]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
qemu-iotests: Allow caller to disable underscore convertion for qmp
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
e080e785
SW
4
5@documentlanguage en
6@documentencoding UTF-8
7
8f40c388 8@settitle QEMU Emulator User Documentation
debc7065
FB
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
386405f7 12
a1a32b05
SW
13@ifinfo
14@direntry
15* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
0806e3f6 19@iftex
386405f7
FB
20@titlepage
21@sp 7
8f40c388 22@center @titlefont{QEMU Emulator}
debc7065
FB
23@sp 1
24@center @titlefont{User Documentation}
386405f7
FB
25@sp 3
26@end titlepage
0806e3f6 27@end iftex
386405f7 28
debc7065
FB
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
35* Installation::
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
83195237 38* QEMU User space emulator::
debc7065 39* compilation:: Compilation from the sources
7544a042 40* License::
debc7065
FB
41* Index::
42@end menu
43@end ifnottex
44
45@contents
46
47@node Introduction
386405f7
FB
48@chapter Introduction
49
debc7065
FB
50@menu
51* intro_features:: Features
52@end menu
53
54@node intro_features
322d0c66 55@section Features
386405f7 56
1f673135
FB
57QEMU is a FAST! processor emulator using dynamic translation to
58achieve good emulation speed.
1eb20527
FB
59
60QEMU has two operating modes:
0806e3f6 61
d7e5edca 62@itemize
7544a042 63@cindex operating modes
0806e3f6 64
5fafdf24 65@item
7544a042 66@cindex system emulation
1f673135 67Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
1eb20527 71
5fafdf24 72@item
7544a042 73@cindex user mode emulation
83195237
FB
74User mode emulation. In this mode, QEMU can launch
75processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77to ease cross-compilation and cross-debugging.
1eb20527
FB
78
79@end itemize
80
e1b4382c 81QEMU can run without a host kernel driver and yet gives acceptable
5fafdf24 82performance.
322d0c66 83
52c00a5f
FB
84For system emulation, the following hardware targets are supported:
85@itemize
7544a042
SW
86@cindex emulated target systems
87@cindex supported target systems
9d0a8e6f 88@item PC (x86 or x86_64 processor)
3f9f3aa1 89@item ISA PC (old style PC without PCI bus)
52c00a5f 90@item PREP (PowerPC processor)
d45952a0 91@item G3 Beige PowerMac (PowerPC processor)
9d0a8e6f 92@item Mac99 PowerMac (PowerPC processor, in progress)
ee76f82e 93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
c7ba218d 94@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
d9aedc32 95@item Malta board (32-bit and 64-bit MIPS processors)
88cb0a02 96@item MIPS Magnum (64-bit MIPS processor)
9ee6e8bb
PB
97@item ARM Integrator/CP (ARM)
98@item ARM Versatile baseboard (ARM)
0ef849d7 99@item ARM RealView Emulation/Platform baseboard (ARM)
ef4c3856 100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
9ee6e8bb
PB
101@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 103@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 104@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 105@item Palm Tungsten|E PDA (OMAP310 processor)
c30bb264 106@item N800 and N810 tablets (OMAP2420 processor)
57cd6e97 107@item MusicPal (MV88W8618 ARM processor)
ef4c3856
AZ
108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109@item Siemens SX1 smartphone (OMAP310 processor)
48c50a62
EI
110@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
3aeaea65 112@item Avnet LX60/LX110/LX200 boards (Xtensa)
52c00a5f 113@end itemize
386405f7 114
7544a042
SW
115@cindex supported user mode targets
116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
0806e3f6 119
debc7065 120@node Installation
5b9f457a
FB
121@chapter Installation
122
15a34c63
FB
123If you want to compile QEMU yourself, see @ref{compilation}.
124
debc7065
FB
125@menu
126* install_linux:: Linux
127* install_windows:: Windows
128* install_mac:: Macintosh
129@end menu
130
131@node install_linux
1f673135 132@section Linux
7544a042 133@cindex installation (Linux)
1f673135 134
7c3fc84d
FB
135If a precompiled package is available for your distribution - you just
136have to install it. Otherwise, see @ref{compilation}.
5b9f457a 137
debc7065 138@node install_windows
1f673135 139@section Windows
7544a042 140@cindex installation (Windows)
8cd0ac2f 141
15a34c63 142Download the experimental binary installer at
debc7065 143@url{http://www.free.oszoo.org/@/download.html}.
7544a042 144TODO (no longer available)
d691f669 145
debc7065 146@node install_mac
1f673135 147@section Mac OS X
d691f669 148
15a34c63 149Download the experimental binary installer at
debc7065 150@url{http://www.free.oszoo.org/@/download.html}.
7544a042 151TODO (no longer available)
df0f11a0 152
debc7065 153@node QEMU PC System emulator
3f9f3aa1 154@chapter QEMU PC System emulator
7544a042 155@cindex system emulation (PC)
1eb20527 156
debc7065
FB
157@menu
158* pcsys_introduction:: Introduction
159* pcsys_quickstart:: Quick Start
160* sec_invocation:: Invocation
161* pcsys_keys:: Keys
162* pcsys_monitor:: QEMU Monitor
163* disk_images:: Disk Images
164* pcsys_network:: Network emulation
576fd0a1 165* pcsys_other_devs:: Other Devices
debc7065
FB
166* direct_linux_boot:: Direct Linux Boot
167* pcsys_usb:: USB emulation
f858dcae 168* vnc_security:: VNC security
debc7065
FB
169* gdb_usage:: GDB usage
170* pcsys_os_specific:: Target OS specific information
171@end menu
172
173@node pcsys_introduction
0806e3f6
FB
174@section Introduction
175
176@c man begin DESCRIPTION
177
3f9f3aa1
FB
178The QEMU PC System emulator simulates the
179following peripherals:
0806e3f6
FB
180
181@itemize @minus
5fafdf24 182@item
15a34c63 183i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 184@item
15a34c63
FB
185Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186extensions (hardware level, including all non standard modes).
0806e3f6
FB
187@item
188PS/2 mouse and keyboard
5fafdf24 189@item
15a34c63 1902 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
191@item
192Floppy disk
5fafdf24 193@item
3a2eeac0 194PCI and ISA network adapters
0806e3f6 195@item
05d5818c
FB
196Serial ports
197@item
c0fe3827
FB
198Creative SoundBlaster 16 sound card
199@item
200ENSONIQ AudioPCI ES1370 sound card
201@item
e5c9a13e
AZ
202Intel 82801AA AC97 Audio compatible sound card
203@item
7d72e762
GH
204Intel HD Audio Controller and HDA codec
205@item
2d983446 206Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 207@item
26463dbc
AZ
208Gravis Ultrasound GF1 sound card
209@item
cc53d26d 210CS4231A compatible sound card
211@item
b389dbfb 212PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
213@end itemize
214
3f9f3aa1
FB
215SMP is supported with up to 255 CPUs.
216
a8ad4159 217QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
218VGA BIOS.
219
c0fe3827
FB
220QEMU uses YM3812 emulation by Tatsuyuki Satoh.
221
2d983446 222QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 223by Tibor "TS" Schütz.
423d65f4 224
1a1a0e20 225Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 226QEMU must be told to not have parallel ports to have working GUS.
720036a5 227
228@example
3804da9d 229qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 230@end example
231
232Alternatively:
233@example
3804da9d 234qemu-system-i386 dos.img -device gus,irq=5
720036a5 235@end example
236
237Or some other unclaimed IRQ.
238
cc53d26d 239CS4231A is the chip used in Windows Sound System and GUSMAX products
240
0806e3f6
FB
241@c man end
242
debc7065 243@node pcsys_quickstart
1eb20527 244@section Quick Start
7544a042 245@cindex quick start
1eb20527 246
285dc330 247Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
248
249@example
3804da9d 250qemu-system-i386 linux.img
0806e3f6
FB
251@end example
252
253Linux should boot and give you a prompt.
254
6cc721cf 255@node sec_invocation
ec410fc9
FB
256@section Invocation
257
258@example
0806e3f6 259@c man begin SYNOPSIS
3804da9d 260usage: qemu-system-i386 [options] [@var{disk_image}]
0806e3f6 261@c man end
ec410fc9
FB
262@end example
263
0806e3f6 264@c man begin OPTIONS
d2c639d6
BS
265@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
266targets do not need a disk image.
ec410fc9 267
5824d651 268@include qemu-options.texi
ec410fc9 269
3e11db9a
FB
270@c man end
271
debc7065 272@node pcsys_keys
3e11db9a
FB
273@section Keys
274
275@c man begin OPTIONS
276
de1db2a1
BH
277During the graphical emulation, you can use special key combinations to change
278modes. The default key mappings are shown below, but if you use @code{-alt-grab}
279then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
280@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
281
a1b74fe8 282@table @key
f9859310 283@item Ctrl-Alt-f
7544a042 284@kindex Ctrl-Alt-f
a1b74fe8 285Toggle full screen
a0a821a4 286
d6a65ba3
JK
287@item Ctrl-Alt-+
288@kindex Ctrl-Alt-+
289Enlarge the screen
290
291@item Ctrl-Alt--
292@kindex Ctrl-Alt--
293Shrink the screen
294
c4a735f9 295@item Ctrl-Alt-u
7544a042 296@kindex Ctrl-Alt-u
c4a735f9 297Restore the screen's un-scaled dimensions
298
f9859310 299@item Ctrl-Alt-n
7544a042 300@kindex Ctrl-Alt-n
a0a821a4
FB
301Switch to virtual console 'n'. Standard console mappings are:
302@table @emph
303@item 1
304Target system display
305@item 2
306Monitor
307@item 3
308Serial port
a1b74fe8
FB
309@end table
310
f9859310 311@item Ctrl-Alt
7544a042 312@kindex Ctrl-Alt
a0a821a4
FB
313Toggle mouse and keyboard grab.
314@end table
315
7544a042
SW
316@kindex Ctrl-Up
317@kindex Ctrl-Down
318@kindex Ctrl-PageUp
319@kindex Ctrl-PageDown
3e11db9a
FB
320In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
321@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
322
7544a042 323@kindex Ctrl-a h
a0a821a4
FB
324During emulation, if you are using the @option{-nographic} option, use
325@key{Ctrl-a h} to get terminal commands:
ec410fc9
FB
326
327@table @key
a1b74fe8 328@item Ctrl-a h
7544a042 329@kindex Ctrl-a h
d2c639d6 330@item Ctrl-a ?
7544a042 331@kindex Ctrl-a ?
ec410fc9 332Print this help
3b46e624 333@item Ctrl-a x
7544a042 334@kindex Ctrl-a x
366dfc52 335Exit emulator
3b46e624 336@item Ctrl-a s
7544a042 337@kindex Ctrl-a s
1f47a922 338Save disk data back to file (if -snapshot)
20d8a3ed 339@item Ctrl-a t
7544a042 340@kindex Ctrl-a t
d2c639d6 341Toggle console timestamps
a1b74fe8 342@item Ctrl-a b
7544a042 343@kindex Ctrl-a b
1f673135 344Send break (magic sysrq in Linux)
a1b74fe8 345@item Ctrl-a c
7544a042 346@kindex Ctrl-a c
1f673135 347Switch between console and monitor
a1b74fe8 348@item Ctrl-a Ctrl-a
7544a042 349@kindex Ctrl-a a
a1b74fe8 350Send Ctrl-a
ec410fc9 351@end table
0806e3f6
FB
352@c man end
353
354@ignore
355
1f673135
FB
356@c man begin SEEALSO
357The HTML documentation of QEMU for more precise information and Linux
358user mode emulator invocation.
359@c man end
360
361@c man begin AUTHOR
362Fabrice Bellard
363@c man end
364
365@end ignore
366
debc7065 367@node pcsys_monitor
1f673135 368@section QEMU Monitor
7544a042 369@cindex QEMU monitor
1f673135
FB
370
371The QEMU monitor is used to give complex commands to the QEMU
372emulator. You can use it to:
373
374@itemize @minus
375
376@item
e598752a 377Remove or insert removable media images
89dfe898 378(such as CD-ROM or floppies).
1f673135 379
5fafdf24 380@item
1f673135
FB
381Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
382from a disk file.
383
384@item Inspect the VM state without an external debugger.
385
386@end itemize
387
388@subsection Commands
389
390The following commands are available:
391
2313086a 392@include qemu-monitor.texi
0806e3f6 393
1f673135
FB
394@subsection Integer expressions
395
396The monitor understands integers expressions for every integer
397argument. You can use register names to get the value of specifics
398CPU registers by prefixing them with @emph{$}.
ec410fc9 399
1f47a922
FB
400@node disk_images
401@section Disk Images
402
acd935ef
FB
403Since version 0.6.1, QEMU supports many disk image formats, including
404growable disk images (their size increase as non empty sectors are
13a2e80f
FB
405written), compressed and encrypted disk images. Version 0.8.3 added
406the new qcow2 disk image format which is essential to support VM
407snapshots.
1f47a922 408
debc7065
FB
409@menu
410* disk_images_quickstart:: Quick start for disk image creation
411* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 412* vm_snapshots:: VM snapshots
debc7065 413* qemu_img_invocation:: qemu-img Invocation
975b092b 414* qemu_nbd_invocation:: qemu-nbd Invocation
d3067b02 415* disk_images_formats:: Disk image file formats
19cb3738 416* host_drives:: Using host drives
debc7065 417* disk_images_fat_images:: Virtual FAT disk images
75818250 418* disk_images_nbd:: NBD access
42af9c30 419* disk_images_sheepdog:: Sheepdog disk images
00984e39 420* disk_images_iscsi:: iSCSI LUNs
8809e289 421* disk_images_gluster:: GlusterFS disk images
0a12ec87 422* disk_images_ssh:: Secure Shell (ssh) disk images
debc7065
FB
423@end menu
424
425@node disk_images_quickstart
acd935ef
FB
426@subsection Quick start for disk image creation
427
428You can create a disk image with the command:
1f47a922 429@example
acd935ef 430qemu-img create myimage.img mysize
1f47a922 431@end example
acd935ef
FB
432where @var{myimage.img} is the disk image filename and @var{mysize} is its
433size in kilobytes. You can add an @code{M} suffix to give the size in
434megabytes and a @code{G} suffix for gigabytes.
435
debc7065 436See @ref{qemu_img_invocation} for more information.
1f47a922 437
debc7065 438@node disk_images_snapshot_mode
1f47a922
FB
439@subsection Snapshot mode
440
441If you use the option @option{-snapshot}, all disk images are
442considered as read only. When sectors in written, they are written in
443a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
444write back to the raw disk images by using the @code{commit} monitor
445command (or @key{C-a s} in the serial console).
1f47a922 446
13a2e80f
FB
447@node vm_snapshots
448@subsection VM snapshots
449
450VM snapshots are snapshots of the complete virtual machine including
451CPU state, RAM, device state and the content of all the writable
452disks. In order to use VM snapshots, you must have at least one non
453removable and writable block device using the @code{qcow2} disk image
454format. Normally this device is the first virtual hard drive.
455
456Use the monitor command @code{savevm} to create a new VM snapshot or
457replace an existing one. A human readable name can be assigned to each
19d36792 458snapshot in addition to its numerical ID.
13a2e80f
FB
459
460Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
461a VM snapshot. @code{info snapshots} lists the available snapshots
462with their associated information:
463
464@example
465(qemu) info snapshots
466Snapshot devices: hda
467Snapshot list (from hda):
468ID TAG VM SIZE DATE VM CLOCK
4691 start 41M 2006-08-06 12:38:02 00:00:14.954
4702 40M 2006-08-06 12:43:29 00:00:18.633
4713 msys 40M 2006-08-06 12:44:04 00:00:23.514
472@end example
473
474A VM snapshot is made of a VM state info (its size is shown in
475@code{info snapshots}) and a snapshot of every writable disk image.
476The VM state info is stored in the first @code{qcow2} non removable
477and writable block device. The disk image snapshots are stored in
478every disk image. The size of a snapshot in a disk image is difficult
479to evaluate and is not shown by @code{info snapshots} because the
480associated disk sectors are shared among all the snapshots to save
19d36792
FB
481disk space (otherwise each snapshot would need a full copy of all the
482disk images).
13a2e80f
FB
483
484When using the (unrelated) @code{-snapshot} option
485(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
486but they are deleted as soon as you exit QEMU.
487
488VM snapshots currently have the following known limitations:
489@itemize
5fafdf24 490@item
13a2e80f
FB
491They cannot cope with removable devices if they are removed or
492inserted after a snapshot is done.
5fafdf24 493@item
13a2e80f
FB
494A few device drivers still have incomplete snapshot support so their
495state is not saved or restored properly (in particular USB).
496@end itemize
497
acd935ef
FB
498@node qemu_img_invocation
499@subsection @code{qemu-img} Invocation
1f47a922 500
acd935ef 501@include qemu-img.texi
05efe46e 502
975b092b
TS
503@node qemu_nbd_invocation
504@subsection @code{qemu-nbd} Invocation
505
506@include qemu-nbd.texi
507
d3067b02
KW
508@node disk_images_formats
509@subsection Disk image file formats
510
511QEMU supports many image file formats that can be used with VMs as well as with
512any of the tools (like @code{qemu-img}). This includes the preferred formats
513raw and qcow2 as well as formats that are supported for compatibility with
514older QEMU versions or other hypervisors.
515
516Depending on the image format, different options can be passed to
517@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
518This section describes each format and the options that are supported for it.
519
520@table @option
521@item raw
522
523Raw disk image format. This format has the advantage of
524being simple and easily exportable to all other emulators. If your
525file system supports @emph{holes} (for example in ext2 or ext3 on
526Linux or NTFS on Windows), then only the written sectors will reserve
527space. Use @code{qemu-img info} to know the real size used by the
528image or @code{ls -ls} on Unix/Linux.
529
06247428
HT
530Supported options:
531@table @code
532@item preallocation
533Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
534@code{falloc} mode preallocates space for image by calling posix_fallocate().
535@code{full} mode preallocates space for image by writing zeros to underlying
536storage.
537@end table
538
d3067b02
KW
539@item qcow2
540QEMU image format, the most versatile format. Use it to have smaller
541images (useful if your filesystem does not supports holes, for example
542on Windows), optional AES encryption, zlib based compression and
543support of multiple VM snapshots.
544
545Supported options:
546@table @code
547@item compat
7fa9e1f9
SH
548Determines the qcow2 version to use. @code{compat=0.10} uses the
549traditional image format that can be read by any QEMU since 0.10.
d3067b02 550@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
7fa9e1f9
SH
551newer understand (this is the default). Amongst others, this includes
552zero clusters, which allow efficient copy-on-read for sparse images.
d3067b02
KW
553
554@item backing_file
555File name of a base image (see @option{create} subcommand)
556@item backing_fmt
557Image format of the base image
558@item encryption
136cd19d 559If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC.
d3067b02 560
136cd19d
DB
561The use of encryption in qcow and qcow2 images is considered to be flawed by
562modern cryptography standards, suffering from a number of design problems:
563
564@itemize @minus
565@item The AES-CBC cipher is used with predictable initialization vectors based
566on the sector number. This makes it vulnerable to chosen plaintext attacks
567which can reveal the existence of encrypted data.
568@item The user passphrase is directly used as the encryption key. A poorly
569chosen or short passphrase will compromise the security of the encryption.
570@item In the event of the passphrase being compromised there is no way to
571change the passphrase to protect data in any qcow images. The files must
572be cloned, using a different encryption passphrase in the new file. The
573original file must then be securely erased using a program like shred,
574though even this is ineffective with many modern storage technologies.
575@end itemize
576
577Use of qcow / qcow2 encryption is thus strongly discouraged. Users are
578recommended to use an alternative encryption technology such as the
579Linux dm-crypt / LUKS system.
d3067b02
KW
580
581@item cluster_size
582Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
583sizes can improve the image file size whereas larger cluster sizes generally
584provide better performance.
585
586@item preallocation
0e4271b7
HT
587Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
588@code{full}). An image with preallocated metadata is initially larger but can
589improve performance when the image needs to grow. @code{falloc} and @code{full}
590preallocations are like the same options of @code{raw} format, but sets up
591metadata also.
d3067b02
KW
592
593@item lazy_refcounts
594If this option is set to @code{on}, reference count updates are postponed with
595the goal of avoiding metadata I/O and improving performance. This is
596particularly interesting with @option{cache=writethrough} which doesn't batch
597metadata updates. The tradeoff is that after a host crash, the reference count
598tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
599check -r all} is required, which may take some time.
600
601This option can only be enabled if @code{compat=1.1} is specified.
602
4ab15590 603@item nocow
bc3a7f90 604If this option is set to @code{on}, it will turn off COW of the file. It's only
4ab15590
CL
605valid on btrfs, no effect on other file systems.
606
607Btrfs has low performance when hosting a VM image file, even more when the guest
608on the VM also using btrfs as file system. Turning off COW is a way to mitigate
609this bad performance. Generally there are two ways to turn off COW on btrfs:
610a) Disable it by mounting with nodatacow, then all newly created files will be
611NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
612does.
613
614Note: this option is only valid to new or empty files. If there is an existing
615file which is COW and has data blocks already, it couldn't be changed to NOCOW
616by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
bc3a7f90 617the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
4ab15590 618
d3067b02
KW
619@end table
620
621@item qed
622Old QEMU image format with support for backing files and compact image files
623(when your filesystem or transport medium does not support holes).
624
625When converting QED images to qcow2, you might want to consider using the
626@code{lazy_refcounts=on} option to get a more QED-like behaviour.
627
628Supported options:
629@table @code
630@item backing_file
631File name of a base image (see @option{create} subcommand).
632@item backing_fmt
633Image file format of backing file (optional). Useful if the format cannot be
634autodetected because it has no header, like some vhd/vpc files.
635@item cluster_size
636Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
637cluster sizes can improve the image file size whereas larger cluster sizes
638generally provide better performance.
639@item table_size
640Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
641and 16). There is normally no need to change this value but this option can be
642used for performance benchmarking.
643@end table
644
645@item qcow
646Old QEMU image format with support for backing files, compact image files,
647encryption and compression.
648
649Supported options:
650@table @code
651@item backing_file
652File name of a base image (see @option{create} subcommand)
653@item encryption
654If this option is set to @code{on}, the image is encrypted.
655@end table
656
d3067b02
KW
657@item vdi
658VirtualBox 1.1 compatible image format.
659Supported options:
660@table @code
661@item static
662If this option is set to @code{on}, the image is created with metadata
663preallocation.
664@end table
665
666@item vmdk
667VMware 3 and 4 compatible image format.
668
669Supported options:
670@table @code
671@item backing_file
672File name of a base image (see @option{create} subcommand).
673@item compat6
674Create a VMDK version 6 image (instead of version 4)
675@item subformat
676Specifies which VMDK subformat to use. Valid options are
677@code{monolithicSparse} (default),
678@code{monolithicFlat},
679@code{twoGbMaxExtentSparse},
680@code{twoGbMaxExtentFlat} and
681@code{streamOptimized}.
682@end table
683
684@item vpc
685VirtualPC compatible image format (VHD).
686Supported options:
687@table @code
688@item subformat
689Specifies which VHD subformat to use. Valid options are
690@code{dynamic} (default) and @code{fixed}.
691@end table
8282db1b
JC
692
693@item VHDX
694Hyper-V compatible image format (VHDX).
695Supported options:
696@table @code
697@item subformat
698Specifies which VHDX subformat to use. Valid options are
699@code{dynamic} (default) and @code{fixed}.
700@item block_state_zero
30af51ce
JC
701Force use of payload blocks of type 'ZERO'. Can be set to @code{on} (default)
702or @code{off}. When set to @code{off}, new blocks will be created as
703@code{PAYLOAD_BLOCK_NOT_PRESENT}, which means parsers are free to return
704arbitrary data for those blocks. Do not set to @code{off} when using
705@code{qemu-img convert} with @code{subformat=dynamic}.
8282db1b
JC
706@item block_size
707Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size.
708@item log_size
709Log size; min 1 MB.
710@end table
d3067b02
KW
711@end table
712
713@subsubsection Read-only formats
714More disk image file formats are supported in a read-only mode.
715@table @option
716@item bochs
717Bochs images of @code{growing} type.
718@item cloop
719Linux Compressed Loop image, useful only to reuse directly compressed
720CD-ROM images present for example in the Knoppix CD-ROMs.
721@item dmg
722Apple disk image.
723@item parallels
724Parallels disk image format.
725@end table
726
727
19cb3738
FB
728@node host_drives
729@subsection Using host drives
730
731In addition to disk image files, QEMU can directly access host
732devices. We describe here the usage for QEMU version >= 0.8.3.
733
734@subsubsection Linux
735
736On Linux, you can directly use the host device filename instead of a
4be456f1 737disk image filename provided you have enough privileges to access
19cb3738
FB
738it. For example, use @file{/dev/cdrom} to access to the CDROM or
739@file{/dev/fd0} for the floppy.
740
f542086d 741@table @code
19cb3738
FB
742@item CD
743You can specify a CDROM device even if no CDROM is loaded. QEMU has
744specific code to detect CDROM insertion or removal. CDROM ejection by
745the guest OS is supported. Currently only data CDs are supported.
746@item Floppy
747You can specify a floppy device even if no floppy is loaded. Floppy
748removal is currently not detected accurately (if you change floppy
749without doing floppy access while the floppy is not loaded, the guest
750OS will think that the same floppy is loaded).
751@item Hard disks
752Hard disks can be used. Normally you must specify the whole disk
753(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
754see it as a partitioned disk. WARNING: unless you know what you do, it
755is better to only make READ-ONLY accesses to the hard disk otherwise
756you may corrupt your host data (use the @option{-snapshot} command
757line option or modify the device permissions accordingly).
758@end table
759
760@subsubsection Windows
761
01781963
FB
762@table @code
763@item CD
4be456f1 764The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
765alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
766supported as an alias to the first CDROM drive.
19cb3738 767
e598752a 768Currently there is no specific code to handle removable media, so it
19cb3738
FB
769is better to use the @code{change} or @code{eject} monitor commands to
770change or eject media.
01781963 771@item Hard disks
89dfe898 772Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
773where @var{N} is the drive number (0 is the first hard disk).
774
775WARNING: unless you know what you do, it is better to only make
776READ-ONLY accesses to the hard disk otherwise you may corrupt your
777host data (use the @option{-snapshot} command line so that the
778modifications are written in a temporary file).
779@end table
780
19cb3738
FB
781
782@subsubsection Mac OS X
783
5fafdf24 784@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 785
e598752a 786Currently there is no specific code to handle removable media, so it
19cb3738
FB
787is better to use the @code{change} or @code{eject} monitor commands to
788change or eject media.
789
debc7065 790@node disk_images_fat_images
2c6cadd4
FB
791@subsection Virtual FAT disk images
792
793QEMU can automatically create a virtual FAT disk image from a
794directory tree. In order to use it, just type:
795
5fafdf24 796@example
3804da9d 797qemu-system-i386 linux.img -hdb fat:/my_directory
2c6cadd4
FB
798@end example
799
800Then you access access to all the files in the @file{/my_directory}
801directory without having to copy them in a disk image or to export
802them via SAMBA or NFS. The default access is @emph{read-only}.
803
804Floppies can be emulated with the @code{:floppy:} option:
805
5fafdf24 806@example
3804da9d 807qemu-system-i386 linux.img -fda fat:floppy:/my_directory
2c6cadd4
FB
808@end example
809
810A read/write support is available for testing (beta stage) with the
811@code{:rw:} option:
812
5fafdf24 813@example
3804da9d 814qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
2c6cadd4
FB
815@end example
816
817What you should @emph{never} do:
818@itemize
819@item use non-ASCII filenames ;
820@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
821@item expect it to work when loadvm'ing ;
822@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
823@end itemize
824
75818250
TS
825@node disk_images_nbd
826@subsection NBD access
827
828QEMU can access directly to block device exported using the Network Block Device
829protocol.
830
831@example
1d7d2a9d 832qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
75818250
TS
833@end example
834
835If the NBD server is located on the same host, you can use an unix socket instead
836of an inet socket:
837
838@example
1d7d2a9d 839qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
840@end example
841
842In this case, the block device must be exported using qemu-nbd:
843
844@example
845qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
846@end example
847
9d85d557 848The use of qemu-nbd allows sharing of a disk between several guests:
75818250
TS
849@example
850qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
851@end example
852
1d7d2a9d 853@noindent
75818250
TS
854and then you can use it with two guests:
855@example
1d7d2a9d
PB
856qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
857qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
858@end example
859
1d7d2a9d
PB
860If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
861own embedded NBD server), you must specify an export name in the URI:
1d45f8b5 862@example
1d7d2a9d
PB
863qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
864qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
865@end example
866
867The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
868also available. Here are some example of the older syntax:
869@example
870qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
871qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
872qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
1d45f8b5
LV
873@end example
874
42af9c30
MK
875@node disk_images_sheepdog
876@subsection Sheepdog disk images
877
878Sheepdog is a distributed storage system for QEMU. It provides highly
879available block level storage volumes that can be attached to
880QEMU-based virtual machines.
881
882You can create a Sheepdog disk image with the command:
883@example
5d6768e3 884qemu-img create sheepdog:///@var{image} @var{size}
42af9c30
MK
885@end example
886where @var{image} is the Sheepdog image name and @var{size} is its
887size.
888
889To import the existing @var{filename} to Sheepdog, you can use a
890convert command.
891@example
5d6768e3 892qemu-img convert @var{filename} sheepdog:///@var{image}
42af9c30
MK
893@end example
894
895You can boot from the Sheepdog disk image with the command:
896@example
5d6768e3 897qemu-system-i386 sheepdog:///@var{image}
42af9c30
MK
898@end example
899
900You can also create a snapshot of the Sheepdog image like qcow2.
901@example
5d6768e3 902qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
42af9c30
MK
903@end example
904where @var{tag} is a tag name of the newly created snapshot.
905
906To boot from the Sheepdog snapshot, specify the tag name of the
907snapshot.
908@example
5d6768e3 909qemu-system-i386 sheepdog:///@var{image}#@var{tag}
42af9c30
MK
910@end example
911
912You can create a cloned image from the existing snapshot.
913@example
5d6768e3 914qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
42af9c30
MK
915@end example
916where @var{base} is a image name of the source snapshot and @var{tag}
917is its tag name.
918
1b8bbb46
MK
919You can use an unix socket instead of an inet socket:
920
921@example
922qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
923@end example
924
42af9c30
MK
925If the Sheepdog daemon doesn't run on the local host, you need to
926specify one of the Sheepdog servers to connect to.
927@example
5d6768e3
MK
928qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
929qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
42af9c30
MK
930@end example
931
00984e39
RS
932@node disk_images_iscsi
933@subsection iSCSI LUNs
934
935iSCSI is a popular protocol used to access SCSI devices across a computer
936network.
937
938There are two different ways iSCSI devices can be used by QEMU.
939
940The first method is to mount the iSCSI LUN on the host, and make it appear as
941any other ordinary SCSI device on the host and then to access this device as a
942/dev/sd device from QEMU. How to do this differs between host OSes.
943
944The second method involves using the iSCSI initiator that is built into
945QEMU. This provides a mechanism that works the same way regardless of which
946host OS you are running QEMU on. This section will describe this second method
947of using iSCSI together with QEMU.
948
949In QEMU, iSCSI devices are described using special iSCSI URLs
950
951@example
952URL syntax:
953iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
954@end example
955
956Username and password are optional and only used if your target is set up
957using CHAP authentication for access control.
958Alternatively the username and password can also be set via environment
959variables to have these not show up in the process list
960
961@example
962export LIBISCSI_CHAP_USERNAME=<username>
963export LIBISCSI_CHAP_PASSWORD=<password>
964iscsi://<host>/<target-iqn-name>/<lun>
965@end example
966
f9dadc98
RS
967Various session related parameters can be set via special options, either
968in a configuration file provided via '-readconfig' or directly on the
969command line.
970
31459f46
RS
971If the initiator-name is not specified qemu will use a default name
972of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
973virtual machine.
974
975
f9dadc98
RS
976@example
977Setting a specific initiator name to use when logging in to the target
978-iscsi initiator-name=iqn.qemu.test:my-initiator
979@end example
980
981@example
982Controlling which type of header digest to negotiate with the target
983-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
984@end example
985
986These can also be set via a configuration file
987@example
988[iscsi]
989 user = "CHAP username"
990 password = "CHAP password"
991 initiator-name = "iqn.qemu.test:my-initiator"
992 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
993 header-digest = "CRC32C"
994@end example
995
996
997Setting the target name allows different options for different targets
998@example
999[iscsi "iqn.target.name"]
1000 user = "CHAP username"
1001 password = "CHAP password"
1002 initiator-name = "iqn.qemu.test:my-initiator"
1003 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1004 header-digest = "CRC32C"
1005@end example
1006
1007
1008Howto use a configuration file to set iSCSI configuration options:
1009@example
1010cat >iscsi.conf <<EOF
1011[iscsi]
1012 user = "me"
1013 password = "my password"
1014 initiator-name = "iqn.qemu.test:my-initiator"
1015 header-digest = "CRC32C"
1016EOF
1017
1018qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1019 -readconfig iscsi.conf
1020@end example
1021
1022
00984e39
RS
1023Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
1024@example
1025This example shows how to set up an iSCSI target with one CDROM and one DISK
1026using the Linux STGT software target. This target is available on Red Hat based
1027systems as the package 'scsi-target-utils'.
1028
1029tgtd --iscsi portal=127.0.0.1:3260
1030tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
1031tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
1032 -b /IMAGES/disk.img --device-type=disk
1033tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
1034 -b /IMAGES/cd.iso --device-type=cd
1035tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
1036
f9dadc98
RS
1037qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
1038 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
00984e39
RS
1039 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
1040@end example
1041
8809e289
BR
1042@node disk_images_gluster
1043@subsection GlusterFS disk images
00984e39 1044
8809e289
BR
1045GlusterFS is an user space distributed file system.
1046
1047You can boot from the GlusterFS disk image with the command:
1048@example
1049qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
1050@end example
1051
1052@var{gluster} is the protocol.
1053
1054@var{transport} specifies the transport type used to connect to gluster
1055management daemon (glusterd). Valid transport types are
1056tcp, unix and rdma. If a transport type isn't specified, then tcp
1057type is assumed.
1058
1059@var{server} specifies the server where the volume file specification for
1060the given volume resides. This can be either hostname, ipv4 address
1061or ipv6 address. ipv6 address needs to be within square brackets [ ].
1062If transport type is unix, then @var{server} field should not be specifed.
1063Instead @var{socket} field needs to be populated with the path to unix domain
1064socket.
1065
1066@var{port} is the port number on which glusterd is listening. This is optional
1067and if not specified, QEMU will send 0 which will make gluster to use the
1068default port. If the transport type is unix, then @var{port} should not be
1069specified.
1070
1071@var{volname} is the name of the gluster volume which contains the disk image.
1072
1073@var{image} is the path to the actual disk image that resides on gluster volume.
1074
1075You can create a GlusterFS disk image with the command:
1076@example
1077qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
1078@end example
1079
1080Examples
1081@example
1082qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1083qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1084qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1085qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1086qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1087qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1088qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1089qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
1090@end example
00984e39 1091
0a12ec87
RJ
1092@node disk_images_ssh
1093@subsection Secure Shell (ssh) disk images
1094
1095You can access disk images located on a remote ssh server
1096by using the ssh protocol:
1097
1098@example
1099qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1100@end example
1101
1102Alternative syntax using properties:
1103
1104@example
1105qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1106@end example
1107
1108@var{ssh} is the protocol.
1109
1110@var{user} is the remote user. If not specified, then the local
1111username is tried.
1112
1113@var{server} specifies the remote ssh server. Any ssh server can be
1114used, but it must implement the sftp-server protocol. Most Unix/Linux
1115systems should work without requiring any extra configuration.
1116
1117@var{port} is the port number on which sshd is listening. By default
1118the standard ssh port (22) is used.
1119
1120@var{path} is the path to the disk image.
1121
1122The optional @var{host_key_check} parameter controls how the remote
1123host's key is checked. The default is @code{yes} which means to use
1124the local @file{.ssh/known_hosts} file. Setting this to @code{no}
1125turns off known-hosts checking. Or you can check that the host key
1126matches a specific fingerprint:
1127@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1128(@code{sha1:} can also be used as a prefix, but note that OpenSSH
1129tools only use MD5 to print fingerprints).
1130
1131Currently authentication must be done using ssh-agent. Other
1132authentication methods may be supported in future.
1133
9a2d462e
RJ
1134Note: Many ssh servers do not support an @code{fsync}-style operation.
1135The ssh driver cannot guarantee that disk flush requests are
1136obeyed, and this causes a risk of disk corruption if the remote
1137server or network goes down during writes. The driver will
1138print a warning when @code{fsync} is not supported:
1139
1140warning: ssh server @code{ssh.example.com:22} does not support fsync
1141
1142With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1143supported.
0a12ec87 1144
debc7065 1145@node pcsys_network
9d4fb82e
FB
1146@section Network emulation
1147
4be456f1 1148QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
1149target) and can connect them to an arbitrary number of Virtual Local
1150Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1151VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 1152simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
1153network stack can replace the TAP device to have a basic network
1154connection.
1155
1156@subsection VLANs
9d4fb82e 1157
41d03949
FB
1158QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1159connection between several network devices. These devices can be for
1160example QEMU virtual Ethernet cards or virtual Host ethernet devices
1161(TAP devices).
9d4fb82e 1162
41d03949
FB
1163@subsection Using TAP network interfaces
1164
1165This is the standard way to connect QEMU to a real network. QEMU adds
1166a virtual network device on your host (called @code{tapN}), and you
1167can then configure it as if it was a real ethernet card.
9d4fb82e 1168
8f40c388
FB
1169@subsubsection Linux host
1170
9d4fb82e
FB
1171As an example, you can download the @file{linux-test-xxx.tar.gz}
1172archive and copy the script @file{qemu-ifup} in @file{/etc} and
1173configure properly @code{sudo} so that the command @code{ifconfig}
1174contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 1175that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
1176device @file{/dev/net/tun} must be present.
1177
ee0f4751
FB
1178See @ref{sec_invocation} to have examples of command lines using the
1179TAP network interfaces.
9d4fb82e 1180
8f40c388
FB
1181@subsubsection Windows host
1182
1183There is a virtual ethernet driver for Windows 2000/XP systems, called
1184TAP-Win32. But it is not included in standard QEMU for Windows,
1185so you will need to get it separately. It is part of OpenVPN package,
1186so download OpenVPN from : @url{http://openvpn.net/}.
1187
9d4fb82e
FB
1188@subsection Using the user mode network stack
1189
41d03949
FB
1190By using the option @option{-net user} (default configuration if no
1191@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 1192network stack (you don't need root privilege to use the virtual
41d03949 1193network). The virtual network configuration is the following:
9d4fb82e
FB
1194
1195@example
1196
41d03949
FB
1197 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1198 | (10.0.2.2)
9d4fb82e 1199 |
2518bd0d 1200 ----> DNS server (10.0.2.3)
3b46e624 1201 |
2518bd0d 1202 ----> SMB server (10.0.2.4)
9d4fb82e
FB
1203@end example
1204
1205The QEMU VM behaves as if it was behind a firewall which blocks all
1206incoming connections. You can use a DHCP client to automatically
41d03949
FB
1207configure the network in the QEMU VM. The DHCP server assign addresses
1208to the hosts starting from 10.0.2.15.
9d4fb82e
FB
1209
1210In order to check that the user mode network is working, you can ping
1211the address 10.0.2.2 and verify that you got an address in the range
121210.0.2.x from the QEMU virtual DHCP server.
1213
37cbfcce
GH
1214Note that ICMP traffic in general does not work with user mode networking.
1215@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
1216however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
1217ping sockets to allow @code{ping} to the Internet. The host admin has to set
1218the ping_group_range in order to grant access to those sockets. To allow ping
1219for GID 100 (usually users group):
1220
1221@example
1222echo 100 100 > /proc/sys/net/ipv4/ping_group_range
1223@end example
b415a407 1224
9bf05444
FB
1225When using the built-in TFTP server, the router is also the TFTP
1226server.
1227
1228When using the @option{-redir} option, TCP or UDP connections can be
1229redirected from the host to the guest. It allows for example to
1230redirect X11, telnet or SSH connections.
443f1376 1231
41d03949
FB
1232@subsection Connecting VLANs between QEMU instances
1233
1234Using the @option{-net socket} option, it is possible to make VLANs
1235that span several QEMU instances. See @ref{sec_invocation} to have a
1236basic example.
1237
576fd0a1 1238@node pcsys_other_devs
6cbf4c8c
CM
1239@section Other Devices
1240
1241@subsection Inter-VM Shared Memory device
1242
1243With KVM enabled on a Linux host, a shared memory device is available. Guests
1244map a POSIX shared memory region into the guest as a PCI device that enables
1245zero-copy communication to the application level of the guests. The basic
1246syntax is:
1247
1248@example
3804da9d 1249qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
6cbf4c8c
CM
1250@end example
1251
1252If desired, interrupts can be sent between guest VMs accessing the same shared
1253memory region. Interrupt support requires using a shared memory server and
1254using a chardev socket to connect to it. The code for the shared memory server
1255is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
1256memory server is:
1257
1258@example
3804da9d
SW
1259qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
1260 [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
1261qemu-system-i386 -chardev socket,path=<path>,id=<id>
6cbf4c8c
CM
1262@end example
1263
1264When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1265using the same server to communicate via interrupts. Guests can read their
1266VM ID from a device register (see example code). Since receiving the shared
1267memory region from the server is asynchronous, there is a (small) chance the
1268guest may boot before the shared memory is attached. To allow an application
1269to ensure shared memory is attached, the VM ID register will return -1 (an
1270invalid VM ID) until the memory is attached. Once the shared memory is
1271attached, the VM ID will return the guest's valid VM ID. With these semantics,
1272the guest application can check to ensure the shared memory is attached to the
1273guest before proceeding.
1274
1275The @option{role} argument can be set to either master or peer and will affect
1276how the shared memory is migrated. With @option{role=master}, the guest will
1277copy the shared memory on migration to the destination host. With
1278@option{role=peer}, the guest will not be able to migrate with the device attached.
1279With the @option{peer} case, the device should be detached and then reattached
1280after migration using the PCI hotplug support.
1281
9d4fb82e
FB
1282@node direct_linux_boot
1283@section Direct Linux Boot
1f673135
FB
1284
1285This section explains how to launch a Linux kernel inside QEMU without
1286having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1287kernel testing.
1f673135 1288
ee0f4751 1289The syntax is:
1f673135 1290@example
3804da9d 1291qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1292@end example
1293
ee0f4751
FB
1294Use @option{-kernel} to provide the Linux kernel image and
1295@option{-append} to give the kernel command line arguments. The
1296@option{-initrd} option can be used to provide an INITRD image.
1f673135 1297
ee0f4751
FB
1298When using the direct Linux boot, a disk image for the first hard disk
1299@file{hda} is required because its boot sector is used to launch the
1300Linux kernel.
1f673135 1301
ee0f4751
FB
1302If you do not need graphical output, you can disable it and redirect
1303the virtual serial port and the QEMU monitor to the console with the
1304@option{-nographic} option. The typical command line is:
1f673135 1305@example
3804da9d
SW
1306qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1307 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1308@end example
1309
ee0f4751
FB
1310Use @key{Ctrl-a c} to switch between the serial console and the
1311monitor (@pxref{pcsys_keys}).
1f673135 1312
debc7065 1313@node pcsys_usb
b389dbfb
FB
1314@section USB emulation
1315
0aff66b5
PB
1316QEMU emulates a PCI UHCI USB controller. You can virtually plug
1317virtual USB devices or real host USB devices (experimental, works only
071c9394 1318on Linux hosts). QEMU will automatically create and connect virtual USB hubs
f542086d 1319as necessary to connect multiple USB devices.
b389dbfb 1320
0aff66b5
PB
1321@menu
1322* usb_devices::
1323* host_usb_devices::
1324@end menu
1325@node usb_devices
1326@subsection Connecting USB devices
b389dbfb 1327
0aff66b5
PB
1328USB devices can be connected with the @option{-usbdevice} commandline option
1329or the @code{usb_add} monitor command. Available devices are:
b389dbfb 1330
db380c06
AZ
1331@table @code
1332@item mouse
0aff66b5 1333Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 1334@item tablet
c6d46c20 1335Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 1336This means QEMU is able to report the mouse position without having
0aff66b5 1337to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 1338@item disk:@var{file}
0aff66b5 1339Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 1340@item host:@var{bus.addr}
0aff66b5
PB
1341Pass through the host device identified by @var{bus.addr}
1342(Linux only)
db380c06 1343@item host:@var{vendor_id:product_id}
0aff66b5
PB
1344Pass through the host device identified by @var{vendor_id:product_id}
1345(Linux only)
db380c06 1346@item wacom-tablet
f6d2a316
AZ
1347Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1348above but it can be used with the tslib library because in addition to touch
1349coordinates it reports touch pressure.
db380c06 1350@item keyboard
47b2d338 1351Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
1352@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1353Serial converter. This emulates an FTDI FT232BM chip connected to host character
1354device @var{dev}. The available character devices are the same as for the
1355@code{-serial} option. The @code{vendorid} and @code{productid} options can be
0d6753e5 1356used to override the default 0403:6001. For instance,
db380c06
AZ
1357@example
1358usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1359@end example
1360will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1361serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
1362@item braille
1363Braille device. This will use BrlAPI to display the braille output on a real
1364or fake device.
9ad97e65
AZ
1365@item net:@var{options}
1366Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1367specifies NIC options as with @code{-net nic,}@var{options} (see description).
1368For instance, user-mode networking can be used with
6c9f886c 1369@example
3804da9d 1370qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
1371@end example
1372Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
1373@item bt[:@var{hci-type}]
1374Bluetooth dongle whose type is specified in the same format as with
1375the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1376no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1377This USB device implements the USB Transport Layer of HCI. Example
1378usage:
1379@example
3804da9d 1380qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
2d564691 1381@end example
0aff66b5 1382@end table
b389dbfb 1383
0aff66b5 1384@node host_usb_devices
b389dbfb
FB
1385@subsection Using host USB devices on a Linux host
1386
1387WARNING: this is an experimental feature. QEMU will slow down when
1388using it. USB devices requiring real time streaming (i.e. USB Video
1389Cameras) are not supported yet.
1390
1391@enumerate
5fafdf24 1392@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1393is actually using the USB device. A simple way to do that is simply to
1394disable the corresponding kernel module by renaming it from @file{mydriver.o}
1395to @file{mydriver.o.disabled}.
1396
1397@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1398@example
1399ls /proc/bus/usb
1400001 devices drivers
1401@end example
1402
1403@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1404@example
1405chown -R myuid /proc/bus/usb
1406@end example
1407
1408@item Launch QEMU and do in the monitor:
5fafdf24 1409@example
b389dbfb
FB
1410info usbhost
1411 Device 1.2, speed 480 Mb/s
1412 Class 00: USB device 1234:5678, USB DISK
1413@end example
1414You should see the list of the devices you can use (Never try to use
1415hubs, it won't work).
1416
1417@item Add the device in QEMU by using:
5fafdf24 1418@example
b389dbfb
FB
1419usb_add host:1234:5678
1420@end example
1421
1422Normally the guest OS should report that a new USB device is
1423plugged. You can use the option @option{-usbdevice} to do the same.
1424
1425@item Now you can try to use the host USB device in QEMU.
1426
1427@end enumerate
1428
1429When relaunching QEMU, you may have to unplug and plug again the USB
1430device to make it work again (this is a bug).
1431
f858dcae
TS
1432@node vnc_security
1433@section VNC security
1434
1435The VNC server capability provides access to the graphical console
1436of the guest VM across the network. This has a number of security
1437considerations depending on the deployment scenarios.
1438
1439@menu
1440* vnc_sec_none::
1441* vnc_sec_password::
1442* vnc_sec_certificate::
1443* vnc_sec_certificate_verify::
1444* vnc_sec_certificate_pw::
2f9606b3
AL
1445* vnc_sec_sasl::
1446* vnc_sec_certificate_sasl::
f858dcae 1447* vnc_generate_cert::
2f9606b3 1448* vnc_setup_sasl::
f858dcae
TS
1449@end menu
1450@node vnc_sec_none
1451@subsection Without passwords
1452
1453The simplest VNC server setup does not include any form of authentication.
1454For this setup it is recommended to restrict it to listen on a UNIX domain
1455socket only. For example
1456
1457@example
3804da9d 1458qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1459@end example
1460
1461This ensures that only users on local box with read/write access to that
1462path can access the VNC server. To securely access the VNC server from a
1463remote machine, a combination of netcat+ssh can be used to provide a secure
1464tunnel.
1465
1466@node vnc_sec_password
1467@subsection With passwords
1468
1469The VNC protocol has limited support for password based authentication. Since
1470the protocol limits passwords to 8 characters it should not be considered
1471to provide high security. The password can be fairly easily brute-forced by
1472a client making repeat connections. For this reason, a VNC server using password
1473authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1474or UNIX domain sockets. Password authentication is not supported when operating
1475in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1476authentication is requested with the @code{password} option, and then once QEMU
1477is running the password is set with the monitor. Until the monitor is used to
1478set the password all clients will be rejected.
f858dcae
TS
1479
1480@example
3804da9d 1481qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1482(qemu) change vnc password
1483Password: ********
1484(qemu)
1485@end example
1486
1487@node vnc_sec_certificate
1488@subsection With x509 certificates
1489
1490The QEMU VNC server also implements the VeNCrypt extension allowing use of
1491TLS for encryption of the session, and x509 certificates for authentication.
1492The use of x509 certificates is strongly recommended, because TLS on its
1493own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1494support provides a secure session, but no authentication. This allows any
1495client to connect, and provides an encrypted session.
1496
1497@example
3804da9d 1498qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
1499@end example
1500
1501In the above example @code{/etc/pki/qemu} should contain at least three files,
1502@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1503users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1504NB the @code{server-key.pem} file should be protected with file mode 0600 to
1505only be readable by the user owning it.
1506
1507@node vnc_sec_certificate_verify
1508@subsection With x509 certificates and client verification
1509
1510Certificates can also provide a means to authenticate the client connecting.
1511The server will request that the client provide a certificate, which it will
1512then validate against the CA certificate. This is a good choice if deploying
1513in an environment with a private internal certificate authority.
1514
1515@example
3804da9d 1516qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1517@end example
1518
1519
1520@node vnc_sec_certificate_pw
1521@subsection With x509 certificates, client verification and passwords
1522
1523Finally, the previous method can be combined with VNC password authentication
1524to provide two layers of authentication for clients.
1525
1526@example
3804da9d 1527qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1528(qemu) change vnc password
1529Password: ********
1530(qemu)
1531@end example
1532
2f9606b3
AL
1533
1534@node vnc_sec_sasl
1535@subsection With SASL authentication
1536
1537The SASL authentication method is a VNC extension, that provides an
1538easily extendable, pluggable authentication method. This allows for
1539integration with a wide range of authentication mechanisms, such as
1540PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1541The strength of the authentication depends on the exact mechanism
1542configured. If the chosen mechanism also provides a SSF layer, then
1543it will encrypt the datastream as well.
1544
1545Refer to the later docs on how to choose the exact SASL mechanism
1546used for authentication, but assuming use of one supporting SSF,
1547then QEMU can be launched with:
1548
1549@example
3804da9d 1550qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1551@end example
1552
1553@node vnc_sec_certificate_sasl
1554@subsection With x509 certificates and SASL authentication
1555
1556If the desired SASL authentication mechanism does not supported
1557SSF layers, then it is strongly advised to run it in combination
1558with TLS and x509 certificates. This provides securely encrypted
1559data stream, avoiding risk of compromising of the security
1560credentials. This can be enabled, by combining the 'sasl' option
1561with the aforementioned TLS + x509 options:
1562
1563@example
3804da9d 1564qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
1565@end example
1566
1567
f858dcae
TS
1568@node vnc_generate_cert
1569@subsection Generating certificates for VNC
1570
1571The GNU TLS packages provides a command called @code{certtool} which can
1572be used to generate certificates and keys in PEM format. At a minimum it
40c5c6cd 1573is necessary to setup a certificate authority, and issue certificates to
f858dcae
TS
1574each server. If using certificates for authentication, then each client
1575will also need to be issued a certificate. The recommendation is for the
1576server to keep its certificates in either @code{/etc/pki/qemu} or for
1577unprivileged users in @code{$HOME/.pki/qemu}.
1578
1579@menu
1580* vnc_generate_ca::
1581* vnc_generate_server::
1582* vnc_generate_client::
1583@end menu
1584@node vnc_generate_ca
1585@subsubsection Setup the Certificate Authority
1586
1587This step only needs to be performed once per organization / organizational
1588unit. First the CA needs a private key. This key must be kept VERY secret
1589and secure. If this key is compromised the entire trust chain of the certificates
1590issued with it is lost.
1591
1592@example
1593# certtool --generate-privkey > ca-key.pem
1594@end example
1595
1596A CA needs to have a public certificate. For simplicity it can be a self-signed
1597certificate, or one issue by a commercial certificate issuing authority. To
1598generate a self-signed certificate requires one core piece of information, the
1599name of the organization.
1600
1601@example
1602# cat > ca.info <<EOF
1603cn = Name of your organization
1604ca
1605cert_signing_key
1606EOF
1607# certtool --generate-self-signed \
1608 --load-privkey ca-key.pem
1609 --template ca.info \
1610 --outfile ca-cert.pem
1611@end example
1612
1613The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1614TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1615
1616@node vnc_generate_server
1617@subsubsection Issuing server certificates
1618
1619Each server (or host) needs to be issued with a key and certificate. When connecting
1620the certificate is sent to the client which validates it against the CA certificate.
1621The core piece of information for a server certificate is the hostname. This should
1622be the fully qualified hostname that the client will connect with, since the client
1623will typically also verify the hostname in the certificate. On the host holding the
1624secure CA private key:
1625
1626@example
1627# cat > server.info <<EOF
1628organization = Name of your organization
1629cn = server.foo.example.com
1630tls_www_server
1631encryption_key
1632signing_key
1633EOF
1634# certtool --generate-privkey > server-key.pem
1635# certtool --generate-certificate \
1636 --load-ca-certificate ca-cert.pem \
1637 --load-ca-privkey ca-key.pem \
63c693f8 1638 --load-privkey server-key.pem \
f858dcae
TS
1639 --template server.info \
1640 --outfile server-cert.pem
1641@end example
1642
1643The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1644to the server for which they were generated. The @code{server-key.pem} is security
1645sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1646
1647@node vnc_generate_client
1648@subsubsection Issuing client certificates
1649
1650If the QEMU VNC server is to use the @code{x509verify} option to validate client
1651certificates as its authentication mechanism, each client also needs to be issued
1652a certificate. The client certificate contains enough metadata to uniquely identify
1653the client, typically organization, state, city, building, etc. On the host holding
1654the secure CA private key:
1655
1656@example
1657# cat > client.info <<EOF
1658country = GB
1659state = London
1660locality = London
63c693f8 1661organization = Name of your organization
f858dcae
TS
1662cn = client.foo.example.com
1663tls_www_client
1664encryption_key
1665signing_key
1666EOF
1667# certtool --generate-privkey > client-key.pem
1668# certtool --generate-certificate \
1669 --load-ca-certificate ca-cert.pem \
1670 --load-ca-privkey ca-key.pem \
1671 --load-privkey client-key.pem \
1672 --template client.info \
1673 --outfile client-cert.pem
1674@end example
1675
1676The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1677copied to the client for which they were generated.
1678
2f9606b3
AL
1679
1680@node vnc_setup_sasl
1681
1682@subsection Configuring SASL mechanisms
1683
1684The following documentation assumes use of the Cyrus SASL implementation on a
1685Linux host, but the principals should apply to any other SASL impl. When SASL
1686is enabled, the mechanism configuration will be loaded from system default
1687SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1688unprivileged user, an environment variable SASL_CONF_PATH can be used
1689to make it search alternate locations for the service config.
1690
1691The default configuration might contain
1692
1693@example
1694mech_list: digest-md5
1695sasldb_path: /etc/qemu/passwd.db
1696@end example
1697
1698This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1699Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1700in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1701command. While this mechanism is easy to configure and use, it is not
1702considered secure by modern standards, so only suitable for developers /
1703ad-hoc testing.
1704
1705A more serious deployment might use Kerberos, which is done with the 'gssapi'
1706mechanism
1707
1708@example
1709mech_list: gssapi
1710keytab: /etc/qemu/krb5.tab
1711@end example
1712
1713For this to work the administrator of your KDC must generate a Kerberos
1714principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1715replacing 'somehost.example.com' with the fully qualified host name of the
40c5c6cd 1716machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
2f9606b3
AL
1717
1718Other configurations will be left as an exercise for the reader. It should
1719be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1720encryption. For all other mechanisms, VNC should always be configured to
1721use TLS and x509 certificates to protect security credentials from snooping.
1722
0806e3f6 1723@node gdb_usage
da415d54
FB
1724@section GDB usage
1725
1726QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1727'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1728
b65ee4fa 1729In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1730gdb connection:
1731@example
3804da9d
SW
1732qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1733 -append "root=/dev/hda"
da415d54
FB
1734Connected to host network interface: tun0
1735Waiting gdb connection on port 1234
1736@end example
1737
1738Then launch gdb on the 'vmlinux' executable:
1739@example
1740> gdb vmlinux
1741@end example
1742
1743In gdb, connect to QEMU:
1744@example
6c9bf893 1745(gdb) target remote localhost:1234
da415d54
FB
1746@end example
1747
1748Then you can use gdb normally. For example, type 'c' to launch the kernel:
1749@example
1750(gdb) c
1751@end example
1752
0806e3f6
FB
1753Here are some useful tips in order to use gdb on system code:
1754
1755@enumerate
1756@item
1757Use @code{info reg} to display all the CPU registers.
1758@item
1759Use @code{x/10i $eip} to display the code at the PC position.
1760@item
1761Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1762@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1763@end enumerate
1764
60897d36
EI
1765Advanced debugging options:
1766
1767The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1768@table @code
60897d36
EI
1769@item maintenance packet qqemu.sstepbits
1770
1771This will display the MASK bits used to control the single stepping IE:
1772@example
1773(gdb) maintenance packet qqemu.sstepbits
1774sending: "qqemu.sstepbits"
1775received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1776@end example
1777@item maintenance packet qqemu.sstep
1778
1779This will display the current value of the mask used when single stepping IE:
1780@example
1781(gdb) maintenance packet qqemu.sstep
1782sending: "qqemu.sstep"
1783received: "0x7"
1784@end example
1785@item maintenance packet Qqemu.sstep=HEX_VALUE
1786
1787This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1788@example
1789(gdb) maintenance packet Qqemu.sstep=0x5
1790sending: "qemu.sstep=0x5"
1791received: "OK"
1792@end example
94d45e44 1793@end table
60897d36 1794
debc7065 1795@node pcsys_os_specific
1a084f3d
FB
1796@section Target OS specific information
1797
1798@subsection Linux
1799
15a34c63
FB
1800To have access to SVGA graphic modes under X11, use the @code{vesa} or
1801the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1802color depth in the guest and the host OS.
1a084f3d 1803
e3371e62
FB
1804When using a 2.6 guest Linux kernel, you should add the option
1805@code{clock=pit} on the kernel command line because the 2.6 Linux
1806kernels make very strict real time clock checks by default that QEMU
1807cannot simulate exactly.
1808
7c3fc84d
FB
1809When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1810not activated because QEMU is slower with this patch. The QEMU
1811Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1812Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1813patch by default. Newer kernels don't have it.
1814
1a084f3d
FB
1815@subsection Windows
1816
1817If you have a slow host, using Windows 95 is better as it gives the
1818best speed. Windows 2000 is also a good choice.
1819
e3371e62
FB
1820@subsubsection SVGA graphic modes support
1821
1822QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1823card. All Windows versions starting from Windows 95 should recognize
1824and use this graphic card. For optimal performances, use 16 bit color
1825depth in the guest and the host OS.
1a084f3d 1826
3cb0853a
FB
1827If you are using Windows XP as guest OS and if you want to use high
1828resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
18291280x1024x16), then you should use the VESA VBE virtual graphic card
1830(option @option{-std-vga}).
1831
e3371e62
FB
1832@subsubsection CPU usage reduction
1833
1834Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1835instruction. The result is that it takes host CPU cycles even when
1836idle. You can install the utility from
1837@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1838problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1839
9d0a8e6f 1840@subsubsection Windows 2000 disk full problem
e3371e62 1841
9d0a8e6f
FB
1842Windows 2000 has a bug which gives a disk full problem during its
1843installation. When installing it, use the @option{-win2k-hack} QEMU
1844option to enable a specific workaround. After Windows 2000 is
1845installed, you no longer need this option (this option slows down the
1846IDE transfers).
e3371e62 1847
6cc721cf
FB
1848@subsubsection Windows 2000 shutdown
1849
1850Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1851can. It comes from the fact that Windows 2000 does not automatically
1852use the APM driver provided by the BIOS.
1853
1854In order to correct that, do the following (thanks to Struan
1855Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1856Add/Troubleshoot a device => Add a new device & Next => No, select the
1857hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1858(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1859correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1860
1861@subsubsection Share a directory between Unix and Windows
1862
1863See @ref{sec_invocation} about the help of the option @option{-smb}.
1864
2192c332 1865@subsubsection Windows XP security problem
e3371e62
FB
1866
1867Some releases of Windows XP install correctly but give a security
1868error when booting:
1869@example
1870A problem is preventing Windows from accurately checking the
1871license for this computer. Error code: 0x800703e6.
1872@end example
e3371e62 1873
2192c332
FB
1874The workaround is to install a service pack for XP after a boot in safe
1875mode. Then reboot, and the problem should go away. Since there is no
1876network while in safe mode, its recommended to download the full
1877installation of SP1 or SP2 and transfer that via an ISO or using the
1878vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1879
a0a821a4
FB
1880@subsection MS-DOS and FreeDOS
1881
1882@subsubsection CPU usage reduction
1883
1884DOS does not correctly use the CPU HLT instruction. The result is that
1885it takes host CPU cycles even when idle. You can install the utility
1886from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1887problem.
1888
debc7065 1889@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1890@chapter QEMU System emulator for non PC targets
1891
1892QEMU is a generic emulator and it emulates many non PC
1893machines. Most of the options are similar to the PC emulator. The
4be456f1 1894differences are mentioned in the following sections.
3f9f3aa1 1895
debc7065 1896@menu
7544a042 1897* PowerPC System emulator::
24d4de45
TS
1898* Sparc32 System emulator::
1899* Sparc64 System emulator::
1900* MIPS System emulator::
1901* ARM System emulator::
1902* ColdFire System emulator::
7544a042
SW
1903* Cris System emulator::
1904* Microblaze System emulator::
1905* SH4 System emulator::
3aeaea65 1906* Xtensa System emulator::
debc7065
FB
1907@end menu
1908
7544a042
SW
1909@node PowerPC System emulator
1910@section PowerPC System emulator
1911@cindex system emulation (PowerPC)
1a084f3d 1912
15a34c63
FB
1913Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1914or PowerMac PowerPC system.
1a084f3d 1915
b671f9ed 1916QEMU emulates the following PowerMac peripherals:
1a084f3d 1917
15a34c63 1918@itemize @minus
5fafdf24 1919@item
006f3a48 1920UniNorth or Grackle PCI Bridge
15a34c63
FB
1921@item
1922PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1923@item
15a34c63 19242 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1925@item
15a34c63
FB
1926NE2000 PCI adapters
1927@item
1928Non Volatile RAM
1929@item
1930VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1931@end itemize
1932
b671f9ed 1933QEMU emulates the following PREP peripherals:
52c00a5f
FB
1934
1935@itemize @minus
5fafdf24 1936@item
15a34c63
FB
1937PCI Bridge
1938@item
1939PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1940@item
52c00a5f
FB
19412 IDE interfaces with hard disk and CD-ROM support
1942@item
1943Floppy disk
5fafdf24 1944@item
15a34c63 1945NE2000 network adapters
52c00a5f
FB
1946@item
1947Serial port
1948@item
1949PREP Non Volatile RAM
15a34c63
FB
1950@item
1951PC compatible keyboard and mouse.
52c00a5f
FB
1952@end itemize
1953
15a34c63 1954QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1955@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1956
992e5acd 1957Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
1958for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1959v2) portable firmware implementation. The goal is to implement a 100%
1960IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1961
15a34c63
FB
1962@c man begin OPTIONS
1963
1964The following options are specific to the PowerPC emulation:
1965
1966@table @option
1967
4e257e5e 1968@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 1969
340fb41b 1970Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 1971
4e257e5e 1972@item -prom-env @var{string}
95efd11c
BS
1973
1974Set OpenBIOS variables in NVRAM, for example:
1975
1976@example
1977qemu-system-ppc -prom-env 'auto-boot?=false' \
1978 -prom-env 'boot-device=hd:2,\yaboot' \
1979 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1980@end example
1981
1982These variables are not used by Open Hack'Ware.
1983
15a34c63
FB
1984@end table
1985
5fafdf24 1986@c man end
15a34c63
FB
1987
1988
52c00a5f 1989More information is available at
3f9f3aa1 1990@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1991
24d4de45
TS
1992@node Sparc32 System emulator
1993@section Sparc32 System emulator
7544a042 1994@cindex system emulation (Sparc32)
e80cfcfc 1995
34a3d239
BS
1996Use the executable @file{qemu-system-sparc} to simulate the following
1997Sun4m architecture machines:
1998@itemize @minus
1999@item
2000SPARCstation 4
2001@item
2002SPARCstation 5
2003@item
2004SPARCstation 10
2005@item
2006SPARCstation 20
2007@item
2008SPARCserver 600MP
2009@item
2010SPARCstation LX
2011@item
2012SPARCstation Voyager
2013@item
2014SPARCclassic
2015@item
2016SPARCbook
2017@end itemize
2018
2019The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2020but Linux limits the number of usable CPUs to 4.
e80cfcfc 2021
6a4e1771 2022QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
2023
2024@itemize @minus
3475187d 2025@item
6a4e1771 2026IOMMU
e80cfcfc 2027@item
33632788 2028TCX or cgthree Frame buffer
5fafdf24 2029@item
e80cfcfc
FB
2030Lance (Am7990) Ethernet
2031@item
34a3d239 2032Non Volatile RAM M48T02/M48T08
e80cfcfc 2033@item
3475187d
FB
2034Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2035and power/reset logic
2036@item
2037ESP SCSI controller with hard disk and CD-ROM support
2038@item
6a3b9cc9 2039Floppy drive (not on SS-600MP)
a2502b58
BS
2040@item
2041CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
2042@end itemize
2043
6a3b9cc9
BS
2044The number of peripherals is fixed in the architecture. Maximum
2045memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 2046others 2047MB.
3475187d 2047
30a604f3 2048Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
2049@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2050firmware implementation. The goal is to implement a 100% IEEE
20511275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
2052
2053A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 2054the QEMU web site. There are still issues with NetBSD and OpenBSD, but
33632788 2055some kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
2056don't work probably due to interface issues between OpenBIOS and
2057Solaris.
3475187d
FB
2058
2059@c man begin OPTIONS
2060
a2502b58 2061The following options are specific to the Sparc32 emulation:
3475187d
FB
2062
2063@table @option
2064
4e257e5e 2065@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 2066
33632788
MCA
2067Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
2068option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
2069of 1152x900x8 for people who wish to use OBP.
3475187d 2070
4e257e5e 2071@item -prom-env @var{string}
66508601
BS
2072
2073Set OpenBIOS variables in NVRAM, for example:
2074
2075@example
2076qemu-system-sparc -prom-env 'auto-boot?=false' \
2077 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2078@end example
2079
6a4e1771 2080@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
2081
2082Set the emulated machine type. Default is SS-5.
2083
3475187d
FB
2084@end table
2085
5fafdf24 2086@c man end
3475187d 2087
24d4de45
TS
2088@node Sparc64 System emulator
2089@section Sparc64 System emulator
7544a042 2090@cindex system emulation (Sparc64)
e80cfcfc 2091
34a3d239
BS
2092Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2093(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2094Niagara (T1) machine. The emulator is not usable for anything yet, but
2095it can launch some kernels.
b756921a 2096
c7ba218d 2097QEMU emulates the following peripherals:
83469015
FB
2098
2099@itemize @minus
2100@item
5fafdf24 2101UltraSparc IIi APB PCI Bridge
83469015
FB
2102@item
2103PCI VGA compatible card with VESA Bochs Extensions
2104@item
34a3d239
BS
2105PS/2 mouse and keyboard
2106@item
83469015
FB
2107Non Volatile RAM M48T59
2108@item
2109PC-compatible serial ports
c7ba218d
BS
2110@item
21112 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
2112@item
2113Floppy disk
83469015
FB
2114@end itemize
2115
c7ba218d
BS
2116@c man begin OPTIONS
2117
2118The following options are specific to the Sparc64 emulation:
2119
2120@table @option
2121
4e257e5e 2122@item -prom-env @var{string}
34a3d239
BS
2123
2124Set OpenBIOS variables in NVRAM, for example:
2125
2126@example
2127qemu-system-sparc64 -prom-env 'auto-boot?=false'
2128@end example
2129
2130@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
2131
2132Set the emulated machine type. The default is sun4u.
2133
2134@end table
2135
2136@c man end
2137
24d4de45
TS
2138@node MIPS System emulator
2139@section MIPS System emulator
7544a042 2140@cindex system emulation (MIPS)
9d0a8e6f 2141
d9aedc32
TS
2142Four executables cover simulation of 32 and 64-bit MIPS systems in
2143both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2144@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2145Five different machine types are emulated:
24d4de45
TS
2146
2147@itemize @minus
2148@item
2149A generic ISA PC-like machine "mips"
2150@item
2151The MIPS Malta prototype board "malta"
2152@item
d9aedc32 2153An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2154@item
f0fc6f8f 2155MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2156@item
2157A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2158@end itemize
2159
2160The generic emulation is supported by Debian 'Etch' and is able to
2161install Debian into a virtual disk image. The following devices are
2162emulated:
3f9f3aa1
FB
2163
2164@itemize @minus
5fafdf24 2165@item
6bf5b4e8 2166A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2167@item
2168PC style serial port
2169@item
24d4de45
TS
2170PC style IDE disk
2171@item
3f9f3aa1
FB
2172NE2000 network card
2173@end itemize
2174
24d4de45
TS
2175The Malta emulation supports the following devices:
2176
2177@itemize @minus
2178@item
0b64d008 2179Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2180@item
2181PIIX4 PCI/USB/SMbus controller
2182@item
2183The Multi-I/O chip's serial device
2184@item
3a2eeac0 2185PCI network cards (PCnet32 and others)
24d4de45
TS
2186@item
2187Malta FPGA serial device
2188@item
1f605a76 2189Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2190@end itemize
2191
2192The ACER Pica emulation supports:
2193
2194@itemize @minus
2195@item
2196MIPS R4000 CPU
2197@item
2198PC-style IRQ and DMA controllers
2199@item
2200PC Keyboard
2201@item
2202IDE controller
2203@end itemize
3f9f3aa1 2204
b5e4946f 2205The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
2206to what the proprietary MIPS emulator uses for running Linux.
2207It supports:
6bf5b4e8
TS
2208
2209@itemize @minus
2210@item
2211A range of MIPS CPUs, default is the 24Kf
2212@item
2213PC style serial port
2214@item
2215MIPSnet network emulation
2216@end itemize
2217
88cb0a02
AJ
2218The MIPS Magnum R4000 emulation supports:
2219
2220@itemize @minus
2221@item
2222MIPS R4000 CPU
2223@item
2224PC-style IRQ controller
2225@item
2226PC Keyboard
2227@item
2228SCSI controller
2229@item
2230G364 framebuffer
2231@end itemize
2232
2233
24d4de45
TS
2234@node ARM System emulator
2235@section ARM System emulator
7544a042 2236@cindex system emulation (ARM)
3f9f3aa1
FB
2237
2238Use the executable @file{qemu-system-arm} to simulate a ARM
2239machine. The ARM Integrator/CP board is emulated with the following
2240devices:
2241
2242@itemize @minus
2243@item
9ee6e8bb 2244ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2245@item
2246Two PL011 UARTs
5fafdf24 2247@item
3f9f3aa1 2248SMC 91c111 Ethernet adapter
00a9bf19
PB
2249@item
2250PL110 LCD controller
2251@item
2252PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2253@item
2254PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2255@end itemize
2256
2257The ARM Versatile baseboard is emulated with the following devices:
2258
2259@itemize @minus
2260@item
9ee6e8bb 2261ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2262@item
2263PL190 Vectored Interrupt Controller
2264@item
2265Four PL011 UARTs
5fafdf24 2266@item
00a9bf19
PB
2267SMC 91c111 Ethernet adapter
2268@item
2269PL110 LCD controller
2270@item
2271PL050 KMI with PS/2 keyboard and mouse.
2272@item
2273PCI host bridge. Note the emulated PCI bridge only provides access to
2274PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2275This means some devices (eg. ne2k_pci NIC) are not usable, and others
2276(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2277mapped control registers.
e6de1bad
PB
2278@item
2279PCI OHCI USB controller.
2280@item
2281LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2282@item
2283PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2284@end itemize
2285
21a88941
PB
2286Several variants of the ARM RealView baseboard are emulated,
2287including the EB, PB-A8 and PBX-A9. Due to interactions with the
2288bootloader, only certain Linux kernel configurations work out
2289of the box on these boards.
2290
2291Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2292enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2293should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2294disabled and expect 1024M RAM.
2295
40c5c6cd 2296The following devices are emulated:
d7739d75
PB
2297
2298@itemize @minus
2299@item
f7c70325 2300ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2301@item
2302ARM AMBA Generic/Distributed Interrupt Controller
2303@item
2304Four PL011 UARTs
5fafdf24 2305@item
0ef849d7 2306SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2307@item
2308PL110 LCD controller
2309@item
2310PL050 KMI with PS/2 keyboard and mouse
2311@item
2312PCI host bridge
2313@item
2314PCI OHCI USB controller
2315@item
2316LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2317@item
2318PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2319@end itemize
2320
b00052e4
AZ
2321The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2322and "Terrier") emulation includes the following peripherals:
2323
2324@itemize @minus
2325@item
2326Intel PXA270 System-on-chip (ARM V5TE core)
2327@item
2328NAND Flash memory
2329@item
2330IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2331@item
2332On-chip OHCI USB controller
2333@item
2334On-chip LCD controller
2335@item
2336On-chip Real Time Clock
2337@item
2338TI ADS7846 touchscreen controller on SSP bus
2339@item
2340Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2341@item
2342GPIO-connected keyboard controller and LEDs
2343@item
549444e1 2344Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2345@item
2346Three on-chip UARTs
2347@item
2348WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2349@end itemize
2350
02645926
AZ
2351The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2352following elements:
2353
2354@itemize @minus
2355@item
2356Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2357@item
2358ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2359@item
2360On-chip LCD controller
2361@item
2362On-chip Real Time Clock
2363@item
2364TI TSC2102i touchscreen controller / analog-digital converter / Audio
2365CODEC, connected through MicroWire and I@math{^2}S busses
2366@item
2367GPIO-connected matrix keypad
2368@item
2369Secure Digital card connected to OMAP MMC/SD host
2370@item
2371Three on-chip UARTs
2372@end itemize
2373
c30bb264
AZ
2374Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2375emulation supports the following elements:
2376
2377@itemize @minus
2378@item
2379Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2380@item
2381RAM and non-volatile OneNAND Flash memories
2382@item
2383Display connected to EPSON remote framebuffer chip and OMAP on-chip
2384display controller and a LS041y3 MIPI DBI-C controller
2385@item
2386TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2387driven through SPI bus
2388@item
2389National Semiconductor LM8323-controlled qwerty keyboard driven
2390through I@math{^2}C bus
2391@item
2392Secure Digital card connected to OMAP MMC/SD host
2393@item
2394Three OMAP on-chip UARTs and on-chip STI debugging console
2395@item
40c5c6cd 2396A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2397@item
c30bb264
AZ
2398Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2399TUSB6010 chip - only USB host mode is supported
2400@item
2401TI TMP105 temperature sensor driven through I@math{^2}C bus
2402@item
2403TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2404@item
2405Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2406through CBUS
2407@end itemize
2408
9ee6e8bb
PB
2409The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2410devices:
2411
2412@itemize @minus
2413@item
2414Cortex-M3 CPU core.
2415@item
241664k Flash and 8k SRAM.
2417@item
2418Timers, UARTs, ADC and I@math{^2}C interface.
2419@item
2420OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2421@end itemize
2422
2423The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2424devices:
2425
2426@itemize @minus
2427@item
2428Cortex-M3 CPU core.
2429@item
2430256k Flash and 64k SRAM.
2431@item
2432Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2433@item
2434OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2435@end itemize
2436
57cd6e97
AZ
2437The Freecom MusicPal internet radio emulation includes the following
2438elements:
2439
2440@itemize @minus
2441@item
2442Marvell MV88W8618 ARM core.
2443@item
244432 MB RAM, 256 KB SRAM, 8 MB flash.
2445@item
2446Up to 2 16550 UARTs
2447@item
2448MV88W8xx8 Ethernet controller
2449@item
2450MV88W8618 audio controller, WM8750 CODEC and mixer
2451@item
e080e785 2452128×64 display with brightness control
57cd6e97
AZ
2453@item
24542 buttons, 2 navigation wheels with button function
2455@end itemize
2456
997641a8 2457The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2458The emulation includes the following elements:
997641a8
AZ
2459
2460@itemize @minus
2461@item
2462Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2463@item
2464ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2465V1
24661 Flash of 16MB and 1 Flash of 8MB
2467V2
24681 Flash of 32MB
2469@item
2470On-chip LCD controller
2471@item
2472On-chip Real Time Clock
2473@item
2474Secure Digital card connected to OMAP MMC/SD host
2475@item
2476Three on-chip UARTs
2477@end itemize
2478
3f9f3aa1
FB
2479A Linux 2.6 test image is available on the QEMU web site. More
2480information is available in the QEMU mailing-list archive.
9d0a8e6f 2481
d2c639d6
BS
2482@c man begin OPTIONS
2483
2484The following options are specific to the ARM emulation:
2485
2486@table @option
2487
2488@item -semihosting
2489Enable semihosting syscall emulation.
2490
2491On ARM this implements the "Angel" interface.
2492
2493Note that this allows guest direct access to the host filesystem,
2494so should only be used with trusted guest OS.
2495
2496@end table
2497
24d4de45
TS
2498@node ColdFire System emulator
2499@section ColdFire System emulator
7544a042
SW
2500@cindex system emulation (ColdFire)
2501@cindex system emulation (M68K)
209a4e69
PB
2502
2503Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2504The emulator is able to boot a uClinux kernel.
707e011b
PB
2505
2506The M5208EVB emulation includes the following devices:
2507
2508@itemize @minus
5fafdf24 2509@item
707e011b
PB
2510MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2511@item
2512Three Two on-chip UARTs.
2513@item
2514Fast Ethernet Controller (FEC)
2515@end itemize
2516
2517The AN5206 emulation includes the following devices:
209a4e69
PB
2518
2519@itemize @minus
5fafdf24 2520@item
209a4e69
PB
2521MCF5206 ColdFire V2 Microprocessor.
2522@item
2523Two on-chip UARTs.
2524@end itemize
2525
d2c639d6
BS
2526@c man begin OPTIONS
2527
7544a042 2528The following options are specific to the ColdFire emulation:
d2c639d6
BS
2529
2530@table @option
2531
2532@item -semihosting
2533Enable semihosting syscall emulation.
2534
2535On M68K this implements the "ColdFire GDB" interface used by libgloss.
2536
2537Note that this allows guest direct access to the host filesystem,
2538so should only be used with trusted guest OS.
2539
2540@end table
2541
7544a042
SW
2542@node Cris System emulator
2543@section Cris System emulator
2544@cindex system emulation (Cris)
2545
2546TODO
2547
2548@node Microblaze System emulator
2549@section Microblaze System emulator
2550@cindex system emulation (Microblaze)
2551
2552TODO
2553
2554@node SH4 System emulator
2555@section SH4 System emulator
2556@cindex system emulation (SH4)
2557
2558TODO
2559
3aeaea65
MF
2560@node Xtensa System emulator
2561@section Xtensa System emulator
2562@cindex system emulation (Xtensa)
2563
2564Two executables cover simulation of both Xtensa endian options,
2565@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2566Two different machine types are emulated:
2567
2568@itemize @minus
2569@item
2570Xtensa emulator pseudo board "sim"
2571@item
2572Avnet LX60/LX110/LX200 board
2573@end itemize
2574
b5e4946f 2575The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2576to one provided by the proprietary Tensilica ISS.
2577It supports:
2578
2579@itemize @minus
2580@item
2581A range of Xtensa CPUs, default is the DC232B
2582@item
2583Console and filesystem access via semihosting calls
2584@end itemize
2585
2586The Avnet LX60/LX110/LX200 emulation supports:
2587
2588@itemize @minus
2589@item
2590A range of Xtensa CPUs, default is the DC232B
2591@item
259216550 UART
2593@item
2594OpenCores 10/100 Mbps Ethernet MAC
2595@end itemize
2596
2597@c man begin OPTIONS
2598
2599The following options are specific to the Xtensa emulation:
2600
2601@table @option
2602
2603@item -semihosting
2604Enable semihosting syscall emulation.
2605
2606Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2607Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2608
2609Note that this allows guest direct access to the host filesystem,
2610so should only be used with trusted guest OS.
2611
2612@end table
5fafdf24
TS
2613@node QEMU User space emulator
2614@chapter QEMU User space emulator
83195237
FB
2615
2616@menu
2617* Supported Operating Systems ::
2618* Linux User space emulator::
84778508 2619* BSD User space emulator ::
83195237
FB
2620@end menu
2621
2622@node Supported Operating Systems
2623@section Supported Operating Systems
2624
2625The following OS are supported in user space emulation:
2626
2627@itemize @minus
2628@item
4be456f1 2629Linux (referred as qemu-linux-user)
83195237 2630@item
84778508 2631BSD (referred as qemu-bsd-user)
83195237
FB
2632@end itemize
2633
2634@node Linux User space emulator
2635@section Linux User space emulator
386405f7 2636
debc7065
FB
2637@menu
2638* Quick Start::
2639* Wine launch::
2640* Command line options::
79737e4a 2641* Other binaries::
debc7065
FB
2642@end menu
2643
2644@node Quick Start
83195237 2645@subsection Quick Start
df0f11a0 2646
1f673135 2647In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2648itself and all the target (x86) dynamic libraries used by it.
386405f7 2649
1f673135 2650@itemize
386405f7 2651
1f673135
FB
2652@item On x86, you can just try to launch any process by using the native
2653libraries:
386405f7 2654
5fafdf24 2655@example
1f673135
FB
2656qemu-i386 -L / /bin/ls
2657@end example
386405f7 2658
1f673135
FB
2659@code{-L /} tells that the x86 dynamic linker must be searched with a
2660@file{/} prefix.
386405f7 2661
b65ee4fa
SW
2662@item Since QEMU is also a linux process, you can launch QEMU with
2663QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2664
5fafdf24 2665@example
1f673135
FB
2666qemu-i386 -L / qemu-i386 -L / /bin/ls
2667@end example
386405f7 2668
1f673135
FB
2669@item On non x86 CPUs, you need first to download at least an x86 glibc
2670(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2671@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2672
1f673135 2673@example
5fafdf24 2674unset LD_LIBRARY_PATH
1f673135 2675@end example
1eb87257 2676
1f673135 2677Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2678
1f673135
FB
2679@example
2680qemu-i386 tests/i386/ls
2681@end example
4c3b5a48 2682You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2683QEMU is automatically launched by the Linux kernel when you try to
2684launch x86 executables. It requires the @code{binfmt_misc} module in the
2685Linux kernel.
1eb87257 2686
1f673135
FB
2687@item The x86 version of QEMU is also included. You can try weird things such as:
2688@example
debc7065
FB
2689qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2690 /usr/local/qemu-i386/bin/ls-i386
1f673135 2691@end example
1eb20527 2692
1f673135 2693@end itemize
1eb20527 2694
debc7065 2695@node Wine launch
83195237 2696@subsection Wine launch
1eb20527 2697
1f673135 2698@itemize
386405f7 2699
1f673135
FB
2700@item Ensure that you have a working QEMU with the x86 glibc
2701distribution (see previous section). In order to verify it, you must be
2702able to do:
386405f7 2703
1f673135
FB
2704@example
2705qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2706@end example
386405f7 2707
1f673135 2708@item Download the binary x86 Wine install
5fafdf24 2709(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2710
1f673135 2711@item Configure Wine on your account. Look at the provided script
debc7065 2712@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2713@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2714
1f673135 2715@item Then you can try the example @file{putty.exe}:
386405f7 2716
1f673135 2717@example
debc7065
FB
2718qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2719 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2720@end example
386405f7 2721
1f673135 2722@end itemize
fd429f2f 2723
debc7065 2724@node Command line options
83195237 2725@subsection Command line options
1eb20527 2726
1f673135 2727@example
68a1c816 2728usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
1f673135 2729@end example
1eb20527 2730
1f673135
FB
2731@table @option
2732@item -h
2733Print the help
3b46e624 2734@item -L path
1f673135
FB
2735Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2736@item -s size
2737Set the x86 stack size in bytes (default=524288)
34a3d239 2738@item -cpu model
c8057f95 2739Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2740@item -E @var{var}=@var{value}
2741Set environment @var{var} to @var{value}.
2742@item -U @var{var}
2743Remove @var{var} from the environment.
379f6698
PB
2744@item -B offset
2745Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2746the address region required by guest applications is reserved on the host.
2747This option is currently only supported on some hosts.
68a1c816
PB
2748@item -R size
2749Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2750"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2751@end table
2752
1f673135 2753Debug options:
386405f7 2754
1f673135 2755@table @option
989b697d
PM
2756@item -d item1,...
2757Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2758@item -p pagesize
2759Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2760@item -g port
2761Wait gdb connection to port
1b530a6d
AJ
2762@item -singlestep
2763Run the emulation in single step mode.
1f673135 2764@end table
386405f7 2765
b01bcae6
AZ
2766Environment variables:
2767
2768@table @env
2769@item QEMU_STRACE
2770Print system calls and arguments similar to the 'strace' program
2771(NOTE: the actual 'strace' program will not work because the user
2772space emulator hasn't implemented ptrace). At the moment this is
2773incomplete. All system calls that don't have a specific argument
2774format are printed with information for six arguments. Many
2775flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2776@end table
b01bcae6 2777
79737e4a 2778@node Other binaries
83195237 2779@subsection Other binaries
79737e4a 2780
7544a042
SW
2781@cindex user mode (Alpha)
2782@command{qemu-alpha} TODO.
2783
2784@cindex user mode (ARM)
2785@command{qemu-armeb} TODO.
2786
2787@cindex user mode (ARM)
79737e4a
PB
2788@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2789binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2790configurations), and arm-uclinux bFLT format binaries.
2791
7544a042
SW
2792@cindex user mode (ColdFire)
2793@cindex user mode (M68K)
e6e5906b
PB
2794@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2795(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2796coldfire uClinux bFLT format binaries.
2797
79737e4a
PB
2798The binary format is detected automatically.
2799
7544a042
SW
2800@cindex user mode (Cris)
2801@command{qemu-cris} TODO.
2802
2803@cindex user mode (i386)
2804@command{qemu-i386} TODO.
2805@command{qemu-x86_64} TODO.
2806
2807@cindex user mode (Microblaze)
2808@command{qemu-microblaze} TODO.
2809
2810@cindex user mode (MIPS)
2811@command{qemu-mips} TODO.
2812@command{qemu-mipsel} TODO.
2813
2814@cindex user mode (PowerPC)
2815@command{qemu-ppc64abi32} TODO.
2816@command{qemu-ppc64} TODO.
2817@command{qemu-ppc} TODO.
2818
2819@cindex user mode (SH4)
2820@command{qemu-sh4eb} TODO.
2821@command{qemu-sh4} TODO.
2822
2823@cindex user mode (SPARC)
34a3d239
BS
2824@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2825
a785e42e
BS
2826@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2827(Sparc64 CPU, 32 bit ABI).
2828
2829@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2830SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2831
84778508
BS
2832@node BSD User space emulator
2833@section BSD User space emulator
2834
2835@menu
2836* BSD Status::
2837* BSD Quick Start::
2838* BSD Command line options::
2839@end menu
2840
2841@node BSD Status
2842@subsection BSD Status
2843
2844@itemize @minus
2845@item
2846target Sparc64 on Sparc64: Some trivial programs work.
2847@end itemize
2848
2849@node BSD Quick Start
2850@subsection Quick Start
2851
2852In order to launch a BSD process, QEMU needs the process executable
2853itself and all the target dynamic libraries used by it.
2854
2855@itemize
2856
2857@item On Sparc64, you can just try to launch any process by using the native
2858libraries:
2859
2860@example
2861qemu-sparc64 /bin/ls
2862@end example
2863
2864@end itemize
2865
2866@node BSD Command line options
2867@subsection Command line options
2868
2869@example
2870usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2871@end example
2872
2873@table @option
2874@item -h
2875Print the help
2876@item -L path
2877Set the library root path (default=/)
2878@item -s size
2879Set the stack size in bytes (default=524288)
f66724c9
SW
2880@item -ignore-environment
2881Start with an empty environment. Without this option,
40c5c6cd 2882the initial environment is a copy of the caller's environment.
f66724c9
SW
2883@item -E @var{var}=@var{value}
2884Set environment @var{var} to @var{value}.
2885@item -U @var{var}
2886Remove @var{var} from the environment.
84778508
BS
2887@item -bsd type
2888Set the type of the emulated BSD Operating system. Valid values are
2889FreeBSD, NetBSD and OpenBSD (default).
2890@end table
2891
2892Debug options:
2893
2894@table @option
989b697d
PM
2895@item -d item1,...
2896Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2897@item -p pagesize
2898Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2899@item -singlestep
2900Run the emulation in single step mode.
84778508
BS
2901@end table
2902
15a34c63
FB
2903@node compilation
2904@chapter Compilation from the sources
2905
debc7065
FB
2906@menu
2907* Linux/Unix::
2908* Windows::
2909* Cross compilation for Windows with Linux::
2910* Mac OS X::
47eacb4f 2911* Make targets::
debc7065
FB
2912@end menu
2913
2914@node Linux/Unix
7c3fc84d
FB
2915@section Linux/Unix
2916
2917@subsection Compilation
2918
2919First you must decompress the sources:
2920@example
2921cd /tmp
2922tar zxvf qemu-x.y.z.tar.gz
2923cd qemu-x.y.z
2924@end example
2925
2926Then you configure QEMU and build it (usually no options are needed):
2927@example
2928./configure
2929make
2930@end example
2931
2932Then type as root user:
2933@example
2934make install
2935@end example
2936to install QEMU in @file{/usr/local}.
2937
debc7065 2938@node Windows
15a34c63
FB
2939@section Windows
2940
2941@itemize
2942@item Install the current versions of MSYS and MinGW from
2943@url{http://www.mingw.org/}. You can find detailed installation
2944instructions in the download section and the FAQ.
2945
5fafdf24 2946@item Download
15a34c63 2947the MinGW development library of SDL 1.2.x
debc7065 2948(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
d0a96f3d
ST
2949@url{http://www.libsdl.org}. Unpack it in a temporary place and
2950edit the @file{sdl-config} script so that it gives the
15a34c63
FB
2951correct SDL directory when invoked.
2952
d0a96f3d
ST
2953@item Install the MinGW version of zlib and make sure
2954@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2955MinGW's default header and linker search paths.
d0a96f3d 2956
15a34c63 2957@item Extract the current version of QEMU.
5fafdf24 2958
15a34c63
FB
2959@item Start the MSYS shell (file @file{msys.bat}).
2960
5fafdf24 2961@item Change to the QEMU directory. Launch @file{./configure} and
15a34c63
FB
2962@file{make}. If you have problems using SDL, verify that
2963@file{sdl-config} can be launched from the MSYS command line.
2964
c5ec15ea 2965@item You can install QEMU in @file{Program Files/QEMU} by typing
15a34c63 2966@file{make install}. Don't forget to copy @file{SDL.dll} in
c5ec15ea 2967@file{Program Files/QEMU}.
15a34c63
FB
2968
2969@end itemize
2970
debc7065 2971@node Cross compilation for Windows with Linux
15a34c63
FB
2972@section Cross compilation for Windows with Linux
2973
2974@itemize
2975@item
2976Install the MinGW cross compilation tools available at
2977@url{http://www.mingw.org/}.
2978
d0a96f3d
ST
2979@item Download
2980the MinGW development library of SDL 1.2.x
2981(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2982@url{http://www.libsdl.org}. Unpack it in a temporary place and
2983edit the @file{sdl-config} script so that it gives the
2984correct SDL directory when invoked. Set up the @code{PATH} environment
2985variable so that @file{sdl-config} can be launched by
15a34c63
FB
2986the QEMU configuration script.
2987
d0a96f3d
ST
2988@item Install the MinGW version of zlib and make sure
2989@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2990MinGW's default header and linker search paths.
d0a96f3d 2991
5fafdf24 2992@item
15a34c63
FB
2993Configure QEMU for Windows cross compilation:
2994@example
d0a96f3d
ST
2995PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2996@end example
2997The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2998MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
40c5c6cd 2999We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
d0a96f3d 3000use --cross-prefix to specify the name of the cross compiler.
c5ec15ea 3001You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
d0a96f3d
ST
3002
3003Under Fedora Linux, you can run:
3004@example
3005yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
15a34c63 3006@end example
d0a96f3d 3007to get a suitable cross compilation environment.
15a34c63 3008
5fafdf24 3009@item You can install QEMU in the installation directory by typing
d0a96f3d 3010@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
5fafdf24 3011installation directory.
15a34c63
FB
3012
3013@end itemize
3014
3804da9d
SW
3015Wine can be used to launch the resulting qemu-system-i386.exe
3016and all other qemu-system-@var{target}.exe compiled for Win32.
15a34c63 3017
debc7065 3018@node Mac OS X
15a34c63
FB
3019@section Mac OS X
3020
3021The Mac OS X patches are not fully merged in QEMU, so you should look
3022at the QEMU mailing list archive to have all the necessary
3023information.
3024
47eacb4f
SW
3025@node Make targets
3026@section Make targets
3027
3028@table @code
3029
3030@item make
3031@item make all
3032Make everything which is typically needed.
3033
3034@item install
3035TODO
3036
3037@item install-doc
3038TODO
3039
3040@item make clean
3041Remove most files which were built during make.
3042
3043@item make distclean
3044Remove everything which was built during make.
3045
3046@item make dvi
3047@item make html
3048@item make info
3049@item make pdf
3050Create documentation in dvi, html, info or pdf format.
3051
3052@item make cscope
3053TODO
3054
3055@item make defconfig
3056(Re-)create some build configuration files.
3057User made changes will be overwritten.
3058
3059@item tar
3060@item tarbin
3061TODO
3062
3063@end table
3064
7544a042
SW
3065@node License
3066@appendix License
3067
3068QEMU is a trademark of Fabrice Bellard.
3069
3070QEMU is released under the GNU General Public License (TODO: add link).
3071Parts of QEMU have specific licenses, see file LICENSE.
3072
3073TODO (refer to file LICENSE, include it, include the GPL?)
3074
debc7065 3075@node Index
7544a042
SW
3076@appendix Index
3077@menu
3078* Concept Index::
3079* Function Index::
3080* Keystroke Index::
3081* Program Index::
3082* Data Type Index::
3083* Variable Index::
3084@end menu
3085
3086@node Concept Index
3087@section Concept Index
3088This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
3089@printindex cp
3090
7544a042
SW
3091@node Function Index
3092@section Function Index
3093This index could be used for command line options and monitor functions.
3094@printindex fn
3095
3096@node Keystroke Index
3097@section Keystroke Index
3098
3099This is a list of all keystrokes which have a special function
3100in system emulation.
3101
3102@printindex ky
3103
3104@node Program Index
3105@section Program Index
3106@printindex pg
3107
3108@node Data Type Index
3109@section Data Type Index
3110
3111This index could be used for qdev device names and options.
3112
3113@printindex tp
3114
3115@node Variable Index
3116@section Variable Index
3117@printindex vr
3118
debc7065 3119@bye