d 1454qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1455@end example
1456
1457This ensures that only users on local box with read/write access to that
1458path can access the VNC server. To securely access the VNC server from a
1459remote machine, a combination of netcat+ssh can be used to provide a secure
1460tunnel.
1461
1462@node vnc_sec_password
1463@subsection With passwords
1464
1465The VNC protocol has limited support for password based authentication. Since
1466the protocol limits passwords to 8 characters it should not be considered
1467to provide high security. The password can be fairly easily brute-forced by
1468a client making repeat connections. For this reason, a VNC server using password
1469authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1470or UNIX domain sockets. Password authentication is not supported when operating
1471in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1472authentication is requested with the @code{password} option, and then once QEMU
1473is running the password is set with the monitor. Until the monitor is used to
1474set the password all clients will be rejected.
f858dcae
TS
1475
1476@example
3804da9d 1477qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1478(qemu) change vnc password
1479Password: ********
1480(qemu)
1481@end example
1482
1483@node vnc_sec_certificate
1484@subsection With x509 certificates
1485
1486The QEMU VNC server also implements the VeNCrypt extension allowing use of
1487TLS for encryption of the session, and x509 certificates for authentication.
1488The use of x509 certificates is strongly recommended, because TLS on its
1489own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1490support provides a secure session, but no authentication. This allows any
1491client to connect, and provides an encrypted session.
1492
1493@example
3804da9d 1494qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
1495@end example
1496
1497In the above example @code{/etc/pki/qemu} should contain at least three files,
1498@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1499users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1500NB the @code{server-key.pem} file should be protected with file mode 0600 to
1501only be readable by the user owning it.
1502
1503@node vnc_sec_certificate_verify
1504@subsection With x509 certificates and client verification
1505
1506Certificates can also provide a means to authenticate the client connecting.
1507The server will request that the client provide a certificate, which it will
1508then validate against the CA certificate. This is a good choice if deploying
1509in an environment with a private internal certificate authority.
1510
1511@example
3804da9d 1512qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1513@end example
1514
1515
1516@node vnc_sec_certificate_pw
1517@subsection With x509 certificates, client verification and passwords
1518
1519Finally, the previous method can be combined with VNC password authentication
1520to provide two layers of authentication for clients.
1521
1522@example
3804da9d 1523qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1524(qemu) change vnc password
1525Password: ********
1526(qemu)
1527@end example
1528
2f9606b3
AL
1529
1530@node vnc_sec_sasl
1531@subsection With SASL authentication
1532
1533The SASL authentication method is a VNC extension, that provides an
1534easily extendable, pluggable authentication method. This allows for
1535integration with a wide range of authentication mechanisms, such as
1536PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1537The strength of the authentication depends on the exact mechanism
1538configured. If the chosen mechanism also provides a SSF layer, then
1539it will encrypt the datastream as well.
1540
1541Refer to the later docs on how to choose the exact SASL mechanism
1542used for authentication, but assuming use of one supporting SSF,
1543then QEMU can be launched with:
1544
1545@example
3804da9d 1546qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1547@end example
1548
1549@node vnc_sec_certificate_sasl
1550@subsection With x509 certificates and SASL authentication
1551
1552If the desired SASL authentication mechanism does not supported
1553SSF layers, then it is strongly advised to run it in combination
1554with TLS and x509 certificates. This provides securely encrypted
1555data stream, avoiding risk of compromising of the security
1556credentials. This can be enabled, by combining the 'sasl' option
1557with the aforementioned TLS + x509 options:
1558
1559@example
3804da9d 1560qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
1561@end example
1562
1563
f858dcae
TS
1564@node vnc_generate_cert
1565@subsection Generating certificates for VNC
1566
1567The GNU TLS packages provides a command called @code{certtool} which can
1568be used to generate certificates and keys in PEM format. At a minimum it
40c5c6cd 1569is necessary to setup a certificate authority, and issue certificates to
f858dcae
TS
1570each server. If using certificates for authentication, then each client
1571will also need to be issued a certificate. The recommendation is for the
1572server to keep its certificates in either @code{/etc/pki/qemu} or for
1573unprivileged users in @code{$HOME/.pki/qemu}.
1574
1575@menu
1576* vnc_generate_ca::
1577* vnc_generate_server::
1578* vnc_generate_client::
1579@end menu
1580@node vnc_generate_ca
1581@subsubsection Setup the Certificate Authority
1582
1583This step only needs to be performed once per organization / organizational
1584unit. First the CA needs a private key. This key must be kept VERY secret
1585and secure. If this key is compromised the entire trust chain of the certificates
1586issued with it is lost.
1587
1588@example
1589# certtool --generate-privkey > ca-key.pem
1590@end example
1591
1592A CA needs to have a public certificate. For simplicity it can be a self-signed
1593certificate, or one issue by a commercial certificate issuing authority. To
1594generate a self-signed certificate requires one core piece of information, the
1595name of the organization.
1596
1597@example
1598# cat > ca.info <<EOF
1599cn = Name of your organization
1600ca
1601cert_signing_key
1602EOF
1603# certtool --generate-self-signed \
1604 --load-privkey ca-key.pem
1605 --template ca.info \
1606 --outfile ca-cert.pem
1607@end example
1608
1609The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1610TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1611
1612@node vnc_generate_server
1613@subsubsection Issuing server certificates
1614
1615Each server (or host) needs to be issued with a key and certificate. When connecting
1616the certificate is sent to the client which validates it against the CA certificate.
1617The core piece of information for a server certificate is the hostname. This should
1618be the fully qualified hostname that the client will connect with, since the client
1619will typically also verify the hostname in the certificate. On the host holding the
1620secure CA private key:
1621
1622@example
1623# cat > server.info <<EOF
1624organization = Name of your organization
1625cn = server.foo.example.com
1626tls_www_server
1627encryption_key
1628signing_key
1629EOF
1630# certtool --generate-privkey > server-key.pem
1631# certtool --generate-certificate \
1632 --load-ca-certificate ca-cert.pem \
1633 --load-ca-privkey ca-key.pem \
1634 --load-privkey server server-key.pem \
1635 --template server.info \
1636 --outfile server-cert.pem
1637@end example
1638
1639The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1640to the server for which they were generated. The @code{server-key.pem} is security
1641sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1642
1643@node vnc_generate_client
1644@subsubsection Issuing client certificates
1645
1646If the QEMU VNC server is to use the @code{x509verify} option to validate client
1647certificates as its authentication mechanism, each client also needs to be issued
1648a certificate. The client certificate contains enough metadata to uniquely identify
1649the client, typically organization, state, city, building, etc. On the host holding
1650the secure CA private key:
1651
1652@example
1653# cat > client.info <<EOF
1654country = GB
1655state = London
1656locality = London
1657organiazation = Name of your organization
1658cn = client.foo.example.com
1659tls_www_client
1660encryption_key
1661signing_key
1662EOF
1663# certtool --generate-privkey > client-key.pem
1664# certtool --generate-certificate \
1665 --load-ca-certificate ca-cert.pem \
1666 --load-ca-privkey ca-key.pem \
1667 --load-privkey client-key.pem \
1668 --template client.info \
1669 --outfile client-cert.pem
1670@end example
1671
1672The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1673copied to the client for which they were generated.
1674
2f9606b3
AL
1675
1676@node vnc_setup_sasl
1677
1678@subsection Configuring SASL mechanisms
1679
1680The following documentation assumes use of the Cyrus SASL implementation on a
1681Linux host, but the principals should apply to any other SASL impl. When SASL
1682is enabled, the mechanism configuration will be loaded from system default
1683SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1684unprivileged user, an environment variable SASL_CONF_PATH can be used
1685to make it search alternate locations for the service config.
1686
1687The default configuration might contain
1688
1689@example
1690mech_list: digest-md5
1691sasldb_path: /etc/qemu/passwd.db
1692@end example
1693
1694This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1695Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1696in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1697command. While this mechanism is easy to configure and use, it is not
1698considered secure by modern standards, so only suitable for developers /
1699ad-hoc testing.
1700
1701A more serious deployment might use Kerberos, which is done with the 'gssapi'
1702mechanism
1703
1704@example
1705mech_list: gssapi
1706keytab: /etc/qemu/krb5.tab
1707@end example
1708
1709For this to work the administrator of your KDC must generate a Kerberos
1710principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1711replacing 'somehost.example.com' with the fully qualified host name of the
40c5c6cd 1712machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
2f9606b3
AL
1713
1714Other configurations will be left as an exercise for the reader. It should
1715be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1716encryption. For all other mechanisms, VNC should always be configured to
1717use TLS and x509 certificates to protect security credentials from snooping.
1718
0806e3f6 1719@node gdb_usage
da415d54
FB
1720@section GDB usage
1721
1722QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1723'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1724
b65ee4fa 1725In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1726gdb connection:
1727@example
3804da9d
SW
1728qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1729 -append "root=/dev/hda"
da415d54
FB
1730Connected to host network interface: tun0
1731Waiting gdb connection on port 1234
1732@end example
1733
1734Then launch gdb on the 'vmlinux' executable:
1735@example
1736> gdb vmlinux
1737@end example
1738
1739In gdb, connect to QEMU:
1740@example
6c9bf893 1741(gdb) target remote localhost:1234
da415d54
FB
1742@end example
1743
1744Then you can use gdb normally. For example, type 'c' to launch the kernel:
1745@example
1746(gdb) c
1747@end example
1748
0806e3f6
FB
1749Here are some useful tips in order to use gdb on system code:
1750
1751@enumerate
1752@item
1753Use @code{info reg} to display all the CPU registers.
1754@item
1755Use @code{x/10i $eip} to display the code at the PC position.
1756@item
1757Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1758@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1759@end enumerate
1760
60897d36
EI
1761Advanced debugging options:
1762
1763The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1764@table @code
60897d36
EI
1765@item maintenance packet qqemu.sstepbits
1766
1767This will display the MASK bits used to control the single stepping IE:
1768@example
1769(gdb) maintenance packet qqemu.sstepbits
1770sending: "qqemu.sstepbits"
1771received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1772@end example
1773@item maintenance packet qqemu.sstep
1774
1775This will display the current value of the mask used when single stepping IE:
1776@example
1777(gdb) maintenance packet qqemu.sstep
1778sending: "qqemu.sstep"
1779received: "0x7"
1780@end example
1781@item maintenance packet Qqemu.sstep=HEX_VALUE
1782
1783This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1784@example
1785(gdb) maintenance packet Qqemu.sstep=0x5
1786sending: "qemu.sstep=0x5"
1787received: "OK"
1788@end example
94d45e44 1789@end table
60897d36 1790
debc7065 1791@node pcsys_os_specific
1a084f3d
FB
1792@section Target OS specific information
1793
1794@subsection Linux
1795
15a34c63
FB
1796To have access to SVGA graphic modes under X11, use the @code{vesa} or
1797the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1798color depth in the guest and the host OS.
1a084f3d 1799
e3371e62
FB
1800When using a 2.6 guest Linux kernel, you should add the option
1801@code{clock=pit} on the kernel command line because the 2.6 Linux
1802kernels make very strict real time clock checks by default that QEMU
1803cannot simulate exactly.
1804
7c3fc84d
FB
1805When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1806not activated because QEMU is slower with this patch. The QEMU
1807Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1808Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1809patch by default. Newer kernels don't have it.
1810
1a084f3d
FB
1811@subsection Windows
1812
1813If you have a slow host, using Windows 95 is better as it gives the
1814best speed. Windows 2000 is also a good choice.
1815
e3371e62
FB
1816@subsubsection SVGA graphic modes support
1817
1818QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1819card. All Windows versions starting from Windows 95 should recognize
1820and use this graphic card. For optimal performances, use 16 bit color
1821depth in the guest and the host OS.
1a084f3d 1822
3cb0853a
FB
1823If you are using Windows XP as guest OS and if you want to use high
1824resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
18251280x1024x16), then you should use the VESA VBE virtual graphic card
1826(option @option{-std-vga}).
1827
e3371e62
FB
1828@subsubsection CPU usage reduction
1829
1830Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1831instruction. The result is that it takes host CPU cycles even when
1832idle. You can install the utility from
1833@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1834problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1835
9d0a8e6f 1836@subsubsection Windows 2000 disk full problem
e3371e62 1837
9d0a8e6f
FB
1838Windows 2000 has a bug which gives a disk full problem during its
1839installation. When installing it, use the @option{-win2k-hack} QEMU
1840option to enable a specific workaround. After Windows 2000 is
1841installed, you no longer need this option (this option slows down the
1842IDE transfers).
e3371e62 1843
6cc721cf
FB
1844@subsubsection Windows 2000 shutdown
1845
1846Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1847can. It comes from the fact that Windows 2000 does not automatically
1848use the APM driver provided by the BIOS.
1849
1850In order to correct that, do the following (thanks to Struan
1851Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1852Add/Troubleshoot a device => Add a new device & Next => No, select the
1853hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1854(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1855correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1856
1857@subsubsection Share a directory between Unix and Windows
1858
1859See @ref{sec_invocation} about the help of the option @option{-smb}.
1860
2192c332 1861@subsubsection Windows XP security problem
e3371e62
FB
1862
1863Some releases of Windows XP install correctly but give a security
1864error when booting:
1865@example
1866A problem is preventing Windows from accurately checking the
1867license for this computer. Error code: 0x800703e6.
1868@end example
e3371e62 1869
2192c332
FB
1870The workaround is to install a service pack for XP after a boot in safe
1871mode. Then reboot, and the problem should go away. Since there is no
1872network while in safe mode, its recommended to download the full
1873installation of SP1 or SP2 and transfer that via an ISO or using the
1874vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1875
a0a821a4
FB
1876@subsection MS-DOS and FreeDOS
1877
1878@subsubsection CPU usage reduction
1879
1880DOS does not correctly use the CPU HLT instruction. The result is that
1881it takes host CPU cycles even when idle. You can install the utility
1882from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1883problem.
1884
debc7065 1885@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1886@chapter QEMU System emulator for non PC targets
1887
1888QEMU is a generic emulator and it emulates many non PC
1889machines. Most of the options are similar to the PC emulator. The
4be456f1 1890differences are mentioned in the following sections.
3f9f3aa1 1891
debc7065 1892@menu
7544a042 1893* PowerPC System emulator::
24d4de45
TS
1894* Sparc32 System emulator::
1895* Sparc64 System emulator::
1896* MIPS System emulator::
1897* ARM System emulator::
1898* ColdFire System emulator::
7544a042
SW
1899* Cris System emulator::
1900* Microblaze System emulator::
1901* SH4 System emulator::
3aeaea65 1902* Xtensa System emulator::
debc7065
FB
1903@end menu
1904
7544a042
SW
1905@node PowerPC System emulator
1906@section PowerPC System emulator
1907@cindex system emulation (PowerPC)
1a084f3d 1908
15a34c63
FB
1909Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1910or PowerMac PowerPC system.
1a084f3d 1911
b671f9ed 1912QEMU emulates the following PowerMac peripherals:
1a084f3d 1913
15a34c63 1914@itemize @minus
5fafdf24 1915@item
006f3a48 1916UniNorth or Grackle PCI Bridge
15a34c63
FB
1917@item
1918PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1919@item
15a34c63 19202 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1921@item
15a34c63
FB
1922NE2000 PCI adapters
1923@item
1924Non Volatile RAM
1925@item
1926VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1927@end itemize
1928
b671f9ed 1929QEMU emulates the following PREP peripherals:
52c00a5f
FB
1930
1931@itemize @minus
5fafdf24 1932@item
15a34c63
FB
1933PCI Bridge
1934@item
1935PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1936@item
52c00a5f
FB
19372 IDE interfaces with hard disk and CD-ROM support
1938@item
1939Floppy disk
5fafdf24 1940@item
15a34c63 1941NE2000 network adapters
52c00a5f
FB
1942@item
1943Serial port
1944@item
1945PREP Non Volatile RAM
15a34c63
FB
1946@item
1947PC compatible keyboard and mouse.
52c00a5f
FB
1948@end itemize
1949
15a34c63 1950QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1951@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1952
992e5acd 1953Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
1954for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1955v2) portable firmware implementation. The goal is to implement a 100%
1956IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1957
15a34c63
FB
1958@c man begin OPTIONS
1959
1960The following options are specific to the PowerPC emulation:
1961
1962@table @option
1963
4e257e5e 1964@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 1965
340fb41b 1966Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 1967
4e257e5e 1968@item -prom-env @var{string}
95efd11c
BS
1969
1970Set OpenBIOS variables in NVRAM, for example:
1971
1972@example
1973qemu-system-ppc -prom-env 'auto-boot?=false' \
1974 -prom-env 'boot-device=hd:2,\yaboot' \
1975 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1976@end example
1977
1978These variables are not used by Open Hack'Ware.
1979
15a34c63
FB
1980@end table
1981
5fafdf24 1982@c man end
15a34c63
FB
1983
1984
52c00a5f 1985More information is available at
3f9f3aa1 1986@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1987
24d4de45
TS
1988@node Sparc32 System emulator
1989@section Sparc32 System emulator
7544a042 1990@cindex system emulation (Sparc32)
e80cfcfc 1991
34a3d239
BS
1992Use the executable @file{qemu-system-sparc} to simulate the following
1993Sun4m architecture machines:
1994@itemize @minus
1995@item
1996SPARCstation 4
1997@item
1998SPARCstation 5
1999@item
2000SPARCstation 10
2001@item
2002SPARCstation 20
2003@item
2004SPARCserver 600MP
2005@item
2006SPARCstation LX
2007@item
2008SPARCstation Voyager
2009@item
2010SPARCclassic
2011@item
2012SPARCbook
2013@end itemize
2014
2015The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2016but Linux limits the number of usable CPUs to 4.
e80cfcfc 2017
6a4e1771 2018QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
2019
2020@itemize @minus
3475187d 2021@item
6a4e1771 2022IOMMU
e80cfcfc 2023@item
33632788 2024TCX or cgthree Frame buffer
5fafdf24 2025@item
e80cfcfc
FB
2026Lance (Am7990) Ethernet
2027@item
34a3d239 2028Non Volatile RAM M48T02/M48T08
e80cfcfc 2029@item
3475187d
FB
2030Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2031and power/reset logic
2032@item
2033ESP SCSI controller with hard disk and CD-ROM support
2034@item
6a3b9cc9 2035Floppy drive (not on SS-600MP)
a2502b58
BS
2036@item
2037CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
2038@end itemize
2039
6a3b9cc9
BS
2040The number of peripherals is fixed in the architecture. Maximum
2041memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 2042others 2047MB.
3475187d 2043
30a604f3 2044Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
2045@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2046firmware implementation. The goal is to implement a 100% IEEE
20471275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
2048
2049A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 2050the QEMU web site. There are still issues with NetBSD and OpenBSD, but
33632788 2051some kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
2052don't work probably due to interface issues between OpenBIOS and
2053Solaris.
3475187d
FB
2054
2055@c man begin OPTIONS
2056
a2502b58 2057The following options are specific to the Sparc32 emulation:
3475187d
FB
2058
2059@table @option
2060
4e257e5e 2061@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 2062
33632788
MCA
2063Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
2064option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
2065of 1152x900x8 for people who wish to use OBP.
3475187d 2066
4e257e5e 2067@item -prom-env @var{string}
66508601
BS
2068
2069Set OpenBIOS variables in NVRAM, for example:
2070
2071@example
2072qemu-system-sparc -prom-env 'auto-boot?=false' \
2073 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2074@end example
2075
6a4e1771 2076@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
2077
2078Set the emulated machine type. Default is SS-5.
2079
3475187d
FB
2080@end table
2081
5fafdf24 2082@c man end
3475187d 2083
24d4de45
TS
2084@node Sparc64 System emulator
2085@section Sparc64 System emulator
7544a042 2086@cindex system emulation (Sparc64)
e80cfcfc 2087
34a3d239
BS
2088Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2089(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2090Niagara (T1) machine. The emulator is not usable for anything yet, but
2091it can launch some kernels.
b756921a 2092
c7ba218d 2093QEMU emulates the following peripherals:
83469015
FB
2094
2095@itemize @minus
2096@item
5fafdf24 2097UltraSparc IIi APB PCI Bridge
83469015
FB
2098@item
2099PCI VGA compatible card with VESA Bochs Extensions
2100@item
34a3d239
BS
2101PS/2 mouse and keyboard
2102@item
83469015
FB
2103Non Volatile RAM M48T59
2104@item
2105PC-compatible serial ports
c7ba218d
BS
2106@item
21072 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
2108@item
2109Floppy disk
83469015
FB
2110@end itemize
2111
c7ba218d
BS
2112@c man begin OPTIONS
2113
2114The following options are specific to the Sparc64 emulation:
2115
2116@table @option
2117
4e257e5e 2118@item -prom-env @var{string}
34a3d239
BS
2119
2120Set OpenBIOS variables in NVRAM, for example:
2121
2122@example
2123qemu-system-sparc64 -prom-env 'auto-boot?=false'
2124@end example
2125
2126@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
2127
2128Set the emulated machine type. The default is sun4u.
2129
2130@end table
2131
2132@c man end
2133
24d4de45
TS
2134@node MIPS System emulator
2135@section MIPS System emulator
7544a042 2136@cindex system emulation (MIPS)
9d0a8e6f 2137
d9aedc32
TS
2138Four executables cover simulation of 32 and 64-bit MIPS systems in
2139both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2140@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2141Five different machine types are emulated:
24d4de45
TS
2142
2143@itemize @minus
2144@item
2145A generic ISA PC-like machine "mips"
2146@item
2147The MIPS Malta prototype board "malta"
2148@item
d9aedc32 2149An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2150@item
f0fc6f8f 2151MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2152@item
2153A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2154@end itemize
2155
2156The generic emulation is supported by Debian 'Etch' and is able to
2157install Debian into a virtual disk image. The following devices are
2158emulated:
3f9f3aa1
FB
2159
2160@itemize @minus
5fafdf24 2161@item
6bf5b4e8 2162A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2163@item
2164PC style serial port
2165@item
24d4de45
TS
2166PC style IDE disk
2167@item
3f9f3aa1
FB
2168NE2000 network card
2169@end itemize
2170
24d4de45
TS
2171The Malta emulation supports the following devices:
2172
2173@itemize @minus
2174@item
0b64d008 2175Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2176@item
2177PIIX4 PCI/USB/SMbus controller
2178@item
2179The Multi-I/O chip's serial device
2180@item
3a2eeac0 2181PCI network cards (PCnet32 and others)
24d4de45
TS
2182@item
2183Malta FPGA serial device
2184@item
1f605a76 2185Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2186@end itemize
2187
2188The ACER Pica emulation supports:
2189
2190@itemize @minus
2191@item
2192MIPS R4000 CPU
2193@item
2194PC-style IRQ and DMA controllers
2195@item
2196PC Keyboard
2197@item
2198IDE controller
2199@end itemize
3f9f3aa1 2200
b5e4946f 2201The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
2202to what the proprietary MIPS emulator uses for running Linux.
2203It supports:
6bf5b4e8
TS
2204
2205@itemize @minus
2206@item
2207A range of MIPS CPUs, default is the 24Kf
2208@item
2209PC style serial port
2210@item
2211MIPSnet network emulation
2212@end itemize
2213
88cb0a02
AJ
2214The MIPS Magnum R4000 emulation supports:
2215
2216@itemize @minus
2217@item
2218MIPS R4000 CPU
2219@item
2220PC-style IRQ controller
2221@item
2222PC Keyboard
2223@item
2224SCSI controller
2225@item
2226G364 framebuffer
2227@end itemize
2228
2229
24d4de45
TS
2230@node ARM System emulator
2231@section ARM System emulator
7544a042 2232@cindex system emulation (ARM)
3f9f3aa1
FB
2233
2234Use the executable @file{qemu-system-arm} to simulate a ARM
2235machine. The ARM Integrator/CP board is emulated with the following
2236devices:
2237
2238@itemize @minus
2239@item
9ee6e8bb 2240ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2241@item
2242Two PL011 UARTs
5fafdf24 2243@item
3f9f3aa1 2244SMC 91c111 Ethernet adapter
00a9bf19
PB
2245@item
2246PL110 LCD controller
2247@item
2248PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2249@item
2250PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2251@end itemize
2252
2253The ARM Versatile baseboard is emulated with the following devices:
2254
2255@itemize @minus
2256@item
9ee6e8bb 2257ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2258@item
2259PL190 Vectored Interrupt Controller
2260@item
2261Four PL011 UARTs
5fafdf24 2262@item
00a9bf19
PB
2263SMC 91c111 Ethernet adapter
2264@item
2265PL110 LCD controller
2266@item
2267PL050 KMI with PS/2 keyboard and mouse.
2268@item
2269PCI host bridge. Note the emulated PCI bridge only provides access to
2270PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2271This means some devices (eg. ne2k_pci NIC) are not usable, and others
2272(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2273mapped control registers.
e6de1bad
PB
2274@item
2275PCI OHCI USB controller.
2276@item
2277LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2278@item
2279PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2280@end itemize
2281
21a88941
PB
2282Several variants of the ARM RealView baseboard are emulated,
2283including the EB, PB-A8 and PBX-A9. Due to interactions with the
2284bootloader, only certain Linux kernel configurations work out
2285of the box on these boards.
2286
2287Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2288enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2289should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2290disabled and expect 1024M RAM.
2291
40c5c6cd 2292The following devices are emulated:
d7739d75
PB
2293
2294@itemize @minus
2295@item
f7c70325 2296ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2297@item
2298ARM AMBA Generic/Distributed Interrupt Controller
2299@item
2300Four PL011 UARTs
5fafdf24 2301@item
0ef849d7 2302SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2303@item
2304PL110 LCD controller
2305@item
2306PL050 KMI with PS/2 keyboard and mouse
2307@item
2308PCI host bridge
2309@item
2310PCI OHCI USB controller
2311@item
2312LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2313@item
2314PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2315@end itemize
2316
b00052e4
AZ
2317The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2318and "Terrier") emulation includes the following peripherals:
2319
2320@itemize @minus
2321@item
2322Intel PXA270 System-on-chip (ARM V5TE core)
2323@item
2324NAND Flash memory
2325@item
2326IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2327@item
2328On-chip OHCI USB controller
2329@item
2330On-chip LCD controller
2331@item
2332On-chip Real Time Clock
2333@item
2334TI ADS7846 touchscreen controller on SSP bus
2335@item
2336Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2337@item
2338GPIO-connected keyboard controller and LEDs
2339@item
549444e1 2340Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2341@item
2342Three on-chip UARTs
2343@item
2344WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2345@end itemize
2346
02645926
AZ
2347The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2348following elements:
2349
2350@itemize @minus
2351@item
2352Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2353@item
2354ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2355@item
2356On-chip LCD controller
2357@item
2358On-chip Real Time Clock
2359@item
2360TI TSC2102i touchscreen controller / analog-digital converter / Audio
2361CODEC, connected through MicroWire and I@math{^2}S busses
2362@item
2363GPIO-connected matrix keypad
2364@item
2365Secure Digital card connected to OMAP MMC/SD host
2366@item
2367Three on-chip UARTs
2368@end itemize
2369
c30bb264
AZ
2370Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2371emulation supports the following elements:
2372
2373@itemize @minus
2374@item
2375Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2376@item
2377RAM and non-volatile OneNAND Flash memories
2378@item
2379Display connected to EPSON remote framebuffer chip and OMAP on-chip
2380display controller and a LS041y3 MIPI DBI-C controller
2381@item
2382TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2383driven through SPI bus
2384@item
2385National Semiconductor LM8323-controlled qwerty keyboard driven
2386through I@math{^2}C bus
2387@item
2388Secure Digital card connected to OMAP MMC/SD host
2389@item
2390Three OMAP on-chip UARTs and on-chip STI debugging console
2391@item
40c5c6cd 2392A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2393@item
c30bb264
AZ
2394Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2395TUSB6010 chip - only USB host mode is supported
2396@item
2397TI TMP105 temperature sensor driven through I@math{^2}C bus
2398@item
2399TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2400@item
2401Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2402through CBUS
2403@end itemize
2404
9ee6e8bb
PB
2405The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2406devices:
2407
2408@itemize @minus
2409@item
2410Cortex-M3 CPU core.
2411@item
241264k Flash and 8k SRAM.
2413@item
2414Timers, UARTs, ADC and I@math{^2}C interface.
2415@item
2416OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2417@end itemize
2418
2419The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2420devices:
2421
2422@itemize @minus
2423@item
2424Cortex-M3 CPU core.
2425@item
2426256k Flash and 64k SRAM.
2427@item
2428Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2429@item
2430OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2431@end itemize
2432
57cd6e97
AZ
2433The Freecom MusicPal internet radio emulation includes the following
2434elements:
2435
2436@itemize @minus
2437@item
2438Marvell MV88W8618 ARM core.
2439@item
244032 MB RAM, 256 KB SRAM, 8 MB flash.
2441@item
2442Up to 2 16550 UARTs
2443@item
2444MV88W8xx8 Ethernet controller
2445@item
2446MV88W8618 audio controller, WM8750 CODEC and mixer
2447@item
e080e785 2448128×64 display with brightness control
57cd6e97
AZ
2449@item
24502 buttons, 2 navigation wheels with button function
2451@end itemize
2452
997641a8 2453The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2454The emulation includes the following elements:
997641a8
AZ
2455
2456@itemize @minus
2457@item
2458Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2459@item
2460ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2461V1
24621 Flash of 16MB and 1 Flash of 8MB
2463V2
24641 Flash of 32MB
2465@item
2466On-chip LCD controller
2467@item
2468On-chip Real Time Clock
2469@item
2470Secure Digital card connected to OMAP MMC/SD host
2471@item
2472Three on-chip UARTs
2473@end itemize
2474
3f9f3aa1
FB
2475A Linux 2.6 test image is available on the QEMU web site. More
2476information is available in the QEMU mailing-list archive.
9d0a8e6f 2477
d2c639d6
BS
2478@c man begin OPTIONS
2479
2480The following options are specific to the ARM emulation:
2481
2482@table @option
2483
2484@item -semihosting
2485Enable semihosting syscall emulation.
2486
2487On ARM this implements the "Angel" interface.
2488
2489Note that this allows guest direct access to the host filesystem,
2490so should only be used with trusted guest OS.
2491
2492@end table
2493
24d4de45
TS
2494@node ColdFire System emulator
2495@section ColdFire System emulator
7544a042
SW
2496@cindex system emulation (ColdFire)
2497@cindex system emulation (M68K)
209a4e69
PB
2498
2499Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2500The emulator is able to boot a uClinux kernel.
707e011b
PB
2501
2502The M5208EVB emulation includes the following devices:
2503
2504@itemize @minus
5fafdf24 2505@item
707e011b
PB
2506MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2507@item
2508Three Two on-chip UARTs.
2509@item
2510Fast Ethernet Controller (FEC)
2511@end itemize
2512
2513The AN5206 emulation includes the following devices:
209a4e69
PB
2514
2515@itemize @minus
5fafdf24 2516@item
209a4e69
PB
2517MCF5206 ColdFire V2 Microprocessor.
2518@item
2519Two on-chip UARTs.
2520@end itemize
2521
d2c639d6
BS
2522@c man begin OPTIONS
2523
7544a042 2524The following options are specific to the ColdFire emulation:
d2c639d6
BS
2525
2526@table @option
2527
2528@item -semihosting
2529Enable semihosting syscall emulation.
2530
2531On M68K this implements the "ColdFire GDB" interface used by libgloss.
2532
2533Note that this allows guest direct access to the host filesystem,
2534so should only be used with trusted guest OS.
2535
2536@end table
2537
7544a042
SW
2538@node Cris System emulator
2539@section Cris System emulator
2540@cindex system emulation (Cris)
2541
2542TODO
2543
2544@node Microblaze System emulator
2545@section Microblaze System emulator
2546@cindex system emulation (Microblaze)
2547
2548TODO
2549
2550@node SH4 System emulator
2551@section SH4 System emulator
2552@cindex system emulation (SH4)
2553
2554TODO
2555
3aeaea65
MF
2556@node Xtensa System emulator
2557@section Xtensa System emulator
2558@cindex system emulation (Xtensa)
2559
2560Two executables cover simulation of both Xtensa endian options,
2561@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2562Two different machine types are emulated:
2563
2564@itemize @minus
2565@item
2566Xtensa emulator pseudo board "sim"
2567@item
2568Avnet LX60/LX110/LX200 board
2569@end itemize
2570
b5e4946f 2571The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2572to one provided by the proprietary Tensilica ISS.
2573It supports:
2574
2575@itemize @minus
2576@item
2577A range of Xtensa CPUs, default is the DC232B
2578@item
2579Console and filesystem access via semihosting calls
2580@end itemize
2581
2582The Avnet LX60/LX110/LX200 emulation supports:
2583
2584@itemize @minus
2585@item
2586A range of Xtensa CPUs, default is the DC232B
2587@item
258816550 UART
2589@item
2590OpenCores 10/100 Mbps Ethernet MAC
2591@end itemize
2592
2593@c man begin OPTIONS
2594
2595The following options are specific to the Xtensa emulation:
2596
2597@table @option
2598
2599@item -semihosting
2600Enable semihosting syscall emulation.
2601
2602Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2603Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2604
2605Note that this allows guest direct access to the host filesystem,
2606so should only be used with trusted guest OS.
2607
2608@end table
5fafdf24
TS
2609@node QEMU User space emulator
2610@chapter QEMU User space emulator
83195237
FB
2611
2612@menu
2613* Supported Operating Systems ::
2614* Linux User space emulator::
84778508 2615* BSD User space emulator ::
83195237
FB
2616@end menu
2617
2618@node Supported Operating Systems
2619@section Supported Operating Systems
2620
2621The following OS are supported in user space emulation:
2622
2623@itemize @minus
2624@item
4be456f1 2625Linux (referred as qemu-linux-user)
83195237 2626@item
84778508 2627BSD (referred as qemu-bsd-user)
83195237
FB
2628@end itemize
2629
2630@node Linux User space emulator
2631@section Linux User space emulator
386405f7 2632
debc7065
FB
2633@menu
2634* Quick Start::
2635* Wine launch::
2636* Command line options::
79737e4a 2637* Other binaries::
debc7065
FB
2638@end menu
2639
2640@node Quick Start
83195237 2641@subsection Quick Start
df0f11a0 2642
1f673135 2643In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2644itself and all the target (x86) dynamic libraries used by it.
386405f7 2645
1f673135 2646@itemize
386405f7 2647
1f673135
FB
2648@item On x86, you can just try to launch any process by using the native
2649libraries:
386405f7 2650
5fafdf24 2651@example
1f673135
FB
2652qemu-i386 -L / /bin/ls
2653@end example
386405f7 2654
1f673135
FB
2655@code{-L /} tells that the x86 dynamic linker must be searched with a
2656@file{/} prefix.
386405f7 2657
b65ee4fa
SW
2658@item Since QEMU is also a linux process, you can launch QEMU with
2659QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2660
5fafdf24 2661@example
1f673135
FB
2662qemu-i386 -L / qemu-i386 -L / /bin/ls
2663@end example
386405f7 2664
1f673135
FB
2665@item On non x86 CPUs, you need first to download at least an x86 glibc
2666(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2667@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2668
1f673135 2669@example
5fafdf24 2670unset LD_LIBRARY_PATH
1f673135 2671@end example
1eb87257 2672
1f673135 2673Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2674
1f673135
FB
2675@example
2676qemu-i386 tests/i386/ls
2677@end example
4c3b5a48 2678You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2679QEMU is automatically launched by the Linux kernel when you try to
2680launch x86 executables. It requires the @code{binfmt_misc} module in the
2681Linux kernel.
1eb87257 2682
1f673135
FB
2683@item The x86 version of QEMU is also included. You can try weird things such as:
2684@example
debc7065
FB
2685qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2686 /usr/local/qemu-i386/bin/ls-i386
1f673135 2687@end example
1eb20527 2688
1f673135 2689@end itemize
1eb20527 2690
debc7065 2691@node Wine launch
83195237 2692@subsection Wine launch
1eb20527 2693
1f673135 2694@itemize
386405f7 2695
1f673135
FB
2696@item Ensure that you have a working QEMU with the x86 glibc
2697distribution (see previous section). In order to verify it, you must be
2698able to do:
386405f7 2699
1f673135
FB
2700@example
2701qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2702@end example
386405f7 2703
1f673135 2704@item Download the binary x86 Wine install
5fafdf24 2705(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2706
1f673135 2707@item Configure Wine on your account. Look at the provided script
debc7065 2708@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2709@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2710
1f673135 2711@item Then you can try the example @file{putty.exe}:
386405f7 2712
1f673135 2713@example
debc7065
FB
2714qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2715 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2716@end example
386405f7 2717
1f673135 2718@end itemize
fd429f2f 2719
debc7065 2720@node Command line options
83195237 2721@subsection Command line options
1eb20527 2722
1f673135 2723@example
68a1c816 2724usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
1f673135 2725@end example
1eb20527 2726
1f673135
FB
2727@table @option
2728@item -h
2729Print the help
3b46e624 2730@item -L path
1f673135
FB
2731Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2732@item -s size
2733Set the x86 stack size in bytes (default=524288)
34a3d239 2734@item -cpu model
c8057f95 2735Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2736@item -E @var{var}=@var{value}
2737Set environment @var{var} to @var{value}.
2738@item -U @var{var}
2739Remove @var{var} from the environment.
379f6698
PB
2740@item -B offset
2741Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2742the address region required by guest applications is reserved on the host.
2743This option is currently only supported on some hosts.
68a1c816
PB
2744@item -R size
2745Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2746"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2747@end table
2748
1f673135 2749Debug options:
386405f7 2750
1f673135 2751@table @option
989b697d
PM
2752@item -d item1,...
2753Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2754@item -p pagesize
2755Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2756@item -g port
2757Wait gdb connection to port
1b530a6d
AJ
2758@item -singlestep
2759Run the emulation in single step mode.
1f673135 2760@end table
386405f7 2761
b01bcae6
AZ
2762Environment variables:
2763
2764@table @env
2765@item QEMU_STRACE
2766Print system calls and arguments similar to the 'strace' program
2767(NOTE: the actual 'strace' program will not work because the user
2768space emulator hasn't implemented ptrace). At the moment this is
2769incomplete. All system calls that don't have a specific argument
2770format are printed with information for six arguments. Many
2771flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2772@end table
b01bcae6 2773
79737e4a 2774@node Other binaries
83195237 2775@subsection Other binaries
79737e4a 2776
7544a042
SW
2777@cindex user mode (Alpha)
2778@command{qemu-alpha} TODO.
2779
2780@cindex user mode (ARM)
2781@command{qemu-armeb} TODO.
2782
2783@cindex user mode (ARM)
79737e4a
PB
2784@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2785binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2786configurations), and arm-uclinux bFLT format binaries.
2787
7544a042
SW
2788@cindex user mode (ColdFire)
2789@cindex user mode (M68K)
e6e5906b
PB
2790@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2791(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2792coldfire uClinux bFLT format binaries.
2793
79737e4a
PB
2794The binary format is detected automatically.
2795
7544a042
SW
2796@cindex user mode (Cris)
2797@command{qemu-cris} TODO.
2798
2799@cindex user mode (i386)
2800@command{qemu-i386} TODO.
2801@command{qemu-x86_64} TODO.
2802
2803@cindex user mode (Microblaze)
2804@command{qemu-microblaze} TODO.
2805
2806@cindex user mode (MIPS)
2807@command{qemu-mips} TODO.
2808@command{qemu-mipsel} TODO.
2809
2810@cindex user mode (PowerPC)
2811@command{qemu-ppc64abi32} TODO.
2812@command{qemu-ppc64} TODO.
2813@command{qemu-ppc} TODO.
2814
2815@cindex user mode (SH4)
2816@command{qemu-sh4eb} TODO.
2817@command{qemu-sh4} TODO.
2818
2819@cindex user mode (SPARC)
34a3d239
BS
2820@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2821
a785e42e
BS
2822@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2823(Sparc64 CPU, 32 bit ABI).
2824
2825@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2826SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2827
84778508
BS
2828@node BSD User space emulator
2829@section BSD User space emulator
2830
2831@menu
2832* BSD Status::
2833* BSD Quick Start::
2834* BSD Command line options::
2835@end menu
2836
2837@node BSD Status
2838@subsection BSD Status
2839
2840@itemize @minus
2841@item
2842target Sparc64 on Sparc64: Some trivial programs work.
2843@end itemize
2844
2845@node BSD Quick Start
2846@subsection Quick Start
2847
2848In order to launch a BSD process, QEMU needs the process executable
2849itself and all the target dynamic libraries used by it.
2850
2851@itemize
2852
2853@item On Sparc64, you can just try to launch any process by using the native
2854libraries:
2855
2856@example
2857qemu-sparc64 /bin/ls
2858@end example
2859
2860@end itemize
2861
2862@node BSD Command line options
2863@subsection Command line options
2864
2865@example
2866usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2867@end example
2868
2869@table @option
2870@item -h
2871Print the help
2872@item -L path
2873Set the library root path (default=/)
2874@item -s size
2875Set the stack size in bytes (default=524288)
f66724c9
SW
2876@item -ignore-environment
2877Start with an empty environment. Without this option,
40c5c6cd 2878the initial environment is a copy of the caller's environment.
f66724c9
SW
2879@item -E @var{var}=@var{value}
2880Set environment @var{var} to @var{value}.
2881@item -U @var{var}
2882Remove @var{var} from the environment.
84778508
BS
2883@item -bsd type
2884Set the type of the emulated BSD Operating system. Valid values are
2885FreeBSD, NetBSD and OpenBSD (default).
2886@end table
2887
2888Debug options:
2889
2890@table @option
989b697d
PM
2891@item -d item1,...
2892Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2893@item -p pagesize
2894Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2895@item -singlestep
2896Run the emulation in single step mode.
84778508
BS
2897@end table
2898
15a34c63
FB
2899@node compilation
2900@chapter Compilation from the sources
2901
debc7065
FB
2902@menu
2903* Linux/Unix::
2904* Windows::
2905* Cross compilation for Windows with Linux::
2906* Mac OS X::
47eacb4f 2907* Make targets::
debc7065
FB
2908@end menu
2909
2910@node Linux/Unix
7c3fc84d
FB
2911@section Linux/Unix
2912
2913@subsection Compilation
2914
2915First you must decompress the sources:
2916@example
2917cd /tmp
2918tar zxvf qemu-x.y.z.tar.gz
2919cd qemu-x.y.z
2920@end example
2921
2922Then you configure QEMU and build it (usually no options are needed):
2923@example
2924./configure
2925make
2926@end example
2927
2928Then type as root user:
2929@example
2930make install
2931@end example
2932to install QEMU in @file{/usr/local}.
2933
debc7065 2934@node Windows
15a34c63
FB
2935@section Windows
2936
2937@itemize
2938@item Install the current versions of MSYS and MinGW from
2939@url{http://www.mingw.org/}. You can find detailed installation
2940instructions in the download section and the FAQ.
2941
5fafdf24 2942@item Download
15a34c63 2943the MinGW development library of SDL 1.2.x
debc7065 2944(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
d0a96f3d
ST
2945@url{http://www.libsdl.org}. Unpack it in a temporary place and
2946edit the @file{sdl-config} script so that it gives the
15a34c63
FB
2947correct SDL directory when invoked.
2948
d0a96f3d
ST
2949@item Install the MinGW version of zlib and make sure
2950@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2951MinGW's default header and linker search paths.
d0a96f3d 2952
15a34c63 2953@item Extract the current version of QEMU.
5fafdf24 2954
15a34c63
FB
2955@item Start the MSYS shell (file @file{msys.bat}).
2956
5fafdf24 2957@item Change to the QEMU directory. Launch @file{./configure} and
15a34c63
FB
2958@file{make}. If you have problems using SDL, verify that
2959@file{sdl-config} can be launched from the MSYS command line.
2960
c5ec15ea 2961@item You can install QEMU in @file{Program Files/QEMU} by typing
15a34c63 2962@file{make install}. Don't forget to copy @file{SDL.dll} in
c5ec15ea 2963@file{Program Files/QEMU}.
15a34c63
FB
2964
2965@end itemize
2966
debc7065 2967@node Cross compilation for Windows with Linux
15a34c63
FB
2968@section Cross compilation for Windows with Linux
2969
2970@itemize
2971@item
2972Install the MinGW cross compilation tools available at
2973@url{http://www.mingw.org/}.
2974
d0a96f3d
ST
2975@item Download
2976the MinGW development library of SDL 1.2.x
2977(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2978@url{http://www.libsdl.org}. Unpack it in a temporary place and
2979edit the @file{sdl-config} script so that it gives the
2980correct SDL directory when invoked. Set up the @code{PATH} environment
2981variable so that @file{sdl-config} can be launched by
15a34c63
FB
2982the QEMU configuration script.
2983
d0a96f3d
ST
2984@item Install the MinGW version of zlib and make sure
2985@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2986MinGW's default header and linker search paths.
d0a96f3d 2987
5fafdf24 2988@item
15a34c63
FB
2989Configure QEMU for Windows cross compilation:
2990@example
d0a96f3d
ST
2991PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2992@end example
2993The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2994MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
40c5c6cd 2995We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
d0a96f3d 2996use --cross-prefix to specify the name of the cross compiler.
c5ec15ea 2997You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
d0a96f3d
ST
2998
2999Under Fedora Linux, you can run:
3000@example
3001yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
15a34c63 3002@end example
d0a96f3d 3003to get a suitable cross compilation environment.
15a34c63 3004
5fafdf24 3005@item You can install QEMU in the installation directory by typing
d0a96f3d 3006@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
5fafdf24 3007installation directory.
15a34c63
FB
3008
3009@end itemize
3010
3804da9d
SW
3011Wine can be used to launch the resulting qemu-system-i386.exe
3012and all other qemu-system-@var{target}.exe compiled for Win32.
15a34c63 3013
debc7065 3014@node Mac OS X
15a34c63
FB
3015@section Mac OS X
3016
3017The Mac OS X patches are not fully merged in QEMU, so you should look
3018at the QEMU mailing list archive to have all the necessary
3019information.
3020
47eacb4f
SW
3021@node Make targets
3022@section Make targets
3023
3024@table @code
3025
3026@item make
3027@item make all
3028Make everything which is typically needed.
3029
3030@item install
3031TODO
3032
3033@item install-doc
3034TODO
3035
3036@item make clean
3037Remove most files which were built during make.
3038
3039@item make distclean
3040Remove everything which was built during make.
3041
3042@item make dvi
3043@item make html
3044@item make info
3045@item make pdf
3046Create documentation in dvi, html, info or pdf format.
3047
3048@item make cscope
3049TODO
3050
3051@item make defconfig
3052(Re-)create some build configuration files.
3053User made changes will be overwritten.
3054
3055@item tar
3056@item tarbin
3057TODO
3058
3059@end table
3060
7544a042
SW
3061@node License
3062@appendix License
3063
3064QEMU is a trademark of Fabrice Bellard.
3065
3066QEMU is released under the GNU General Public License (TODO: add link).
3067Parts of QEMU have specific licenses, see file LICENSE.
3068
3069TODO (refer to file LICENSE, include it, include the GPL?)
3070
debc7065 3071@node Index
7544a042
SW
3072@appendix Index
3073@menu
3074* Concept Index::
3075* Function Index::
3076* Keystroke Index::
3077* Program Index::
3078* Data Type Index::
3079* Variable Index::
3080@end menu
3081
3082@node Concept Index
3083@section Concept Index
3084This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
3085@printindex cp
3086
7544a042
SW
3087@node Function Index
3088@section Function Index
3089This index could be used for command line options and monitor functions.
3090@printindex fn
3091
3092@node Keystroke Index
3093@section Keystroke Index
3094
3095This is a list of all keystrokes which have a special function
3096in system emulation.
3097
3098@printindex ky
3099
3100@node Program Index
3101@section Program Index
3102@printindex pg
3103
3104@node Data Type Index
3105@section Data Type Index
3106
3107This index could be used for qdev device names and options.
3108
3109@printindex tp
3110
3111@node Variable Index
3112@section Variable Index
3113@printindex vr
3114
debc7065 3115@bye